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Summary.

The purpose of this thesis is to present a numerical method for the solution of state con-
strained optimal control problems.

In the first instance, optimization problems are introduced and considered in an abstract
setting. The major advantage of this abstract treatment is that one can consider optimality
conditions without going into the details of problem specifications. A number of results on
optimality conditions for the optimization problems are reviewed.

Because state constrained optimal control problems can be identified as special cases of the
abstract optimization problems, the theory reviewed for abstract optimization problems
can be applied directly. When the optimality conditions for the abstract problems are
expressed in terms of the optimal control problems, the well known minimum principle
for state constrained optimal control problems follows.

The method, which is proposed for the numerical solution of the optimal control prob-
lems, is presented first in terms of the abstract optimization problems. Essentially the
method is analogous to a sequential quadratic programming method for the numerical
solution of finite-dimensional nonlinear programming problems. Hence, the method is an
iterative descent method where the direction of search is determined by the solution of a
subproblem with quadratic objective function and linear constraints. In each iteration of
the method a step size is determined using an exact penalty (merit) function. The applica-
tion of the abstract method to state constrained optimal control problems is complicated
by the fact that the subproblems, which are optimal control problems with guadratic
objective function and linear constraints (including linear state constraints), cannot be
solved easily when the structure of the solution is not known. A modification of the sub-
problems is therefore necessary. As a result of this modification the method will, in gen-
eral, not converge to a solution of the problem, but to a point close to a solution. There-
fore a second stage, which makes use of the structure of the solution determined in the
first stage, is necessary to determine the solution more accurately.

The numerical implementation of the method essentially comes down to the numerical
solution of a linear multipoint boundary value problem. Several methods may be used for
the numerical solution of this problem. but the collocation method which was chosen, has
several important advantages over other methods. Effective use can be made of the special
structure of the set of linear equations to be solved, using large scale optimization tech-
nigues.

Numerical results of the program for some practical problems are given. Two of these
problems are well known in literature and allow therefore a comparison with results
obtained by others.

Finally the relations between the method proposed and some other methods is given.
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Introduction

1. Introduction.

1.1. State constrained optimal control problems.

Optimal control problems arise in practice when there is a demand to control a system
from one state to another in some optimal sense, i.e. the control must be such that some
{objective) criterion is minimized (or maximized).

In this thesis we are interested in those optimal control problems which are completely
deterministic. This means that the dynamic behaviour of the system to be controlled is
determined completely by a set of differential equations and that stochastic influences on
the state of the system, which are present in practical systems, may be neglected.

It is assumed that the dynamic behaviour of the system to be controlled can be described
by a set of ordinary differential equations of the form :

@)= flx@ulde) oK<, (1.1.1)

where x is an n-vector function on [0.7] called the state variable and u is an m-vector
function on [0,7] called the control variable. The function f is an n -valued vector func-
tion, on R™" X R™x[0.T] It is assumed that f is twice continuously differentiable with
respect 1o its arguments.

On the one hand one may note that the dynamic behaviour of a large number of systems.
which arise in practice, can be described by a set of differential equations of the form
(1.1.1). On the other hand systems with delays are excluded from this formulation.

The system is to be controlled starting from an initial state x5 at 2 =0, i.e.
x(0) = x,, (1.1.2)

over an interval [0.7]. The number T is used to denote the final time. We shall assume
that T is finite. which means that we are interested in so-called finite time horizon optimal
control problems.

The object criterion is specified by means of a functional which assigns a real value to each
triple (x . .T) of the following form :

T
J1olx @aue)s) de + gox(T).T). (1.1.3)
¢

About the functions f, and g, it is only assumed that they are twice continuously
differentiable with respect to their arguments. We note that the rather general formulation
of (1.1.3) includes the formulation of minimum time and minimum energy problems (cf.
Falb et al. (1966)).

For most optimal control problems which arise in practice, the control # and the state x
must satisfy certain conditions, in addition to the differential equations. It is assumed that
these conditions, which enter into the formulation of the optimal control problem as con-
straints, may take any of the following forms :

* Terminal point constraints, i.e. the final state x (7'} must satisfy a vector equality of the
form :

ET)T)= 0. {1.14)
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*  Control constraints, i.e. the control u must satisfy :

Selu@®)r) € 0 forall 0S:<€7T. {1.1.5)

*  Mixed control state constraints, i.e. the control u and the state x must satisfy :

S @u)e) €0 forall 0S:¢<T. (1.16)

* State constraints, i.e. the state x must satisfy :

Sxx(x)e)s 0 forall 0StST. {1.1.7)

For the numerical method to be presented in this thesis. the distinction between control
and mixed control state constraints is not important. The distinction between mixed con-
trol state constraints and state constraints however, is essential. The major difficulty
involved with state constraints is that these constraints represent implicit constraints on
the control, as the state function is completely determined by the control via the
differential equations.

The optimal control problems formally stated above are obviously of & very general type
and cover a large number of problems considered by the available optimal control theory.
The first practical applications of optimal control theory were in the field of aero-space
engineering, which involved mainly problems of flight path optimization of airplanes and
space vehicles. (See e.g. Falb et al. (1966, 1969), Bryson et al. (1975).) As examples of
these types of problems one may consider the problems solved in Sections 8.1 and 8.2. We
note that the reentry manoever of an Apollo capsule was first posed as an optimal control
problem as early as 1963 by Bryson et al. (1963b). Later optimal control theory found
application in many other areas of applied science, such as econometrics {see e.g. van Loon
(1982), Geerts (1985)).

Recently. there is a growing interest in optimal control theory arising from the field of
robotics (see e.g. Bobrow et al. (1985), Bryson et al. {1985), Gomez (1985), Machielsen
(1983), Newman et al. (1986). Shin et al. (1985)). For the practical application of the
method presented in this thesis, this area of robotics is of special importance. Therefore we
will briefly outline an important problem from this field in the next section.

1.2. An example of state constrained optimal control problems in robotics.

In general, a {(rigid body) model of a robotlic arm mechanism, which consists of k links
(and joints) may be described by means of a nonlinearly coupled set of k -differential
equations of the form (see e.g. Paul (1981), Machielsen (1983)) :

J(g) +Dlggl=F . (1.2.1)

where ¢ is the vector of joint positions, ¢ is the vector of joint velocities and ¢ is the vec-
tor of joint accelerations. J(g ) is the k Xk inertia matrix which, in general, will be inver-
tible. The vector D (g ¢ ) represents gravity, coriolis and centripetal forces. F is the vector
of joint torques.

It is supposed that the arm mechanism is to be controlled from one point to another point
along a path that is specified as a parameterized curve. The curve is assumed to be given by
a set of k¥ functions Y;:[0,1]= R of a single parameter 5, so that the joint positions g; (¢}
must satisfy :
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g:(t) = Y;(s()) 08T 1Kisk, {1.2.2}

where 5 :{0.7]-=[0,1]. The value of the function s (¢ ) at a time point ¢ is interpreted as the
relative position on the path. Thus. at the initial point we have s(0)=0 and at the final
point we bave s (T )= 1. '

Equation (1.2.2) reveals that for each fixed {(sufficiently smooth) function 5:{0.7]~{0.1],
the motion of the robot along the path is completely determined. Differentiation of equa-
tion (1.2.2) with respect to the variable ¢ yields the joint velocities and accelerations. ¥

gle)=YGENs@) 0LIET, (1.2.3)
)= YEENs@)+ Y Ds P 0Lt €T, (124}

The joint torques required 1o control the robot along the path for a certain function
s:{0.7]—10.1]. follow from the combination of the equations of motion of the robot
(1.2.1) and equations (1.2.2) - (1.2.4), which relate the path motion to the joint positions,
velocities and accelerations.

F@)=JOYGEEMNYGENF@) + Y'GENsE?
+ DY GENsEIYGE) 0€ €T {1.2.5}

For most robotic systems, the motion of the robot is restricted by constraints on the joint
velocities and torques. These constraints are of the following type :

PACH ISR 0St<T i=1l..k, (1.2.6)
IF, (e € Frp s 0St€<T i=1..k (12.7)

The optimal control problem can be formulated completely in terms of the function s, i.e.
in terms of the relative motion along the path. The joint positions, velocities, accelerations
and torques can be eliminated using relations (1.2.2) - (1.2.5). The constraints (1.2.6) -
{1.2.7) become :

(s NS U S Vi 0$:<T  1Si<k. (128)
TG EMY G ENT@) + Y (sENs@))
+ DY GENs @Y EINISF,, 0S:<T. (1.2.9)

The optimal control problem comes down to the selection of a function 5, which minim-
izes some object criterion, is twice differentiable and satisfies the constraints (1.2.8) -
(1.2.9), s (0)=0and s (T )= 1.

The choice of a suitable object criterion depends on the specific robot application. For
instance, this criterion may be the final time I’ which yields minimum time control. This
criterion, however, may have the disadvantage in many practical applications that the
solution of the optimal control problem is ‘not smooth enough’, because the second deriva-
tive of the function s is likely to be of the bang-bang type. Relation (1.2.5) reveals that
discontinuities of 5 yield discontinuous joint torques which is an undesirable phenomenon
in many applications from the mechanics point of view (see e.g. Koster (1973)).

t For equations (1.2.3) - (1.2.5) a vector notation is used.



Chapter 1

An alternative to minimum time control is to select a smooth function s that satisfies the
constraints, via the minimization of

T
%-6f§(t)2d:, (12.10)

for a fixed final time T'. ]t can be shown, that with this objective function the solution of
the optimal control problem has a continuous second derivative {provided T is larger than
the minimum time) and hence, the joint torques will also be continuous. A drawback of
this approach may be that the final time must be specified in advance, which, in general is
not known a priori.

A second alternative, which combines more or less the advantages of both objective func-
tions, is to uyse :

T
T+§cJ§uFa. (1.2.11)

as an objective function and to ‘control’ the properiies of the solution of the optimal con-
trol problem via a suitable (a priori) choice of the parameter ¢.

A more formal statement of the problem outlined above shows that the optimal control
problem is indeed of the type discussed in the previous section and that the solution of
this problem is complicated in particular by the presence of the (state} constraints (1.2.8)
-{1.2.9).

1.3. Optimality conditions for state constrained optimal control problems.

In this section we shall introduce optimality conditions for state constrained optimal con-
trol problems in a formal manner. This is done in view of the central role that optimality
conditions play in any solution method for these problems. :

It can be shown that the optimal control problems introduced in Section 1.1 are special
cases of the following abstract optimization problem :

minérg(ize fx). (13.1}
subjectro: g(x) € B, (1.3.2)

E(x)= 0, {1.3.3}

where f X-R:g:X-Y h:X—Z are mappings from one Banach space (;X' ) to another
(RY.Z) and BCY is a cone with nonempty interior. The functional f denotes the
objective criterion which is to be minimized over the set of feasible points, i.e. the set of
points which satisfy the inequality constraints g(x)eB and the equality constraints
Hix)=0.

The problem (1.3.1) - (1.3.3) is a generalization of the well known finite-dimensional
mathematical programming problem (ie. X =R* Y=R™, Z=R™):
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minimize - f(x), (1.3.4)

xE€RT
subjectto : g(x) & 0, {13.5)
R(x)= 0, ‘ (136)

It is possible to derive optimality conditions for the abstract optimization problem (1.3.1)
- (1.3.3), i.e. conditions which must hold for solutions of the problem. Because both the
state constrained optimal control problems discussed in Section 1.1 and the finite-
dimensional mathematical programming problem are special cases of the abstract problem,
optimality conditions for these problems follow directly from the optimality conditions
for the abstract problem. As an introduction however, we shall review the optimality
conditions for the finite-dimensional mathematical programming problem (1.3.4) - (1.3.6)
directly (e.g. of. Gill et al. (1981); Mangasarian (1969)).

First we recall that, for any minimum of the functional f , denoted x . which is not sub-
ject to any constraints, it must hold that :

viE) =0, : (1.3.7)

i.e. the gradient of f at £ must vanish.

For the case that only equality constraints are present the optimality conditions state that
when X is a solution to the problem, and X satisfies some constraint qualification, then
there exists a (Lagrange multiplier) vector Z, such that the Lagrangian

L(x:i#) = flx)—Thix) (13.8)
has a stationary point at x, i.e.
V. LEE) = viE)-3TyR@E) = 0. {13.9)
Rewriting condition (1.3.9) we obtain :
ViG)= ¥ 5Vh &) (1.3.10)
=1

which shows that at the point X, the gradient of the objective functional must be a linear
combination of the gradients of the constraints. The numbers Z; are called Lagrange mul-
tipliers and have the interpretation of marginal costs of constraint perturbations.

When there are, besides equality constraints, also inequality constraints present, the
optimality conditions state that when X is a solution to the problem, and % satisfies some
constraint qualification, then there exist vectors y and 7, such that the Lagrangian

L(x5.8) = fx)=§57g(x) = #Thx), (13.11)
has a stationary point at X and that in addition

5,6 =0 j=l..m. | (13.12)

7 <0 i=lo.m, (1.3.13)

Condition (1.3.12) is called the complementary slack condition. This states that all inac-
tive inequality constraints, i.e. constraints for which g; (£ )< 0. may be neglected, because
the corresponding Lagrange multiplier must be zero.
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Condition {1.3.13) is directly due to the special nature of the inequality constraints. To see
this, a distinction must be made between negative (feasible) and positive (infeasible) per-
turbations of the constraints. The sign of the multiplier must be nonpositive in order that
a feasible perturbation of the constraint does not yield a decrease in cost. Otherwise, the
value of the objective function could be reduced by releasing the constraint.

Having introduced optimality conditions for the finite-dimensional mathematical program-
ming problem, we shall now introduce optimality conditions for state constrained optimal
control problems in a similar way. The Lagrangian of the state constrained optimal control
problem is defined as :

r T
Lxaunmén) = [flaut)d + g @)= [N G—flxur))de
9 ¢

7 T
+ [ols\cusd)da + [dE@Y Sy x2)+ uTEG(T)T). (1.3.14)
0 )

The optimality conditions state that when {x.2) is a solution to the state constrained
optimal control problem, and (£ 2} satisfy some constraint qualification, then there exist
multipliers A. 91, & and /i such that the Lagrangian has a stationary point at (x ). Using
calculus of variations {e.g. cf. Bryson et al. (1963a) or Hestenes (1966)) this yields the
following relations on intervals where the time derivative of £ exists ¥

AeY= —H T - Sy [t Fae) - S e FEG)  0%eST, (13.15)
H 1+ 3 ¥Ss,ltl=0 0%t<7T, , (1.3.16)
MT) = go 71+ uTE[T] {1317}

where the Hamiltonian is defined as :
Hlx xAt) = flxaus)+ A flxur) {1.3.18}

At points ¢, where the multiplier function E has a discontinuity the so-called jump-
condition must hold

A +) = At =) — Sy, 1, M £, (1.3.19}

which states that at these points the adjoint variable X is also discontinuous.

The complementary slackness condition yields :
Nu)Sulel=0 0€eST i=t ik, (1.3.20}
£.(t) is constant on intervals where Sy;[t1 < 0 0€:€T i= 1.k (1.321)
and the sign condition on the multipliers becomes :
)2 0 0£e€T  i=1..k,, ‘ (1.3.22)
£:(t) is nondecreasing on [0,T]. {(1.3.23)

A more detailed analysis reveals that normally the multiplier function é is continuously
differentiable on the interior of a boundary arc of the corresponding state constraint, i.e. an

1 Straight brackets [t ] are used to replace argument lists\ﬁnvolving x () ale ), .X(t ).

10
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interval where the state constraint is satisfied as an equality. The function £ is in most
cases discontinuous at junction and contact points, i.e. at points where a boundary arc of
the constraint is entered or exited and at points where the ¢constraint boundary is touched.

The combination of relations (1.3.15) - (1.3.19) with the constraints 6f the problem allow
the derivation of a multipoint boundary value problem in the variables x and A, with
boundary conditions at =0, t=T and at the time points f; where the jump conditions
must hold. To obtain this boundary value problem the contrel u and the multipliers 1,
and £ must be eliminated. This is usually only possible when the structure of the solution
is known, i.e. the sequence in which the various constraints are active and inactive.

Because of the important role that optimality conditions play in any solution procedure of
optimal control problems, optimality conditions have experienced quite some interest in
the past. We refer to Bryson et al. (1963a, 1975), Falb et al. (1966), Hamilton (1972),
Hestenes (1966), Jacobson et al. {(1971), Kéhler (1980), Kreindler (1982), Maurer (1976,
1977, 1981), Norris (1973). Pontryagin et al. (1962), Russak (1970a, 1970b).

14. Available methods for the numerical solution.

Among the methods, available for the numerical solution of optimal control problems, a
distinction can be made between direct and indirect methods. With direct methods the op-
timal control problem is treated directly as a minimization problem, i.e. the method is
started with an initial approximation of the solution, which is improved iteratively by
minimizing the objective functional (augmented with a "penalty” term} along a direction of
search. The direction of search is obtained via a linearization of the problem. With indirect
methods the optimality conditions, which must hold for a solution of the optimal control
problem, are used to derive a multipoint boundary value problem. Solutions of the op-
timal contro! problem will also be solutions of this multipoint boundary value problem
and hence the numerical solution of the multipoint boundary value problem yields a can-
didate for the solution of the optimal control problem. These methods are called indirect
because the optimality conditions are solved as a set of equations, as a replacement for the
minimization of the original problem.

Most direct methods are of the gradient type, i.e. they are function space analogies of the
well known gradient method for finite-dimensional nonlinear programming problems (cf.
Bryson et al. (1975)). The development of these function space analogies is based on the
relationship between optimal contirol problems and nonlinear programming problems. This
relationship is revealed by the fact that they are both special cases of the same abstract
optimization problem. With most gradient methods the control u(t ) is considered as the
variable of the minimization problem and the state x {¢ } is treated as a gquantity dependent
on the control u{z) via the differential equations. A well known variant on the ordinary
gradient methods is the gradient-restoration method of Miele (¢f. Miele (1975, 1980). This
is essentially a projected gradient method in function space (cf. Gill et al. (1981)). With
this method both the control # (¢ ) and the state x (¢ ) are taken as variables of the minimi-
zation problem and the differential equations enter the formulation as (infinite-
dimensional) equality constraints. Similar to the finite-dimensional case where gradient
methods can be extended to quasi-Newton or Newton-like methods. gradient methods for
optimal control problems can be modified to quasi-Newton or Newton-like methods. (cf.
Bryson et al. (1975), Edge et al. (1976), Miele et al. (1982)).

11
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With all gradient type methods, state constraints can be treated via a penalty function
approach, i.e. a term which is a measure for the violation of the state constraints is added
to the objective function. Numerical results however, indicate that this penalty function
approach yields a very inefficient and inaccurate method for the solution of state con-
strained optimal control problems {cf. Well (1983)).

Another way to treat state constraints is via a slack-variable transformation technique,
using quadratic slack-variables. This technique transforms the inequality state constrained
problem into a problem with mixed control state constraints of the equality type. A
drawback of this approach is that the slack-variable transformation becomes singular at
points where the constraint is active (cf. Jacobson et al. (1969)). As a result of this, it may
be possible that state ¢constraints, which are treated active in an early stage of the solution
process, cannot change from active to inactive. Therefore it is not certain whether the
method converges to the right set of active points. In addition, the numerical results of
Bals (1983) show that this approach may fail to converge at all for some problems.

Another type of direct method follows from the conversion of the (infinite-dimensional)
opiimal control problem into a {finite-dimensional) nonlinear programming problem. This
is done by approximating the time functions using a finite-dimensional base (cf. Kraft
(1980, 1984)). The resulting nonlinear programming problem may be solved using any
general purpose method for this type of problem. We note that when a sequential qua-
dratic programming method (cf. Gill et al. (1981)) is used, then this direct method has a
relatively strong correspondence with the method discussed in this thesis. In view of its
significance for the work presented in this thesis, this method is described in more detail in
Section 8.1.

A well known indirect method is the method based on the numerical solution of the mul-
tipoint boundary value problem using multiple shooting {cf. Bulirsch (1983), Bock (1983),
Maurer et al. (1974, 1975, 1976}, Oberle (1977, 1983), Well (1983)). For optimal control
problems with state constraints, the right hand side of the differential equations of the
multipoint boundary value problem will, in general, be discontinuous at junction and con-
tact points.¥ These discontinuities require special precautions in the boundary value prob-
lem solver. The junction and contact points can be characterized by means of so-called
switching functions, which are used to locate these points numerically.

Another indirect method, which can only be used for the solution of optimal control prob-
lems without state constraints, is based on the numerical solution of the boundary value
problem using a collocation method {(cf. Dickmans et al. (1975)). The reason that the
method cannot be used without modification for the solution of state constrained optimal
control problems is that these problems require the solution of a multipoint boundary
value problem whereas the specific collocation method discussed by Dickmans et al. is
especially suited for the numerical solution of two point boundary value problems.
Numerical results indicate that the method is relatively efficient and accurate.

In general, the properties of the direct and indirect methods are somewhat complementary.
Direct methods tend to have a relatively large region of convergence and tend to be rela-
tively inaccurate, whereas indirect methods generally have a relatively small region of

+ Junction points are points where a constraint changes from active to inactive or vice versa. At contact
peints the solution touches the constraint boundary.
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convergence and tend to be relatively accurate. For state constrained optimal control prob-
lems the indirect methods make use of the structure of the solution, i.e. the sequence in
which the state constraints are active and inactive on the interval [0,7 ], for the derivation
of the boundary value problem. Direct methods do not require this structure. Because
state constraints are treated via a penalty function approach, most direct methods are rela-
tively inefficient. In practice, they are used only for the determination of the structure of
the solution. An accurate solution of the state constrained optimal control problem can in
most practical cases only be determined via an indirect method. which is started with an
approximation to the solution obtained via a direct method.

1.5. Scope of the thesis.

In Chapter 2. optimization problems are introduced and considered in an abstract setting.
The major advantage of this abstract treatment is that one is able to consider optimality
conditions without going into the details of problem specifications.

The state constrained optimal control problems are stated in Chapter 3. Because these
problems can be identified as special cases of the abstract problems considered in Chapter
2. the theory stated in Chapter 2 can be applied to the optimal control problems. This
yields the well known minimum principle for state constrained optimal control problems.

In Chapter 4, the method which is proposed for the numerical soclution of state constrained
optimal control problems is presented first in the abstract terminology of Chapter 2.
Essentially, this method is analogous to a sequential quadratic programming method for
the numerical solution of a finite-dimensional nonlinear problem. Hence, it is an iterative
descent method where the direction of search is determined as the solution of a subprob-
lem with quadratic objective function and linear constraints.

Chapter 5 deals with the solution of the subproblems whose numerical solution is required
for the calculation of the direction of search. In addition the active set strategy. which is
used 1o locate the set of active points of the state constraints, is described.

The numerical implementation of the method, which essentially comes down to the
numerical solution of a linear multipoint boundary value problem, is discussed in Chapter
6.

The numerical results of the computer program for some practical problems are given in
Chapter 7. Two of these problems are well known in literature and therefore allow a
comparison with the results obtained by others.

In the final chapter the relation between the method discussed in this thesis and some
other methods is established. The chapter is closed with some final comments.

The method used for the solution of one of the subproblems is based on a method for the
solution of finite-dimensional quadratic programming problems, which is reviewed in
Appendix A. Appendix B deals with a transformation of state constraints to a form which
allows a relatively simple solution procedure for the subproblems. Technical results
relevant for the active set strategy are summarized in Appendix C. A number of computa-
tional details are given in Appendices D and E. Numerical results related to the results
contained in Chapter 7 are listed in Appendix F.

13



Chapter 2

2. Nonlinear programming in Banach spaces.
In this chapter, a number of results from the theory of functional analysis concerned with
optimization will be reviewed.

In Section 2.1 some optimization problems will be introduced in an abstract formulation
and in Sections 2.2 and 2.3 some results on optimality conditions and constraint
qualifications in Banach spaces will be reviewed.

2.1. Optimization problems in Banach spaces.

In this chapter, we shall consider optimization problems from an abstract point of view.
The major advantage of such an abstract treatment is that one is able to consider the prob-
lems without first going into the details of problem specifications. The first optimization
problem to be considered is defined as :

Problem (Py) : Given a Banach space U, an objective functional J :U =R and a con-
straint set So C U, find an ¢ € S, such that

J(@)YS J(u) forall ueS,. (2.1.1)

A solution # of problem P, is said to be a global minimum of J subject to the constraint
u €S8y In practice it is often difficult to prove that a solution is a global solution to the
problem. Instead one therefore considers conditions for a weaker type of solution. This
weaker type of solution is defined as :

Definition 2.1t In the terminology of problem (Po} a vector u € U is said to be a local
minimum of J, subject to the constraint u € Sy, if there is an & > 0 such that,
J@) < J(u) forall ueS,NS.€). {2.1.2)
with : ‘
Sze)={ueU:bu-ui<el {2.1.3)

We shall consider two special cases of problem (Pg).

Problem (P,): Given two Banach spaces U and L, two twice continuously Fréechet
differentiable mappings J :U ~R and S :U - L, a convex set M C U with nonempty inte-
rior and a closed convex cone K C L with 0 ¢ K, then find an i ¢ M, such that S(€)e K
and. that .

J@)Y< JG) forall ueMOSHK), | (2.1.4)

Comparing problems (P4} and (P;), we notice that in problem (£,):

* 8= MNSTUK), with STUK) = {uelU:S{(u)eK). The assumptions on X.M and §
are made in order to obtain a suitable linearization of the constraint set Sg.

* 1 is supposed to be twice Fréchet differentiable.

A further specialization of problem (P,) is obtained when a distinction is made between
equality and inequality constrainis.
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Problem (EIP): Given Banach spaces X, Y and Z, twice continuously Fréchet differentiable
mappings f :X-R,g:X=Y and h : X =2, a convex set A C X having a nonempty
interior, and a closed convex cone B C Y with 0 € B and having nonempty interior, then
fndanx € A, suchtka!g(x)eBandh(x)—Oandthat .

FTEYS Fx) forall xeANg Y BINNG). (2.1.5)

In problem (EIP). the equality constraints are represented by ki (x )= 0, whereas the ine-
quality constraints are incorporated in x€A and g(x)¢B (note that A and B have
nonempty interiors).

Throughout this chapter we shall use various basic notions from the theory of functional
analysis without giving explicit definitions. For these we generally refer to Luenberger
(1969). Because of their central role in the ensuing discussion we explicitly recall the fol-
lowing definitions.

Definition 2.2 2 Let X be a normed linear vector space, then the space of all bounded linear
functionals on X is called the (topological} dual of X, denoted X' .

Definition 2.3 ¢ Given the set K in a normed linear vector space X, then the dual { or
conjugate) cone of K is defined as

K = [x"eX'1<x",x> 2 0 fordl x¢K), {2.1.6)
where the notation <x',x > is employed to represent the result of the linear functional
x"eX actingonxe X.

In a number of occasions we shall also use the notation x* x instead of <x",x>.
With regard to Definition 2.3 we note that the set X~ is a cone, as an immediate conse-
quence of the linearity of the elements of X .

Definition 2.4t Let § be a bounded linear operator from the normed linear vector space X
into the normed linear vector space Y. The ad joinz operator 8 : Y™ — X' is defined by the
equation :

<x.8'y' > = <Sx.y" >. (217}

The notions of dual cone and adjoint operator play an important role in giving a character-
ization of the solutions of the optimization problems (2} and (EIP). Other concepts which
play an important role in the following discussion are conical approximations of the set of
feasible points.

Definition 2.5 : Let U be a Banach space, M C Uand @@ € M. The open cone
AWM )= {ue U :3eor >0, Ve0<eS gy, VwellliviSr ute(ut+v)Ie M), (2.1.8)
is called the cone of admissible directionstoM at @ :

This cone is referred to differently in literature : cone of feasible directions (Girsanov
(1972)); cone of interior directions (Bazaraa et al. (1976)).
In the case that M has no interior, the cone A (M i) is empty for every Z €U
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Definition 2.6 ¢ Let U be a Banach space, M C U and it € M, then the set

TM@z) = {ueU:Xe,) 0,eneR+.en~0.ﬂ(un) O,u,,eM,un-—biZ,
a= . =

u = lim (u,—)/e,}, (2.1.9}

ie. the set of elements u € U for which there are sequences (i, ) . and (€, ) o with
n= n=
u, —,€, >0 and €, 0, such that

v= lim{u, —u)e,,
700

is called the sequential tangent cone of M at & .

In literature, the sequential tangent cone as defined in Definition 2.6, is also referred to as
tangent cone (e.g. Bazaraa et al. (1976); Norris (1971)) or as local closed cone (Varaiya
(1976,

We note that the cone of admissible directions is always contained in the sequential
tangent cone, i.e. A(M %) C T(M ).

Definition 2.7 : Let U be a Banach space, M C U and it € M. The set
CMi)y = {AMm~Z):A20,meM}, (2.1.10}
is called the conical hudl of M - it }.

This definition is analogous to the definition of the convex hull of a set 4, i.e. the smallest
convex set which contains the set A. In this context the conical hull of a set A is the
smallest cone in which the set A is contained.

In the case that X is a cone with vertex at 0, the conical hull of X —{iZ} becomes :

C{Ki) = {m— iz :A20.meX} (2.1.11}

If M is a convex set with nonempty interior, the closure of the cone of admissible direc~
tions of M at ir coincides with the conical hull of M ~{iz}, ie. A(M Z)=C(M &) (cf. Gir-
sanov (1972)).

Definition 2.8 : Let U end L be Banach spaces, S a continuously Fréchet differentiable
operator U ~ L and K a closed convex conein L with 0 ¢ K. At a point @ € U, the set t

LS K#) = {uelU:8Ewm e CK.SGE))). {2.1.12)

is called the linearizing cone of S~ Klat .
In Definition 2.8 the notation $™(K) was used to denote the set

SHUK) = {ueU:8u)e K} {2.1.13)

In view of the optimality conditions to be stated, the following regularity conditions are
defined. '

+S' is used to denote the Fréchet derivative of S.
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Definition 2.9: Let U and L be Banach spaces, S a continuously Frechet differentiable
operator U — L and K a closed convex cone in L with 0 ¢ K. The conditions

L(S.KE) = T(S™HUK)I), ‘ {2.1.14}
LS KLY =SEYCK.SEN . (2.1.15)
the set R(S'@)) + C(K .S(&)) is not dense in L, (2.1.16)

4

are respectively called
the Abadie condition
the Farkas condition
the Nonsingularity condition

au.

We note that condition (2.1.14) is an abstract version of the Abadie constraint
qualification in Kuhn-Tucker theory, which deals with optimality conditions for nonlinear
programming problems in finjte-dimensional spaces {cf. Bazaraa et al{1976)). An in-
terpretation of the various conditions is given in the next section in the outline of the
proof of Theorem 2.10.

2.2. First order optimality conditions in Banach spaces.
In this section we shall present optimality conditions for solutions of problems (P,) and
(EIP). The results presented are mainly taken from the review article of Kurcyusz (1976).

The conditions involve only the first Fréchet derivatives of the mappings which are used
to define the objective function and the constraints of the problem. This is the reason that
they are called first order optimality conditions.

The Definitions 2.5 - 2.9 are used for the formulation of the foliowing Lagrange multiplier
theorem, which plays a central role in the following discussion.

Theorem 2.10 : (Kurcyusz (1976), Theorem 3.1) Let @i be a local solution to problem (P,).

(i)  If either condition (2.1.16} or both (2.1.14) and (2.1.15) hold, then there exists a pair
(1) e R X L', such that,

3.0 = (00), {22.1)
p2o0. Tex', <i'.S5@)>=o0, (2.2.2)
Pr@)—s@Yyl e AMMEY. (2.2.3)

A pair (p.I") satisfying (2.2.1) - (2.2.3) is called a pair of nontrivial Lagrange
multipliers for problem (P,). ’
(ii) If conditions (2.1.14} and (2.1.15) are satisfied and
AME)N LSKE) = @, {2.2.4)

then there exists a vector I” € L" such that (2.2.2) and (2.2.3) hold with p=1. A vector )
r satisfying (2.2.2) and (2.2.3) with p=1 is called a normal Lagrange multiplier for
pre obiem (P l)'
Conditions (2.2.1) and (2.2.2) are respectively called the nontriviality and the complemen-
tary slackness condition.
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Because of the basic nature of this theorem, we shall discuss in a formal way the main
lines of the proof.

In the derivation of optimality conditions for the solutions of nonlinear programming
problems we are faced with the basic problem of translating the characterization of the op-
timality of the solution of the problem into an operational set of rules. The way in which
this translation is carried out is by making use of conical approximations to the set of
feasible points and the set of directions in which the objective function decreases.

A vector u is called a direction of decrease of the functional J at the point &, if there exists
a neighborhood S(# €, ) of the vector # and a number a=a(J & 4), a > 0. such that
Ji+en) € J({@) — ea foral €0<e<g, for all ueS(L &) (2.2.5}

The set of all directions of decrease at . is an open cone D{J ,2) with vertex at zero (cf.
Girsanov (1972)). %

Using the definition of the cone of admissible directions to M at & and of the sequential
tangent cone of S7}X ) at £, the local optimality property of the solution # implies the
following condition (cf. Girsanov {1972)) :

DL AWML N TE UKL = @, (226}

which states that at a (Jocal) solution point # there cannot be a direction of decrease, that
is also an admissible direction to the set M at & and which is also a tangent direction of
theset S"MA ) ar 4.

The Abadie condition {2.1.14) is now used to replace (2.2.6) by a more tractable expres-
sion ;
DU AMEIN LS KAL)= @. (2.2.7)

This completes the conical approximation of the optimization problem, where the sets

D(J.2) and A(M &) are open convex cones, and L{8,K i) is a (not necessarily open)
convex cone.

Condition (2.2.7) is not yet an operational rule. Thereto a further translation is necessary.
In particular, the Dubovitskii-Milyutin lemma may be invoked, which is essentially a
separating hyperplane iheorem. It states that (Girsanov (1972), Lemma 5.11) :

N & =o.

i=1
if and oniy if there exist linear functionals w; € K, not all zero, such that
Uy gttty 4y = O {2.2.8)

Condition (2.2.3) is a translation of (2.2.8). In this translation, the Farkas condition
(2.1.15) is used to establish a characterization of L(S.K &), which implies the properties
(222) of L.

t We note that strictly speaking, the cone [ (J ,iZ ) is only an open cone when the empty set is defined
to be an open cone.
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We now consider the implication that if (2.1.16) holds then the optimality of @ implies
the existence of nontrivial Lagrange multipliers. The Nonsingularity condition (2.1.16)
deals with the convex cone R(S' (& ))+C (X .S(&2)). Because this set is not dense in L, the
origin of L is not an interior point of the set and hence (cf. Luenberger (1969), p.133,
Theorem 2) there is a closed hyperplane H containing 0, such that the cone
R(S' (£ ))+C (X .S(#)) lies on one side of H. The element " ¢ L which defines such an
hyperplane, satisfies (2.2.1) - (2.2.3) with p=0.

The second part of Theorem 2.10 is proved by reversing the proof of the implication that
(2.1.14) and (2.1.15) together imply the existence of nontrivial multipliers with $=0. It
can be shown that under the hypotheses of Theorem 2.10, assuming p=0 yields always
*=0, and thus the pair (3.]") is not a pair of nontrivial Lagrange multipliers. Hence of
any pair of nontrivial Lagrange multipliers the number p cannot be zero.

It is of interest to investigate the role of the constant . which is called the regularity
constant. First, consider the case p=0 (pathological case). In this case the nontriviality
condition (2.2.1) implies I” # 0, which leaves us with a set of equations (2.2.2) - (2.2.3)
involving only the constraints, and not the object functional of the specific problem. If
p>0. we may set p= 1, because of the homogenity of (2.2.2) - (2.2.3). Clearly in this case
equations (2.2.2) and (2.2.3) involve the object functional of the problem. Much research
has been devoted to conditions which imply p>0. These conditions, which generally in-
volve only the constraints of the problem, are usually called constraint gualifications.

In view of its structure, the set of equations (2.2.1) - (2.2.3) is called a multiplier rule. A
constraint qualification restricts the multiplier rule as additional conditions are imposed on
the problem. These conditions may exclude solutions to problems which admit a nonzero
multiplier p. There are also situations in which a constraint qualification may be difficult
to validate, whereas the nontriviality condition may be used to establish the case p>0.
Following this reasoning we are led to the definition of two types of multiplier rules,
intrinsic multiplier rules (p2 0) and restricted nudtiplier rules (p>0) (cf. Pourciau (1980),
(1983)). In our terminology, part (i) of Theorem 2.10 is an intrinsic multiplier rule,
which becomes a restricted one if the conditions stated in part (ii) are added.

Necessary conditions for optimality for solutions to problem (EIP) may be derived from
the optimality conditions for problem (2,), presented in Theorem 2.10. To obtain these
conditions for problem (EIP) we first make an intermediate step and consider the con-
straint operator of problem (P,) S :U — L,split upas S = (5,.5,); L = L;XL,, such
that $;: U — Ly; S,:U — L,

The operator S is taken to represent the equality constraints, i.e.
S 1(12) € {0}

The operator S, represents inequality constraints, i.e.
S z(ﬁ ) € Ko,

where K, is a closed convex cone having nonempty interior. Taking X := {0}x K, in
Theorem 2.10 leads directly to the following result :
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Lemma 2.11: Let & be a local solution to problem (Py), and L = LyXxLj, § = (5.5,

K = {O}XKZ

(1) If int K,=@ and R(5,(&)) is not a proper dense subspace of Ly, then there exist
nontrivial Lagrange multipliers for problem (P,) at % .

(i) If
R(S,@) = L, (2.2.9)
{5 2(d et S G = o} N int c(xz,sz(u N =@, {2.2.10)
and
AMLDIN LS KE)= @, ' (2.2.11)

then, a normal Lagrange multiplier exist for problem (Py)at & .
For a proof see Kurcyusz (1976), Theorem 4.4 and Corollary 4.2.

Using this result we are led to the following multiplier rule for problem (EIP), which has
‘the form of an abstract minimum principle (cf. Neustadt (1969)).

Theorem 2,12 ¢ Let X be a solution to problem (EIP).

G) Iy
R(A' (£)) = closed (2.2.12}
then, there exist a real number p,an 3 €Y', €2", such that :
6.3.2") = (0,0.0), (2.2.13)
p2 0, (2.2.14)
<y .g@)y> =0, (2.2.15)
<3 .y>2 0 forall yeB, © {2.2.16)
BF () =35 8E) = £ (E)x—%) 2 0 forall xeA. (2.2.17)
(ii) The multiplier p is not zero, when
R (EN=Z. (2.2.18)
- and, in addition, there is some x € int A, such that
R(ENx=%)= 0, (2.2.19)
and
g(X)+ g XHx—%)¢e int B. (2.2.20)

Proof :LetU=XM=A.L=Z.L,=Y K,=B.S,=h,S;=§.

Consider first part {i}. By definition of problem (EIP), the cone K, has nonempty interior.
By Lemma 2.11, there exist nontrivial Lagrange multipliers, when R(S4'(&Z)) is not a prop-
er dense subspace of L;. We shall show that this is the case, whenever this set is closed.
Thereto we consider two cases : R(S(@))=L, and R($,(@))= L,. In the first case the
condition is satisfied, because the subspace is not proper. In the second case the condition is
satisfied because the subspace cannot be dense in L, i.e.
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R(§ (@) = R(Sy/@)) = L,

This proves the existence of Lagrange multipliers, or equivalently the conditions (2.2.1) -
(2.2.3) of Theorem 2.10. In order to translate these into the conditions (2.2.13) - (2.2.17)
we identify I" =(£".$"). Now consider the relations (2.2.2)

"¢k and <I'.5@)>=0.
In the present situation the dual cone of K is :

K ={(3".2)e(¥Y ' xZ2"): <2",0> 2 0, <y",y> 2 0 foral yeB),
which reduces trivially to :

K ={(3°.2)e(¥Y"' X2 ): <y".y> 2 0 forall yeB).

The relation (2.2.2) thus translates directly into (2.2.15) and (2.2.16). To derive (2.2.17)
recall condition (2.2.3) :

Pr@)—s@YI e AMAY.
The set A(M &) is equal with AME) . if M has nonempty interior (cf. Girsanov
(1972), Lemma 5.3). Now (2.2.3) becomes :
<pI'@)—S@Yu>2 0 forall ueA(M2).
which, by definition of the adjoint operator, is equivalent to :
<pr@) =TS @u>> 0 forall ucAM Z).
Identification of the various terms in the terminology of problem (EIP) yields :
BFGE)—F5 @)= R @) > 0 forall T€A(A 2). (2.2.21)

Here A (A 1)) is the cone of admissible directions of a convex set with nonempty interior
and hence (cf. Girsanov (1972)) :

AA )= {Nx—x):xeint A X20)}.
The closure of this set contains the set :
Ax—=x):xeAAZ0).

Taking elements X =x —x in (2.2.21) yields (2.2.17).

Now consider part (ii). Condition (2.2.18) is a direct translation of condition (2.2.9) of
Lemma 2.11. Restating (2.2.10) in terms of problem (EIP), we obtain :

g E)NR(E))) N int C(B.G () = @,

which is equivalent to {cf. Kurcyusz (1976). eq.(33); Zowe (1978), Theorem 3.2; Zowe
(1980)) :

FeeX :h'(E)x = OA Z(E)+5'(E)x ¢ int B. (2.2.22)
Now consider (2.2.11) :
AMZ)N LS.KE) = @,

which becomes in terms of problem (EIP) :
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FeAAZ): R'@)x = 0A Z(E)HZ'GE)Dx ¢ B. (2.2.23)

Clearly, (2.2.19) - (2.2.20) are a sufficient condition under which both (2.2.22) and
(2:2.23) hold. Tt should be noted that instead of part (ii) of Theorem 2.12 a somewhat
stronger theorem could be stated. This would however yield also a more complicated state-
ment.

0

2.3. Second order ‘optimality conditions in Banach space.

In the previous section we considered optimality conditions of first order, i.e. only the first
Fréchet derivatives of the mappings involved in the definition of the optimization problem
considered. were taken into account. In this section we shall consider optimality condi-
tions of second order, i.e. the second Fréchet derivatives of the mappings will also be used
for the derivation of optimality conditions.

The notion of second Fréchet derivatives is somewhat more complicated than that of first
Frechet derivatives. Consider for instance the mapping J : U — R of problem (P ). Its first
Frechet derivative at u €l is denoted J' (v ) and its Fréchet differential, denoted 87 , is

SJ(u:8u)=J1(uu = <J' (w)du> forall Sucl. {2.3.1)

Equation (2.3.1) reveals that J'(v ) can be interpreted as an element of the dual space U".
Using this interpretation we obtain :

IYy:u-U. {23.2)

It is this interpretation that is used to define the second Fréchet derivative of J. ie. the
second Frechet derivative of J is the first Fréchet derivative of the mapping J (-).

The second Fréchet differential of J at u, denoted 827, becomes :

827 (u; Buy. Suy) = T (w)(up)(Suy)

= <J"(u)uy. Buy> for all Suyduyel. (2.3.3)
The form (2.3.3) leads to two different interpretations of J* (1), i.e.
I W)U~ U, {2.34)
and
J*WX-X):U XU = R ‘ (2.3.5)

The interpretation of {2.3.4) is the interpretation of J" (%) as a linear mapping from the
space U into its dual, whereas the interpretation (2.3.5) is a bilinear mapping from the
productspace U XU 1o the space R. Using (2.3.4) concepts like invertibility of J” (x ) can
be defined, whereas (2.3.5) may be used to define concepts like positive definiteness.

Thusfar we have considered a real valued mapping J, i.e. J : &/ = R. The interpretation
of the second Frechet derivative of § : U — L is even more complicated. For our purposes,
however, it suffices to consider only Fréchet derivatives of mappings of the form

US@w)= <", 8w)>, : {236)

where " is a bounded linear functional on the space L, so that
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I'SC):U - R, (2.3.7)
is a real valued mapping.

We now return to the subject of optimality conditions for problem (7).

The purpose of considering second order optimality conditions, is to augment the set of
first order conditions in some way. This leads quite naturally to the investigation of direc-
tions which satisfy the first order optimality conditions.

To simplify such an investigation, we use a somewhat more tractable form than (2.2.1) -
{2.2.3) for the optimality conditions by assuming :

p>0, (2.3.8)
M=Uie AMMLY = {0} {2.3.9)

The reason for (2.3.8) is obvious, p= 0 corresponds to pathological types of problems, in-
volving only the constraints of the problem. The reason for (2.3.9) is that this leads to a
suprisingly simple form of the set of directions which satisfy (2.2.1) - (2.2.3). For the
closed convex cone K € L and the bounded linear functional {" on L . the set

K(KI') = KnleL : <" 1> = 0} (2.3.10)
is defined. We note that when K is a closed convex cone, then X (X .I") is also a closed
convex cone.

Lemma 2.13: In the terminology of problem (P,) with M=U, when I* is a normal
Lagrange multiplier for problefn (P;) at @ {cf. Theorem 2.10, part{ii}), then the linearizing
coneof STUK(K DI N atii,ie.

L(S.K(K D)), ' (2.3.11)
contains all directions 8u such that

J(2)u = 0, (23.12)

SW)+ 5@ € K, {23.13)

<", 85() + S @WBu> = 0. (2.3.14)

Proof : Using Definition 2.8 the inclusion u € L(S K (X .[").i) is equivalent to
§(@)08u ¢ CK(K.I)SE). (2.3.15)

Because K is a cone with vertex at zero, K (X I") is also a cone with vertex at zero. Using
(2.1.11), (2.3.15) becomes :

MR ASW) + 5@ )0Bu ¢ K(KI'). (2.3.16)
Because [ is a normal Lagrange multiplier, the foliowing relations hold :

S@ek  <,5@)> =0, (23.17)

T@E)-Ts@) = o. (2.3.18)

Combination of (2.3.16), (2.3.17) and the fact that X is a cone gives :
§@Wu € K and <i',8@)Mu> =0, (2.3.19)
which proves (2.3.13) and (2.3.14).

23



Chapter 2

(2.3.18) is equivalent to :

T(@)u = 18 G .
Combination with (2.3.19) gives (2.3.12).
(]

The interpretation of the set X (X ") leads us to consider the minimization of the Lagran-
gian

L.’y == J@)—1"S), {2.3.20)
atl'=1", over the set K (X .0"), ie.
Sw)e KEI). (2.3.21)

Following the same path as in the previous section, we may derive optimality conditions
for the minimization problem corresponding to (2.3.20) - (2.3.21).

As a result of the nonlinearity of the constraint (2.3.21), this derivation involves also a
Abadie-type of constraint qualification, which becomes :

LS.K(KI)DE) = TS~ UK (K L. (2.3.22)

Obviously, the first order optimalily conditions for this minimization problem will not
yield more information about properties of the solution of problem (P,), than tbe first
order optimality conditions for problem (P;), stated in the previous section. The first ord-
er optimality conditions do show however, that the Lagrange multiplier corresponding to
constraint (2.3.21) is zero and hence the minimization of the Lagrangian (2.3.20) seems
not 1o be restricted by the constraint {2.3.21). This leads quite naturally to the considera-
tion of the second Fréchet derivative of the Lagrangian (2.3.20) on the set K (X .['). In
the following theorem second order necessary conditions for optimality for problem (7))
with M =U are summarized.

Theorem 2.14 : Let & be a (local) solution to problem (P,) with M=U and let I* be a nor-

nwl&Lagmnge multiplier for problem (Py) with M=U . If condition {2.3.22) is satisfied at
@.0), then

L@, 5 )6u)bu) 2 0 forall Suel(S.K{KI)L). + (2.3.23)

For.a proof of this theorem we refer 10 Hestenes (1975) (see also Maurer et al. (1979)).
Note that a more explicit form of the variations Su in (2.3.23) is given in Lemma 2.13.
Using the interpretation of the second Fréchet derivative of the Lagrangian as a bilinear
mapping. we see that (2.3.23) states Lhat the second Freéchet derivative of the Lagrangian is
positive semi-definite on L{S.K (K. ).4), i.e. on the subspace spanined by the linearized
constraints at @ .

Theorems 2.10 and 2.14 are involved with necessery conditions for optimality for solutions
to problem (2P,), i.e. they are of the form

“If @ is a {local) solution to problem (P,), then ‘certain conditions’ must hold"

+ Thefirst and second Fréchet derivatives of the Lagrangian L with respect to the argument ¥ and for
fixed I aredenoted L' and L".
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In other words, the (local) optimality property of a solution implies certain conditions. As
a consequence of this, we are not sure whether a point %, which satisfies the necessary con-
ditions for optimality is, or is not. a solution to problem ().

This gquestion leads us to the consideration of conditions for which the implication above is

reversed, i.e. conditions which imply optimality. The general form of these conditions is :
*If *certain conditions’ hold at @ , then 4 is a local solution to problem (P)."

These conditions are referred 1o as sufficient conditions for optimality.

The ideal situation would be that the conditions of Theorems 2.10 and 2.14, which are

necessary for optimality are also sufficient for optimality. However, this is only true for

special cases of problem (2;) and not for the general (nonlinear) problem (2,).

Sufficient conditions for optimality which are of practical importance involve the second

Fréchet derivatives of the mappings involved in the definition of problem (P )).

The derivation of second order sufficient conditions for optimality in the case of infinite-

dimensional space U, turns out to be quite complicated. However, the result, which is

stated in the theorem below, has a relatively simple connection with the second order

necessary conditions for optimality.

Theorem 2.15: Let #i be a point for which S(i) ¢ K is satisfied and I* be a normal

Lagrange multiplier for problem (Py) with M=U at the point . Suppose that condition

(2.2.14} is satisfied and that there are a 8 >0 and a B >0 such that

LG, U )6u)Bu) 2 8lisull? forall SuelhelU : SEI+S' (@) eK A
(S )+S @ Hr IS BIANY, (2.3.24)

then i is a local solution to problem (Py) with M=U .
For a proof of this result the reader should consult Maurer et al. (1979).

A comparison of the condition of Theorems 2.14 and 2.15 reveals that the sufficient condi-
tions are a strengthened form of the full set of necessary conditions. A formal interpreta-
tion of Theorem 2.15 is that the second Frechet derivative of the Lagrangian (2.3.20) must
be sufficiently positive definite on a slightly enlarged constraint set.

We note that for finite-dimensional / the condition of Theorem 2.15 may be strengthened
0! )

"The second Frechet derivative of the Lagrangian must be positive definite on
L(S.K(K )"

i.e. the 2 sign in (2.3.23) is replaced by > (cf. Maurer et al. (1979), Lemma 5.7 ).

As in the previous section, we are interested in deriving optimality conditions for problem
(EIP), which is essentially a special case of problem (P,). Therefore we shall apply the
results of Theorems 2.14 and 2.15 to this case. Both theorems deal with the case that the
constraint set M equals U. Correspondingly, we shall consider problem (EIP) with
A=X.
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The theorem below is a direct consequence of Lemma 2.3 and Theorems 2.14 and 2.15. We
note that the Lagrangian for probiem (EIP) becomes

Lix,y".2") = f(x) =y gx) = 2 hix). (2.3.25)

Theorem 2.16 :

(i) Let < be a local solution to prablem (EIP} with A =X, for which both part (i) and (i)
of Theorem 2.12 hold with 3' and 2°. If

REEN=7, {2.3.26)
then v
LU(Z,57.2 N8x)8x) 2 O forall xeleX :g(£)+g(X)xeB

ARGEIE=0A $ (§(£)+5(F)E)=0}. (2.3.27)
(ii) Conversely, if
R(A(E)) = Z. (2.3.28)
and
FeX A (£)=0A g(E)+§' (& )xcint B, (2.3.29)
and i satisfies
g(x)e B, , {2.3.30)
R(Z) =0, ' (2.3.31)
and there exist multipliers § and z' satisfying
<35 .y> 2 0 foral yeB, (2.3.32}
<y .g(x)> =0, (2.3.33)
L(z.3".2)=0, (2.3.34)

and there are a 8 >0 and a 8 > O such that
L' (£.5 .2 Xéx )(sx) SI8xN? forall Sxe{xeX : g(X)+g(£)XeB
AR'(E )x-—O/\ FUEEI+Z(E XIS Blxl], {2.3.35)

then X is a local solution to problem (EIP).

A proof of this theorem is omitted because it follows in all but one aspect directly from
Lemma 2.13 and Theorems 2.14 and 2.15. The only aspect which requires some explana-
tion is the constraint gualification (2.3.26). This is a result of the constraint qualification
(2.3.22) in Theorem 2.14. One may easily verify that the cone X (X-I') has no interior
when I" 0. A sufficient condition for (2.3.22) to hold in this case is (2.3.26). We note
that it is possible to state a less explicit, but stronger result. For our purposes however,
(2.3.26) suffices.
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3. Optimal control problems with state inequality constraints.

3.1. Statement and discussion of the problem.

In this thesis, the following type of State Constrained Optimal Control Problem (SCOCP)
will be considered :

Problem (SCOCP) : Determine a control function U€Lol0TY", a state trajectory
X €W, [0TT and a final time T >0, which minimize the functional

0(x(0))+ f folx (e ) ) de + golx(T).T). (3.1.1)

subject to the constraints :

@)= flx@)u()de) ae. 05:<7T, {3.1.2)
D(x(0)) = 0, (3.1.3)
EGT).T) = 0, (3.14)
u(t)e U ae. OSt<T, (3.1.5)
Syx@)al)e) € 0 ae. 0<t<T, (3.16)
Sx(z)t) <0 0<t€7T, (3.17)

where : ho:R"—R; fo:R"XR"XR-R"; g;: R”XR—'R D:R*"->R°;
f  R*XR"XR—-R"; E:R*XR—-R*; SI:R"XR”'XR-*R ; S;.R"XR---PR&2
U C R™, is a convex set with nonempty interior.

Forall x¢e R* uc¢ R™ rank Sy {xut)=k, ae. 05:<T } {3.1.8)

The functions hg, fo, go, f . D, E 8, and S, are twice continuously differentiable functions
with respect to all arguments. ~

WioloFF = {xisan absolute continuous n-vector function on [0.T']

with e L[0T}

A motivation for problem (SCOCP) is given in the discussion below.

We assume that the dynamic behaviour of the system to be controlled, can be described by
a set of ordinary differential equations of the form :

)= flx@lu@)r) forall OS:€T. . (3.1.9)

where x is an n -vector function on [0.7] called the stare varighle and u is an m-vector
function on [0,7'] called the control variable.

We are interested in problems where the system is to be controlled from an initial stgte x,
attime¢ =0, ie.

t This condition may be weakened to 2 more complicated condition, which involves only the gradients of
the components of Sy on intervals where these components are active, i.e. where these components are
zero on an interval, along a solution trajectory.
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x(0) = xo, : (3.1.10)

over an interval [0.7]. The number T is used to denote the final time. We shall assume
that T is finite, which means that we are interested in problems with finite time horizon.

One of the more difficult technical details of the statement of the problem are the condi-
tions that the control function u :[0.7]= R™ must satisfy. In view of the fact that we
want to identify the optimal control problem as a specialization of the abstract nonlinear
programming problem (EIP), it is desirable to identify « as a vector in a function space.
Because u governs the state variable via the right hand side of the set of differential equa~
tions (3.1.9), ¥ must be at least integrable (in the sense of Lebesgue) on [0.7]. A sufficient
condition for this is that u is measurable and essentially bounded on [0.7] (see e.g. Kol-
mogorov et al. (1961) or Rudin (1976)).

Therefore it is possible to identify u as an element of the space of m-vector functions
which are measurable and essentially bounded on [0,7], which is denoted by L [0.T}".

We note that the space L.[0,T]" is particular well suited for the statement of optimal
control problems, which are 10 be identified as specializations of abstract nonlinear pro-
gramming problems in Banach space with Frechet differentiable mappings. This is due to
the fact that when more general control functions would be allowed. either the space of
control functions is not a Banach space or the mappings involved are not Fréchet
differentiable. When the type of control functions would be restricted further, it is possi-
ble to identify the optimal control problem as a specialization of problem (EIP) only in the
case that the control is assumed to be a continuous function on [0.7]. Simple examples ex-
ist that show that controls which are solutions to the rather general type of optimal con-
- trol problems that we want to consider, can be discontinuous.

As a result of the smoothness assumptions on the function f , we have
FxOu(), ) e Lolorr,

whenever u € L[0T and x is a continuous function on [0.7]. Because elements of
L,[0,7] which differ on a set of zero Lebesgue measure are regarded as equivalent, the
differential equation {3.1.9), which is an equality relation between two vectors in L[0T}
is allowed to differ on a set of zero lLebesgue measure. We note that because the
differential equation must only hold almost everywhere on [0.7'], the differential equation
is interpreted as the integral equation :

@)= 20+ [fxMu)rdr.
: ¢

The state variable x can also be identified as a vector in some function space. Because x is
always a continuous function on [0,7], x can be identified as an element of the space of
continuous functions on [0.7 ], denoted by CI0.7F. This space however, contains also vec-
tors that cannot be a solution to any differential equation, because there exist continuous
functions which are not the integral of their derivatives. This would complicate the appli-
cation of the results on optimality conditions. stated in Chapter 2, unnecessary (cf. Section
3.3.1). The space of gbsolutely continuous functions on [07] with measwrable and
essentially bounded (first] time derivatives, denoted by W, o[0T} . is more suitable for our
purpose.
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As to the explicit dependence of the left hand side of (3.1.9) on the time ¢, we introduce
the following terminology. When f does not depend explicitly on ¢, the system (3.1.9) is
called qutonomous and when it does nonautonomous.

A nonautonomous system may be transformed into an autonomous one by means of an
additional state variable. Let y satisfy

¥(0) = 0,

ye)=1 ae OSt<7T,
then

y)=1¢ 0<<T.

Substituting y for 7 in (3.1.9) yields an autonomous system.

An other distinction is made between variable final time problems, i.e. I’ is not fixed in ad-
vance and fixed final time problems. It is possible to transform variable time problems into
fixed final time problems via a standard approach, which again requires the introduction of
an additional state variable (cf. Section 3.3.4).

From a theoretical point of view, there is no objection to the introduction of additional
state variables to transform nonautonomous and variable final time problems into auto-
nomous, fixed final time problems. However, in the numerical method to be proposed. all
state variables are treated similar and therefore an increase in the dimension of the state
vector gives an increase in numerical effort. Because there is no great difficulty in dealing
with nonautonomous and variable final time problems directly, they are included in the
formulation of problem (SCOCP).

The foregoing discussion focussed on the specification of the differential system. Now we
shall consider the specification of the object criterion, which is done by means of a func-
tional which assigns a real value to each triple (x & .T'), called the objective function. The
following forms are of common use in optimal control theory

Fil
S fox @)t ) ar, (3.1.11)
0
golx (7)), (3.1.12)
T
S rolx @)ty de + golx(T).T). (3.1.13)
0

Again from a theoretical point of view, there is no great difference between working with
either one of (3.1.11), {3.1.12) or (3.1.13), when the functions f, and g, are sufficiently
smooth. This is because an objective function of the form (3.1.11) can be transformed into
the form (3.1.12) and vice versa. From a practical point of view it does matter which form
of objective function is used, because the transformation from {3.1.11) to (3.1.12) requires
the introduction of an additional state variable, whereas the transformation from (3.1.12)
to (3.1.11) may lead 1o complicated expressions for the objective function. Therefore
(3.1.13) is assumed, which covers both the forms (3.1.11) and (3.1.12).

Having discussed the specification of the differential system and the objective function, we
now turn to the specification of the constraints, which restrict the solution of the optimal
control problems. ’
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In most optimal control problems, there are constraints on the final state of the system,
i.e. the state x (') must satisfy certain conditions. These constraints are called terminal
point constraints. A general way of specifying these conditions, is by means of a vector
function E : R"XR — R, with ¢ $ n +1. of the form

E(x(T)7T)= 0.

It is obvious that this formulation includes fixed final time and fixed final state problems.

In most cases the initial state of the system (3.1.9) is known completely and specified in
the form of (3.1.10). There are however problems, where the initial state of the system is
not specfied completely in advance. To tackle this type of problems the initial state is
specified similar to the way in which the terminal state in specified, i.e. using a vector
function D : R" — R°, with ¢ € n such that,

D(x{(0)) = 0.
Of course the specification (3.1.10) is included in this formulation. A logical extension of
(3.1.13) is now to consider an objective function of the form (3.1.1).

Beside terminal point constraints, most optimal control problems include constraints on
the control # and the state x, which must hold at all time points of the interval [0.7] A
distinction is made between the following types of constraints :

Control constraints : ult)e U ae. 0X:t€7T,
Mixed control state constraints : S (x)u()e)< 0 ae. 0StST,
State constraints : SAx())IS O 0€:<T .

In most cases, control constraints can be written as a set of inequalities and therefore this
type of constraints could alsc be treated as mixed control state constraints.

For example, let U = {u : 0Su<@)}. Then the constraint u¢U may be replaced by
S;(u) = -—u(zf—u) S 0.

When optimal control problems are solved analytically, this approach involves unneces-
sary effort. However, with a numerical solution of the problem, this approach is quite use-
ful, because in a numerical context we need an explicit expression for the set I/. Therefore
an explicit dependence of the function §; on the argument x is not supposed.

A similar argumentation for the state constraints would imply that the state constraints
area subclass of the mixed control state constraints. For the solution of the problem how-
ever, it is essential to make the distinction between mixed control state - and state con-
straints. One might say that a distinction must be made between the explicit constraints
on the control by way of the mixed control state constraints and the implicit constraints on
the control by way of the state constraints. The explicit dependence of the function §; on
the argument « is certified by means of Assumption (3.1.8).

The functions kg, fo. go. f . D, E. §; and S, which define the optimal control problem
are called problem functions. Most optimal control problems involve problem functions
which are at least continuous with respect to their arguments. When we want to identify
the problem (SCOCP) as a specialization of the abstract nonlinear programming problem
(EIP), we need that the mappings involved in problem (EIP) are at least twice continuous-
ly Frechet differentiable. A requirement for this is that all problem functions are at least
twice continuously differentiable with respect to all their arguments (cf. Section 3.2).
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If we consider a problem with variable final time for which the control variable and the
state variable are to be identified as elements of function spaces, e.g. u €L [0.7]" and
x€W,,10.7], then we have to deal with the technical detail that the function spaces
depend on the parameter I, i.e. on the final time. Via this dependence; the functions x and
u depend on 7. This makes the abstract formulation difficult, if not impossible. Fortunate-
ly. it is possible to transform any variable final time problem into a fixed final time prob-
lem. Using this transformation approach, optimality conditions for variable final time
problems can be derived from the optimality conditions for the transformed fixed final
time problem (cf. Section 3.3.4).

3.2. Formulation of problem (SCOCP) as a nonlinear programming problem in
Banach spaces.

This section deals with the formulation of problem (SCOCP) as an abstract nonlinear pro-
gramming problem (EIP). In this formulation, problem (SCOCP)} will be treated as an op-
timal control problem with fixed final time. The optimality conditions for the case that
problem (SCOCP) has variable final time will be derived from the optimality conditions
for the case of fixed final time (cf. Section 3.3.4).

A basic choice has to be made, as to the manner in which the differential system (3.1.2) is
treated. There are two possibilities, either the control variable is considered as the only
variable of the optimal control problem, or both the control variable and the state variable
are considered as variables of the optimal control problem. In the former approach the
state variable is treated as a quantity which depends on « via (3.1.2). Following the latter
approach, (3.1.2) enters the formulation of the optimal control problem as an eguality
constraint. We prefer the latter approach because, as will follow from the discussion in the
next section, it leads to a weaker constraint qualification. In addition, the approach extends
in a logical way to the numerical method which is described in Chapters 4, 5 and 6.

Thus, we consider in the formulation of problem (EIP) as variables the pair (x ). The
space X becomes the product space of the spaces which contain the variables x and u, ie.

X = Wi lorPxLlory. {3.2.1)

In the formulation of problem (EIP), the assumption is made that X is a Banach space. We
shall show that with the selection of a suitable norm on X this assumption is satisfied. In
general, the space X cannot be expected to be a Banach space unless the spaces Wy, [0.7)
and L [0,T]" are both Banach spaces.

For every measurable and essentially bounded function v :[0.7]— R*, the co-norm is
defined by :

vilg, = ess sup @i, ‘ (3.2.2)
where li-ll is the Euclidian vector norm on R¥.

Equipped with the eo-norm the space L,,[0,7}" is a Banach space.
Analogously, the space W ,,[0,7']* is a2 Banach space when equipped with the norm

120y = max{ixllolélo} forall xeW, o[0T .
(cf. Kirsch et al. (1978), p.91-92).
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The space X is now a product of Banach spaces for which we may use the following rule
to select a norm :

"Xy and X, are Banach spaces with norms W-lx and Il x , the norm on XXX,
is taken as max{ll -l x J-lg )"

With this norm, the space XXX is also a Banach space. Using this rule we obtain as
normon X

Be iy = maxfixloliliolels). ‘ (3.2.3)

The formulation of the objective function of problem (EIP) follows directly from the ob-
jective function of problem (SCOCP).

r
FGa) = hoxO)+ [folx@ul)e)de + golx(T)T). (3.2.4)
0

The smoothness assumptions on the problem functions kg, fo and go. together with the
fact that the norm on the space X is an eo-norm, yield the following resuit.

Lemma 3.1: Let the functions h, fo and g, satisfy the assumptions of problem (SCOCP)
and f : X — R be defined by (3.24), then the mapping f is twice Frechet differentiable at
all points (x u) of X and

T
Filx u)Bx Bu) = ho (x(0))8x(0) + [ (for (x 2 ox(e) +
0

Jou(x e 2 38u(2)) dt + go, (x(T).TWx(T). (3.2.5)

For a proof of this lemma we refer to the proof of Lemma 1.4a. p.94 of Kirsch et al.
{1978), who prove that f is once Frechet differentiable. The second Fréchet

differentiability follows from an application of the same lemma to (3.2.5) for fixed
(8x .8u).

The constraints (3.1.2) - (3.1.4) enter the formulation of the abstract problem as equality
constraints. This leads to the following formulation of the mapping A :

Rxu) = (£CO=fxCu), ), D) .EGT).T)). (3.2.6)

To ‘ma_tvke the formulation of the mapping h complete. we have to identfy the range space
Z of k, which must be a Banach space. A logical choice for Z is:

Z = L Io TP xR xXRY, {3.2.7)
which equipped with the norm
1z 1.22.207 = max{lizfl LNzl Mz3ll} for all z1€ L {0.TF 226 RS ,z3¢ RY, (3.2.8)

is indeed a Banach space. .
With regard to the Fréchet differentiability of h we have the following lemma :
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Lemma 3.2: Let the functions f , D and E satisfy the assumptions of problem (SCOCP)
and let the mapping h : X = Z be defined by (3.2.6), then the mapping h is twice continu-
ously Frachet differentiable for all (x u) of X and,

R'(x u)@x Su) = (82 ()—f, (e (a (). I (I=f, (x (D (), Wou (),

D, (x(0))8x(0) . E, (x(T).T)8x(T)). {3.2.9)

This lemma is a direct extension of Lemma 1.4b, p.94 of Kirsch et al. (1978).

In the abstract formulation, the inequality constraints of problem (SCOCP) take tbe form
of a required membership of a set A and a restriction of the value of a2 mapping g t0 a
cone B.

The set A is used to formulate the control constraint (3.1.5) :

A = Wi [0TF XA, {3.2.10)
where

A, = luel JoTP u(t)el ae 0S:t<T). (3.2.11)

Because U/ is assumed to be a convex set with a nonempty interior, 4, is also a convex set
with a nonempty interior.

The mixed control state constraints (3.1.6) and the state constraints (3.1.7) are formulat-
ed as :

glxu) = (S{x (), ), SxAx(). ). {3.2.12)
A logical choice for the range space ¥ is .
Y = Lozl 'xClorf2 (3.2.13)

Equipped with the norm

Iy oMy = maxillyflodylie} forall yi€ Lolor] yeClor]2 (3.2.14)

To the choice of the range space Y we note that an alternative choice is
Lm[O,T]k'xWLO,,[O,I 2. However, the choice (3.2.13) is preferred because the space
clor }k’ has a standard representation of the elements of the dual space (cf. Luenberger
(1969)). We note that unfortunately, the representation of the elements of the dual space
of L.[0.7]is rather complicated and that there seems to be no suitable alternative for the
choice of the range space of the operator §y(x (-). (-}, -). This complicates the application
of the optimality conditions, stated in Chapter 2, to the state constrained optimal control
problem, as discussed in Section 3.3.2. '

Lemma 3.3 : Let the functions S, and S, satisfy the assumptions of problem (SCOCP} and
the mapping g : X =Y be defined by (3.2.12), then the mapping g is twice continuously
Frechet differentiable for all (x u )} of X and

g'lx aud8x bu) = (S5, (x (e (), Wx (48, Cx (D (), - 8u (),
S, (x (), )8x()). ; (3.2.15)

To make the abstract formulation of the inequality constraints complete, we have to speci-
fy the cone B, which in the formulation of problem (EIP), is assumed to be closed and
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convex, with Oe B and having nonempty interior.

If we choose B to be :

B = B,XB,, {3.2.16)
B, = {y;eLw[O,?]k‘ (v (#)€0 ae 0SeST.i=1...% (3.2.17)
B, = ly,eClorT 21y, (1)S0 0Se<T,i=1..k5). (3.2.18)

then one can easily verify that the cone B statisfies the assumptions of problem (EIP).

This completes the formulation of the optimal control problem (SCOCP) as a specialization
of the abstract nonlinear programming problem (EIP).

3.3. First order optimality conditions for problem (SCOCP).

3.3.1. Regularity conditions for problem (SCOCP).

In view of the application of Theorem 2.12 to the optimal control problem (SCOCP) in the
formulation of Section 3.2, we consider the regularity conditions of parts (i} and (ii) of
Theorem 2.12. .

We start off by noting that throughout this chapter we shall use the following standard
result on linear ordinary differential equations (e.g. of. Hermes et al. (1969), p.36).

Lemma 3.4: Let A{t) be an n Xn matrix defined on [0.7] with components a;; € L,[0,T]
{alli.j=1...n) then for all he L LI0.TY the ordinary differential equation

@)= AUux)=h(t) ae. 0St<T. ; (3.3.1.1)
x(0) = x,. ’ (3.3.1.2)

has exactly one solution x € Wi ,.[0,T 1" . This solution has the form
i
x(@) = &(t)xo + 0) J@“l(s Ya(s)ds 0St<€T, (3.3.1.3)

where the n Xn matrix ® is the fundamental matrix solution of (3.3.1.1}, i.e. the unique solu-
tion to the homogeneous differential equation :
®(t) - A@)PE) =0 ; (3.3.14)

®(0) = I ' (3.3.1.5)

We note that the solution of (3.3.1.1) that satisfies the boundary condition x (T )= x; has
the form :

I
x()= @)y — @) [ @ UsIh(s)ds  OScST. (3.3.16)

As a first step towards the derivation of regularity conditions for problem (SCOCP), we
consider the range of the Frechet derivative of the mapping & : X — Z, at a solution (£ z)
of problem (SCOCP).
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Lemma 3.5:

(i)  Let the functions f, D and E satisfy the assumptions of problem (SCOCP) and let the
mapping h be defined by (3.26), then

RGA(E4)) = closed. ' (3.3.1.7)

(i) If at (£.2),

rank (D, ZON =c. : {3.3.1.8}
and

rank (E (X (T)TH =gq. (3.3.1.9)
then

R(E'(Z4) = Z. (3.3.1.10)

Proof : Using lLemma 3.4 we first prove that the range of the operator
hy(xaz): X— L lorl, with

By(E 4 )8x 8u) = (32 (O—f, [ Bx (=1, [ BBul). + (33.0.11)
is L [0,T} . For this purpose we consider the equation
Ry(EE)8x du)= R, (3.3.1.12)

with h € L,[0,TF . The range of the mapping 1;1' equals L [0.TT if and only if equation
(3.3.1.12) has a solution (8x.8u)eX for every hel,[0,7) . Using (3.3.1.11) equation
(3.3.1.12) is equivalent to :

8% — f,8x — f,8u = h, (3.3.2.13}
which has a solution for each he L[0T} by Lemma 3.4. (3x(0) and 8u can be set to
zero.)

Part (i) of the Lemma follows, because the ranges of the operators D, (x (0))() : X = R
and E (Z(T).TX.): X - RY are always closed, due to the fact that the range spaces of
these operators are finite-dimensional.

Part (ii) follows directly from (i) and the fact that (3.3.1.8) and (3.3.1.9) imply
R(D, (£ (0))) = R°,
RE (Z(T)T)) = RY.

o

Part (i) of Lemma 3.5 enables the application of part (i) of Theorem 2.12 to problem
(SCOCP) without any additional regularity conditions on the problem. With regard to the
result contained in part (ii), we note that this is the weaker form of the constraint
qualification we promised at the start of Section 3.2. For if we would have treated x as a
quantity dependent on u, condition (3.3.1.10) would require, beside (3.3.1.8) and
(3.3.1.9), that the linearized system

1 The notation |- is used 1o replace EOEC Yo ()
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8% = f,8x + f,8u,

should be completely controllable on [0.7] (cf. Norris (1973)).

We note that we do not need this controllability as a result of the fact that we consider
both x and v as variables and that the differential equation was used directly as a con~
straint, instead of first transforming the differential equation into an integral equation.
‘When both x and u are used as varjables, but when the differential equation would first
be transformed into an integral equation and x was considered to be an element of the
space of continuous functions, then the controllability of the linearized system would also
be required (cf. Girsanov (1972). Assumption 9.1).

The theorem below is a specialization of the constraint qualification of part (ii) of Theorem
2.12 for problem (SCOCP).

Theorem 3.6 : Let (X i2) be a solution to problem (SCOCP). When

rank (D, (X (O)) = ¢, {33.1.14}
and

rank (B, (: (T)T) = q. (3.3.1.15)

and, in addition, there is a pair (8x 8u) for which ¥

a@)+8ult) e imtU ae. 0S:<T.  (331.16)
D [0Bx(0) =0, v (3.3.1.17)
8:(0) = £.[eBx () + f,[e bu () ae. 0St<T.  (33.0.18)
ErBx@)= 0 (3.3.1.19)
Sitl+ S lelBx(e)+ 8, tPBut) <o ae. 0St€T, (3.3.1.20)
SAt 1+ S5t Bx() <0 0S:<T, (3.3.1.21)

then the regularity constant p is not zero.

Proof : The hypotheses {3.3.1.14) and (3.3.1.15) imply by Lemma 3.5, (3.3.1.10). Equa-
tions (3.3.1.16) - (3.3.1.21) are counterpart to conditions (2.2.19) - (2.2.20) of part (ii) of
Theorem 2.12.

0

3.3.2. Representation of the Lagrange maultipliers of problem (SCOCP).

In this section we shall consider the representation of the Lagrange multipliers for solu-
tions of problem (SCOCP). In the abstract formulation of problem (EIP) these multipliers
are denoted as § and . In the case of problem (SCOCP) they can be expressed as ele-
ments of function spaces. The major problem we have to deal with is the fact that, the
elements of the dual space of L [0,7]do not admit a simple standard representation.

In establishing a formulation of problem (SCOCP) in the terminology of problem (EIP)
{cf. Section 3.2), the range spaces of the constraints, i.e. Y and Z were chosen to be pro-

¥ We used the notation [t ] to replace E@)e@)e)on () )
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ducts of Banach spaces. A particular choice of the norm on the product spaces was made in
such a way as to make the product spaces Banach spaces too. In this case the representation
of linear functionals on these product spaces is induced by the components, i.e. when X,
and X , are both Banach spaces and :

XS = X 1 X X 2.
then all continuous linear functionals on X, admit a representation of the form {(cf. Porter
(1966), p.299) :

<Cxg, x> = <xy, x> + <x3.x.>,

with x} € X} and x3¢X5.

We shall now develop a representation of the Lagrange multipliers for problem {8COCP)

by considering the products <§ .g> and <z ,h >, where g and h are the mappings

defined in Section 3.2. Using the fact that ¥ and Z are product spaces we obtain :
<3T.E> = <AL Sk + <€ Sl ]>, (33.2.1)

<3 k> = <h, 2 - fLI> + <. DEON> + <A, EGET)T)>, (3322)

]

with : fi,€ (Lo lo,rT1),

£ eclor’?,

Ae(Lolorr),

& e(R°Y,

ae(ReY.
Equations (3.3.2.1) and (3.3.2.2) admit an interpretation of (§,.£A.6.2) as Lagrange
multipliers associated with a particular constraint (i.e. 7); is associated with the constraint
Sl(f(')-l; ()- ')QBI).
A representation of the Lagrange multipliers for problem (SCOCP) will be established,
once we have a representation for the linear functionals on the right hand side of (3.3.2.1}
and (3.3.2.2). These will be considered individually. We start with the representation of
the linear functionals which do not pose a problem as they have a standard representation.

Because R and R? are Hilbert spaces, the linear functionals on R® and R? have the
form :

[

<&, DEO)>
<g,Ex(T)T)>

=& D(E(0)), - (3.3.2.3)
—aTE@EZ(T).T), (3324}

" with: 6 ¢ R,
g€ RI.

The dual space of Cl0,T 12 is the space NBVI[or I2ie. the normalized space of & ,-vector
funciions on [0.T] of bounded variation (cf. Luenberger (1969), p.113-115 ). The standard
representation of these linear functional is given by means of a Stieltjes integral, ie.

I
<€.S5)(F(),)> = = [8,F()2) dEG). (3.3.2.5)
¢

with: & € NBVIorT2
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We note that the minus signs on the right hand sides of (3.3.2.3) - (3.3.2.5) were chosen
in order 1o obtain the usual form of the minimum principle to be stated in the next sec-
tion.

The representation of the functionals
<A Si{x u ) )>, {3.3.26)
and

<A EO=FxOu(), D>, (3.3.2.7)

is a more difficult problem. because the linear funcionals on Ll0,T ¥ and L I0TT are
elements of L,[0,7T and as such admit, in general, only a very complicated representation
(cf. Dunford et al. (1958), Ch. IV, Thm. 8.16).

Fortunately, by making use of the fact that 9, and X are Lagrange multipliers for problem
(8COCP) we are able to derive a practically useful representation of the functionals
(3.3.2.6) and (3.3.2.7). ] ,

We shall first consider the representation of the functional (3.3.2.6). Here we are faced
with the difficulty that the constraint $;(£(:)Z (), -Je B; represents only in part the ex-
plicit consiraints on the control. The other part is represented by the constraint Z€A4,,
which is a very general representation of a constraint. In order to cope with this difficulty
we shall make the following assumption :

Assumption 3.7 ¢ The set U is of the form :
U= {fueR™ :Sou) < 0},
where So 1 R™ — Rk"‘is a twice continuously differentiable mapping.

Assumption 3.7 merely states that the control constraints can be transformed into a set of
inequalities, i.e.

u(t)e U ae. 0St<T,
may be replaced by
Slulez )< 0 ae. 0SS T.

Because we did not make any assumptions about the explicit dependence of §;(x & .£) on
the argument x, all explicit constraints on the control can be treated in a similar manner.
Thus, we end up with one vector function for the constraints on u,

So(u )
Sc(x R’ ,t) = S]_(x u ,t) (3.3.2.8}
The solution must now satisfy the following constraint :
S (x(u@)e) S0 ae. 0S¢<T. ' (3.3.2.9)

As we already discussed in Section 3.1, we must futhermore assume that all components
of the vector function S, have an explicit dependence on the argument «.
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Assumption 3.8 : If (£.i) is a sobuion to problem (SCOCP) and Assumption 3.7 holds,
then

rank (S, (x )a @) (e = ko + &, ae. 0Kt<T.

Assumptions 3.7 and 3.8 enable the derivation of a representation of the linear functional
<7y >

Lemma 3.9: Let (£ .2) be a solution to problem (SCOCP)} and let in addition Assumptions
37 and 3.8 hold, then the linear functional <f);.->, whose existence is garanteed by
Theorem 2.12, has the following representation :

I
<Aryi> == [#:6Vye)dr forall yreLolorT?, (3.3.2.10)
0

with : e Lolor T,

Proof : Using the fact that Assumption 3.7 holds, we consider the formulation of problem
(SCOCP) with the vector function (3.3.2.8). The corresponding Lagrange multiplier is
denoted by .-

Using the representation of the Lagrange multipliers discussed earlier in this section, we
obtain from part (i) of Theorem 2.12:

PFEE)Bx Bu)~ <R S Bx+S5,0u> — <£.S5,8x> —
<X.8%i~f 8x~f,8u> —~ <G.D,8x(0)> ~
<p.ESx(T)> = 0 forall $xe W, [0TF . 8ucL o7y,  (332.11)
Using the representations {3.3.2.3) - (3.3.2.5) and the result of Lemma 3.1 we obtain :
<A, 8% =f,8x—f,8u> + <9, 8,0x+S,8u> = plhy, 8x(0) +

T T
J o 8x+fo,8u)dt + g0, 8x(T) )+ [8x7 S, d€ + 67D, 8x(0) +
0 14

BTESx(T) forall 8xeW, 0T, Sucl foT}". (3.3.2.12)
We shall consider (3.3.2.12) using variations (8x ,8u ) that satisfy :
8x = f,8x + f,8u  ae OS:<T,
3x(0) = 0.

For these variations the functional <A, 85— fx8x—f,8u > is zero and the right hand side
of (3.3.2.12) then gives an explicit relation for the functional <%, 5., 8x +S, du >.

Next we consider the functions :
h(t)= S, [t18x(e)+ §.,0t)8u(t) ae. 0St<€T. {3.3.2.13)

Clearly, h € Lol0,7T 1, because du € L ,[0,77". Assumption 3.8 ascertains that for every
heLol0.rT 1, there is at least one Su, that satisfies equation (3.3.2.13). To select for
each fixed function he L 07T 2 particular function 8u that satisfies (3.3.2.13), we

+ In Assumption 3.8 we used §., to denote the partial derivative of S, with respect to 12 .
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make use of the pseudoinverse of the matrix 5, [¢]. Because the matrix S, [t} is of full
row rank. the pseudoinverse of S, [f ] has the form :

S et = 8, e F(S. 18, [t F)? ae. 0$t<T. (332.14)
The variation 8z must therefore satisfy :
Sut)= S, eI h(e)~ 8., 0t18x(t)) ae. 0St<T. (33.2.15)

Because (8x u ) satisfy the linear system, the variations (8x ) satisfy :
8x = f,8x + £,S.0h — £, 878, 8x.

Using Lemma 3.1 we can write §x dependenton A as:
11
8x(t) = Blz) a[ (s ), [s18 [s TR (s ) ds 0T, (3.3.2.16)

where P is the solution of :
G~ (f,~fuSaS =0 BO)=1 V - (33207)
Rewriting (3.3.2.12) with (3.3.2.15) and (3.3.2.16) yields :

T 1 ' T )
<R k> = f(a(t)ng(s}h‘(s)ds +e@hr@)Ndt +eB(T) [BGIRE)dr +
) ’ ’ i ¢

r 14
f(qs{z)bfa(s Ya(s)ds ¥ S, [t FaEG) forall heLforl o™, (33.2.18)
¢ .

where: a(t) 1= P(foy ~fou S [t 178, O ), 0SS

B(@) == @YY, S, [t ] 0S¢ LT
e(t) = pfo, S lelt. : 0€:€T
e = pgo,+iL,.

Changing the order of integration (cf. Luenberger (1969), p.153-154) :
T

Gfrfl((t s)ds dt = of

yields :

I
SEGt)ds ar,
T 1 ‘ ' 7
<R B> = f{( Jals)ds + eBINBE) +ce) + fdf(s)rSz,,[s]?ﬁ(s)B(t);
¢ He t

h(z)dt forall heL forle™ (3.3.2.19)

The vector function A, : [0.7 ] R“"*1 s now defined as :

ﬁc(z)r = -

r T
fa(s)ds + fdﬁ(s)TSZx[s]6(3)+ eili(T)]B(t)

+clt) 0S€T. {3.3.2.20}

And hence :
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I
<A h> = — Jfﬁc(t)fh(t)dt for all heLlorf o,

which proves (3.3.2.10).

e LeloT T follows directly from inspection of the components of (3.3.2.20).
(W]

The proof of this Lemma is nonconstructive in the sense that we do not obtain a simple re-
lation for M;. only a representation. For the multiplier X. we do obtain relations from the
derivation of the representation, which follows similar lines as the proof of Lemma 3.9.

Lemma 3.10 : Let (X .i2) be a solution to problem (SCOCP) and let, in addition, Assumptions
3.7 and 3.8 hold, then the linear functional <\,->, whose existence is implied by Theorem
2.12, has the representation :

7 -
<h.y>= [ReYy@)ar forall yeLolozl. (3.3.2.21)
[

with Ne NBV[0,TY" , which satisfies

A =R = = [ Bfolt HRGY £, [t Wi Y S [e D ae
o

L1
- [dEeY S le]  forall 0K1,K¢,<T, (3.3.2.22)
o
and
AO0) = — pho,[0] - 67D, [0]. (3.3.2.23)
ATY = pgolT1+ ZTEIT) (3.3.2.24)

Proof : We use equation (3.3.2.12), with variations 8u=0 and the representation of
<HAy.-> of Lemma 3.9

T
<N, 85i—f,8x > = (Bhoy +67 D, 8x(0) + [ (Pfox +7{S1 W02 (2) ar +
]

r
Jox7S5aEG) + (Bgoc+ATE)8x(T) forall Sxe Wy [0TTF. (3.3.2.25)
0

Now consider :
3z ~ f,éx = h §x(0) = 0,

which has (by Lemma 3.1} a solution for every he L[0T} .ie.
[4
§x(t) = &) f@(s (s ) ds, {3.3.2.26)
. 8

where & is as in Lemma 3.1.
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Using relation (3.3.2.26) in (3.3.2.25) yields :

T 4
<hob> = [ (fox+71S1000) [¥s) h(s)ds +
0 ]
T ’ £
[a€GY s, e 100 é[ (s ) th(s) ds +
0

T
(Pgox +ATEN®(T) [ @) h()dr forall heLoloTF.
]
Changing the order of integration in (3.3.2.27) yields :
r T I
<hb> = [{ [Gfo+als1)0G) ds + [d&(s) 52 [s10(s)
[} ¢ H

+ (Bgox tiTENQT Nt ) (2 ) dt for all he L foT) .

Define now :
~ T T ~
AV = A [ Bfo +7S1)0() ds + [dE( Y S5 [s10(s)

+ (Pgox +AT ENOT)®(t Y1 0S:KT,

(33227}

{3.3.2.28)

{3.3.2.29)

from which (3.3.2.21) directly follows. AeNBV[0TT follows from an inspection of the

various components of (3.3.2.29).

We shall next prove relations (3.3.2.22) and (3.3.2.24). Relation (3.3.2.24) follows from

(3.3.2.29) for t=7. Now consider the product Mo
d(REY ) = dAG Y ®() + A Y &) dr.
Because & satisfies :
®=fo
equation (3.3.2.30) becomes
dO®) = drTd + AT, @ dr.
Using (3.3.2.29) we obtain :

AN O + ATf, @ dt = — (Bfo, +ATS1 )0 ) dt — dE(e )ng,;[a 10 ).

Because @ is invertible this yields :
dAT = ~ Pfou AT f+mIS ) dt — d EQ Y Sy l2 ).
which is equivalent to (3.3.2.22), because

ty
JdAT = X )T — XY forall 05¢,K¢,ST.
]

(3.3.2.30}

To prove (3.3.2.23), the whole proof should be repreated using variations 8x that satisfy :
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8t — f,8x =nh &x(T)=0.

In this case the variations 8x satisfy
8x(t)= — &) f@(s ) h(s) ds.
{
The counterpart to (3.3.2.29) becomes
A = — {(j(ﬁfo, +078, )00(s) ds + jd E(s ¥S,s1+

(Pho, +67 D )@(2) ! 0<:<T,

which yields (3.3.2.23) for ¢ = 0, because ®(0)"1=1.
0

3.3.3. Local minimum principle.

In this section, the results contained in part (i) of Theorem 2.12, will be expressed in the
formulation of problem (SCOCP).

An important role is played by the Hamiltonian, which is defined as :
H(x u.phit) = pfolxut) + N flxut). (333.1)

In the theorem below the notation [¢] is used to replace (x(z).), (£{¢)ii(t)z) or
E@)E@)pAE)L).

Theorem 3.11: If (i .i2) is a solution to problem (SCOCP) for which Assuptions 3.7 and 3.8
hold, then there exist a real number p20, and vector functions Ae NBV[o,T],
f1€ Lo [07T, Ee NBVI0,TT? and vectors 6 € R, fie RY , not all zero, such that,

:
A =A@ = — fl(Hx[t] + A Y S, [e]) de
‘ .
otl
— [dEGY S, lt]  forall 052,K2,KT, (3.3.3.2)
te
AO) = — pho,f0) — 67D, 0], (3.3.3.3)
ATY = pgolT1+ pTEIT] (3.3.3.4)
H 1+ 7Y Su,eDw —a(@)2 0 forall uelU ae 0S:<T. (3.3.3.5)
Mme)2 0 ae. 0S:<T, ' {3.3.36)
D )Sulel=0 ae. 0St<T i=1.k, (3.33.7)
@) = nondecreasing on [0,T] i=1,.k,, (3.3.3.8)
£,(t) = constant on intervals where Sylt]1 < 0 i=1,.k,, (3.3.3.9)

Proof : The existence of nontrivial Lagrange multipliers for problem (SCOCP) follows
from part (i) of Theorem 2.12 and Lemma 3.5.
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Using the representation of the Lagrange multipliers derived in Section 3.3.2, equation
(2.2.17) becomes :

T
PR o [018x (O)+ [ (fo [t 16x +10, [t Wu) dt +g0, [T (T)) -
0
7 I
SRET Ga=f, e x—f [t Bud dr + [ A0 ) (S, [t 16 +8 4, [t Jou) dt
¢ . ¢ .

I
+ (@Y S50t Bx(e) + 67D, (0182 (0) + ATETHx(T) 2 0
1

forall d3xeW 0T, 4 +8uecA,. (3.3.3.10}

Without loss of generality, the variations (8x .0}, (0.5u) may be considered separately, be-
cause these variations are independent.

Thf: variations (8x.,0) were used to derive the representation of the linear functional
<X.-> and hence (3.3.3.2) - (3.3.3.4) follow (cf. Section 3.3.2).

The variations (0,82 ) yield :
. ,
f(ﬁfm, [ 1RG£, [t Ay()S 1, e DB dt 2 O forall i+8ueA,.  (333.11)

Equation (3.3.3.11) is equivalent to (3.3.3.5), because (3.3.3.11) is a supporting functional
1o the set A, at the point & (cf. Girsanov (1972), p.76-77).

Equatlon (2.2.16) yields :

. y S
<§y> = - f‘ﬁl(t Iy yle yde — fdﬁ(t)ryz(t)? 0 forall yeBy, yscBs.
¢ d

Considering the cases where all components of the vectors y; and y, are zero except one
yields :

- fm,(z Wyule)de 2 0 forall yyeLalo.T]

with y;;(¢)X0 ae OSIST i=1.k,
and

r
— [d&(0)y(e) > 0 forall yyeClor]
[

with y,;(1)<0 0St€T i=1,.k,

which imply (3.3.3.6) and (3.3.3.8).
Equation (2.2,15) yields :
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T T
<3 §Ga) =~ [9,.YSilelde — [dEGYSdt]= 0. (33.3.12)
0 0

Because of (3.3.3.6) and (3.3.3.8) and the fact that S,[t}€0 ae 0€¢S<7T and
Sylt]1€0 0€¢< 7T, equations (3.3.3.7) and (3.3.3.9) follow from (3.3.3.12).
a

The result contained in Theorem 3.11 is called a local minimum principle, as a result of
equation (3.3.3.5), which implies that the function :

M+ A VSl D —a@ )20 (3.3.3.13)

is minimized almost everywhere on [0,77] with respect to the argument v over values in
the set U.

3.3.4. Minimum principle.

In this section optimality conditions for variable final time problems will be presented. At
the same time the results of the previous section will be strengthened in the sense that the
local character of the minimization of (3.3.3.13) will be replaced by a pointwise global
minimization of the so-called augemented Hamiltonian over the entire set U,

The reason that such a result is desirable is that for spike variations (i.e. variations which
are only nonzero over a small interval of time), the corresponding variation of the state
variables and the objective function will be small. Obviously, spike variations need not be
,small in the co-norm. However, making the interval of time sufficiently small will make
these variations comparable to variations which are small in the co-norm, but nonzero
over a larger interval of time.

Theorem 3.12: If (% i.7) is a solution to problem (SCOCP), for which Assumptions 3.7
and 3.8 hold, then, in addition to {3.3.3.2) - (3.3.3.9) t the following conditions hold,

a
Hit]1= - pgorT) = ATEFT~ [(H,1e]+ 7,078, [t D de

i .
- [aEG) $yle] ae. 0St<T, (334.1)

Hzl= max HE@u pAE)) + MY 5,E@ur) ae 05:<T.  (334.2)

Proof . We shall only outline the main lines of the rigorous proof given by Girsanov
(1972), Lectures 13 and 14.

Girsanov considers the case that the mixed control state constraints are not present and
that the set of admissible controls U is not necessarily convex, nor is U supposed to have
an interior. There is however no great difficulty in treating the present case of mixed con-
trol state constraints following entirely the same approach.

The essence of the proof is to admit spike variations on the control in an indirect way, via

a variable time transformation.

t In these conditions the final time 7' must be replaced by 7.
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This transformation has the following form :

t(r) = [v(s)ds o0<7<1, (3.34.3)
0

() =7, (3.34.4)

vir) 20 ae. 057<1. (3.34.5)

The inverse of this iransformation is defined as :
7(¢) == inflre[01]:t(r)=¢t }. (3.34.6)

Using this transformation, problem {SCOCP) is transformed to an optimization problem
involving the functions x (7). u(7) and v(7), which are functions of the artificial time
variable 7. In this transformed problem the function v{7) is considered as an additional
control variable on [0,1], which is to satisfy the control constraint (3.3.4.5).

In a formal notation the transformed problem is :

1

Minimize ho(x(0)) + Jfoix ayW(r)dr + golx(Dy(1)), (3.34.7)
X ay.w :
subject to :

g— = v(r)f(x.uy) ae. 0S7€1, {3.34.8)
;_y = v(7) ae. 0571%1, {3.34.9)
D(x(0)) = 0. {3.3.4.10)
y(0) = 0, V (3.34.11)
Ex(Dy(1d =0, (3.34.12}
u(t)e U ae. 057€1, {3.34.13)
vir) 2 0 ae. 0S€7€1, (3.34.14}
Silxauyw(rd€ 0 ‘ ae. 0S7%1, , (3.34.15)}
Sixy)€ 0 0€7<1. {3.34.16)

As a result of the variable time transformation, the transformed problem is autonomous
although the original problem can be nonautonomous.

I v(7) is considered to be a fixed positive function on [0,1], then problems {SCOCP) and
(3.3.4.7) - (3.3.4.16) are equivalent. If v{(7) is zero over an interval, the state variables x
and y will be constant on this interval. On such an interval the value of the control func-
tion does not affect the value of the objective function, nor does it involve other con~
straints than # €U . Following a similar reasoning for the case that v(7) is considered to
be a variable in the problem (3.3.4.7) - (3.3.4.16), the following result is obtained :
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"If (x(¢).u(t)) is a sohtion to problem (SCOCP), then for any function v (7)
satisfying (3.3.4.3) - (3.3.4.5), the triple (X (7).i(7). (7)) is a solution to the
transformed problem (3.3.4.7) - (3.3.4.16). The control & () is allowed to have any
value satisfying u €U on intervals where v (1) is zero."

Because of the assumptions on the differentiability of the problem functions with respect
to the argument ¢ (cf. definition of problem (SCOCP)), application of the results of part
(i) of Theorem 2.12 on the transformed problem is possible.

Assumptions 3.7 and 3.8 hold for the transformed problem on intervals where v(7)>0,
whenever these assumptions hold for problem (SCOCP). (Note that the transformed
problem contains an additional control v with a constraint v Z 0 which is independent of
©.) The special form of the constraint (3.3.4.15) was chosen because we do not want to let
the constraint S;(x ,u .t )< O restrict the choice of the values # () on intervals where v (7)
is zero. As a result of this the regularity Assumption 3.8 does not hold on these intervals,
because on these intervals the constraint vanishes completely from the optimization prob-
lem. For the representation of the Lagrange multipliers corresponding to the mixed control
state constraints this poses no problem, because these Lagrange multiplier may be assigned
an arbitrary value on intervals where v (7) vanishes (the constraints are no longer present
on these intervals) and the regularity Assumption 3.8 is only of interest on intervals
where v(7) is nonzero. The Lagrange multipliers correponding to the mixed control state
constraints are assigned the following value :

ni(r) = (7).

‘The application of the results of part (i) of Theorem 2.12 for variations 8x and 8u fol-
lows similar lines as the previous section. The counterpart to (3.3.3.5) for the additional
control variable v (7) becomes :

Bl EME@)FEN + XEF FE@Z@)FEN + X, (1) +
MEY S E @A @) ENNE —5(1)) 2 0 forall vZ0 ae. 057<1. (3.34.17)

(X, is the adjoint variable associated with (3.3.4.9).)

Because every v(7) which satisfies (3.3.4.3) - (3.3.4.5) is a solution to the transformed
problem, we may consider (3.3.4.17) with v (7) strictly positive on [0,1]. This implies

PR (MIA(MF () + XGV fEME(T)F (1) + X, (1) +
MV S, E(N)a(n)5@EN =0 ae. 0<7X1. (3.3.4.18)

Alternatively, we may consider functions v (7) which are zero on intervals. In these cases
(3.3.4.17) implies '

Plo(Z (1) (1).5 (1)) + A FE()E(1)5 (1)) + X, (1) +
MY S E@E@FEN S 0 ae. on Ry, (3.34.19)

where R, denotes the set of time points for which v (7)=0.

The essence of ‘the approach is now that on the set R. the values of #(7), which are res-
tricted to the set U, may still be chosen (they do not affect the value of the object func-
tion, nor any of the other constraints). On the set R, all other quantities are constant and
hence the choice
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i(r) = ae (7)),
yields the equality implied by (3.3.4.18). Therefore i (£ (7)) must be a global minimum of
Pr(E (T2 3 (1)) + M) F(Z (D $()) + Ay(r)T $1(Z (P F (7))

over theset /.
Of course this reasoning is not a rigorous proof for (3.3.4.2), which should involve a prop-
er choice of the function ¥ (7) and % (7} on R, that shows that {3.3.4.2) must hold almost
everywhere on [0.7 ] and at the same time be a pointwise global minimization (cf. Girsanov
(1972) for furiher details).

Equation (3.3.4.1) is obtained from (3.3.4.18) following the derivation below. Here the use
of the variable time transformation (3.3.4.3) - (3.3.4.5) is further superfluous. Therefore
we set v (7) constant on [0,1].

A ()= —Hit]l— A Y Syle]= —Ht]  ae 05:€7T (3.34.20)

Because A » is the adjoint variable corresponding 10 (3.3.4.9), it satisfies relations similar to
(33.32) - (33.3.4):

Le)=A@) = - [@EWneY S EDar — [ dE@) s,le)

forall 0S:<¢,€7. (3.34.21)
and
A () = pgorF) + AT EIT). (3.3.4.22)

Taking £ ;=T and combination of (3.3.4.21) - (3.3.4.22) with (3.3.4.20) yields (3.3.4.1).
g

3.3.5. Smoothness of the multiplier £.

In this section the smoothness of the multiplier 3 is considered, which is essential for the
practical application of the optimality conditions stated in the previous sections.

Because é is a function of bounded variation on [O,f‘ 1. it has at most a countable number
of discontinuities and its derivative exists almost everywhere on [0.7] (cf. Royden (1963),
p.86). Hence equation (3.3.3.2) is equivalent to :

AGY = = H 1= Aue P Sl = 2ot ¥ S5 el ae 0SeST,  (335.0)

i(zj-i-)? = i(tj-)r - 518,.0t;]  at points of discontinuity of 3 o {335.2)
§i(z )
£, +) — EQ;—).

where : N,(¢)

v, =
The fend;tions (3.3.3.8) and (3.3.3.9) of Theorem 3.11, ie. £, = constant if S5[t]<0
and §; = nondecreasing on [0.7 ) are equivalent to the conditions :
)= 0 if $xlt] <o {3.35.3}
N) 2 0 if Syule]l =0, . (3354}
and
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>

;=0 if Syult;1<o0, (3.3.5.5)
p;zo0 if Sult;l= 0 (3.3.5.6)

The application of these optimality conditions is complicated by the fact that we have no
information, about the time points #; at which £ is possibly discontinucus, on intervals
where one or more of the components of S, are zero.

Before the main result of this section is stated, some terminology and some definitions are
introduced.

Let p; and [ be integers with 1% p, €. Assume that the functions f(x .z .f) and §,,(x 1)

are respectively C' - and CP functions with respect to all arguments. Define the functions
(cf. Hamilton (1972)) :

Fl(xuz) = Syulxt) (33.5.7)
;-1 j1
Fixuz) = Wf(x,u;)+ Eﬁ-gfiﬁ j=12ep;. (3358)

The order of the state constraint Sy; is p;. if

AF Y (x oot
pi=min{geN :Fxge R* A Tuoge R” A Foc R m%,_::.’:)‘_uu_)_ = 0|}

Based on this definition the functions S4; : R*XR — R for j=01..p,~1 and
S5 : R"XR™XR - R are defined as S§, = Fj;. for j=0.1..p.
Along a trajectory (x ) that satisfies the differential system (3.1.2) we have

478, (x(2)1) Shilx(e)e) i=01..p—1

=1 5 {3.3.5.9)
de! SEx (e Y (e )t) i=pi

By definition the functions §j (x .£) do not depend on u explicitly and hence we have
piZ 1 foralli=1..k, A logical extension to the definition of order of a state constraint
is, 1o define mixed state control constraints as state constrainds of order zero.

We now introduce :

S :R*XR"XR- R,
. Shxur)
Sxur) = Syx ) |’ . (3.3.5.10)

and

o 144y

§7 i R"XR"XR - R,
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S;(x xu .t )
Six )

SP{xui) = . - (33511}

Py
S2k22 (x 2Lt )

Definition 3.13: Ler (£ &.T) be a solution to problem (SCOCP) and let’
I = {teloT]: §,R@)EW)e) = 0} i=12..4 +ko, (3.35.12)

be the set of active points of the state constraint § ;(x u & )YS 0. With respect to §,, a subin-
terval [¢,.6,0C 107, t,<t,, is called a boundary interval if [t 2,1C I, and an interior
interval if [£1.£,]0 I;=3. Entry-points respectively exit-points, alse called junction points,
and contact points, are defined in an obvious way.

The possibilities that ¢ = 0 is an entry- or contact point or 1 = T is an exit- or contact point
are included. [¢,.,] is a boundary interval for S if [t,.t,] is 2 boundary interval for every
component S;, =1, k+k,.

For simplicity we shall assume two cases in the sequel, either [¢,.£5] is an interior interval
or [¢1.£5] is a boundary interval for §. Cases where some but not all state constraints are
active on an interval [z ,.t,] are similar to the case that [z,.,] is a boundary interval for §.
In these cases all assumptions and results correspcnd to the case that all inactive com-
ponents of $ are omitted ‘completely.

The following regularity condition is of importance :
Assumption 3.14: Let the function §7 : R"XR" xR — R*"™*? be defined by (33.5.11)
and let (x 4 .T ) be a solution to problem (SCOCP), then

rank SPEA@E)) = ky+k, ae. on LLUIY -~ UL 4, (3.3.5.13)

The following theorem establishes the smoothness of «?;',‘on ‘toundary intervals :
Theorem 3.15 : Let (£ i 1) be a solution to problem {SCOCP) for which Assumptions 3.7,
3.8 and 3.14 hold, and let fo, f and S be CP* -functions (5 = max p;) with respect to all
arguments and [ 2 0. Let [t,1,] be a boundary interval. Assume in addition that @(t) is a
CPH function on [t 1.£ ;] with

wlt)eint U forall te(t ty). (3.35.14)
Then the functions A and & in the adjéinr equation (3.3.3.2) are C'*-functions on (£ 1.t 5).
In particular the ad joint equation

A = —H[t]- 48, t]  t,<r <, : . (3.35.15)
holds, where fi7 = (4 17.27) is a C! -function.

The proof of this theorem can be found in Maurer (1976,1979), who put the heuristic
proof of Jacobson et al. (1971) on a solid base.

The proof is done in two stéps. The first step deals with the case of one state constraint
and one control. Because of (3.3.5.14) condition (3.3.3.5) becomes (k= 0) :
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H,ltl= 0 forall ¢ <t <1z,

Consideration of the (5F—1)-th time derivative of H,[r] on (£,.t5) yields the result. We
note that this approach is essentially based on the smoothness assumption made on the
control & (z ).

The second step deals with the general case of multiple state constraints and multiple con-
trols. The regularity Assumption 3.14 is used to apply the same techniques used in the
first step via an elimination process.

Under the hypothesis of Theorem 3.15 we may thus be sure that points of discontinuity of
the function £ cannot be interior points of boundary intervals. From (3.3.5.5) we know
that these points are also not points of interior intervals. Hence points of discontinuity of
£ can only be junction or contact poinis. At these points equation (3.3.5.2), which is
called the "jump -condition, must hold.

3.3.6. Alternative formulations of the first order optimality conditions.

This section deals with some alternative formulations of the first order optimality condi-
tions. To simplify things we consider the problem (SCOCP) for the case that there are no
mixed control state constraints (k,;=0), one state constraint (£,=1) and one control
{m=1). We note however, that the results of this section can be extended to more general
cases in a straightforward manner. Because the manipulations on the staie constraints are
done for each boundary interval separately, we assume without loss of generality that the
set of active points of the state constraint S, consists of only one boundary interval
[£1.2,), with 0<t;<t,<T. The order of the state constraint S is denoted by p.

For all i = 0.1.2....p the gugmented Hamiltonian is defined as :
Bupride) = pfolrat) + NTf(xat)+ A Shxut) (3.36.1)

where the functions S5 are defined by (3.3.5.7) -~ (3.3.5.8).

Setting A°=X and Al=q= é Theorems 3.11, 3.12 and 3.15 involve the augmented Hamil-
tonian for the case i=0.

The main result of this section will be a similar statement for all i=1,...,p. Iis statement
is simplified by means of the following definitions :

12
bot [20rYdr = Bapt)-E1) £ 4<1<e~
i
Aie) = (3.36.2)
O elsewhere .
Bl = Rl )b, = Eeat)-EGm). (3.36.3)
Ly
[ M) dr 4 €iSe- i=2..p22
H
H'(t) = (3.36.4)
4] elsewhere
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B = H,4) i=2,.p22. (3.36.5)
and

asi e ]

i 7o
A o

1t

R — XA @)

i=1

0<t<T i=1..p (336.6)

With these definitions the following minimum principle holds :

Theorem 3.16 : Let (£.,i,7) be a solution to problem (SCOCP) with k=0, k,=1 and
m=1. Suppose that fo, f and S are C?-functions and that Assumption 3.14 holds. Assume
in addition that the set of active points consists of one boundary interval lt,1.], with
0<t,<t,<T and that ii is a C?-function on (¢ 1.t ) with

@) e int U forall tele,ts). (3.36.7)

Let p.6 ji.h and £ satisfy the conditions of Theorems 311, 3.12 and 3.15 and let \' and &'
be defined by (3.3.6.2) - (3.3.66) foralli=1...p.

Then, for all i=1,...p, the following relations hold :

NGY = —Hil ae. 05:<T, (3368)
A Y = — phe 01— &7 D, (0], (3.3.6.9)
MY = paonlll+ ATEIT], (3.36.10)
. ioa. 885 e
R = A=) — R —ﬂ,j-w (3.36.11)
=1 x
g’ 2 0 j=12..0, (336.12)
@) 2 0 =120 <t <tp (3.36.13)
Bkl = max B @ uprie)A ) ae. 05¢<T, (336.14)
B[] = - pgorlf1- A" E[T), (3.36.15)
%‘—] = Hle] : ae. 05:<T. (336.16)
. e, i 885i~tr
A+l = ble-)+ z—%ﬂ. (336.17)
i=1

Proof : The theorem is quite similar to Theorem 5.1 of Maurer {(1979), who considered the
autonomous case with fixed final time.

The hypotheses are such that the conditions implied by Theorems 3.11, 3.12 and 3.15.
hold.

Condition (3.3.6.9) and (3.3.6.10) follow directly from (3.3.3.3) and {3.3.3.4). Taking the
time derivative of (3.3.6.6) results in :

i 8541

pR]

= dx

&, - ;0._.‘1.
A A 3

{3.36.18)

and definitions (3.3.6.2) and (3.3.6.4) yield :
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~

A =—-H"1 j=12.p. S (336.19)
s = <‘3sa£t’l asai" P (3.3.6.20)
oo e
N =

Combination of (3.3.6.18) with (3.3.6.19) and (3.3.6.22) gives :
S _ %o Izi-’l ey 16‘1{1 + @ aj;i - asic_l % . (3.36.23)

Using (3.3.5.1) for A© yields (3.3.6.8).

The entry point condition (3.3.6.11) follows from the "jump’-condition (3.3.5.2) fort =¢,,
which becomes

Xo(t 1+) = }:"(t 1") - 1’)1 asazit l] (33624)
Definitions (3.3.6.3), (3.3.6.5) and (3.3.6.6) give :
1 ; 1
AN@g+) = A% +) — (B, )BSQ—[II] Z M {3.36.25)

Combination of (3.3.6.24) and (3.3.6.25) give (3.3.6.11).

A similar derivation at £ =t reveals that for all i 2 1, the functions A' are continuous at
this point.

Conditions (3.3.6.12) and (3.3.6.13) follow directly from the properties of 74°, #; and ¥,
and the defining equations (3.3.6.2) - (3.3.6.5).

H (2w pA (@A @) = pfo(E(e)ut) + N0 F()us) -

U asi O T e ymn) + H IS G ().
ji=1
Because,
i 384571 ] _ _
685 l[t] Silt1- —n j=1,..p—1
——f G @ur)= -1 (3.36.26)
R 05871z ] .
S‘z’(x(t),u.t)—-‘T i=p
we obtain
HGE@upX @)A (@)e) = HGE @)u pAE)AE)L) +
i 1
Z A @ )M forall uel. (3.36.27)
Jji=1

Because the second term does not depend on u, (3.3.6.14) follows directly from (3.3.4.2).
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(3.3.6.15) follows from (3.3.4.1) for t =T because 9/ (F)=0 for all j.

(3.3.6.16) and (3.3.6.17) follow from (3.3.4.1) via a derivation similar to the derivation of
(3.3.6.8) and (3.3.6.11). ‘
]

With regard to Definition (3.3.6.4) we note that it implies :
A=) =0 i=2,.p. (3.36.28)

In essence Theorem 3.16 states a minimum principle for each fixed i€{/,.p}. From the
Definitions (3.3.6.2) ~ (3.3.6.6) it is clear that the multipliers associated with the various
minimum principles for = 0.,1....p are related. Given a set of multipliers associated with a
principle for one specific £. it is possible to obtain the multipliers associated with other
minimum principles via either integration or differentiation.

Before this section is finished. we shall make some notes on related results in literature.

For i = p the minimum principle is similar to the conditions given by Bryson et al. (1963).
These conditions were derived following an indirect approach. Instead of treating the state
constraint direct, the constraint was replaced by :

Silx(e)e) =0 i=01..p—1, (3.36.29)
and
S8(xJuelr)=0 £,€t%¢, (3.36.30)

The conditions given by Bryson et al. however, are somewhat weaker, e.g. they involve
(3.3.6.13) only with j=p.

This fact was recognized by Jacobson et al. (1971), who were the first to derive the
minimum principle for i =0. Later Norris (1973) put the proof of Jacobson et al. on a
solid base. except for the results on the smoothness of the multiplier £. These resulis are
due to Maurer (1976,1979). Kreindler (1982) showed that the conditions given by Bryson
et al. can be made as strong as the minimum principle for i =0 by augmenting the set of
conditions with a number of additional conditions on the multipliers and their derivatives.
In fact this yields the minimum principle of Theorem 3.16 for the casei=p.
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34. Solution of some example problems.

In this section we shall give some examples that will be solved using the optimality condi-
tions of the previous sections.

3.4.1. Example 1.

1

Minimize 1 5[ ory (34.1.1)
subject to : Xy = X3 0L €1, {34.1.2)
X = u 0€e €1, {34.1.3)
x(0} = 0, (34.14)
x;(O) = Q, (34.1.5)
(1) =1, {34.16})
x,(1)} = 0, (34.17)
ult) ~ Uy € 0 0€r €1, (34.1.8)

The problem specified by (3.4.1.1) - (3.4.1.8) is a problem with fixed final time, and fixed
initial and terminal state. The constraint (3.4.1.8) is treated as a mixed control state con-
straint. The control constraint can, in the formulation of problem (SCOCP). be handled in
two ways, i.e. by means of the set I/ or by the constraint function S;. We shall follow the
latter road by setting $;= ¥ ~u .. Because the problem specified by (3.4.1.1) - (3.4.1.8) is
a special case of problem (SCOCP), the optimality conditions of Section 3.3.3 can be ap-
plied straightforward. Because we have fixed initial and terminal states, the boundary con-
ditions (3.3.3.3) and (3.3.3.4) can be discarded as they only introduce additional multi-
pliers, whose values follow directly from the values of A(0) and A(T").

The Hamiltonian (3.3.3.1) becomes :
Hx u.pA) = %puz + Axa + A (3419}

* The optimality conditions of Theorem 3.11 take the following form :

Ay=0 ae. 0<:<1, (3.4.1.10)
Ar=— A ae. 0S:€1, (34.1.11)
P+ A+ =0 ae. 05¢€1, (34.1.12)
20 ae. 05r<1, (34.1.13)
Nl —2 o) = O ae. - 05 <1, (34.1.14)

We shall first consider the regularity of the problem. If there is an interval of nonzero
length with # (¢ ) <u,,, then p=1, because p= 0 would according to {3.4.1.12) imply

Aot ) = = y(e).
- Because, on an interval where # (¢ ) <u,,,,, we have
it ) = 0,

the zero solution would follow for A,(z) and A(¢), and that would contradict the main
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statement of the theorem.

The situations @ (¢ ) <#,,,, and # (¢ )S u 4,y (i.e. equality holds on a nonzero interval), are
considered separately.

In the case that

W) < Upgy oSt €1, {34.1.15}
condition {3.4.1.14) implies

Me)=0 o< <1, (34.1.16)
substitution into (3.4.1.12) yields :

2(e) = = R,(0) 0<e< L (3.4.1.17)
Xz(t ) follows from (3.4.1.10) and (3.4.1.11) as

Ai(e) = Ry = constant 0<:<1, (34.1.18)

Rale) = 3,000 — Ay 0<:<1. (3.4.1.19)

Substitution of the control {3.4.1.17) in (3.4.1.2} and (3.4.1.3) and integration using the
boundary conditions (3.4.1.4) and (3.4.1.5) yields :

£a) = = Xy(0) + Lhy? 0<e <1, (34.1.20)

E)= - LX002 + LRt 0<es, : (34.1.21)
The numerical values of 22(0) and A 1 are determined from the boundary conditions
(3.4.1.6) and (3.4.1.7) :

2:(0) = — 6. ' (34.1.22)

A= - 120 {34.1.23)

This solution is only a candidate for the solution if u,,,,>6, i.e. in the situation that the
control constraint is not active at any time point (cf. Figure 3.1).

In the case that u,,, <6, the situation is a little more complicated. Based on the urcon-
strained solution we may guess that the constraint is active over an interval [0.,] and
inactive over the interval (¢,.1].

Conditions (3.4.1.10) - (3.4.1.14) imply in this case :

R ¥ pax 0\<~f$t1 :
ule) = —X;(O)-H:lt (<t €1 (34.1.24)
i Aoty 0S£S1;

M) = |, t <t <1 (3.4.1.25)

Substitution of the control {3.4.1.24) in (3.4.1.2) and (3.4.1.3) and integration using the
boundary conditions (3.4.1.4) and (3.4.1.5) yields :

170 0<€<t1

2= R O) DHINGE-2 ) <

(34.1.26)
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gu,mx? 0€:€1,
£106) = {2ttt F 4 a1+ R0y = 1 Ayt F e —2))— (34.1.27)
10000 2= )+ 1N (3= ) fi<t €1

The boundary conditions (3.4.1.6) and (3.4.1.7) are satisfied when 5;3(0) and A, are :

- — 12468 ot
A B 34.1.28}
1 (l—t 1)3 {
- —6(1+2 )4+ (F+e,+4)
R0) = CALLUE\2 St i (34.1.29)
(1“‘t 1)
Combination of (3.4.1.25) and (3.4.1.24) with (3.4.1.13) yields
M2z 0 0 t<1t,, , {34.1.30)
and (3.4.1.14)
2(t) € U t;<t €1, (34.1.31)
results in the condition
Aat) € = Uy 0€e <, (3.4.1.32)
and
AE) 2 — s t1<t <1 (34.1.33)
R 6
w(t )T 4 U e > 6
‘ U o™ 4
0
iy ] — ¢

Solution of Example 1 for ¢ ,,,,>6 and u = 4.
. Figure 3.1
Because A, must be continuous on [0,1] as a result of the fact that ‘there are no state con-
straints of order higher than zero, we must have

xz(t D= Upge (34.2.34)
and hence
72(33'}') = Upmax» {3.4.1.35)

i.e. the control must also be continuous at 7 =7,.
With (3.4.1.18), (3.4.1.28) and (3.4.1.29), equation (3.4.1.35) may be solved for ¢ :
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tr= ,l.l LI (3.4.1.36)

2 ¥ max

For 2<1t,,,,<6 we have 0<t;<1. For u,,, <2 the problem has no solution because there
is no feasible control for which the boundary conditions (3.4.1.6) and (3.4.1.7) can be
satisfied. In Figure 3.1 the optimal control % (¢ ) is presented for two values of ©,,,,.

An alternative method for the determination of the time point #; is to use condition
(3.3.4.1), which states for this autonomous problem that the Hamiltonian must be con-
stant on [0,1] and hence

H{f 1+] = H[t 1_]. (3.41-37)

A simple derivation shows that this conditions implies that the control must be continu-
ous at £ =t and hence the same result follows.

3.4.2. Example 2

1

Minimize } 6[ u(e ).dr (34.2.1)
subject to : i; = x, 0srs1, {34.1.2)
£, =u 0€e€1, (34.2.3}
x;(O) = 0, . (342.4}
x(0) = 0, {34.25)
x(1) = 1, (34.26)
x{(1) = 0, (34.27)
2E) — X € 0 0<t<1. (34.2.8)

This problem is similar to the problem of Example 1, except for the constraint {3.4.2.8),
which is now a state constraint of first order.

The optimality conditions of Theorem 3.11 combined with the smoothness results of Sec-
tion 3.3.5 take the following form :

Ar=0 ae. 0<:<1, (34.29)
P . ae 0<r€1, (34.2.10)
pu+r,=0 ae. 0€¢<1, (3.4.2.11)
A2 0 ae. 05r%1, (34.2.12)
NE s X2 man ) = O ae. 05t<1, (3.4.2.13)
Aot +) = At =)=, at junction or contact points t; (34.2.14)
v; 2 0 at junction or contact pointst;. (34.2.15)

We note that the hypotheses of Theorem 3.16 are fullfilled because on boundary intervals
the control # (¢ ) is zero and hence at least once differentiable with respect to £,

As with Example 1, a simple derivation shows that if there is an interval of nonzero
length on which X ;< x 3,,,, then the regularity constant p must be nonzero.
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The unconstrained solution of the problem, ie. if X5(¢ )<xy,,, is identical with the one
derived in the previous section. The state variable X, corresponding to this solution is
given in Figure 3.2.

X2 oy P 1.5
1.5} X o = 1.25
2200 e
1.0t E !
0 t t -t
0 1 2 1

Solution of Example 2 for x 3,y > 1.5 and x 3, = 1.25.
Figure 3.2
For xpmex <1.5 the solution, if it exists, will be constrained by the state constraint
(3.4.2.8).

Considering this case we assume that the set of active points of the state constraint
(3.4.2.8), consists of one interval [£ ..£,], with 0<r,<t,<1.

The functions S defined by (3.3.5.7) and (3.3.5.8) are :
SP = X2= Xomaxs (34.2.16)
St=u, (34.2.17)

and hence the constraint is of first order.
On the interval [¢1,£,] the control is determined by

S8(xu)= 0,

which yields in the present case

a{t) =0 6,$c€1,, {34.2.18)
and hence

i) =0 6,5t <1t (3.4.2.19)
combination with (3.4.2.10) yields :

Ae) =-—k,  6,€e€e,. (34.2.20)
Using (3.4.2.10), (3.4.2.14) and (3.4.2.19) we obtain

) bRy 1) o<1t <¢,

Ae) = {0 t1<t <ty (34.2.21}

R W t,<t <1

With (3.4.2.11) the control becomes :
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w(t) =

Using the boundary conditions {3.4.2.4) and (3.4.2.5) integration yields :

£2(£ )=

-fl(t) =

—l’;l""'x 1(1: 1“'!) 0$.t <t 1
0 t<t <1,
voth (¢t ~t,) £,<t€1

—i—=Ri(—Le?4e ) 0< <t
xg,,m 11€t€52

xgm, +£’2(t “‘32)"'-21-*1({ _52)3 tgst ‘g. 1

=19 P= Ay (=234 Ley?) 0L <,
—%91512—)\1(—%113+%t§)+xz,mx(t”—t;) 6, €:<¢,
“'%51112")\1(—%113*'%“2)

a2 men E =491 —zz)2+x1,§‘(t —t,)% 1,551

(34.2.22)

{34.2.23)

{34.2.2¢4)}

The multipliers ¥y, ¥ and X1 follow from the boundary conditions (3.4.2.6) (3.4.2.7) and
the condition that the state variable x, is continuous at the point #,.

»~

1—3 X2 max (1—4—25)

Ay =

tf=led—1(1-2, 241 (1~2)%"

.
-
[

n X2 max —%Al(l"tg)z

=
)
|

(1~1,)

The time points £, and ¢; may be determined as follows

)R xop0 OStSt A 1,851,

and
b, 20,
b, 20,
#2320 €€,

Consider the state variable x, on [0,¢,],

£oe) = —(Dr+het e +1 A2 0<e<r,.
Thus

£ot) = (B +hae DAy 0<: <y,

)= X, 0SS,
At the point

(34.2.25}

{34.2.26}

{34.2.27)

(34.2.28)
{34.2.29)
{34.2.30)
(34.2.31)

{34.2.32)

{3.4.2.33)
(34.2.34)
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~

- P '
£ = e, (34.2.35)
A3

the state variable x , has an extreme point. Because of (3.4.2.20) and (3.4.2.31) we have
x <o (3.4.2.36)

Thus x, bas 2 maximum at z. Because of (3.4.2.28) this maximum cannot be a point of the
interval [0,2,) and hence either

-~

14
.,‘.,1,+t1 < 0, {34.2.27)
Ay
or
7y .
-{—'f‘tl 2 0. (3.4.2.28)
1

Using (3.4.2.26) it follows that (3.42.37) cannot hold. Because of (3.4.2.29) and
(3.4.2.36), in the case of (3.4.2.38) it must be

Py = 0. (3.4.2.39)
A similar derivation on the interval [£,.1] yields
Py= 0. {34.2.40)

Using (3.4.2.25) - (3.4.2.27), (3.4.2.39) and (3.4.2.40), it is possible to determine ¢, and ¢,
as

-1

- 3 x2,max

T SN (3.4.2.41)
ta= 1—ty. (34.2.42)

As with the previous example, an alternative method is to use condition (3.3.4.1), i.e.
Hig;+1= Hly—-1 i=1.2. (34.2.43)
A simple derivation shows in this case that (3.4.2.39) and (3.4.2.40) must hold.
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4. Sequential quadratic programming in function spaces.

In this chapter a first step is taken towards a numerical solution of problem (SCOCP). In
Section 4.1 we shall present the method in the abstract terminology of problem (EIP) of
Chapter 2. Section 4.2 deals with the application of the method to optimal control prob-
lems. The formulation follows from the interpretation of problem (SCOCP) as a speciali-
zation of the abstract problem (EIP). A number of details concerning the application of the
abstract method to the problem (SCOCP) are discussed in Section 4.3. An outline of the
implementation of the method is given in Section 4.4.

4.1. Description of the method in terms of nonlinear programming in Banach spaces.

The method that is proposed in this section for the solution of the abstract optimization
problem (EIP) is a generalization of a certain sequential quadratic programming method
for the solution of finite-dimensional nonlinear programming problems. For a description
of various of these sequential quadratic programming methods we refer to Bertsekas
(1982). Gill et al. (1981). Han (1976), Powell (1978, 1980), Schittkowski (1980, 1981).
Stoer (1984), Tapia (1974a, 1974b, 1977, 1978).

4.1.1. Motivation for sequential quadratic programming methods.

In this section we shall give a motivation for the use of sequential quadratic programming
methods by considering the solution of problem (EIP) stated in Section 2.1 :

Problem (EIP) : Given Banach spaces X, Y and Z, twice continuously Frechet differentiable
mappings f :X—=R,g :X—Y and h : X —Z, a convex set A C X having a nonempty
interior, and a closed convex cone B C Y with 0 € B and having a nonempty interior, then
findan % € A, suchthat (%) € B and h(%) = 0, and that

FGE)S Fx) forall xeANZYB)NNG).

In the sequel we shall assume that in the formulation of problem (EIP), the set A is the
entire space X, i.e. A =X . This is done because in a numerical method the more explicit
formulation of inequality constraints of the form g (x )€ B is required.

Sequential quadratic programming methods (SQP-methods) are based on the observation
that ‘near’ the solution, the original problem may be replaced by a suitable quadratic pro-
gramming problem. SQP-methods make use of the sequential solution of quadratic sub-
problems, to generate directions of search. Along these directions better approximations to
the solution are determined.

The motivation for the quadratic subproblems follows directly from the second order
sufficient conditions for optimality discussed in Section 2.3. It may be deduced from
Theorem 2.16 that the Lagrangian L(x.y ,2") has a local minimum in the subspace
spanned by the linearized constraints, at a point (£,5 .2’ ) for which the sufficient condi-
tions for optimality of part (ii) of Theorem 2.16 hold. '

This observation is the motivation for the idea to calculate a direction of search for the
improvement of the current estimate x; of the solution by solving the linearly constrained
subproblem :
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Minimize L (i +Ax; 5020,
b

subject to : g (x; ) + g'(x; Ax;) € B,
h(x) + R NAx) = 0,

where § and  are as defined in problem (EIP) and y; and z; are estimates of the Lagrange
multipiers 5~ and §".
‘What is obtained is a linearly constrained minimization problem with a nonlinear objective
function, which may be approximated by a second order expansion at x = x;.

L(x;+Ax;.y .2) ~ L{x; y .2]) + }'(x; HAax;) — yig '(x; HAx,) — zf.’: (e, WAx) +

1L (o yi 2 M8 x; X Ax; ).

Based on this expansion the following linearly constrained quadratic subproblem is con-
structed for the calculation of a direction of search Ax;.

Problem (EIQP) :
Minimize File)Ax) + LL" (.92 WA x, XAx;), (4.1.1.1)
subject to :§(x,») + g'(x,-)(Ax,«) e B, (41.1.2)
R(x;)+ A'(x; XAx;) = 0. {4.1.1.3)

In this problem formulation the term (y;g (x;) + 2/ £ (x; ))(Ax;) is omitted. The reason for
this is that we want to obtain a quadratic subproblem which, at the optimal point X, has
the same Lagrange multipliers as the original problem. When the term
(378 (x;) + z/h (x;))XAx;) would not have been omitted, then the Lagrange multipliers of
the subproblem at the point x; would have been 3 —y; and 7 —z;, which would have
meant that the Lagrange multipliers of the subproblem would have converged to zero as
x;~ x . Because the Lagrange multipliers of the subproblem play an important part in the
determination of the set of active constraints, this is an undesirable phenomenon. With the
modification mentioned above the Lagrange multipliers obtained via the solution of prob-
lem (EIQP) may be used as new estimates of the Lagrange multipliers 5 and 2 of the
original problem.

An alternative motivation for the subproblems follows from the application of Newton's
method to the first order necessary conditions for optimality. Consider thereto problem
(EIP) without the constraint g(x )eB. Assuming that the hypotheses of part (ii) of
Theorem 2.12 hold, the first order necessary conditions for optimality imply that at a
point £, there exists a 2 € Z”, such that

F(.:)=0, (4.1.14)
where the operator F : Xx2" — X' XZ is defined by :

fx) =z h(x)

F(x,z‘) = h(x)

{4.1.1.5)

The method of Newton applied to (4.1.1.4) requires the iterative solution of :
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Flx;.z)) + F (x;.2]XAx; Az)) = 0, (2.1.16)
or, equivalently,

Frx) — 2h'(x;) + L' (x;.2) 0Ax;) — Az;fz“'(xi) =0

R ) +F e )ax) = 0.

Setting :
Zi4y = zf+ Az,
yields :
L7 (e z) N Ax) = ziagh () = = T'(x), (4.1.1.7)
R(x M) = = h(x). (4.1.18)

When the multiplier z;,; is interpreted as a Lagrange multiplier, then the equations
(4.1.1.7) - (4.1.1.8) constitute precisely the first order necessary conditions for optimality
of :

Problem (EQP) :
Minimize Tl )Ax;) + L L (x;.2) XA x; XAx;), (4.1.1.9}
o
subject to : h(x;) + h'(x; X Ax;) = 0. (4.1.1.10}

The extension of the method of Newton to nonlinear programming problems with inequal-
ity constraints is not straightforward. To investigate this consider instead of (4 1.1.4) the
inequality (inclusion in a positive cone) :

F(£3)ecC,. (4.1.1.11)
where the operator F : X XY’ = X" XY XY* X R is defined by :
Fx) =y §x)

Flxy') = g;f) , (4.1.1.12)
y gx)
and
C = {0IxBxB*x{0}. {4.1.1.13)
with
Bt = {y'eY i<y ,y>20 forall yeB} (4.1.1.14)

Similar to the case of equality constraints, the inclusion {4.1.1.11) constitutes the first
order necessary conditions for optimality for problem (EIP) under the assumption that the
regularity constant p may be set equal to one. A generalization of Newton's. method 1o
{4.1.1.11) implies the solution of :

Flx; 3)) + F (x; 3/ XAx; ,Ay) ) € C, (4.1.1.15)
or, equivalently using y;,; = y/+Ay,, '
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L' Gepy! M Ax,) = yiaad (=) = = F(x). (4.1.1.16)
g(x) + g'(x; )ax;) € B, (41117}
Yis1 € BT, (4.1.1.18)
<yie1. 8 lx)+g (x N Ax )> ~ Ay/g'(x; XAx;) = 0. {4.1.1.19)

The conditions (4.1.1.16) - (4.1.1.19) are not necessary conditions for optimality of any
(sub)problem as in the equality constrained case. However, if we replace (4.1.1.19) by

<yir. gEx g x; NAx; )> = 0, {4.1.1.20)

then conditions (4.1.1.16), (4.1.1.17), (4.1.1.18) and (4.1.1.20) are the first order neces-
sary conditions for optimality of :

Problem (IQP):
Minimize P Xax) + 1L Gy ax; XAx,), : (4.1.1.21)
&
subject to : g(x;) + g'(x; (Ax;) € B. (4.1.1.22)

Summarizing the discussion sofar, we gave a motivation for an algorithm which makes use
of directions of search calculated via the solution of problem ((E)IQP), either as a minimi-
zation of the Lagrangian in the subspace spanned by the linearized constraints, or as a
Newton-like method applied to the first order necessary conditions for optimality. We
note that in the discussion of the algorithm, implicitly the assumption was made that at
every point (x;,y;.z;) the problem ((EJIQP) has a solution which satisfies the sufficient
conditions for optimality of Theorem 2.16.

4.1.2. Active set strategies and merit function.

In this section we shall consider some algorithmic options for SQP-methods for the solu-
tion of problem (EIP).

There are essentially two ways in which inequality constraints of the form g(x )e B may
be handled. One way is to use in each iteration of the method an estimate of that part of
the constraints which is active at the solution. This estimate is called the working set and
is updated before each iteration. The constraints in the working set together with the
equality constraints define a nonlinear programming problem with only equality con-
straints. Application of the SQP-method to this problem requires in each iteration the
solution of a problem of the type (EQP). i.e. a quadratic programming problem with linear
equality constraints. A strategy which is used to determine the working set is called an
active set strategy. In the case of SQP with equality constrained subproblems the active set
strategy is based on an estimate of the solution of the original problem. The second way
to handle the inequality constraints g (x }J¢ B is to solve the problem (EIQP) as a quadratic
programming problem with linear equality and inequality constraints. The major problem
in a solution procedure of problem (EIQP) is again the determination of the active set, i.e.
that part of the constraints g (x; J+2 (x; }(Ax; )¢ B which are satisfied as equalities at the
solution point. Thus in this case the active set strategy is part of the gquadratic program-
ming algorithm that calculates the solution of the subproblem (EIQP).

We note one essential difference between the two methods. With the first method the ac-
tive set strategy focusses directly on the active set of the original {nonlinear) problem
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whereas with the second method the active set strategy is used to determine the active set
of problem (EIQP).

The discussion in the previous section focussed on the motivation for the calculation of
directions of search via the solution of a quadratic programming problem. The derivation
of this quadratic programming problem is entirely based on linearization arguments that
hold only in a neighborhood of a solution (£ .3 .27 ). Hence it must be assumed that the
current iterate (x;,y;,z;) is ‘sufficiently close’ to the solution. For a practical procedure
this assumption is too restrictive. Fortunately it is possible to ‘globalize’ the method pro-
posed, by means of a merit function. This is a function which assigns a real value to each
triple {x .y .z )¢ X X¥Y" X Z"', and which has the property that it has a minimum at the
point {£,5",27). Using the direction of search Ax; and the Lagrange multipliers (" .7")
obtained via the solution of the problem (EIQP), the current iterate (x;.y.z/) is, at each
iteration, modified such that the merit function is minimized along the direction of search
(Ax; 5 =32 ~2]). ie.

Mle;} = min Mlal.
a>0
where M denotes the merit function and the notation {o} is used to replace
(x;+alx;, yi+a(7 —yD), z]+a(Z"—2])).
The paraineter o; is called the step size.

We note that in order to preserve the excellent local convergence properties of Newton's
method, the merit function must have the property that in a neighborhood of the solution,
the step size ; converges 1o one.

4.1.3. Abstract version of the algorithm.

Based on the sequential solution of quadratic programming problems (EIQP) we are led to
the following algorithm :

Algorithm 4.1:
(0) Setxy = given value;i = 0; -

(i) Calculate first order Lagrange multiplier estimates (y;.zi) as the nudtipliers
corresponding to the solution of :

Minimize fGXd) +1<Gd.d>,
subjectto : g (x;) + g'(x; Xd)e B,
Ax))+ (g Xd) = 0.

where G : XXX — R is a positive definite mapping used to imitate an inner product
in the Banach space X, as {x ly) = <Gx.y>.%

(ii) Calculate the Hessian of the Lagrangian at x;
Lo Geyz) = o) = yjg ") — 20k "(x,).
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(ii1) Calculate second order Lagrange multiplier estimates (5 2" ) and the Newton direction
dy as the solution of :
Minimize }'(x;)(d) + .;. <L"(x;,9i.20)d .d >,
subjectto : g(x;) + g'(x; Xd) € B,
R(x) + h'(x;)d) = 0.
(iv) If Ndull <€ then ready.
(v) Calculate a step size a; such that
Mla;} = min Mo},
a>0

and set
X1 = X +oydy,
yier = 3y oG -y,
2z =z + o (F =2

i) i=i+1
goto (ii).

The algorithm, above is based on the sequential solution of quadratic programming prob-
lems with equality and inequality constraints (FIQP). A similar algorithm follows for the
case that the calulation of the direction of search is based on the solution of quadratic pro-
gramming problems with only equality constraints (EQP). In this case the active set stra-
tegy is to be performed at the point of step (ii).

1 The mapping G can be chosen the identy operaior in Hilbert spaces. Using the interpretation of the
mapping G as an imitation of an inner product, the solution d of step (i) has the interpretation of a
generalized projection of the negative gradient on the subspace spanned by the linearized constraints.
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4.2, Application of the method to optimal control problems.

4.2.1. Formulation of the problems (EIQP/SCOCP) and (EQP/SCOCP).

In this section we shall consider the formulation of the problems (EIQP/SCOCP) and
(EQP/SCOCP) which are the specializations of the problems (EIQP) and (EQP) for the
state constrained optimal control problems {SCOCP). From Section 3.1 we recall

Problem (SCOCP):  Determine a control function @€L,l0T1", a state trajectory
ZeW,,[07T and a final time T >0, which minimize the functional

T
Rox O + [ folx@a(e)e) dt + go(x(T).T),
4]

subject to the constraints :

@)= fx(ult)r) ae OS:ET,

D(x(0)) = 0,

Ex(T)T)= 0,

u(tye U ae. OKtS7T,

Six(lu(z))S 0 ae. 0X:€7T,

SAx(t)2)<€ 0 0<:<7,
where : ho:R"=R; fo ! R"XR"XR-R"; goe:R"XR-R; D:R"—ER°;
f  :R"XR"XR-R"; E :R"xR—»]Rq;VSl:R"xR’”xR—»R*"; S2:.R"XR—>R&2;
U C R" , is a convex set with nonempty interior.

ForallxeR" ueR™ rank Sy,(xut) =k, ae. 0S:t<T.
The functions hg, fo, 8o, f, D, E 8y and S, are twice continuously differentiable functions
with respect to all arguments.

For the sake of brevity we shall consider fixed final time problems, because variable final
time problems can be transformed into fixed final time problems (cf. Section 3.3.4).

The assumption that, in the formulation of problem (EIP), the set A is the entire space X,
becomes in the formulation of problem (SCOCP)
U= Lglorl". {(42.1.1)

This will be assumed in the sequel without any further reference.

To denote the variables in the current approximation to the solution of problem (SCOCP)
we shall use the notation x*(z), ' (¢), A'(£), n{(t), ¢t ), mi(¢). v]. o' and p'. The no-
tation [¢] is used to replace argument lists involving x'(¢), ui(¢), M (¢}, ni(e), €1¢t). o
and g'.eg [t]1= (P )ui(e)). ‘

For the formulation of the problems (EIQP) and (EQP) an expression for the second
Freéchet differential of the Lagrangian is required.
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Lemma 4.2¢ Under the assumptions given in the formulation of problem (SCOCP), the
Lagrangian is twice continuously Frechet differentiable for all x;e W, ,[0F),
wle L[0TV, A e NBVIOTY , nie L loTT 1, £ e NBVI0TT?, o' ¢ RS, i ¢ R? and

L (xfad Mmoo p8 X8x 1,8u)(8x,2.8uz) = 8x ((0) (h gy [01+ 0D, [0D8 x,(0)

r ; Hyo [t (e )28 1 (1] Hoy [e 0 2S00, [e1] |822(2)
+ [ S Ny 1t a1 e] Huule FoniCe de Sy le ]| [8ue) | %
I
+ [ 8,06 YV (4 (2 )50 [t DEx e ) +
g ,
8x (T Y (g oxu [T s B, [T N8 x,(T). 1 (4.2.1.2)

where the Hamiltonian H (x u A\t ) is defined by :
Hixure)= flx uat) + AT flxu i)
A proof of this lemma is not given here as it follows in a straightforward fashion from the

application of Lemma 1.4a, p.94 of Kirsch et al. (1978) 1o the first Fréechet differential of
the Lagrangian.

In the sequel we shall occasionally use the pair n4 and v ,‘ instead of the multiplier £. The
multiplier 7 represents the time derivative of ¢’ whenever it exists and the multipliers
v} represent the discontinuities of the multiplier £ ati time poinis ¢}, ie.

nie) = @) ae. 0S:<T, : (4.2.1.3)
and ‘
vim £ 4)~ £ -). (4.2.1.4)

The specialization of problem (EIQP) for problem (SCOCP) follows directly from Lemma
4.2 and the abstract formulation of problem (SCOCP) as given in Section 3.2.

¥ The notation @* M is used to denote the tensor product of a vector @ with a block matrix M , The in-
terpretation of this product is that for instance Ox D, [0] is the Hessian of the functionat o’ D {(x )
with respect to x for fixed & at x (0).
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Problem (EIQP/SCOCP) :

T
Minimize ho [0)d, (0) + f foxlt 1, (¢ 34 fo, [t W, (e Dt + go [TV, (T) +
2 Ma 4]

14, (0 Md,(0) +1 f{a‘ () d,e) }{ Al MLl | )
Mt ¥ Ml |d. @)
+ .%)}‘_d,, ;) Melt;1d, ;) + 1d, (TY Msd, (T). (4.2.1.5)
subject to :dy = fleld, + f,lt M, + fle1— %) ae. 05t€7T, (4.2.16)
piol + b, [0ld, (0) = 0, (4.2.1.7)
ET)+ EJT1e, (TY= 0, {4¢.2.1.8)
Siltl+ S, [eld, + S, 0tld, €0 ae. 0%t KT, {4.2.19}
Solel+ S5, e1d, € 0 0K¢€T, (42110}
where My = howl0]+ oxDy[O]. ‘ (4.2.1.11)
Molt] = foult]+ Nafiolt 1+ nisS1alt] + ndsSanltl  (42.2.12)
Milt]l = foultl+ MNsf [t]1+ nisxS,. 021 ' {4.2.1.13)
Mt = foult]+ Naf, It 1+ nixSy,. 0t ] ’ (4.2.1.14)
Ms = gonlT1+ wsE,[T] (42.1.15)
Mt 1 = visSplt,] forall j. (4.2.1.16)

The statement of problem (EQP/SCOCP) requires the introduction of the following some-
what complicated terminology.

Recall the definition (3.3.5.10) of the vector function $(x z ) which contains all control
and state constraints. With every component §; (= 1,..k +k 2} a set W, < [0.7']is associ-
ated, which is the collection of all time poinis for which the constraint § ; is supposed to
hold as equality. The set W; is called the working set of S i

The sets W, consist of m} boundary intervals {t}; , t4;1 (j=12..m!) and mf contact
points tzm,b-x-; (j=12,.mf )

I(¢) is used o denote the index set of active constraints at the time point 7, i.e.
IG) = [ 1SISh vk A e W, ) forall OSt¢<T.

() denotes the number of constraints in the working set, i.c. the number of indices in
the set 7(t ).

Elements of the index set Z{(z ) are referred 16 as i 1.i5,...etc., i.e

It) = {i PR 7 il?(t )}.

The state constraints of the subproblem (EQP/SCOCP) follow from the linearization of the
constraints
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S:GElu@)r)=0 ae teW,. l=12.. k,+k,. (4.2.1.17)
which (along (x (¢ )’ (¢ )) are given by :
§l[t}+§lx[t]dx(t)+§l¢x{t}du(t)= [ ae. £QW1‘E=1.2,...kx+k2. (42118)

The % (¢ }-vector R[¢] is used to denote all constraints in the working set at time point ¢ in
a compact way. i.e.

Rlt] = §,[¢] [=12..k@). 0S:ST (4.2.1.19)
The linearization of the state constraints is denoted by
Rle1+ R ¢l ) + Rt W, ()= 0 0<t<T. (4.2.1.20)

{We note that when % (¢) is zero, then R[¢] has dimension zero and hence, at these time
points, there is no constraint on 4, and d,). With the terminology introduced above,
problem (EQP/SCOCP) becomes :

Problem (EQP/SCOCP) :
T
Minimize  ho, [0J,(0) + J GoxleJa, (£ )+ fou [t Y, (e Dt + go [T, (T) +
xS 4]

; , . T r Molt] Mjylel] (4. @)
1d, (0 Md, (0) + L Of[dx(zﬁ" ANyt T Mgel] ||
+ %};,dx (6; Y Mlt; 1, (¢;) + Ld (T Y Msd, (T), (42.1.21)

subject to : d, = f,ltld, + filtld, + fle1— ') ae. 0S:ST, {(421.22)
Dol + D [0}, (0} = 0, {4.2.1.23)
EIT1+ ETl, (T)= 0. {4.2.1.2¢)
RtV + R[t)d, + RtMd, =0 ae. 0St€7T, (4.21.25)

where the matrices My, My, M3, M 4, M5, M are defined by (4.2.1.11) - (4.2.1.16).

4,2.2. Active set strategies for problem (SCOCP).

Most solution procedures for the solution of optimal control problems involving con-
straints on the control and/or state consist of two stages. In the first stage the structure of
the solution is determined, i.e. the sequence of time intervals on which the constraints are
active and inactive on [0.7] In addition to the (estimated) structure of the solution, this
stage yields also a rough approximation to the solution. In the second stage, the exact solu-
tion is determined using the results of the first stage. In this section an argumentation for
and definition of the two stages will be given.

Consideration of the SQP-methods described in Section 4.1 for the sclution of problem
(SCOCP) yields the sequential solution of problems of the type (EIQP/SCOCP) or
(EQP/SCOCP). In the case that problem (EIQP/SCOCP) has a unique solution for which
the sufficient conditions for optimality of Theorem 2.16 are satisfied, the main problem of
obtaining the solution of problem (EIQP/SCOCP) is the determination of the set of active
points of the state constraints. For if this set is available, then the solution of problem
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(EIQP/SCOCP) can be determined as the solution of problem (EQP/SCOCP) using the set
of active points as working set. The solution of problem (EQP/SCOCP) can be obtained as
the solution of a linear multipoint boundary value problem (cf. Section 5.1), which admits
more or less standard numerical solution procedures. Unfortunately, there are no stan-
dard procedures for the solution of problems of the type (EIQP/SCOCP), or more
specifically for the determination of the active set of this type of problems. As a first step
towards a solution procedure, we consider a general procedure for the solution of the
finite-dimensional counterpart of problem (EIQP/SCOCP), which is reviewed in Appendix
A. This method has the following characteristics :

1) The method has an iterative nature using as candidates for the solution, solutions to
quadratic programming problems with only linear equality constraints.

2) The iterates are all feasible points, i.e. the complete set of inequality constraints of the
guadratic programming problem are satisfied at each iteration.

3) The active set strategy consists of addition of constraints to the working set whenever
the step size is restricted (i.e. when one or more constraints become violated at the can-
didate solution point), or the (possible) deletion of constraints from the working set
whenever the direction of search becomes zero (i.e. the minimum in the current sub-
space is achieved) and the Lagrange multiplier corresponding to the constraint has a
wrong sign.

It is not possible to apply the method to the solution of problem (EIQP/SCOCP} without

adaptation. The reason for this is the infinite-dimensional nature of the constraints

(4.2.1.9) - (4.2.1.10) In fact the constraints (4.2.1.9) - (4.2.1.10) represent a k y+k, set of

constraints at each time point £. As a result of this it is likely that during the execution

of the method the stepsize becomes zero, because any nonzero step would lead to a viola-
tion of the constraint (cf. Figure 4.1) and hence the method would fail to converge.

s

N
' solution of problem (EQP/SCOCP)

current estimate of the solution

Infeasible direction of search.
Figure 4.1

We recall that if it would be possible to solve problem (FIQP/SCOCP) at each iteration of
Algorithm 4.1, then ultimately (assuming convergence) the solution of problem (SCOCP)
would be obtained. In that case, the stucture of the solution would follow simply via an
inspection of the set of active points. However, because problem (EIQP/SCOCP) cannot be
solved easily, the solution process is broken into the two stages mentioned earlier, the first
being the determination of an estimate of the set of active points of the state constraints.

Having this goal in mind we consider the replacement of problem (EIQP/SCOCP) by a
simpler problem such that the solution of this problem is an approximation to the solution
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of problem (EIQP/SCOCP). Therefore the grids A® and A? are introduced as :

ol = @had, ) ji=12 (422.1)
and

A = A'XAZ, {4.2.2.2)
where the (time) points #/€ [0.7'] satisfy :

0€ 1} € ¢4 € Eg‘j <7 j=12. v {4.2.2.3)

Problem (EIQP/SCOCP) is now replaced by a similar linear-quadratic optimal control
problem, where the junction and contact points of the constraints (4.2.1.9) and (4.2.1.10)
are restricted to the grids A' and A? respectively. The problem (EIQP/SCOCP) with
junction and contact points restricted to the grid A is called probiem (EIQP/SCOCP/A).
Presumably, if the grid A is sufficiently ‘fine’, then the solution of problem
(EIQP/SCOCP/A) will be an approximation 1o the solution of problem (EIQP/SCOCP). As-
suming that the SQP-method converges with the direction of search obtained via the solu-
tion of problem (EIQP/SCOCP/A), the structure of the solution of problem (SCOCP) will
be obtained as the structure of the converged solution.

The definition of problem (EIQP/SCOCP/A) will now be made more explicit. By restricting
the junction and contact points to a finite set of points, the problem (EIQP/SCOCP) is in
fact replaced by a minimization problem over a set of problems (EQP/SCOCP) where the
working set must be chosen according to the restriction that the junction and contact
points are points of the grid A.

Definition 4.3 ¢ Given a pair of functions d, € W, [0 and d,e PCIOT )", the sets of
boundary points of the constraints (4.2.1.9} and (4.2.1.10) with respect to the grid A {defined
by (4.2.2.1) - (4.2.2.3)) are defined as follows :

J3(d, d, .AY) is the union of the intervals [t,'St €£,%, 1 (r =0.1....51~1) for which :

Syult '+ 1+ Sy 41, GY + Sy [+, (5 +) = 0 (4.2.2.4)
and

Sultta =1+ Suxlehy =l @) +84,004% ~, (G —) = 0. (4.2.2.5}
J#(d, .A?) is the union of the intervals [6,2<t <12, 1{r =0,1...p,—1) for which

Sult?1+ 82,24, =0 (4.2.2.6)
and

S2l6%1 ]+ S 8% 18, Gy) = 0, - ' (4.227)

The definition of problem (EIQP/SCOCP/A) is stated as a combination of problems
(EIQP/SCOCP) and (EQP/SCOCP), and uses the sets of boundary points as working sets.
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Problem (EIQP/SCOCP/A) : Determine, if it exists, a control function d:, erclory, and
a state trajectory d, € W, 10,7V, which minimize the functional

7
ox[0M, (0) + [ (fou [t M (e Y+ fo, [ M (e Dt + goc [TV (T) +
0

L4, O M@ 41 [, 4,G )T]lM’m pale) éx(t)]d:
2% AT SIS Myt ¥ M[Je]f[d(e)
+ L Fd, ;) Ml d, @) + 1 d, (TY Msd, (T). {4.2.2.8)
i
subject to :

dy = fltld, + f,ltld, + fle]— 2 (t) ae 0S:<T, (4.2.2.9)
Diol + D, [0}, (0) = 0, {4.2.2.10}
E[T}+ ETW . (T) =0, (4.2.2.11)
Sule]+ Suledd, () + Sy leld @) = 0

forall teFdd, d,.AD. 1=12..k,, {4.2.2.12}
Sultl+ 8.kl (8)=0 foral teJfd,.A%), 1=12..k, 4.2.2.13)
S{EH] + S, 54, ED + SR MG IS 0 r=01.5~1.  (422.14)
Sl -1+ 8, -, 6D + S, (8-, (61 =) < 0 r=1...5; (4.2.2.15)
S+ S, 057 W, ()€ 0 r=01,..5,. {4.2.2.16)

where the matrices My, My, M3, M4, M5, M are defined by (4.2.1.11) - (4.2.1.16).

The definition above shows that restricting the junction and contact points of problem
(EIQP/SCOCP) to the grid A is not equivalent to replacing the constraints (4.2.1.9) -
(4.2.1.10) by a finite set of inequalities. because on boundary intervals the constraints are
still to be satisfied as equalities.

The method for the solution of problem (EIQP/SCOCP/A), is essentially an adaptation of a
certain method for the solution of finite-dimensional quadratic programming problems.
The adaptation of the method for the solution of problem (EIQP/SCOCP/A) is discussed in
detail in Section 5.2.

The first stage of the method is completed once the direction of search is 'sufficiently’
small. At this point the structure of the solution of problem (SCOCP) is estimated as the
structure of the current iterate. Because the junction and coritact points were in the first
stage, restricted to a (fixed) finite set of points, it is not likely that the current iterate is a
‘good’ approximation to the solution.

Therefore a second stage is started, such that in each iteration one or more junction and/or
contact points are shifted. The amount of shift required for each point is determined using
the violation of the constraints (4.2.1.9) - (4.2.1.10) on interior intervals and the sign in-
formation of the Lagrange multipliers on boundary intervals. The techniques used, are
essentially strategies which focus on the active set of the original (nonlinear) problem
(SCOCP). These techniques are described in Section 5.3. When one or more junction
and/or contact points are shifted, a direction of search is calculated via the solution of
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problem (EQP/SCOCP). Contrary to the first stage, the second stage is thus based on the
sequential solution of quadratic programming problems with only equality constraints.

4.3. Further details of the algorithm.

In step (i) of the abstract Algorithm 4.1 use is made of a mapping G 1o imitate an inner
product in the Banach space X. In the application of the algorithm to problem (SCOCP),
we take G such that <G (x;.1). {x5.5)> resembles the L,-inner product. i.e.

I
<G{x 1.“1}- (-XQ.UQ)> = f(xl(t )TJC2(I ) + ul(t )T!.éz(t )) dt
]

fO?' all X 1.X2€ Wl‘w[o,?]n LU U9E L lory. {4.31}

With this choice, step (i) of Algorithm 4.1 involves the solution of problem
(EIQP/SCO(:P/A) with M1= 0, Mz[t ]= 1,, , M3[t ]= 0, M4[5 ]= Im ' M5= 0 and M()[t ]= 0.

In the first stage of the method, the step size o; is determined using a merit function.
Essentially this merit function is a combination of the objective function and a penalty
term, which is some measure for the constraint violation. The direction of search (which
was motivated only by linearization arguments) will, in general, not give a decrease of
both the objective function and the penalty term. Decreasing both terms simulianeously
can be conflicting goals. In these cases the merit function provides a balance between
achieving either of these goals, with the intension that in each ieration progress towards a
solution point is made.

We shall nowvgive a formal motivation of the merit function that is used in the current
implementation of the method. Recent literature on SQP methods indicate that there are
various alternatives to this choice. We do not intend to give a complete survey of possible
choices for the merit function; for this we refer to Bertsekas (1982), Fletcher (1981, 1983)
and Gill et al. (1984). To the particular choice made in this section we note that, contrary
to other choices of merit functions, it allows a rather complete convergence analysis in the
finite-dimensional case (cf. Schittkowski (1981)).

A merit function should satisfy the following requirements :

1) The solution of the original problem should be a (local) minimum of the merit func-
tion.

2) In combination with the direction of search, it should always be possible to choose a
step size, such that the merit function is decreased.

3} The merit function should not inhibit convergence of the step size 10 one, in a neighbor-
hood of a solution point.

For problems with only equality constraints, a suitable choice of the merit function is the
so~called qugmented Lagrangian: )

MG Aip)i= J) + Nh(x) + Lplh(x N2, (43.2)
where A is an estimate for the Lagrange multiplier corresponding to the eguality constraint
and p>0 is a penalty constant.

A motivation for this choice of merit function is that the Lagrangian has a minimum in the
tangent subspace of the linearized constraints at a solution point (assuming that the
sufficient conditions for optimality of Theorem 2.16 hold at this point}). The penalty term
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is added to extend this feature to a larger set, outside the tangent subspace of the linear-
ized constraints.

For a ‘sufficiently high’ value of p. the merit function (4.3.2) satisfies the requirements 1)
- 3) in the case of finite-dimensional nonlinear programming.

For the extension of this merit function to include alse inequality constraints we first con-
sider the finite-dimensional case of one scalar function g : X = R, which defines the con-
straint :

glx) s 0 ; A {4.3.3}
The augmented Lagrangian is defined in this case as : (e.g. cf. Bertsekas (1982)) :

I

Mx.up) = f(x)+ ug(xup)+ 3PE(x pip), {4.34)

where : §(x u:p) i= max {g (x ).—u/p}.

A simple analysis of the penalty term
TGeuip) = 2Eg (e pip) + 5l oV, (4.3.5)

yields the Figures 4.2 and 4.3. Tlx uip)

I

(g (x)+u/py—(uip)

~ulp , - g(x)
. r~(u/py

T (x .u;p considered as a function of x for fixed u.

Figure 4.2
(g )+p/pl = (u/p)? g(x) 2 —ulp
T(x .pup)=

"(f-"-/p)? g(x) < —ulp (4.36)
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T{(x .u:0)

|
/g(x)2

e —g xR

— ulp

T (x ,u;p considered as a functibn of u for fixed x.
Figure 4.3

g(x P+2g(xdpfp plp 2 —g(x)

T(x .#;P) = “'(}Llp)z #/p<_g(x) {4.3.7}

Figures 4.2 and 4.3 show that 7{x ,u:p) is continuously differentiable with respect to both
x and g, whenever g (x ) is continuously differentiable with respect to x.

A similar approach to problem {(SCOCP) yields the following merit function : ¥
r
MG udn€oup)=hoxO)+e’DxON+ [(folxus)-
g
&y - ky o _
)\T(x"“f(x wrn+ E'f)usu(x wamuEp)+ + 27)33321(35 My kip))de +
i=1 =1
K,
TrvuSulxwuz;p)+gox(TIT)+ pEG(T)T) +
7i=1

T ky -~ ky
%P Qf (s f e N2 4 (§1S"(x Myt ;P)z + lglszi(x Jin 4 'P)z) ds +

k
222;521 (x vj0.2; 00 + 1D (x (O + HE(T).T N2, {4.3.8)
FRES!
with :
gu(x.u.'ﬂu.tip) o= max{su(x.u L) ""f)ufp}. {4.3.9)
gg] (x Mo A ,p) = max {Szl (xz2), —1]3;/[)}, (4.3.10)

We note that the inequality constraints are incorporated in the merit function similar to
the finite-dimensional approach, using the smooth penalty terms T {x .u:p). As a result of
this the merit function (4.3.8) is Frechet differentiable and has therefore essentially the
same properties as its finite-dimensional counterpart.

We now consider the actual determination of the step size «;, which must be calculated
such that the merit function is minimized along the direction of search. To this end vari-
ous strategies may be used. (For a survey on methods for step size determination we refer

+ Again we use 7y and Vj to denote the time derivative and ‘jumps’ of the multiplier & (et
(4.2.1.3) - (4.2.1.4)).
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to Gill et al. (1981) and Bertsekas (1982).) We mention :

1) Exzact line minimization, i.e.

o = argl:i;lréM{a}], (4.3.11}

where {a} was used to replace (xi+od]. ui+ad]. N +a(X'=\1), pitaliii—n.
Era(f'—E), ol ta(@ —~a'), pltalf@'~p' M.

2) Approximate line minimization. As an example we mention the Armijo step size rule,
i.e. given scalars B€(0.1) and €€ (0.1 ) determine the step size o as

a= gt
where k is the smallest nonnegative integer that satisfies
M{0} — M{B*)} 2 — eB* M {ONd} di X =\ Ji—niE ~¢,
k Fi-al gi—uh). {4.3.12)

The choice as to which strategy is followed is not critical for Newton-like methods (exact
second derivatives are used), because it is not important that the exact minimum is
achieved along the direction of search. When the solution is approached, the step size o;
will converge to one anyway. In a numerical implementation the approximate line minim-
jzation tends 1o be more efficient, because the number of evaluations of the function M {a}
is less. Therefore the Armijo rule is used in the first stage of the method in the current im-
plementation.

Because in the second stage of the method, the current iterate (x' ' N nifioipu’)is
supposed 1o be ‘sufficiently’ close 10 the solution a step size procedure is omitted. The
complete method may be summarized as follows :

Algorithm 4.4 :

(0) A, and (xou,) given.
i = 0.

Stage 1 : steps (i) - (vi)

(i) Cdlewlate first order Lagrange multiplier estimates (\°0.£%.0%u°) as the mudtipliers
. corresponding to the soligion of problem (EIQP/SCOCP/A) with the matrices M =0,
Mg[t]zl,,,M3[3]=0,M4{$]=Im,M5=O,M6[£}=O. )
(ii) Calculate the matrices M; (j=1,2,...,6) corresponding to (4.2.1.11) - {4.2.1.16).

(iii) Calculate the Newton direction (d}.d}) and second order Lagrange multiplier estimates
(' WiE & ') as the solution of problems (EIQP/SCOCP/A) (using the matrices M;
determined in the previous step).

(iv) If dl.a)lx S e then goto {vii).

(v) Given scalars Be(0,1) and €< (0.} ) determine the step size a; as
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Q; = 5":
where k is the smallest nonnegative integer that satisfies
M{0}— M(B*} 2 —eB* M 0N d] X =\ Bi—n{E—¢ T ~a' g —p'),
and set :
x* = x4 oadl,
witl = oyt +¢x,~d,f,
At = A 4 g (W =AT),
0t = i+ a(@i-n,
g+ = g4 oo, (F-gD),
ot = o 4 o (F—a),
gt = pl g o (i —pd).
(vi) i = i+,
goto (ii).

Stage 2 : steps (vii) - {xii}
(vii) Use (x' ' X' i€ .0’ ') to determine working sets W, for the constraints § ;.
(viii)Calculate the matrices M; (j=1,2,....6) corresponding to (4.2.1.11} - (4.2.1.16).
(ix) Calcudate the Newton direction (d, d,) and second order Lagrange rudtiplier estimates
(N WLE T ED) as the solution of problem (EQP/SCOCP). (Using the working sets
determined in step {vii} and the matrices M; determined in step (viii).)

) IfdidiNy € €, then ready.

(xi) Set:
= o1+ 4l

Wt = ul 4 d,

APt = 3
nitt o= AL
gi-«»l e gi
o.i'l"l [ a.—i
“i‘b! = Ei

i) i = i+1,
goto (vii).
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4.4. Outline of the implementation of the method.

in this section an outline of the implementation of the method will be given. This outline
may serve as a guide for the Chapters 5 and 6, which deal with the most important aspects
of the implementation of Algorithm 4.4. In Chapter 5 the solution of the subproblems
(EQP/SCOCP) and (EIQP/SCOCP/A) and the active set strategy used in the second stage of
the algorithm are discussed. Chapter 6 deals with a discussion on the numerical implemen-
tation of the method, which essentially comes down to the numerical solution of a linear
multipoint boundary value problem.

One of the most important aspects of the method is the calculation of a direction of search.
With the SQP-method of Algorithm 4.1 the direction of search is determined either as the
solution of problem (EIQP) or as the solution of problem (EQP), which in the application
of the method to problem {SCOCP) become problems (EIQP/SCOCP) and (EQP/SCOCP).
Because problem (EIQP/SCOCP) cannot be solved easily, the solution process is split up
into two stages. In the first stage the structure of the solution is determined. whereas in
the second stage the actual solution is determined. The first stage of the solution process
requires the solution of problem (EIQP/SCOCP/A) which is a simplification of problem
(EIQP/SCOCP). Extension of the ideas of finite-dimensional quadratic programming to the
solution of problem {EIQP/SCOCP/A) requires also the solution of problem (EQP/SCOCP),
for the calculation of a direction of search (cf. Section 5.2). Application of the first order
optimality conditions to problem (EQP/SCOCP) yields a linear multipoint boundary value
problem (LMPBVP) (cf. Section 5.1). The numerical solution of this linear multipoint
boundary value problem is done by means of a collocation method (cf. Section 6.1). This
collocation method yields a set of linear equations. The numerical solution of the set of
equations several methods may be used (cf. Section 6.2). In the current numerical imple-
mentation of the method the so-called Null space method is used, which finally yields the
direction of search.

80



Sequential quadratic programming in function spaces

In the scheme below the various relations between the problems are summarized.

Problem (EIP)

Newton-like
method
SQP - method
Stage 1 Stage 2
Problem Problem (EQP)
(EQP)
<+ Application to
problem (SCOCP)
Problem Problem
(EIQP/SCOCP) (EQP/SCOCP)
simplification
Problem
(EIQP/SCOCP/A)
adaptation of
finite- J
dimensional
quadratic pro-
gramming
Problem
(EQP/SCOCP)
first order op-
timality condi~
tions for problem
(EQP/SCOCP)
LMPBVP

collocation method
set of linear
equations
solution by means
of the Null space
method
direction of
search

Scheme for the calculation of the direction of search
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5. Solution of the subproblems and determination of the active set.

This chapter deals with three different aspects of the method presented in the previous
chapter. In Section 5.1 the solution of the subproblem (EQP/SCOCP) is considered. Section
5.2 deals with a method for the solution of subproblem (EIQP/SCOCP/A). This method,
which is essentially an adaptation of a common method for the solution of finite-
dimensional quadratic programming problems. requires the repeated solution of problem
(EQP/SCOCP). The active set strategy which is used in the second stage of the method is
described in Section 5.3. The direction of search in this second stage is again determined as
the solution of problem (EQP/SCOCP).

5.1. Solution of problem (EQP/SCOCP).

In view of the solution of problem (EQP/SCOCP) this section deals with optimality condi-
tions for optimal control problems with state equality constraints. These conditions do not
follow directly from Chapter 3, because there only state inequality constraints were con-
sidered. The results contained in this section will show that there is a basic difference
between the optimality conditions for optimal control problems with state equality con-
straints and optimal control problems with state inequality constraints.

For the sake of clarity. we shall first consider optimality conditions for a problem
(ESCOCP), which is similar to problem (SCOCP) but contains only state equality con-
straints. This approach will enable us to make use of most aspects of the formulation of
problem (SCOCP) as an abstract nonlinear programming problem in Banach spaces. One
may easily verify that problem (EQP/SCOCP) is a special case of problem (ESCOCP).
Problem (ESCOCP) : Determine a control function @€ L[0TV and e state trajectory
£ €W [0.TY , which minimize the functional

ho(x(0)) + Jrfo(x (dulede)de + golx (T, {5.1.1)
subject to the constraints :

)= fx(@ule)e) ae 05:€T, (5.1.2)

D(x(0) =0, (5.1.3)

Ex(T)=o0, ' (5.1.4),

Sylx@lulde)=0 ae. teW,, =12k, . (5.1.5}

Su(x(t)t)=0 teWe 4. 1=12.k,, (5.16)

where :ho: R"—=R; fo: R*XR"XR—R"; go: R"—+R;D :R"—»R;E:R"~RY;
f i R"XR"XR-R":S;: R"XR"XR—=R"%; S, : R"XR— R**;

Forallxe R" ue R™ rank §;,(x ut)= %k, ae. 0St€7. {5.1.7)

The functions hg, fo, g6, f . D, E S and S, are twice continuously differentioble functions
with respect to all argumenits.

The sets W are closed subsets of the interval [0.T].
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5.1.1. Optimality conditions for problem (ESCOCP).

Similar to the approach in Chapter 3, problem {ESCOCP) is considered as a special case of
problem (EIP). The difference between the formulations of problem (SCOCP) and
{ESCOCP) as special cases of problem (EIP) are the definition of the mapping £ and the
fact that the constraint g {x )€ B is not present at all in the latter case.

We shall first consider two special cases of problem (ESCOCP), the first one being the case
of only mixed control state constraints, and the other one being the case of a single state
constraint (with order greater than zero).

In the first case the mapping # is defined as
hGa)i= GEO=fxOu), ), D&O)EG@).SixOuC)-).  (5.1.1.1)
The range space of his:

ky
Z =L [0rPXR XRIXTILL(W,). (51.1.2)
i=1
with
£y
HL«,(W;) = Lw(Wl)wa(Wz)x ........ Loo(Wk l)' (51.13)
=1

The spaces L.,(W,) are spaces of measurable and essentially bounded functions on W,
equipped with the norm :

Ilvl}m’ws = e.f.sé sup v . (5.1.14)
H

The spaces L,(W,) are Banach spaces {cf. Kantorovitch et al. (1982)).
The Fréchet differentiability of h follows directly from Lemmas 3.2 and 3.3 and the
Fréechet differential is given by :

B a)(®x du) = (85 ()—f, 8x( )£, 8u (), D,8x(0) . E,8x(T) .

Slx 8x (‘)+Slu Su ()) (5.].1.5}
The hypothesis rank §,, =k, implies
ky
R(Slx8x ()+Sh‘8&()) = HL“,(W;} {51.16}
d=1

Thus for the mapping k2 defined by (5.1.1.1) the hypotheses of part (i) of Lemma 3.5 hold
and hence there exist nontrivial Lagrange multipliers for problem (ESCOCP) with k5= 0.

Using a derivation similar to the proof of Lemma 3.9 a representation for the linear func-
tional <%;.-> may be derived as :

&y
<Apy> =~ %, Jﬁu(t)yu(t)dt forall yyeLo(W,) I1=12.k; (51.1.7)
_ , =1 W,
with ﬁll € Loo(Wl) =12k 1-

To simplify notation the domain of definition of the multipliers fy, is extended to the
entire interval [0,7] as:
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Au@) = 0 forall telOTI\W, 1=12.k,, {5.1.1.8)

which yields the notation :
a
<Arnyi> == [y @) dr forall yeLalor]. (5.1.1.9)
0

With a representation of the linear functional <k, > as given by Lemma 3.10 we thus.
have the following-optimality conditions : ,

Lemma 5.1: If (x &) is a solution to problem (ESCOCP) with k 4= 0, then there exist a real
number P20, and vector functions Ae NBVIO.TT', ¢ Loo[(),}“]k’, and vectors d¢e R°,
peRY, not all zero, such that,

AT = = Hlt1— M Sulr]  ae0SeST, (5.1.1.10)
A0 = — pho,[0]1— 67 D, [0] (5.1.1.11)
MTY = pgolel+ ATE,IT) : (5.1.1.12)
Hlel+ 5 ¥ Sy lt]l=0 ae. 0St<T, (5.1.1.13)
Ault) =10 forall tel0TI\W, i=12.k,. {5.1.1.14)

A proof of this lemma is omitted as it is a direct anologue to the proof of Theorem 3.11.

We next turn to the second special case of problem (ESCOCP), i.e. we assume that instead
of mixed control state constraints there is (only) one state equality constraint
(k1=0k,=1) of the form :

SAx(z)t)=0 1881, (5.1.1.15)
ie. W=t ,.0,] with 0<t,<t,<T.
In a similar treatment, the mapping k would now be defined as :

Rlxu)= GO = fxOu().) . DEO) . E&®T)) . Sx(),-), (5.1.1.16)
with ‘

Z = L loTr xR xRIXCle,t,) (5.1.1.17}

This mapping B is again Frechet differentiable by Lemmas 3.2 and 3.3. In contrast to the
situation considered above the range of the mapping %' is not closed, because the range of

82 (2 (), - H8x (D)
is not closed and hence nontrivial Lagrange multipliers need not exist.

We note that this is a consequence of the fact that the range space of the operator is
Clt,2,). When the range space would have been chosen to be W1 0[0,7] then the range of
the operator would have been closed. Unfortunately, this space has no standard represen-
tation for the elements of the dual space and hence it is not a simple task to derive
optimality conditions via this road.
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Solution of subproblems and active set strategy

Instead of the approach suggested by (5.1.1.16), we may replace the state equality con-
straint (5.1.1.15) by interior point constraints of the form :

Si(x(tyt)= 0 j=01...p~1, {5.1.1.18)
and the mixed control state constraint :
Se{x(dule)t) =0 ae. ,$15¢e,, (5.1.1.19)

where p is the order of the state constraint S, and the functions S4 are defined by
(3.3.5.7) - (3.3.5.8).

The mapping k. becomes :
Rlxa) = GE = flxOal),), D)), E&(T)).

N (e, S8xul), ), {5.1.1.20)
where
Sz(x ,t)
Si(x2)
N(xz) = : . (5.1.1.21)
s8-1 (x2)
with range space :
Z = LoloTIXREX R X R?P X L[t 1.t} (5.1.1.22)

The regularity of R follows from the lemma below.

Lemma 5.2 : Ler the functions f.D.E and S, satisfy the assumptions of problem (ESCOCP)
with k ;=0 and ky= 1 and let the functions [ and S, be p-times differentiable with respect
to all arguments. Let the mapping h be defined by (5.2.1.20} - (5.1.1.22). Assume that

S8 (£()ii(e)t) = 0 ae on lty1,) {5.1.1.23)
then

R(R'(£.4)) = closed.
Furthermore if, in addition, at (X i)

rank D, (£(0)) = ¢

rank E (Z(T)) =g

rank N (Xt N="p
then

REGEL) = 2. (5.1.1.24)

The proof follows from the same arguments as the proof of Lemma 3.5. Condition
(5.1.1.23) is used to establish

R(S8,8x(:) + §8,5u()) = L[t 2,). (5.1.1.25)
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Using an approach similar to Subsections 3.3.2 and 3.3.3 we obtain the following optimal-
ity conditions :

Lemma 5.3 : If (£ &) is a solution to problem {ESCOCP), with k=0, k=1, W=[t,1,]
and if the functions S, and [ are p-times differentiable with respect to all arguments and

Se(x)ae)e) = © ae. ,St%t,, {5.1.1.26}

then, there exist a real number p 20, and functions reNBV[OTT, Y€ L 10,71 and vectors
&eR°, je RY and rumbers B (j=1,..p), not dll zero, such that

AN = - HIr]- 5()88,[r]  ae. 0S:<T, (5.1.1.27)

XO) = — pho,[0]— &7 D, 0], (5.1.1.28)

ATY = pgolrl+ A7E (T (5.1.1.29)

HIe 1+ $)88.0t )= 0 ae. 05:€T, (5.1.1.30)

Ay 4 = RGe=) — §BIS57eL, (5.1.1.31)
j=1

ye)=0 forall 05t <t, and ,<t<7T. (5.1.1.32)

Because the approach of replacing (5.1.1.15) by (5.1.1.18) - (5.1.1.19) is guite similar to
the approach of Bryson et al. (1963), it is not surprising that the optimality conditions of
Lemma 5.3 are quite similar to the results contained in Theorem 3.16 for the case i=p
The difference are the relations that. by definition, the multipliers 7/ must satisfy. i..
(3.3.6.5) and (3.3.6.28). In the present case, the multiplier ¥ need not satisfy these rela-
tions. (Obviously. if ¢ and £, are chosen to coincide with the true entry- and exit points
of the inequality constrained problem. we shall have 7 (£ )= %(¢ )).

Up to this point, it is still not clear why the approach using (5.1.1.16) was not feasible. To
investigate this we consider the Lagrangian :

I
L= plaox @)+ [folx(@)ult)e) dr +golx(T))) -
[
I
JAGEY () = fx@u(e)e) dr + oT D (O) + pTE(x(T)) +
1]

Fa v .
[y()88(x(e)ute)e) de + £ 815§ (x (e ey, (5.1.1.33)
1 j=1 .

which has a stationary point at (£.%.\.6,4.%.8/). Assuming that the multiplier 3 is
sufficiently smooth, we consider the integration by parts of the term :

T
A= [5@)sslela + £ B si el : (5.1.1.34)
¢ ‘ j=1 N
which yields :
S h
A= [ §@)asg 1+ F B/ S (5.1.1.35)
ll+ }=1
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ty .
J 1030887 e ) dr + $(e-)857 ro] — 5G+)S87 e, +

14

f‘, B/ Si™ eyl (5.1.1.36)

i-1

Continuing this integration by parts we obtain after p times:

[Tm(t IS lelde + f‘, {v( i 0+ 9478 e 1, (5.1.1.37)

‘y

with :
pi71 = B+ (=1 4L ;H 1) j=l..p. (5.1.1.38)
P47t = = (=P f%;;%(zz—) j=l..p, (5.1.1.39)
Aoe) = (1 S0 L+ Se <o, (5.1.1.40)

And hence, at the optimal point (£.# A, ,2.3.87) the Lagrangian may be expressed as :

T : T
L=p|hlol+ [filelar +¢gdTl|— [RGY G = fleDdr + 67 Dlo)+
. ) ¢

s
TE[T]+ fﬁosg[z]dz + f‘,(fr{“sg'l[zl} + 5471847 e, (5.1.1.41}
) i=1

We observe that expression (5.1.1.41) is in fact the Lagrangian belonging to the abstract
formulation of the problem based on (5.1.1.16) augmented with entry- and exit point con-
straints of the form :

Silx(Pt)=0 j=01,...p—1

Si(xltpi) =0  j=01...p—1 (5.1.142)

This reveals that the approach following (5.1.1.16) was not feasible because the state
equality constraints require in general, additional entry and exit point constraints of the
form (5.1.1.42). When the entry- and exit point are such that they coincide with the
entry- and exit point of the corresponding inequality constrained problem, then these con-
straints are no longer necessary and hence the multipliers #{ and #{ (j=1,..p—1) will
automatically be zero. We note however, that the inclusion of the constraints (5.1.1.42) in
the formulation of problem EBSCOCP) would still leave the question about the closedness
of the range of the operator &' open, with the approach following (5.1.1.16).

The formulation of the optimality conditions of Lemma 5.3 will be used for the solution
of problem (EQP/SCOCP), whereas the alternative formulation of the Lagrangian
(5.1.1.41) will be used to derive an active set strategy for problem (EIQP/SCOCP/A).
Extension of the previous results 1o the general case of problem (ESCOCP) is straightfor-
ward. We note that to derive a representation for the linear functionals <%y, -> and
<¥.-> the matrix of the partial derivatives of the active mixed control state constraints
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with respect to u, consisting of rows of the matrices S, and S5, is required to be of full
row rank.

5.1.2. Optimality conditions for problem (EQP/SCOCP).

In this section optimality conditions for problem (EQP/SCOCP) are considered. Because
problem (EQP/SCOCP) is a special case of problem (ESCOCP) these conditions will follow
from the previous section. However for problem (ESCOCP) the optimality conditions in-
volve the functions §4 as defined by (3.3.5.7) - (3.3.5.8).

To apply the optimality conditions of problem (ESCOCP) to problem (EQP/SCOCP) the
counterpart to the functions $4 must be determined for problem (EQP/SCOCP).

The state constraints of problem (EQP/SCOCP) are considered individually and are
denoted by : '

Tid,t) = Sylxi()e)+ Sz (xi(t)e)d, 1=12..k%;. (5.1.2.1)

To the notation Sy (x7{z ),£) we note that this function is considered to be a function of
time only. in contrast to the notation Sy {x ¢ ) where 5, is considered as a function of x
and £.

The partial derivative of (5.1.2.1) with -respect to the argument ¢ becomes :
L) o G OO+ S GHE) 4 5V S (00, +

Sape (xi(2)t ), . {5.1.2.2)
In the formulation of problem (EQP/SCOCP) Definitions (3.3.5.7) - (3.3.5.8) become :

. |T V j=0 (5.12.3)
Fiom | mi 5123
ar ar i
a(: * “a’j?‘(fxdx Hod4f =% j=le.p

where p; is the order of the state constraint (5.1.2.1).

Lemma 5.4 ¢ Let the functions S4 be defined by {3.3.5.7) - (3.3.5.8) and let the functions
T be defined by (5.1.2.1). If

Sty = 0 forall j=01,..p=1 [=1,..k, (5.1.2.4)
£M the functions defined by (5.1.2.3) satisfy : : ;
Shxi(e)e) + Sk (i) )d, i=00e =1 1=12.ky
T/ = Sﬁi(xi(z Yt (0)2) + ST (i () (e ), - (5.1.25)
+ 85, (' @i (¢ )t ), j=p 1=12.k;

Proof : {5.1.2.5) is proved by induction. For j=0 equation (5.1.2.5) is true by Definitions
(5.1.2.1) and (5.1.2.3).

Now suppose (5.1.2.5) bolds for some j. with 0€ j <p,. By definition
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. of ) 8T/ y
41 AL UL i

T/ % + e (fudy +fod, + [ ~%°). {5.1.2.6)
using (5.1.2.5) we obtain

ar/ O . .

‘V = Sﬁ,xx’(z ) + Sf[t + x‘(t) Sﬁlxxdx + Sﬁlxldx (5.127}
and

LY , ‘

. St (5.1.2.8)

Combination of (5.1.2.6). (5.1.2.7) and (5.1.2.8) gives
T/*t =S4t () + Sk + %' (0 Y Shady + Shud, +

Shfrdx + Shufudy + Sk (f =27 (@)). (5.1.2.9)
We now use the special structure of the functions S4;, induced by the Definition (3.3.5.8),
i.e.
S4 = Sy + Sk f (5.1.2.10)
and hence
S5t = St + Sha f + Shufs. : (512.11)
S3it = Shuf. ‘ (5.1.2.12}

(We note that for (5.1.2.12) use is made of the fact that i<y
Substitution of (5.1.2.10) - (5.1.2.12) in (5.1.2.9) yields :

Ti*l= SiFt 4 (G )~F Y Shod, + Sitld, + Sitid,. {5.1.2.13)

By definition, if j <p;—1, the term S is zero.
To make the induction step complete use is made of the hypothesis (5.1.2.4).
O

Lemma 5.4 provides quite a simple expression for the functions T which, along a trajec-
tory (d, d,) of (4.2.1.22) may be considered as the time derivative of this constraint. The
hypotheses of Lemma 5.4 state however, that the state constraints S, must be linear func-
tions in the variable x. In practice this is quite a heavy assumption. Fortunately, it is
possible to tranform any problem (SCOCP) which does not satisfy (5.1.2.4) in a way such
that, for the transformed problem condition (5.1.2.4) will hold, ie. such that the
transformed problem has only linear state constraints. This transformation is cutlined in
Appendix B.

In the sequel we shall always assume that condition (5.1.2.4) is satisfied, because it gives
the simple expressions of the functions 7 4. As a consequence of this the matrix Mg, in the
object functions of problems (EQP/SCOCP) and (EIQP/SCOCP) will be zero (cf.
(4.2.1.16)).

In the general case of problem (EQP/SCOCP) the regularity conditions (5.1.7) and
(5.1.1.23) require some modification. This is due to the fact that, in the formuiation of
problem (EQP/SCOCP), it is allowed that boundary arcs of various constraints coincide or
overlap.
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Using a notation similar to (4.2.1.19) - (4.2.1.20) the k (¢ )-vector is defined as :
Rilt) = §f 1=12,.k@G), 0%:t<7T, (5.1.2.14)

where §7 is defined by (3.3.5.11) and the indices of the active constraints i; are elements
of the index set I(z).

A straightforward generalization of (5.1.7) and (5.1.1.23) is that the rank of the matrix
R{[¢ ) must be k (z). This is a consequence of the fact that in the approach of Section 5.1.1
the state constraints are transformed into the mixed control state constraints

Re[t) 4 REleld, (¢) + Rt W, (£) = O ae. 0S:ST. (5.1.2.15)

We are now ready to state the optimality conditions for problem (EQP/SCOCP) which fol-
low directly as a generalization of the results contained in Section 5.1.1.

Theorem 5.5 : Let (d, .d, ) be a solution to problem {EQP/SCOCP) and assume

rank RF[t]=k(t)  ae 0S:€7T, | {5.1.2.16)
and

Siwltl=0  forall j=01..p-1, 1=12..k,. _ (5.1.2.17)

then there exist a real number P2 0, and vector functions e NBV[OT T, fe LoforT*?
and vectors T¢ RS , ic RY , and numbers Bf, U, , not all zero, such that,

N = = X £ le]= Y § 2] - pfoalr]
—Pd, (Y Mltl— pd, (e Y Mlt] ae. 05t€7T, (5.1.2.18)
A(0) = =~ phy, [0l — & D, [0] — pd. (0Y M,, (5.1.2.19)
MTY = pgoT1+ BTEINT] + pd (T Y M, (5.1.2.20)
NeY f,le1+ A SHel + o el +
Pd, G Y Mltl1+pd, Y MJt]= 0 ae. 0St€T, {5.1.2.21)
;,E)=0 flel(t) OSt<T. {(5.1.2.22}

At an entry point th;_, of the state constraint 7 ; the multiplier X satisfies :
' - — /Pl - .
Aih 4) = Reh o =) — L BASE s, 1 (5.1.2.23)
k=1

At a contact point t’m{; 4 of the state constraint T, the multiplier X satisfies :

AL, +) = X!

2m{’+j 2”2’.5_‘_}‘—)_ i"‘ljSle[tlszb.*.j]' {51.224}
We remind the reader to Definition (3.3.5.11) of §7 and that in the formulation of prob-
lem (EQP/SCOCP) the notation [z] is used to replace argument lists involving xi(z),
u(z), i), etc.

With respect to Theorem 5.5 we note that it does not explicitly include the case of coincid-
ing entry - and contact points. In these cases however, the jump conditions (5.1.2.23) and
(5.1.2.24) are generalized in a straightforward manner.
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5.1.3. Linear multipoint boundary value problem for the solution of problem
(EQP/SCOCP).

When it is assumed that problem (EQP/SCOCP) has a solution for which the regularity
constant p may be set nonzero, then, under certain hypotheses, the solution of problem
(EQP/SCOCP) can be obtained as the solution of a linear multipoint boundary value prob-
lem.

Theorem 5.6 ¢ If problem (EQFP/SCOCP)} has a solution for which the regularity constant
may be set nonzero, and

Siltl=0  foraell j=12..p—1, 1=12..k, 0S:t<T, (5.1.3.1)

Mgl RIY
RAt] o

then the solution of problem {(EQP/SCOCP) can be obtained as the solution of the following
set of equations :

rank =m+ k() ae O0S:<T, (5.1.3.2)

a.() el o Jx(t)l fule] 0 ‘Zu(z)
i(t) = ~Mylt] —f L F LX) ~Mit ¥ =S¥ (e )
[f E}:’&]{; N ae osesr, (5.1.3.3)
Ree] 0 d. () Rl o d4,()
MltY £V X | [Mdel 5207 ) | 56
R7l] << o
fou e }?‘ ae. ORtK7T, 51.34)
H)=0 ifle 1) 0<:<7T, (5.1.3.5)
D.[o] o]|d. (0 0 D[o]
M, x(0) DIoF |T =~ |ny,loF | (5.136)
ET] o)l|d, () o |_ E[T]
Ms =1|X@) |t EIF |[FT T |gnlr]) (5.137)

- — o
Aehjor+) = Aeho ) — L BASE e Y j=12,.mf 1=12,k, (5.13.8)
k=1

Shleh, 1 1+ Shileb; -1 ¥, Gl =0

k=01,..p—1 j=12,.m} [=12.k, (5.1.3.9)
)\(th,H-!-)- A(tzm,,+ -} — Ty 8o [fzmm,]T F=12,..mf I=12.k, (513.10)
Saulthpps, 1+ Sanltl M@ 0, V=0 j=12.mf 1=12.ks. (5.1.3.11)

The theorem follows directly from the combination of the constraints of problem
(EQP/SCOCP) and the optimality conditions of Theorem 5.5. The system of eguations of
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Theorem 5.6 becomes a standard linear multipoint boundary value problem, when
(5.1.3.4) and (5.1.3.5) are used to eliminate the control d, and the multiplier § from
(5.1.3.3). This is possible as a result of assumption (5.1.3.2) and hence d,, and 7 satisfy an
equation of the form

() d,(¢)
7e) x()

Equations (5.1.3.6) and (5.1.3.7) constitute boundary equations for the differential equa-
tion {5.1.3.1) (combined with (5.1.3.12)), whereas (5.1.3.8) and (5.1.3.9) constitute inte-
rior point conditions.

+b(2) ae. OXt<€T. (5.1.3.12}

l=A(t)

5.2. Solution of problem (EIQP/SCOCP/A).

This section deals with 2 method for the solution of problem (EIQP/SCOCP/A). The main
problem we are faced with is the determination of the active set of constraints, because
once this set is known, the solution of problem (EIQP/SCOCP/A) may be obtained as the
solution of problem (EQP/SCOCP). Problem (EQP/SCOCP) may be solved via the solution
of the linear multipoint boundary value problem discussed in Section 5.1.3. For simplicity
we shall assume, throughout this section, that problem (EIQP/SCOCP/A) has a unique
solution.

The method for the solution of problem (EIQP/SCOCP/A) that is proposed in this section,
is an adaptation of a well known method for the solution of finite-dimensional quadratic
programming problems, which has the following characteristics {cf. Appendix A) :

1) The method has an iterative nature, using as candidates for the solution, solutions to
quadratic programming problems with only equality constraints.

2) The iterates are all feasible points, i.e. the complete set of inequality constraints of the
quadratic programming problem are satisfied during each iteration.

3) The active set strategy consists of the addition of constraints to the working set when-
ever the step size «; is restricted, or the (possible) deletion of constraints from the
working set, whenever the direction of search becomes zero and one or more Lagrange
multipliers have a wrong sign.

Essentially each iteration of the method consists of the following three steps :
(i) . Calculation of a direction of search.

(ii) Calculation of a step size.

(iii) Updating the working set (active set strategy).

One iteration of the method for the solution of problem (EIQP/SCOCP/A) consists essen-
tially of the same steps (i), (ii) and (iii). The adaptation of these steps will be considered
individually.

In steps (i} and (ii) the working set, i.e. the current estimate for the active set of con-
straints in a solution point of problem (EIQP/SCOCP/A), is kept fixed and given a working
set :

a solution of problem (EQP/SCOCP), denoted (d;.d}). is a (new) candidate for the solu-
tion of problem (EIQP/SCOCP/A). This is because the ‘definition of problems
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(EQP/SCOCP) and (EIQP/SCOCP/A) show that when the working set of problem
(EQP/SCOCP) is the active set of problem (EIQP/SCOCP/A) then the solutions of both
problems are the same. Hence an obvious choice for the direction of search in the ith itera-
tion, denoted (Ad} .Ad})is:

Adi = di—di, (5.2.1)

Adl = di—di, (5.2.2)

where (d;.d]) denotes the iterate in the ith iteration. (We note that this choice is entirely
analoguous to the finite-dimensional case).

Now the determination of the step size o; is considered, i.e.

di*t = gl 4 o, Ad, (5.2.3)

[l

it = di + e, Adl. ' (5.2.4)

In the finite-dimensional case the step size «; is chosen so that the objective function is
minimized along the direction of search subject to the restriction that (d:i*1.d/*!) must be
a feasible point of the constraints of the problem.

We shall show that in the case of problem (EIQP/SCOCP/A) such a choice is not always
possible (cf. Figure 5.1).

SI; el R

T Syl 1S5, [0 1)
Sulel+8,. [ Jie)

Feasible point and infeasible direction of search.
Figure 5.1

The case considered is of a state constraint which has a working set W, ={z.r,]. The solu-
tion of problem (EQP/SCOCP), ie. d,, is not a feasible point of the state constraint,
because '

Sult?]+ S2, 1521417 > 0 (5.2.5)
For the values a¢ [0,.&), with

Syult1+ 2, [1,21di (D)

T T Emdiah (326)
the objective function is as a function of @ decreasing and the points )

d,(t:a) = di(t)+ aAdi(t), (5.2.7}

d, (¢} = di(t)+ addi(t), ~ - {5.2.8)

are feasible, because for «€[0.&)
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Sult.21 + 85, [57d, (63a) < O. {5.2.9)
However, the point {d, (¢ :@).d, (¢t ;&)) is not feasible, because

Sultl+ Sp ltld, (t@) = 0 foral t,<t <t2 {(5.2.10)
In spite of this fact, we still would like to choose the step size o; 1= &, because the objec-

tive function is as a function of o decreasing on [0.&) and (d, (¢ @).d, (z :&)) is "almost’
feasible. We now define :

Definition 5.7: A pair of functions d, e W, ,[07F and d,e PCIOTY" are called A-
feasible with respect to the constraints of problem (EIQP/SCOCP/A)} if they satisfy :

d, = f,ltld, + fltld, + flt)— 2'(t)  ae 0<:€T, (5.2.11)
Diol + D, [0ld, (0) = 0, (5.2.12}
E[z] + E[7TWH . (T)= 0. {5.2.13)

Sile! =1+ 85061, &M + Sy, [6" -1, (=) € 0 forall r=12.5,. (52.14)
Silt 41+ S, [ 4, @D + 5, [+, 1 4) €
ST + S 521, £ < 0 forall ¥=01,.55  (5.2.16)

0 forall r=01..5,—1,(52.15)

It is obvious that when (d].d}) is A-feasible, and strict inequality holds for all constraints
(5.2.14) - (5.2.16) wkhich are not in the working set in iteration i , then it is always possi-
ble to select a nonzero step size o; such that (d!*1.d)*!) is also A-feasible. Thus contrary
1o the finite-dimensional case. the iterates (d].d}) are in general not feasible, but only A-
feasible, i.e. the state equality constraints may be violated at interior points of boundary
intervals. On the other hand they will always be satisfied at junction and contact points
(at all grid points).

As a consequence of this the direction of search consists of two components. A range space
comporent, which is a result of the constraint violation (i.e. 1o restore (d].d}) from A-
feasible 1o feasible) and a null space component, which is the actual direction of descent of
the objective function in the tangent subspace of the constraints. ¥

We now turn to the active set strategy. i.e. how the working set is modified in each itera-
tion. This active set strategy is performed after the step size a; has been determined.

Similar to the finite-dimensional case a constraint is added to the working set when the
step size o, is restricted by one or more constraints. Considering the example of Figure 5.1,
the interval {z,.5,°] is added to the working set. In the finite-dimensional case, only one
constraint is added to the working set in order to maintain that the constraint matrix
remained of full row rank. In the present case however, an infinite number of constraints
are added to the working set. because the constraint must hold at all time points of the
interval (¢,.5,”]. In a numerical setting this may in fact cause trouble, i.e. a matrix of con-
straint normals, which approximates the constraints of problem (EQP/SCOCP) may
become rank deficient as a result of the addition of several constraints in one iteration (cf.
Appendix E4).

T We note that with the method of Appendix A, only the null space component needs to be computed,

because the range space component is always zero. This fact was used in the replacement of (A13) -
(A15) by (A16) - (A18).
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In the case that the step size o; is restricied by more than one constraint, i.e. equality
holds for several constraints (5.2.14) - (5.2.16) at the point (&, *1.d/*!), which were strict
inequalities at the point (d}.d}), then only one such constraint is added to the working set.
This strategy is similar to the (conservative) strategy of the method for the finite-
dimensional case and is followed in the hope to circumvent problems of rank deficiency
mentioned above. Using this strategy it is possible that the step size @; becomes occasion-
ally zero, because z constraint which is satisfied as an equality at the point (&) .d}) is not
necessarily in the working set.

We now turn to the subject of deleting constraints from the workmg set, when the direc-
tion of search has become zero.

First we note that when the direction of search has become zero. then (d! .du‘) must be a
solution to problem (EQP/SCOCP) with the current working set and hence a feasible point
of the constraints.

In the finite-dimensional case, only one constraint, which has a Lagrange multiplier with a
wrong sign, is deleted from the working set. The situation of the present case however, is
considerably more complex. Reasons for this are. that it seems not possible to derive
optimality conditions for problem (EIQP/SCOCP/A) using the theory contained in Chapter
2, and the fact that the state constraints of order greater than zero represent implicit con-
straints on the control.

The elimination of constraints from the working set, takes in the present case the form of
the elimination of time points or time intervals from one of the working sets W/™1, ie.

the working sets which were used in the previous iteration for the constraints (cf.
(4.2.1.18)) :

Sl + 85, M, )+ 8, el E)=0  reWi™' I=1..%+k, (5.2.17)

The determination as to which point(s) can be deleted from the working sets is based on
the Lagrange multipliers (1.8 .7, ), which are obtained as the solution of the linear mul-
tipoint boundary value problem (5.1.3.3) - (5.1.3.11).

The first k; components of the vector 9 are the Lagrange multipliers associated with the
mixed control gtate constraints

Sultl+ 8, tld, () + S1ltld, ) =0 teWi™! I=1,..k; (5.2.18)

The last k, components of the vector 7 are Lagrange multipliers associated with the con-
straints :

SOl 4+ 85It () + St t)=0 teWiTh I=1..k,, {5.2.19)
which may formally be interpreted as the p; th time derivatives of the state constraints :
Sm[t]"‘ Szlx[t]dx(t) = teW[i-I I=1,... ‘kz. (SZQZO)

The multipliers B are Lagrange multipliers associated with the entry point constraints at
e
£’ e

A+ SEZU L D = 0 k=1,...p. (5.2.21)

The multipliers ¥, are Lagrange multipliers associated with the interior point constraints
.
att,”, ie.
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Sult21+ 85, [624,. G2 = 0. (5.2.22)

The actual determination as to which point(s) are deleted from the working sets is based
on the signs of the Lagrange multipliers corresponding to the state constraini(s). For the
mixed control state constraints (5.2.18) and the interior peint constraints (5.2.22), the
Lagrange multipliers are directly available (i.e. the first &y components of the vector §f and
the multipliers ¥, ). For boundary intervals of the state constraints (5.2.20) the Lagrange
multipliers may be obtained from the last £, components of the vector 7j and the numbers
-33.:&} as

e )
de” :

u(t) = (=1Y (5.2.23)
The Lagrange multipliers associated with entry - and exit point constraints of the form (¢,

is an entry point and ¢ is an exit point) :

SEMe d+ S5 e D=0 k=1..p. (5.2.2¢}
S47Meol + S5, (t) = 0 k=1...p. (5.2.25)
are respectively :
Pr—k +1'ﬁ
— — &g+
ifl-l = 85&1 + (- 1)}‘; g —-k+: (t 1+) k= 1,...,p1 . (5226}
d{‘v’ :
p:-—k+l’?}.

b ~4 & g+
vhl= = (=1 W(f =) k=1l..p. {5.2.27)

The active set strategy consists of the elimination of one time point or one time interval
from the working set and is based on these multipliers.

The criteria which are used to delete time points from the working sets may now be sum-
marized as follows (these rules are in fact based on the more rigorous results contained in
Appendix C) :

Case 1: Boundary intervals of mixed control state constraints.
It is supposed that the Lagrange multiplier corresponding to this constraint, %, ,
is continuous on boundary intervals. If at some grid point 73, the multiplier %,
is strictly negative, then the interval (t,%.; 4,%, ) can be deleted from the work-
ing set, provided I} ; ~£,%, | is ‘sufficiently’ small (Lemma C2). The results in
Appendix C do not give any information about how small the interval must be.
Fortunately, for the specific numerical implementation of the method, it can be
shown that the numerical approximations to the multipliers 7); are also
Lagrange multipliers of a certain finite-dimensional quadratic programming
problem (cf. Section 6.1.2). Therefore, for any mixed control state constraint
with a Lagrange multiplier having wrong sign at a grid point t,1, the interval
(£,1, £,%1 ) may be deleted from the working set.

Case 2 :  Contact points of state constraints (order 2 1).
If the Lagrange multiplier ¥,, associated with the interfor point constraint at 1,
is strictly negative, then this contact point can be deleted from the working set
{Lemma C6). '



Case 3:

Case 4 :

Case 5 :
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s Sile S, e daite 158, [t Wite)

— =Tl —t

§1 [t ]+§lx [t ]J;(t )""glu [t ]‘Z:(t )

Cases 1 and 3.
Figure 5.2
Interior points of boundary intervals of state constraints (order 2 1). When the
multiplier T, is strictly negative at a grid point t.” which is also an interior
point of a boundary arc, then the interval (£,2.; %%, ) can be deleted from the
working set, provided |2-,2H _2;2-1 | is sufficiently small (Lemama C5).

Entry- and exit points of boundary intervals of first order state constraints.

To each entry- and exit point of a first order state constraint, one multiplier 7,2
is associated. If the multiplier . is strictly negative, then the boundary inter-
val can be reduced. provided the interval which is eliminated from the working
set is sufficiently small (Lemma C4).

Entry- and exit points of second order state constraints.

For the sake of brevity we consider only the case of an entry point, because the
case of an exit point is quite similar.

To each entry point of a second order state constraint two multipliers are asso-
ciated, i.e. 72 and 7.

oy =
s I L, tr +1 tr2+2

Sl WS [ 1)
Sau [t }*Szlx [t }di(l )

Cases 4 and 5.1. ,
Figure 5.3
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Case 5.1: If
=1

¥
1 ir
Vyp = = =3 <0,

then, the interval [t—,.z,t?“) can be eliminated from the working set, provided
this interval is sufficiently small. In this case the entry point ,° is eliminated
itself and the boundary arc is thus reduced (Lemma C3, part (i)).

Case 5.2 : If

- Vi
v,? - — = >0
L=
and
i <0,

and, £, is not an exit point. then the interval (¢,2£,%, ) can be eliminated from
the working set, provided 125, ~t21 is sufficiently small (Lemma C3, part
().

In this case the entry point becomes a contact point and the boundary arc is
reduced.

—3=y =
SI LA t72+l tr2<l~2

e 3

Sult 1485, le i)

Sult WSy, e i)

Case 5.2
Figure 5.4

The various cases are visualized in Figures 5.2 - 5.4.

From the rules stated above it becomes clear that, when the multipliers (A H.6 0 .E T
satisfy the conditions (5.2.28) - (5.2.33), then no time points will be deleted from the
working set.
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meH 2z o0 for all r=0,1,..5,, =1k, {5.2.28)
¥, 20 for all contact points {5.2.29})
= (F™ > for all interior points of boun- 3
o () > 0 dary intervals of state con- (5.2.30)
straints
7020 for all entry- and exit p?ints (5.2.31)
of first order state constraints
() FL% > =1 %
v, — ;27 Oand ¥,y 2 0 for all entry points of second {5.2.32)
THLTE order state constraints
) E}_if -k
Vi t ”tf-r;z'l' Z Oand ¥, £ 0 for all exit points of second {5.2.33)
r ro-

order state constraints

On the other hand. if the multipliers do not satisfy these conditions then improvement of
the objective function can be made by deleting time points from the working set. However.
in the case that a time interval is eliminated from the working set {cases 3 - 5), a A~
feasible direction of search can only be garantueed if the interval is ‘sufficiently small’.

If the junction and contact points are restricted to an a priori chosen and fized grid, this
condition may not always be satisfied. Both situations are depicted in figures 5.5 and 5.6,

A 7272 o
I 2340 A,

~ ¥ {

Sule 4S8y [t ldi)
S fr }‘{'32(’\, [t ]d—x' (t)

A-feasible direction of search.
Figure 5.5

A possible remedy for this problem is to check whether the direction of search is or is not
A-feasible and in the case that the direction of search is not A-feasible to adjust the grid A.
We note that up to this point the grid A was treated as though it is specified in advance
and kept fixed throughout the first stage of Algorithm 4.4. An advantage of this remedy
is that after the grid A is modified properly. it is possible to continue the algorithm and to
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——y

Sult 8y [tldice)

Infeasible direction of search.
Figure 5.6
stop only at a point (d/.d!) which is a solution to problem (EQP/SCOCP) and for which
the Lagrange multipliers, corresponding, to the solution of problem (EQP/SCOCP) satisfy
the conditions (5.2.28) - (5.2.33).

The strategy which is used to modify the grid A is essentially motivated by the same
arguments as the rules for the active set strategy. The following cases may be dis-
tinguished :

1) An interval interior of a boundary arc was eliminated from the working set. In this

case the grid A is 'too course’ and the grid may be adjusted by inserting additional grid
points in the interval which was deleted.

2) An entry- or exit point was eliminated from the working set. In this case, it is
sufficient 1o shift the grid point which was deleted from the working set. The actual
time point to which the grid point is shifted is simply determined by reducing the
corresponding interval with a constant factor.

The algorithm outlined above may be summarized as follows :
Algorithm 5.8 :
(0} Given a A-feasible pair (d.2.d,°).
i:=0
() If (d}.di) is feasible, the direction of search (Ad; ™ .Ad}™') was zero and the
Lagrange multipliers corresponding to the solution of problem (EQP/SCOCF) satisfy the
- conditions {5.2.28) - (5.2.33), then ready.

(it) Caleulate a A-feasible direction of search (Ad].Ad} ).

(iia) Calculate a direction of search (Ad}.Adl), based on the solution of problem
{EQP/SCOCP).

(iib) If the direction of search is not feasible for the constraint which was deleted from
the working set in the iteration i-1, then "Modify the grid A" and goto {iia).
(i) IfI(Ad}.Ad)I = O then goto (vii). '
(iv) Calculate a step size o; and set

di*t = dl + a;Ad},
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di*l = di + a;Ad;.

(v) If the step size a; was restricted by one or more constraints, add one of these con-
straints to the working set.

(vi) i = i+1.
goto (i)

(vii) Check signs of multipliers and , if possible, delete a constraint from the working set.
goto (ii).

In Algorithm 5.8 it is assumed that an initial A-feasible point (d,0.d,2) is available in step
(0). In general however, as in the case of finite-dimensional quadratic programming, such
a point is not available.

With finite-dimensional quadratic programming an initial feasible point may be computed
using a phase 1 - simplex procedure (cf. Gill et al. (1981)). This phase 1 - simplex pro-
cedure may be started with an arbitrary point and generates directions of search for a
linear programming problem by means of a simplex strategy.

A related method is to make use of an algorithm which is essentially similar to Algorithm
5.8. As with the phase 1 - simplex procedure, the constraints of the problem are put in the
objective function when they are violated at the current point, or treated as constraints
when they are satisfied at the current point. The objective function for the linear pro-
gramming problem takes the following form :

ko +k
fld,d,):= 122 [ Gulela, + 8,le1d,) ar. (5.2.34)
=1 WI+
where )
W= e 0TS, M)+ S, e i) + S0t )i) > 0} (5.2.35)

Instead of using the simplex technigue for the generation of a direction of search, a direc-
tion of search can be determined as the solution of a quadratic programming problem (i.e.
as in Algorithm 5.8), this is done by means of augmenting the objective function (5.2.34)
with the term

s
L0 5@+ [@)x@) +uGYu@)de +x(TYVx(T)]. (5.2.36)
0

The solution of the resulting quadratic programming problem has the interpretation of the
negative gradient of the objective function (5.2.34) projected on the subspace of feasible
points.

The starting point of this procedure is in general arbitrary. A plausible choice is to take the
solution of problem (EQP/SCOCP) with the last working set which was used in the previ-
ous iteration of Algorithm 4.4. When this point is feasible with respect to the constraints
of problem (EIQP/SCOCP/A), then Algorithm 5.8 is started at this point and when it is
not feasible. then the point is used as a starting point of the phase 1 procedure outlined
above.
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5.3. Determination of the active set of problem (SCOCP).

This section deals with the active set strategy that is to be executed in step (vii) of Algo-
rithm 4.4 and which plays a key role in the second stage of the method. Obviously, con-
vergence of the first stage of the method is assumed and hence an estimate of the solution
of problem (SCOCP) together with estimates for the Lagrange multipliers are available.
Assuming the direction of search became zero in the last iteration of the first stage, these
estimates have the interpretation of an approximation to the solution on the grid A as dep-
icted in Figure 5.7 for a scalar state constraint.

ST ten t

approximation on grid A

“—--solution

approximation on grid A

solution

Len ten' Lex

—

Solution of first stage and exact solution.
Figure 5.7

In general this approximation will not satisfy the constraints nor the optimality conditions
of problem (SCOCP) completely. As an example consider Figure 5.7, the state constraint is
violated just after the constraint swiiches from active to inactive and the multiplier £ is
not nondecreasing because it has a negative jump at z.,.

Using the active set strategy described in this section, the entry- , exit- and contact points
are adjusted, in order to make convergence to a point which satisfies the constraints and
the optimality conditions of problem (SCOCP), possible.

As the example of Figure 5.7 already indicates, the adjustment of the junction and contact
points has a local character and hence the adjustment of the different junction and contact
point is done completely independent of each other.

In this section we shall consider only those cases where junction and contact points of
different constraints do not coincide. A strategy for more general cases is still to be investi-
gated. Two different strategies for the computation of the actual amount of shift of the
junction and contact points are described in Subsections 5.3.1 and 5.3.2. (For a more
detailed treatment we refer to Souren (1986).)
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5.3.1. Determination of the junction and contact points based on the Lagrange multi-
pliers.

One way to adjust the junction and contact points is based on the violation of the con-
straints and the conditions that the Lagrange multipliers corresponding to the state con-
straints must satisfy. This method was in fact already outlined in Figure 5.7.

The entry point ¢,, is shifted to the point f,,’. where £(¢,,)=£(z,,), ie. £ )—£(¢,,)<0
on (£t ) and E( )—£(,,)>0 on (¢,,.T] The exit point ¢,, is shifted to a point where

drs
de?

(x (e Dt Vit ') = 0.

Similar to the description of the active set strategy in Section 5.2 a number of different
cases may be distinguished.

Case 1: Entry- and exit point of boundary intervals of mixed control state constraints.
We shall only consider the case of an entry point, because exit points are treated
similarly. The situation which is likely to occur in the optimal point is depicted
in Figure 5.8.

S
; ™~ —
“*\ V
Sulxi(e)aiCe ) :wi)
"]
Ni(2 W)
Len —1
Solution.
Figure 3.8

If the structure of the solution is correct. but the entry point of the constraint
is not correct, then one of the two situations depicted in figures 5.9 and 5.10,
will arise. ¥

PS4 (x7 et ) ;W) and M, (¢ ;W) denote the value of the mixed control state constraint
S1; and the multiplier 7}y; along the current approximation to the solution in iteration £ , with working

set Wi,
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In the case depicted in Figure 5.9, a new estimate for the entry point, ¢,," is
determined as :

7t W)= 0 {5.3.1.1)

S T zen

: ~t

Sulx @ ui(e )W)
]

i (e ;W)
(Q‘R

V‘en' —

Adjustment of entry point based on multiplier n'.

Figure 5.9
s! -
L, /
tm'icn — L
Sy(xi(t ).ui(l )X :Wi)
il
T J—

Adjustment of entry point based on constraint violation.
Figure 5.10
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In the case depicted in Figure 5.10, a new estimate for the entry point, ¢,," is
determined as :

Sulxile N (¢ )2 s W) = 0. (5.3.1.2}

Case 2: Contact points of state constraints (order 2 1). The situation which will occur
when the value of the contact point is not correct, is depicted in Figure 5.11, In
this case the new estimate of the contact point, ¢, satisfies :

APY (x i (fc ’},fc W )] _
dt

0. (5.3.1.3)

s

—¢

Syu{xi(e )W)

Adjustment of contact points.
Figure 5.11

Case 3: Entry- and exit point of boudary intervals of state constraints (order 2 1).

This case is depicted in Figure 5.7. In the case that there is a violation of the
constraint {near the exit point in Figure 5.7), then the strategy is similar to the
case of a mixed control state constraint with Sy, (x ‘(¢ )u’ (2 ).6 ;W) replaced by
SHGx )i ()W), ie. the p-th time derivative of the state constraint. In
the case that the Lagrange multiplier £/ is not nondecreasing on [0,T), then the
junction points are adjusted as depicted in Figure 5.7.
We note that in the actual implementation of the method the "nondecreasing”
condition for £/ is expressed in terms of the multipliers 8 and 7! as defined by
(3.3.6.2) - (3.3.6.3). For first order state constraints this means that directly
use is made of the multiplier y that is associated with the mixed control state
constraint S5 (cf. Lemma 5.3).

Following the strategy outlined above, the junction and contact points are adjusted using

the following scheme :

te = O(WY), (5.3.14}

because the solution of problem (EQP/SCOCP), which is used as a direction of search in
the second stage of Algorithm 4.4, is governed by the working set W'. Assuming that
shifting junction and contact points gives only local variations in the sclution we replace
(53.14) by : .

t, = ®lt,,) {5.3.1.5)

which reveals that the iteration process is essentially a fixed point iteration. When @ is a
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smooth function we shall have linear convergence if <I>’(£1,,)A # 0 (f e denotes the optimal
entry point) and quadratic convergence if ®'(¢,,)=0. If ®'(¢,,) # 0 and ®'(z,,) ¥ 1 then
the rate of convergence of the iteration process may be improved by modification of
(5.3.1.5) to a secant iteration process.

5.3.2. Determination of the junction and contact points based on the Hamiltonian.

An alternative way to adjust the junction and contact points is based on the results con-
tained in Theorem 3.12, which state that for all junction and contact points ¢ the follow-
ing jump condition must hold :

Hlz+]= Hlt =]~ d€G ) S5 [c ). (5.3.2.1)

Given an approximation 1o the solution (x’z’ A mi£ .0/ .u’) we now define for each
junction and contact point : T

Jz(@) = HiZ+]- HE~]1+ d£G Y $,[F 1. (5.3.2.2)
and we consider the equation
Iy@) = 0. (532.3)

where 7 is a junction or a contaet point. Equation (5.3.2.3) may be solved via a standard
strategy. which determines a zero of a nonlinear function of one variable. The iterates of
such a strategy will be used for the working sets for successive iterations of Algorithm
4.4. This strategy will in general yield good results, provided Jy £y = 0. Unfortunately,
practical examples exist for which Jy'(z )=0 (cf. Figure 5.12). This is a serious drawback
for the use of this technique in a general solution for problem {SCOCP).

1
Iy =0

Tg€e) = 0

Ju@)]|

—

Defect of jump condition v.s. junction or contact point.
Figure 5.12

+ Note that in (5.3.2.1) straight brackets were used to replace argumentlists involving the solution of
problem (SCOCP) and in (5.3.2.2) these brackets were used to replace argumentlists involving the
current iterate.
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6. Numerical implementation of the method.

This chapter deals with the most important aspect of the numerical implementation of the
method, i.e. the numerical solution of the linear multipoint boundary value problem,
which is to be solved in order to obtain a numerical approximation to the solution of prob-
lem (EQP/SCOCP). Section 6.1 deals with a motivation for the choice of the integration
method and an inspection of the set of linear equations to be solved. The solution of this
set of equations is considered in more detail in Section 6.2. The truncation errors of the
integration method are considered in Section 6.3. For the sake of completeness, a number
of computational details of rather specialized nature are given in Appendices D and E.

6.1. Numerical solution of problem (EQP/SCOCP).

6.1.1. Solution of the linear multipoint boundary value problem.

From Theorem 5.6 we recall that the solution of problem (EQP/SCOCP) can be obtained as
the solution of the following linear multipoint boundary value problem ¥ :

‘i‘ = [__}:;2 -—?‘5 ‘i* -i:;s _(;;), i’; + f_,;:! 0<¢<T (6.1.1.1)
Rf 0}|d, R O d, R?

0 Mi I Y |, ey lm + ol | OSEST. (6.1.1.2)
D.[o] o]|d,(0) 0 Dlo]

M, 1||x@ | |por|® =~ [;,OX{O]T : {6.1.1.3)
N[, G0 == N[l (6.1.1.4)
AE 8= MG =)= NP x; . - (6.1.15)
ET] 0 ||4,(T) 0 E[T]

Ms —I||x@)|* ErF|*=~ lgm[T]T . {6.2.16)

where m; denotes the & (¢ )-vector of components of the multiplier 1 corresponding to the
active constraints. The matrices N, [f ;] and the vectors N[7 ;] represent the interior point
constraints (5.1.3.9) and (5.1.3.11). The vectors X; contain the multipliers B/ and ¥, .
The notation £ 7 is used for the junction and contact points, in order to simplify notation.

The set of equations (6.1.1.1) - (6.1.1.6) can be transformed into a standard linear mul-
tipoint boundary value problem, by means of substitution of

d, R o "R o]la, r?
m) T T M@y | | [ME AT e | (6.1.17)
into (6.1.1.1) and elimination of the vectors o, X ; and g using :
o = — (D, [0F )*(ho, [0F = X(0) — M4, (0)), (6.1.1.8)

1 Obviously, it is assumed that the hypotheses of Theorem 5.6 hold,
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X; = WGP OGE =)= aE+), (6.1.1.9)
w = —(ENTE I go 7T + MT)~ Md (T {6.1.1.10)

Substitution of respectively (6.1.1.8) in (6.1.1.3), (6.1.1.9) in (6.1.1.5), and (6,1.1.10) in
(6.1.1.6) yields a set of 2n boundary conditions and 2n interior point conditions at each
point ;.7

Equations (6.1.1.1) - (6.1.1.6) can thus be transformed into :

V()= Adelv () + Bltlw() + cilt]  ae. 0<e€T, {6.1.1.11)

0 = A @)+ Bltw(e) +ellt]  ae. 0S:<T, {6.1.1.12)
Kw(0) +1p= 0. (6.1.1.13)
K@ 9+ K v, =)+, =0 al j. (6.1.1.14)
Kv(T)+ 1 = 0. (6.1.1.15)

For the numerical solution of ordinary boundary value problems two types of methods
may be distinguished :

1

2)

Shooting methods.

For linear boundary value problems these methods are called methods of particular
solutions. Of practical importance are multiple shooting methods. With these methods
the entire interval [0,T] is divided into a number of subintervals. The values of the vec-
tor v are estimated at one side of the subinterval and the values on the other side of
the subinterval are obtained as the solution of an initial value problem. The solution
obtained in this way will not be continuous on boundary points of successive subinter-
vals. nor will it satisfy the boundary - and interior point conditions. Using the defect
of the boundary -, interior point - and continuity conditions of a number of solutions
with different initial values of the vector v, it is possible to compute the correct initial
values of v {cf. Stoer et al. (1980) and Miele et al. (1968)).

Approximation methods.

With these methods the time functions v are approximated using a finite-dimensional
base. The equations (6.1.1.11) - (6.1.1.15) yield in a way dependent on the actual
method, a set of linear equations. This usually large and sparse system of equations
may be solved using sparse matrix techniques.

In the implementation of Algorithm 4.4 an approximation method is chosen in favour of a
shooting method, because of the following arguments :

a)

For shooting methods usually a Runge-Kutta like integration method is used. in order
1o allow control of the truncation error in solving the initial value problem. Because the
right hand side of (6.1.1.11) dependents on the current estimate {x’ 2’ A’ mi{.£') of the
solution of problem (SCOCP), some kind of interpolation of the time functions
(x'ui X' miE") is required. Practical experience showed that this may cause problems
(cf. Souren (1984)). With an approximation method these problems are circumvented
by the use of a fixed step integration method. %

% In addition to equations (6.1.1.4) - (6.1.1.5) use is made of the condition d, (¢ ; +)=d, (Z, -).
+ For the implementation of the active set strategies, discussed in Sections 5.2 and 5.3, an interpolation
scheme for the time functions is required anyway.
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b) At every time point where the right hand side of (6.1.1.11) is to be evaluated, the
equation

B")It]W = - Cz[t}-Az[t]‘V.

must be solved for w.
It is considered an advantage of approximation methods that the equations (6.1.1.11)
and (6.1.1.12) can be treated similar.

¢) The actual implementation of the particular approximation method chosen can be
linked directly to the solution of a large, sparse quadratic programming problem. This
allows a more or less standard numerical approach (cf. Section 6.2).

Within the class of approximation methods a distinction can be made between finite
difference methods (with extrapolation) and collocation methods. It can be shown that for
higher order methods, collocation methods using polynomials of order 2 2 are more
efficient than finite difference methods (cf. Souren (1986)). Therefore only methods of this
type will be considered here.

The time functions are approximated using piecewise polynomials on [0.T], i.e. given a grid
0= to <ty < i tp._] < f}, =T, (61116)

the function v {¢ } is approximated using [ th-degree polynomials on (¢, £, ;). For each time
function this yields { +1 coefficients on each subinterval (¢, Z, +;). One of these coefficients
will be determined by the fact that the function v must be continuous at the points ¢, (or
must satisfy equation (6.1.1.15)). The other ! coefficients are determined by the condition
that the differential equation must be satisfied at [ distinct points on the interval (¢, £, 4y).
These points are called the collocation points, which are defined using I numbers p; which
satisfy :

0K py; < p2 < e <p €1 {6.1.1.17)
The collocation points on (2, 1, .;) are defined by :

Tesi =t +pihy i=l...l r=01,..p—1, {6.1.1.18}
where '

h =ty —t,. (6.1.1.19}

Because the approximating functions are polynomials on the intervals (¢, £, ,,) the time
points £ ;, where (6.1.1.15) must be satisfied. can only be points of the grid (6.1.1.16).
This yields automatically the grid AZ (cf. (4.2.2.1) - (4.2.2.3)), i.e. the grid to which the
junction and contact points of the siate constraints with order 2 1 of problem
{EIQP/SCOCP) are restricted during the first stage of the solution process. The grid A, i.e.
the grid to which the junction and contact points of the mixed control state constraints are
restricted may be chosen to be all collocation points. The reason for this is that in the col-
location method these constraints enter the formulation only at these points, i.e. only the
values of the mixed contro! state constraints on the collocation points are required (see
description of the collocation scheme below).

The collocation scheme is governed by the actual parameterization scheme used for the
finite-dimensional representation of the {approximating) time functions. There are two
obvious alternatives to this parameterization
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1) The truncated power base is used to represent the time functions on the interval
{{r ’£r+l)- ie.

! )
v(g)= F v, (e~ ) t, St <ty
&

In this case the coefficients of the polynomials, v, ;, are used as parameters in the collo-
cation scheme.

2) The values of the time functions v on the grid points and the collocation points, i.e.
vi(t, ). vty g e v (7, 4, ) are used directly as parameters in the collocation scheme.

The second parameterization scheme was actually chosen. A motivation for this may be
that the truncated power base is not always a suitable base for piecewise polynomial inter-
polation (cf. de Boor (1978)). T The derivation of the collocation scheme based on this
second scheme is done via the application of implicit Runge-Kutta schemes to the boun-
dary value problem (see also Weiss (1974)). To this end the following quantities are
defined, using numbers p; that satisfy (6.1.1.17) :

Pj

wy = [ L(s)ds jELad k=10, (6.1.1.20)
G

where

Lisy= TP o<t (6.1.1.21)

g \5 )= T —— -2 I . I 3V I8

. ,‘:1(ch - pi)
ik

The weights w ;; lead to the following set of quadrature rules :

Py
fd)(s)ds ~ iwﬂ.(ﬁ(pk ). (6.1.1.22)
& k=1

In case that p;>0 and p; <1 in the collocation method, the introduction of [ additional
weights is necessary .

1
@ = [L(s)ds. (6.1.1.23)
é
The weights &, are also used in a quadrature formula :
! {
[o(s)ds ~ T &, 8lp,). (6.1.1.24)
[ k=1

Depending on whether p;=0 or p,; >0, and whether p;=1 or p, <1, different collocation
schemes will follow.

Up till this point the numbers p; were trealed as arbitrary fixed quantities. However, the
actual choice of these numbers is still left open. These numbers may be chosen such that
the order of the quadrature formulas (6.1.1.24) is maximized. In addition, one is able to
fix p; to zero and/or p; to one. When p; and p,; are not fixed, this maximization yields the
Gaussian quadrature formulas. where p; >0 and p; <1 (cf. Stoer et al. (1980), p.142-151).

+ We note that this base was used in an earlier implementation of the method (cf. de Jong et al. (1983)).
Numerical evidence also pointed out that the second base is a better choice.
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The numbers p;, which define (collocation) points on the interval [0.1], are called the
Gauss points. When either py or p; is fixed, the points p, become the so-called Radau
points and when both p; and p; are fixed then the so-called Lobatto points follow. It can
be shown that usually the Lobatto points are the most efficient from a numerical point of
view (cf. Weiss (1974)). However, for the specific case considered here, the use of Gauss
points seems to have a significant advantage over the use of Lobatto points. The reason for
this is that, using the Gauss points, the set of linear equations that results from the collo-
cation method applied to the specific linear multipoint boundary value problem (6.1.1.1) -
(6.1.1.6) can be tranformed into a symmetric indefinite system, which allows a solution
procedure that makes efficiently use of this structure. This transformation seems not pos-
sible when the Lobatto points are used. Therefore the Gauss points are used in the current
implementation of the method.

The collocation scheme follows from the approximation of the integral equations which
follow from (6.1.1.11) as :

Tirwi
vir, ) )=v(, +) + f Adslv(s) + Bslw(s) + cyls1] ds
1+
i=1,...0 r=01..p-1, {6.1.1.25)
Frgg™
V) = v+ [ Al b G) 4 Bl () + eils]] ds
Pt

r=01,..p—1. (6.1.1.26)

Approximation of {(6.1.1.25) - (6.1.1.26) using (6.1.1.22) and (6.1.1.24) yields the follow-
ing set of linear equations :

!
w7 )= v 4) + b ) ey [A AT W)+ Bilrp s (im0 ) +
=1

ety en] i=1..0 r=01..p—1, (6.1.1.27)}

;
vi(t, =)= v, +) + b, ), &, [A1[71r+k Wapse)+ Bty (rpie ) +
£=1

eqlri il

r=01...p—1. (6.1.1.28)

The vector w is determined by the algebraic equation (6.1.1.12) almost everywhere on
[0.T]. For the numerical solution of (6.1.1.27) - (6.1.1.28) the value of this vector is only
required at the collocation points, this yields the following equations :

0 = At i Gy + Bolry Wm0 + colry 4]
i=1,..1 r=01..p—1. (6.1.1.29}

At every grid point ¢, (r=1..... —1) an equation of the form (6.1.1.15) holds, because
either £, coincides with one of the time points ¢ ; orthev (¢ ) must be continuous at £, , in
which case (6.1.1.15) holds with X;*=/, K;"=~1 . and {; = 0. ¥ Combination of (6.1.1.13)

+ At this point it is assumed that Z =0 and £ =T are not junction and contact points. Generalization to
this case may be done by taking the boundary - and interior point conditions together.
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- (6.1.1.15) with (6.1.1.27) - (6.1.1.29) yields a sparse set of linear equations that can be
solved using sparse matrix technigues.

We note that combination of (6.1.1.15) and (6.1.1.28) allows the elimination of either
v{t,~) or v{z,+) from the set of linear equations.

6.1.2. Inspection of the collocation scheme.

In this section the set of linear equations that follows from the collocation method applied
to the linear multipoint boundary value problem for the scolution of problem
(EQP/SCOCP) will be considered in more detail.

In Section 6.1.1 the collocation method was outlined using the compact formulation, of the
linear multipoint boundary value problem, of equations (6.1.1.11) - (6.1.1.15). For the
implementation of the collocation method use is made of the structure of the equations
(6.1.1.1) - (6.1.1.6} which is hidden by the more compact formulation. To outline the
essence of the approach, equations (6.1.1.1) and (6.1.1.2) are rewritten as :

-A M, Mslld, LR for|

0 MI Ml Y @er | e | F e | OSEST (6.1.2.1)
é* fX fu éx

0 R? RP|1d, 0<¢<€T. (6.1.2.2)

Here a distinction is made between the equations due to the constraints of problem
(EQP/SCOCP), i.e. (6.1.2.2) and the equations which result from the optimality conditions
for problem (EQP/SCOCP). i.e. (6.1.2.1). The main result of this section will be that the
linear equations that follow from the collocation method applied to the equations (6.1.1.1)
- (6.1.1.6) can be transformed into a set of linear equations of the form

M CT
c o

d
£

where the submatrices C and M are sparse and banded.
For the solution of the collocation scheme effective use of the special structure of the sys-
tem (6.1.2.3) is possible.

it #

5 (6.1.23)

As a first step towards the transformation outlined above we consider the linear equations
due to the constraints of problem (EQP/SCOCP), that arise in the collocation scheme, in
more detail. To the notation we note that d denotes the approximation to.d, (¢, ), d
denotes the approximation to d, (7, +; ) and 4] denotes the approximation to d, (7, 4;). #

N . L 3 3
dii=dl +h Yoy |flrealdl A+ flre a5+ elr, ).
=1

i=1...0 r=01...,p-1, . (6.1.2.4}

% In the collocation method we must also have d, (¢, +)=d, (¢, —).
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. ,
dit'=dl + b Yo, (flrpa it + 0 Jdl % + elr, 4],

k=1

RElTy 4 M+ RElTy 0 ddl
D, [told, (t4) = —Dlt,l.
Nt W, ()= =Nz, ]
Elt, M. (t,) = —Elt,]

where:elt]:= flt]— %' () 0L¢<T.

= —RP[1, ;] i=1

r=01...p—1, (6.1.2.5)

! r=01,..p—1, (6126)

(6.1.2.7)
(6.1.2.8)
(6.1.2.9)

Using the notation introduced below, the equations (6.1.2.4) - (6.1.2.9) may be written in

the matrix notation :

Cd =b,
where :
C
C,
C =
The submatrices C, (=0,1,....p—1) consist of :
K, 0
N[t ] 0 . .
0 R2[7)41] RPlT441] O
0 0
0 0 0 .
C = 1 G, Hy G
1 Gar H .
1 G_I 1r 1£ 1r
1 G 1r le
-1
CP - Ex [T] B

(6.1.2.10}
(6.1.2.11)
CP
0
0
0
R} [Tlr + 1
Hy, (6.1.2.12)
}_Iilr
le
(6.1.2.13)
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with :

D, 0] r=0
K, = -1 r=1...p—1
hrwijfa [T[r"l-j] i = J A .
G,-j,. hrwijfx[flra-j]_'l i=j t=1,..1 ]—‘1,...1 r~0,1,...p-—1,
Gy = ko flr,.] i=1.0 r=01..p~1,
Hijr l= hr'wéjfa[fh-h] izl....l j=1,...z 7':0.1,...1?-1,
H, = boflr,ul i=1.1 r=01,.p-1,

The vectors d and b have the following components :
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a0
dr!
d,f'l

did
dr!

1
z “7&6[71(r—1)+k]

k=1

R? 1), 44]

Re[r, 4]

i
Loupelr, .l

i=1

M-

k

#

1

o

k=1

(29794 [TIr +k ]

Dlo]
R?[14]

Nl ]

Gyelr, 4]

E [3‘]

(6.1.2.14)

{6.1.2.15)

(6.1.2.16)
(6.12.17}
(6.1.2.18}

(6.1.2.19)
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The optimality conditions for problem (EQP/SCOCP) are treated in a similar way. As a
notation we use A”* to denote the approximation to A(t, +), A”~ for the approximation 1o
A, =), A7 for the approximation to A(7,.;) and mf“ for the approximation to
N (74, 4;)- The collocation method applied to the optimality conditions for problem
(EQP/SCOCP) yield the following equations :

) !
A4 = N —p, zwik(M2[Tlr+k MIA+ e T2 4+ Malr,, Jal % +
k=1

Rt ¥l + folrpa)) i=1..0 r=01...p-1, (6.1.2.20)

;
NHm = e b, 3@, (M A+ A FAF + Malr, M +
E=1

Rr, ¥+ fo i D r=0.1,..p—1. (6.1.2.21}

My, Fdlia £l P+ M7, i+ 4 RIry, o Fof =

- foulTirsi ¥ i=1,..0 r=01..p~1, {(6.1.2.22)
Md2+ 2% + DIOF o = — hy, [0] {6.1.2.23)
Art = — N Fx, r=1,..p—1. (6.1.2.24}
Msd2 — AP~ + E(TFpu =~ g,[TF. {6.1.2.25)

To equations (6.1.2.23) and (6.1.2.25) we note that A®" denotes the approzimation to
X{0) and A7~ denotes the approximation to A{(7 ).

Now the variables {, , and 0, ,,; are introduced as :

L @y .

T =g, = A=A p=01,.p—1, (6.1.2.26)

k=1 W;

Opyi = hanft i=1..0 r=0l...p-1 (6.1.2.27)
Equations (6.1.2.20) - (6.1.2.25) can be transformed into the form :

Md +CT{=—c¢, ‘ (6.1.2.28)
provided the weights w;; and @; satisfy the condition :

w; @ .. R .

— oy =y i=1.0 jEleud (6.1.2.29)

m} {;

The matrix M has the following block structure :
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MO,l

M ol

M = M (6.1.2.30}

Mp—u '

with

My, 1 Mylr, ]

M = bbb, . 1.2.31
r @i Ms['flr +i Y M4[Tzr+i] 6 )
The components of the vectors { and ¢ are:
o hOx [O]?
91 hoalfﬂx [TI}T
)\f." .
X- 0
9!r+l hraIfOx {Tiri‘!]r
. h, @ ifo, [Ter]T ‘
{ = 61,, +! ) c = . {6.}.2.32)
gr.i )
) Ry @) fou 101 ¥
oy h &) fo [’Tzr-u F
AT +1— 0
AP .
I3 g lTY

We note that the transformation of (6.1.2.20) ~ (6.1.2.25) into (6.1.2.28) and vice versa is
somewhat lengthy and essentially follows similar lines as the proof of Theorem 2.1 of

Weiss (1974). Condition (6.1.2.29) bas been verified for the case that the points p; are the
Gauss points.
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The full set of linear equations to be solved, in order to obtain a numerical approximation
for the solution of the linear multipoint boundary value problem can thus be transformed
into :

M CT
c o

d

£

which consistute precisely the first order necessary conditions for optimality for the fol-
lowing quadratic programming problem :

et +4

b {6.1.2.33}

Mingnuze efd + %d’ Md, {6.1.2.34)
subject to: Cd = b, (6.1.2.35}

provided the matrix M is positive definite on the null space of the matrix C. This shows
in fact that the solution of the set of linear equations, which follows from the collocation
method applied to the linear multipoint boundary value problem, which was obtained
from the combination of the constraints and the optimality conditions of problem
(EQP/SCOCP), is essentially the same as the solution of a certain quadratic programming
problem which can be obtained as a certain finite-dimensional approximation to problem
(EQP/SCOCP). '

We note that when the points p; are the Lobatto points, then a similar transformation
seems no longer possible, which argues in favour of the use of Gauss points, because in this
case it is possible to use the special structure of (6.1.2.33) in the numerical solution of the
set of linear equations.

6.2. Numerical solution of the collocation scheme.

In this section the numerical solution of the collocation scheme will be considered. From
the previous section we recall that the collocation scheme allows the following compact
formulation :

M CT
Cc o

d
{

where the matrices C and M are sparse and banded. When M is semi-definite then this
system is regular if and only if both the submatrices (M C7) and C have full row rank.
Throughout this section we shall assume that at least the matrix C has full row rank.

-

sl (6.2.1)

As a notation we shall use 7 as the dimension of the vectors d and ¢, and /M as the
dimension of the vectors { and &. The mairices C and M are thus respectively 7 X# and
R X7 matrices. ‘

6.2.1. Consideration of various alternative implementations.

We shall first consider three alternatives for the numerical solution of the system of linear
equations (6:2.1) individually.
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Method 1 : Direct solution of the collocation scheme.
The left hand side of (6.2.1) contains a symmetric indefinite (7 +7 )X (7 +/) matrix. The

matrices C and M are both banded. Using suitable column and row permutations, the ma-
trix:

MCT
c o

.

can be transformed into a banded {symmetric indefinite) system. ¥ The resulting banded
system may be solved by determination of a suitable factorization of the matrix, making
use of its sparsity and symmetry, followed by the solution of a number of triangular sys-
tems (cf. Golub et al. (1983), p.100).

We note that for the factorization the submatrix M need not be invertible. {(As an example
consider the special case of a linear program.ie. M=0and M=#.)

Method 2 : Range space methods.
When the matrix M is invertible. another solution procedure is possible. System (6.2.1)
then yields :

~

d=~MYe+CTY. (6.2.1.1)
and
(CM™ICT) = — (CM™c +b). , (6.2.1.2)

where d and i: are used to denote solutions of system (6.2.1).

If the matrix C is of full row rank, then also the left hand side of (6.2.1.2) is invertible,
and hence { can be obtained as

; = —~ (CM-ICT Y CM~c +b). (6.2.1.3)
Combination of (6.2.1.3) and (6.2.1.1) yields :
d =~ (I+CT(CM™ICTYICIM e — CT(CM™ICT ). (6.2.1.4)

The method requires the determination of suitable factorizations of the matrices M and
{CM™ICT ). Once these factorizations are determined, (6.2.1.3) and (6.2.1.4) can readily be
solved. Because in the present case the matrix M is not invertible, this method is not
applicable for the solution of the collocation scheme. {The matrix M is a block diagonal
matrix with a number of zero blocks on the diagnonal, of. equation (6.1.2.30)).
Method 3 : Null space methods. )
A third alternative to the solution of the system (6.2.1) is to split the solution vector d
into two parts, i.e.

= d_Q +dN, . (6215)

where dy is the component of d in the range space of the matrix C7 such that

+ Essentially this yields a system similar to the one given by de Jong et al. (1985), who considered 2 im-
plementation of the collocation method based on an other parameterization scheme.
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Cdp = b, {6.2.16]
and dy is the component in the null space of the matrix C, ie.
Cdy = 0. {6.2.1.7)

Let Y be an # XA matrix whose columns are a base for the range space of the matrix CT
and Z an i X{f =/ ) matrix whose columns are a base for the null space of the matrix C .
ie. Y Z=0and CZ =0, then d, as any vector d ¢ K", can also be written as :

d =Ydy+Zdz=dR +dy, (6.218)
with 1 dp = Yd,,

dIV = Zdz.
If the matrix C has full row rank, then the rows of the matrix C and the columns of the

matrix ¥ are both a base for the range space of the matrix C7. so the matrix (CY ) is regu-~
lar. Hence the range space solution part dp can uniquely be determined from

(CY ), = b. (6.2.19)
Combination of the upperpart of equation (6.2.1) with (6.2.1.8) gives :

MZd, + CT{ = — ¢ — MYd,, (6.2.1.10)
and premultiplication with Z7 yields :

(Z"™MZ2), = — 2Tc — 2T MYd,. (6.2.1.11)

When the matrix (Z7 MZ) is regular, then a unique nuli space solution component d, will
exist. :

The Lagrange multipliers E may be obtained using the upperpart of (6.2.1) premultiplied
by Y7 . e )

YTMd +YTCT{= - YT¢, , (6.2.1.12)
or, equivalently )
(CYYi=—¥T(c +Md). (6.2.1.13)

Observing that (CY ) is regular yields that (6.2.1.13) can be solved.

Obviously, a practical implementation of the Null space method requires the determination
of the matrices ¥ and Z. We shall mention two alternatives.

Let the matrix C be partitioned such that
C =1[B5] ' (6.2.1.14)

where B is an (7 X7 ) regular matrix and S an 7 X (77 —7% ) matrix. Then ¥ and Z can be
taken as :

Yy =cT, (6.2.1.15)

I-B*ls

z I

L]

{6.2.1.16)

Using (6.2.1.14), (6.2.1.15) and (6.2.1.16) one easily verifies that
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cYy = CCT, (6.2.1.17)
and
CZ =0 (6.2.1.18)

The method based on this choice is called the Null space method based on variable reduc-
tion.

An alternative representation is based on the LQ-factorization of the matrix C, i.e.
c = (Lo’ (6.2.1.19)

where L is an (mXm) regular lowertriangular matrix and Q an (A X7 ) orthogonal
matrix.

If the matrices ¥ and Z are respectively chosen as the first / and last £~/ columns of

Q.ie

g=1rZz] (6.2.1.20)
then

¢y =L, CcT=YLT, {6.2.2.21)
and

CZ = 0. {6.2.1.22)

Because Q is an orthogonal matrix the matrices Y and Z satisfy :

Y’y = I, (6.2.1.23)
Y’z =0, (6.2.1.2¢)
272 = I . (6.2.1.25}

where I and I;_. denote the i X and (A —# )X (7~ ) identy matrix.

The Null space method based on LQ-factorization of the matrix C requires thus the solution
of : .

Ld, = b, (6.2.1.26)
(ZTMZ)d, = — ZT(c + MYd,). ‘ (6.2.1.27)
d = zd, + Yd,. (6.2.1.28)
LT{=—¥T(c + Md). (6.2.1.29)

Considering the various methods for the solution of the collocation scheme mentioned
above, we notice that in general, Null space methods have an advantage over the direct
solution of the system (6.2.1) (i.e. method 1), because instead of the solution of an
(7 +m)x (7 +m ) system, these methods require the solution of two systems of smaller
dimension, ie. XA and (F—m )X(A—m). From (6.2.1.26) - (6.2.1.29) we recall that
with the Null space method the computation of the solution d and of the Lagrange multi-
plier vector 2 are done separately. Because these quantities are used in different steps of
Algorithm 5.8, they need never be computed unnecessary, as is the case with the first
method, i.e. the direct solution of (6.2.1).
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The implementation of the Null space method was done using the LQ-factorization of the
matrix C. This choice was made in view of the condition of the matrix Z7 MZ. This con-
dition is of great importance for the amount of effort necessary for the solution of system
(6.2.1.27), because this system is solved using an iterative method. The motivation that in
general. this is never a bad choice is based on the following reasoning. Suppose the Null
space method is implemented with an arbitrary matrix Z, then Z can be written as :

= ZW,

where Z is the matrix consisting of the last n —m columns of the matrix Q and W is an
(& —m)x (7 —m) regular scaling matrix. It may be verified that the condition number of
the matrix Z' MZ satisfies :

k(ZTMZ) € x(ZT MZ ¥ (W),

which indicates that the condition number of the matrix W may destroy the condition of
the matrix Z7 MZ compared to the condition number of the matrix Z¥ MZ .

We also note that a much stronger motivation for the use of the LQ-factorization would
have been possible when the matrix M would have been positive definite (cf. Gill et al.
(1974b)). For in that case it is possible to show that the LQ-factorization is the optimal
choice with respect to the minimization of the condition number of the matrix ZTMZ.

6.2.2. Numerical solution of the collocation scheme by means of the Null space
method based on LQ-factorization.

The equations involved in the numerical solution of the collocation scheme by means of
the Null space method are recapltulated below :

= [L 0lo7, (6.2.2.1)

= [y z] (6222)

Ld, = b, (6.2.2.3)
(ZTMZ)d, = — Z7(c + MYd,), (6.2.2.4)
d =Yd, +7d,. (6.2.2.5)
LT{=~YT(c + Md). (6.2.2.6)

Systems (6.2.2.3) and (6.2.2.6) are respectively lowertriangular and uppertriangular sys-
tems. Their solution is quite standard and is done respectively by forward elimination and
back substitution (e.g. cf. Golub et al. (1983), p.52). The two major problems in the solu-
tion of the collocation scheme via (6.2.2.1) - (6.2.2.6) are the LQ-factorization of the
matrix C and the solution of system (6.2.2.4).

The LQ-factorization of the matrix C is done by means of Householder transformations.
Because the matrix C is large and sparse (banded), it is advantageous to modify the usual
orthogonalization procedure for dense matrices (e.g. cf. Golub et al. (1983) or Lawson et
al. (1974)) following the ideas of Reid (1967). The LQ-factorization procedure yields the

1 k(W) denotes the condition number of the matrix W, i.e. # Wl W~ Ul, where we use the 2-norm

for the matrix norms.
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matrix L explicitly, which is beside lowertriangular also banded, and the matrix Q impli-
citly, as a product of Householder transformations. The vectors which define these House-
holder transformations reguire essentially the same amount of storage as the (sparse)
matrix C. It can be shown that the matrix @ is, in general, a dense matrix, and hence it is
not efficient to form the matrix @ explicit. A more detailed description of the LQ-
factorization process is given in Appendix D.

As a result of the fact that the matrix @ is available in factored form, i.e. as a product of
Householder transformations, it is possible to compute matrix-vector products of the form
Qd and Q7d . Hence Yd,, Zd, . Y7 d and 27 d can also be computed because :

d, :
Qlo| =Yd. (6.227)
0
Q d = Zd,, (6.2.2.8}
Y'd
T
old 727al- (6.2.2.9)

The product (Z7 MZ }d, can thus be computed as :
Z7 (M (2-d,)). {6.2.2.10)

To form the matrix Z7 MZ explicitly, the columns may be generated by computation of
the vectors

ZTMZe;  j=1l...A-, (6.2.2.11)

where e; is the jth column of the (A —m )X {7~ ) identy matrix. i.e. J._~. The product
(6.2.2.10) is thus to be evaluated (A—#) times. When the matrix Z7 MZ is positive
definite (which is true in most of the cases considered here), then the solution of equation
(6.2.2.4) can be obtained using Cholesky factorization. The numerical effort to solve
(6.2.2.4) after Z” MZ has been formed is thus approximately (77— Y*/6 fiops. ¥ An alter-
native way is to solve (6.2.2.4) by means of an iterative method. In many cases, 2 suitable
iterative method for the solution of a large sparse system is the linear conjugate gradient
method (cf. Golub et al. (1983)). This method reguires in most cases less than 7 —7 itera-
tions. Each iteration involves one evaluation of the matrix-vector product (6.2.2.10) and
approximately 5(7% —7i) flops. Thus the linear conjugate gradient method requires only
S(m—m )* flops. in addition to at most A —# evaluations of a matrix-vector product
(6.2.2.10). This clearly argues in favour of the solution of (6.2.2.4) by means of the linear
conjugate gradient method.

An alternative motivation for the use of an iterative method follows from the considera-
tion of the dimensions of the matrix Z7 MZ , which are equal to the dimension of the null
space of the matrix C. ¥ An upperbound for the dimension of the null vspace of the matrix
C is obtained from the case that the working sets W; of problem (EQP/SCOCP) are empty
(i.e. no active state comstraints). In this case the row dimension of the matrix C is {cf.
mmm of floating point operations.

+ We note that because the matrix Z consists of columns of the dense matrix Q , the matrix Z7 MZ
will also be dense.
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Section 6.1.2) :
m=c+n{+1lp +4

The dimension of the vectord is:
rz=nal+Dp +mip +n.

and hence, the dimension of the null space of C is in this case :

A—m=mptn-—c—gq.

Practical cases are [ 2 2 (at least two collocation points per grid interval), p 2 25 (at least
25 grid points), m 2 1 (at least one control variable), n~c—¢ =0 {e.g. c=n , ¢ =0, initial
state completely specified and terminal state free). This yields as an optimistic upperbound
for the dimension of the null space 50 and hence Z7 MZ can be a dense 50 X 50 matrix,
which indicates that in ‘normal’ cases the matrix Z” MZ can be quite large.

The linear conjugate gradient method is recapxtulated velow, from Golub et al. (1983), for
the solution of the equation
Gp = —¢. (6.2.2.12)

Algorithm 6.1 (p,g,G,€)

Initialize
poi=0
ro = -8
i =1
By =

Do linear conjugate gradient steps untill the reguired accuracy is achieved.
while llr; Il gl > €

do
B; = rlriofrlorie G>1
¥ =+ Biwa B,=0)
o; = i /(w{Gu;)
Pi = piey ooy
i S riey— a,—Gu,-
i =i+ 1

od

A formal motivation for this algorithm may be found in the unconstrained minimization
of the functional

¢(p) = g'p +1p7Gp. {6.2.2.13)
using directions of search u; and step sizes «;. The vector r; satisfies :

ri = —g=Gp. {6.2.2.14)
and

Volp) =g +Gp = r;. / (6.2.2.15)

The linear conjugate gradient algorithm has at least a linear rate of convergence, with
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convergence factor

___“:(g 7: i , (6.2.2.16)

where k(G ) 1= UGG " is the condition number of (6.2.2.12).

In order to obtain satisfactory convergence properties, the condition number must be close
to unity. This leads to the consideration of scaling methods in order 1o improve the condi-
tion of (6.2.2.12). The development of scaling methods is difficult because the matrix G is
not explicitly available. Hence the application of the usual scaling methods for iterative
methods, seems not possible. Fortunately, the Null space method allows the simultaneous
application of the two strategies outlined below. Experiments with the implementation of
the method show that these strategies do in fact yield a significant improvement with
respect to the amount of numerical effort.

Scaling of the collocation scheme.

The collocation scheme is transformed into :
DiMD,g + DTt = ~ Dic, (6.2.2.17)
CD g = b, {6.2.2.18)

where D, is a regular scaling matrix. The solution of the collocation scheme using the Null
space method is in this case computed from

CD, = [L 0lg7. {6.2.2.19)
Q=1Irz] (6.2.2.20)

Lg, = b, - (6.22.21)
(ZTDIMD\Z)g, = — 2T DY(c + MY4,), (6.2.2.22)
d = DY§, + D1Z3,. {6.2.2.23)

LT = -~ YDl (c + Md). (6.2.2.24)

The scaling matrix J; must be chosen in a way that
«(ZT DIMD Z ) is small. : (6.2.2.25)

Unfortunately, there is no general rule that can be used for the choice of the scaling
method. A method thal works well in many practical cases is to choose D; as a diagonal
matrix with elements such that the diagonal elements of the matrix D MD, are all equal
to one. In our case however, the diagonal elements of M can also be negative or zero.
Therefore the diagonal elemenis of I2, are chosen to be :

1

D)y = e,
¢ 1) max{ep. !M‘,i}

(6.2.2.26)

where € is a small quantity.

Preconditioning of the linear conjugate gradient algorithm.
A second scaling strategy is based on preconditioning of the linear conjugate gradient
method, which means that the so~called preconditioned equation
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D;'\GD; Yy, = — D3 g, (6.2.2.27)

is solved rather than equation (6.2.2.22) (cf. Golub et al. (1983)). Here D, is a nonsingu-
lar, symmetric scaling matrix. Once the solution of (6.2.2.27) §, is determined, the solu-
tion of (6.2.2.12) follows as:

¢. = D7'g,. : (6.2.2.28)

With this preconditioning strategy. the linear conjugate gradient algotithm becomes :
Algorithm 6.2 (q,g,G,D2,e) v

Initialize
qo = 0
ro = 4
i =1
B1:=0

Do linear conjugate gradient steps untill the required accuracy is achieved.
while llr; Il /igll > €

do
Solve (D3)Yz;—y = ri_y
Bi =zl yriy/zl i, G>1)
u = ozt Biui (8,=0)
o; =zl i1/ (ulGuy;)

4 = gt oy
r; Vi—1— oz,-Gu,-
i =i+1

od

The main problem in making a specific choice for the matrix D, is again that the elements
of the matrix G are not explicitly available, because the matrix G is only available in the
factored form G=Z7D,MD,Z. As with the previous strategy, the scaling matrix D,
must be chosen so that

k(D;IGD5 1) is small. (6.2.2.29)

We adopted the strategy given by Nash (1984, 1985), who shows that the elements of the
matrix G may be approximated using quasi-Newton updates of the matrix G. We note
that, neglecting the influence of roundoff errors, the matrix G will follow from this
update process after 2 —m iterations of the linear conjugate gradient method. The quasi-
Newton updates may be computed during the linear conjugate gradient method with very
little effort, because most of the quantities used are already available; as is revealed by the
update formula

By = I (6.2.2.30)

ricarioa + (Gu; G, YT

6.2.2.31
uirri—l “iT Gy; f J

Bii1'=.B; —

An important advantage of the form of the update formula (6.2.2.31) is that the elements
of the quasi-Newton updates B;;; can be computed individually and hence it is also
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possible to compute the updaie only partly. In the implementation of the method this
update scheme is used to obtain an approximation to the diagonal of the matrix G.

During one execution of the linear conjugate gradient method, an approximation of the
diagnonal of the matrix G is developed, using (6.2.2.30) and (6.2.2.31). When the linear
conjugate gradient method is called again, and there have been no modifications in the
working set since the last call of this algorithm, then the approximation to the diagonal of
the matrix G developed during the previous call is used as a preconditioner, i.e. as (D)%
Otherwise this scalihg strategy is not used.

‘We now turn to an other aspect of the solution of the collocation scheme. During the exe-
cution of Algorithm 5.8, the collocation scheme is solved in order to obtain a direction of
search for the improvement d—d of the current estimate 4 of the solution of problem
(EIQP/SCOCP/A). ‘

This improvement may be obtained directly as the solution of :

Lg, = b —Cd, (6.2.2.32)
(ZTDMD\Z)q, = — ZTDy(c + M(d+Y§,)). {6.2.2.33)
d—d = DY§, + D1Z§,. (6.2.2.34)

The advantage of the use of (6.2.2.32) - (6.2.2.34) is revealed by the situation
i-d=o, (6.2.2.35)

ie. d is already the solution of the collocation scheme, which yields a direction of search
of zero. In this case, the linear conjugate gradient algorithm will require no iterations at
all, because the right hand side of (6.2.2.33) is zero.

Up till this point it was implicitly assumed that the matrix Z7 D MD,Z is always posi-
tive definite. Cases where the matrix Z7 D ,MD,Z is indefinite correspond to those cases
where, similar to the case of finite-dimensional gquadratic programming, the problem
(EQP/SCOCP) has no bounded solution. In these cases it suffices that the direction of
search in Algorithm 5.8 is a direction of negative curvature. When Z7D,MD,Z is
indefinite, then it is likely {cf. Nash (1983)) that during the execution of the linear conju-
gate gradient aigorithmb, the vector u; becomes a direction of negative curvature, ie.

ufGu; = uf(ZTDMDZw,; < 0. (6.2.2.36)

Because this quantity is already necessary in the linear conjugate gradiept method, it is
rather simple to detect this situation. In this case it may be advantageous to stop the linear
conjugate gradient algorithm and to use w; as a direction of search in Algorithm 5.8.
Because if u; is a direction of negative curvature, then so is —u;, the algorithm can thus
always be terminated with a vector ¢ which satisfies :

g’q <O, , (6.2.2.37}

i.e. g is beside a direction of negative curvature also a direction of descent of the function
(6.2.2.13).

The following lemma establishes that u; is always the vector which satisfies (6.2.2.37).
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Lemma 6.3 3 The vectors w; determined by Algorithm 6.2 satisfy :
gfu; < 0. (6.2.2.38)

Proof : The vectors r; and z; satisfy (cf. Golub et al. (1983), p.374) :

iz =0 i ' (6.2.2.39)
Now consider ;

glui = g7 (zioy + Buiy). (6.2.2.40)
Because r o= g thié yields : k

glu; = —rlzio + BigTuiln : (6.2.2.41)
Using (6.2.2.39) we obtain : | 7

—rlzg= —ri(D3) %, i=1
g4 =1 g Ty, is1 (6.2.2.42)

For i=1 the result follows from the positive definiteness of D,. For { >2 the result fol-
lows from an induction argument, because 8, >0 for all i.
]

6.3. Truncation errors of the collocation method.

This section is devoted to the estimation of the truncation errors which deteriorate the
direction of search in the numerical implementation of the method.

The truncation errors associated with the solution of the collocation method are considered
by de Boor et al. (1973) and Weiss (1974). To apply their results to the collocation
method described in this chapter, we make use of the abstract notation of the linear mul-
tipoint boundary value problem of Section 6.1.1, i.e.

vi)= At @+ Bt W)+ e5lt]  ae 05T, - (6.3.1)
0 = At @)+ Bltw () + colt]  ae. 0S:<T, ‘ (6.3.2)
Ew () +13= 0, {6.3.3]
K@, +)+KvE ;=) +, =0 al j, (6.3.4)
Krv(T)+ I = 0. (6.3.5)
The time function w (¢ ) may be eliminated using (6.3.2), i.e. ;
w()= = BUT AL W) +eoltD  ae. 0SIST. (6.36)
Combination with (6.3.1) yields :
v(t) = (Alt]-Ble 1Bl 17 ALle Dv 2 ) + (eale 1-Byle 1Bl T et ). (637)

For the derivation of resulis on the accuracy of the numerical approximation obtained
from the collocation method, it is assumed that the coefficients of the matrix
Ayt 1Bt 1Bl 171 At ] and the vector ¢4t }-B [z 1Bl I7Yc,lt ] are at least (I +1)-times
continuously differentiable on the grid intervals (7, .£,.,). For simplicity we shall also
assume that the grid points are uniformly distributed on [0.T}, ie. ¢, .~ =h=T/p
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{(r=0.1,.p~1).

The exact solution of the linear multipoint boundary value problem will be denoted by
v(z) and the solution obtained from the collocation method by v (z). At grid points ¢,
where v{¢} is continuous, i.e. grid points that do not coincide with one of the points t j
the following result holds for sufficiently small A (cf. de Boor et al. (1973) or Weiss
(1974)) :

v, =o€ C hE. (6.3.8)

At points £; where v(z) is possibly discontinuous, a result similar to (6.3.8) bolds for
both v(;j—) and v(f ; +). ‘

We note that both de Boor et al. (1973) and Weiss (1974) consider two point boundary
value problems and assume that ibe right hand side of (6.3.7) is sufficiently smooth on the
entire interval {0,7]. These results can be adapted to the present case of piecewise smooth
coeflicients following the approach of Keller {1969). The extension to multipoint boundary
value problems is straightforward.

At the collocation points the numerical approximation to the solution obtained from the
collocation method is less accurate compared to the accuracy of the numerical approxima-
tion at the grid points, i.e. for sufficiently small & :

Mv(r, . )=v{r, N € C ;A" Q=10 r=01.p-1 (6.3.9)

Numerical evidence led Souren (1986} 1o believe that the truncation errors in v have a
maximum at the collocation points and hence :

v (=5 N € ChML (6.3.10}
where C,=max C, ;.

From (6.3.9) and (6.3.6)‘ we obtain for the numerical approximation to the time functions
w{z ) at the collocation points :

HW(?&.H‘)“'ﬁ' (Tlr-l'i 0 < D,,;hi+:. {6.3.11)

For the derivation of the results stated above, it was assumed that the right hand side of -
the differential equation (6.3.7) is sufficiently smooth on the grid intervals (¢, £, +;). The
actual structure of the linear multipoint boundary value problem given by (6.1.1.1) -
(6.1.1.6) reveals that this condition is satisfied when the problem functions of problem
(SCOCP) are sufficiently smooth and that, in addition, the number of components of the
vector R? must be constant on the grid intervals (z, %,.4;). This last condition is
equivalent to the condition that all junction and contact points of all constraints must
coincide with grid points ¢, . i.e. constraints are to be taken active and inactive per entire
grid interval. For state constraints this condition is automatically satisfied, as a result of
the fact that at junction and contact points, also interior point conditions of the type
{6.3.4) must be fulfilled. For mixed control state constraints the condition mentioned
above is not automatically satisfied, because these constraints are (at least in the first stage
of the method) taken active and inactive per collocation point and not per entire grid inter-
val. Taking mixed control state constraints active (inactive) per entire grid interval would
take with the collocation method the form of taking these constraints active (inactive) ai
all collocation points of the grid interval. In the first stage of the method (Algorithm 4.4)
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the accuracy of the direction of search obtained is not very important and hence the mixed
control state constraints may well be taken active and inactive per collocation point. (This
simplifies the active set strategy for these constraints as mentioned in Section 5.2). In the
second stage of the method, the accuracy of the direction of search is important and hence
in this stage the mixed control state constraints are taken active and inactive per entire
grid interval. )

Based on the results given above the truncation errors of each of the time functions, i.e.
v{t) or w(z) may be estimated numerically by assuming the following model for the
approximation obtained from the collocation method :

8(t:h) = 0(z) + CUIR* + o(R*), : , (6.3.12)

where 0(¢ 12 ) denotes either one of the time functions v{(¢ ) or w (¢ ) obtained with the col~
iocation method as a numerical approximation to the solution of the linear multipoint
boundary value problem with grid intervals of size . Let 8(¢ ;xk ) and 8(¢ :;8R ) be solu-
tions to the linear multipoint boundary value problem with grid intervals of the size ah
and Bh (0<B<a<1), then using the solutions 8(z:2 ). (¢ ;ah) and 8{(¢ :8A), the con-
stant C(¢) and the order of the integration scheme X may be determined for each time
point. Define : ‘
6(t b )00 BR)

00 k)-8t axh) *

The order of the integration scheme &k may be obtained as the solution of the equation

(14T @))et = p* = T(t), O (63.14)
the constant C(z ) follows as © .
0(:h)—0C ah)

T{):=

{6.3.13)

Cl)= RS {6.3.15)
The model} (6.3.12} implies that, if & is small enough, either :

0t k) > 0(tak) > 8t 8R), (6.3.16)
or

0(z:h) < 8(z;h ) < 6(¢ BR). (6.3.17)

Because the numerical solutions of the linear multipoint boundary value problems contain
beside truncation errors, also roundoff errors, both the conditions (6.3.16) - (6.3.17) may
fail to bold. Hence the constant C(¢) and the order ¥ can only be determined when
T'(£)>0 and when 10(¢ ;2 )—0{t .k )| and 10(¢ ;ach )~8(¢ ;82 )| have significant digits.

An alternative for the estimation of the truncation errors is to make use of the a priori
knowledge on the value of the order of the integration method %, in which case only the
solutions 6(z ;%) and 6(z:0h) of the linear multipoint boundary value problem are
needed. A drawback to this alternative is that we have no information on the validity of
the estimates obtained. '

A drawback of the procedure outlined above is that the solutions 8(z :a% ) and 6(t ;Bh)

the linear multipoint boundary value problem must be solved using a "finer’ grid (e.g.
a=% and B=% ). In cases where it is sufficient to have only a rough estimate for the trun-

cation error, a similar procedure can be used with 8> a>1.
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7. Numerical solution of some problems.

In this chapter the numerical results of the solution of some example problems will be
given. First in Section 7.1 the instationary dolphin flight of a glider, subject to various con-
straints, is considered. The unconstrained instationary dolphin flight has recently been a
quite popular benchmark for testing numerical methods for the solution of optimal control
problems {cf. de Jong (1985), Lorentz (1985)). Next in Section 7.2 the reentry manoever
of an Apollo capsule is considered. This problem? is much more difficult to solve as a
result of the fact that the solution trajectory of the differential equations depend in an
extremely sensitive way on the initial data. We quote Stoer et al. (1980), p. 496 :

"The solution has moving singularities which lie in an immediate neighborhood
of the initial point of integration. This sensitivity is a consequence of the effect
of atmospheric forces, and the physical interpretation of the singularity is a
‘crash’ of the capsule or a ‘hurling’ back into space. As can be shown by an a
posteriori calculation, there exist differentiable solutions of the optimal control
problem for an extremely narrow domain of boundary data, which is the
mathematical formulation of the danger involved in the reentry manoever."

Finally in Section 7.3 the optimal control of two (dynamically) independent servo systems
along a prespecified geometric path is considered. The optimal control is subject to both
constraints on the accelerations and the velocities of the servos. The major difficulty with
these problems is the determination of the correct structure of the solution ¥.

7.1. Instationary dolphin flight of a glider.

7.1.1. Statement and solution of the unconstrained problem.

A glider, which is flying through an area with a variable vertical velocity of air {a ther-
mal), is modelled as a point mass m that experiences a gravity force mg, a lift force L
perpendicular to the velocity relative to the air, v, and a drag force D opposite to the
velocity v,. The variables of the problem are depicted in Figures 7.1 and 7.2 (for more
details see de Jong (1985) or Lorentz (1985)). The relative velocity vecior makes an angle
7 relative to the horizontal plane. The motion of the glider is restricted to the verticat
plane. The vertical moving air mass (the thermal) is assumed to have a horizontal extent
of 5R. The upward wind velocity u, is given as a function of the horizontal distance x ,
from the start of the flight at the left end of the thermal as :

2 ¥ 2.5

¥

e

(X ) = Uy ey |1

2
| forall 0 €£x<5R. (711.1)

x
z 2.5

The objective of the problem is 1o control the glider from x =0 to x =5R, such that the
‘relative’ flight time is minimal, where the relative time is defined as the sum of the time
required 1o fly from x=0 to x=5R and the time necessary to regain the lost altitude at a
specified constant rate of climb z.

t This problem was suggested as a benchmark by Dr. K.H. Well of DFVLR.
* The sequence in which the different constraints are active and inactive.
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Velocities, forces and angle.
Figure 7.1

Yy py bovreme oo creieemeen -

u, (x )T

0 2.5%8 7. 20 x

Upward wind velocity.
Figure 7.2
The mathematical formulation of the optimal control problem is :
SR 4 v
minimize [ —|1—-+| dx. (7.1.1.2)
u o Vi b4
dv,
subject to : o |—L sinn =D cosn | /mv, 0SxS5R. (7.1.1.3)
dv, -
= Lcosn—Dcosn—~mg|/mv, O0Sx<5R, (7.1.14)
v (0= v, (T)= v, 5. (7.1.1.5)
v Q)= v, (T) = vy 0, (7.1.1.6)
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Sv,2
where : L = p; (7.1.1.7)
. P&
D= Tzu B (7.1.1.8}

v,= Al (v -y, P {7.1.1.9}

Yy (7.1.1.10)

n = arctan

x

In the formulation above the distance x is used as independent variable, which is derived
from the formulation based on the time £ by making use of .

dv, _ dvx dx _ dv,

dr | dx dt | dx %’ (7.1.1.11)
d d d

el (7.1.1.12)

The problem (7.1.1.2) - (7.1.1.10) was solved using the following constants :

p =113 kg/m? ko= 00118 Ug max =5 m /5
g =9.80665 m/s*? k1=—0.0254 Ve pe =41.631 m /s
m=1346.5 kg ko= 00770 Vo e =—1.34d m/s
S =10.5 m? k 3= —0.0540 z =2m/s
R=100m k= 0.0166

Table 7.1 : constants used in the numerical example.

The starting trajectory for the numerical solution procedure, was given by :

v lx )= v, a0 0 x<5R. (7.1.1.13}
v (x) = v, an 0S x € 5%, ' (7.1.1.14)
ul(x) = 0.3041737 0€ x<5R. A {7.1.1.15})

This trajectory is in fact a flight along a straight line from x =0 to x = 5&, which is obvi-
ously the solution when there is no thermal present {i.e. ¥, ;g =0)..

For the numerical solution of the problem an equidistant grid was used for the collocation
method and the problem was solved using p=20, p=40, p=50, p=80, p=160 and I =2,
1= 3. Recall that p is the number of grid intervals and ! is the order of the polynomials
used for the state variables.

The solution trajectory of the optimal control problem (7.1.1.2) - (7.1.1.10) for the case to
which the numerical values in Table 7.1 apply. is given in the Figures 7.3 and 7.4. The
convergence history of the solution process. corresponding to the case p =50, [ =2 is given
in Appendix F, Table F1. '

The value of the objective function corresponding to the numerical solutions of the
different values for p and . is given in Table 7.2.
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40 60

v(x) O (x)

0 50 ¢

—40 40 1 I

0 258 s °
Solution of unconstrained glider problem, state variables.
Figure 7.3

1.3
ulx) 1
0
—-0.1 . ,

0 2.5R sSR %
Solution of unconstrained glider problem, control variable.
Figure 7.4
! =20 p=40 =80 =160 order

2 | 7.30220430969 7.30227700518%  7.30239324467+  7.30240227507+ 35
3 | 7.30222852296%  7.30239951524%  7.30240286698%  7.30240286637 5.7

Table 7.2 : values of objective function and estimated order.

In the most right column of Table 7.2 an estimate of the order of the integration method is
given, which is based on the values obtained for the objective function. (Theoretically this
exponent should be 2 27, cf. Section 6.3).

% These values were used for the calculation of the order.
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7.1.2. Restriction on the acceleration (mixed control state constraint).

The acceleration of the glider is the quotient of the lift force and the mass, i.e. L/m. Be-
cause the glider pilot cannot endure great accelerations, a constraint of the form ¥

L _ pSvu

mg mg

= € s (7.1.2.1)
is necessary. Because (7.1.2.1) contains both the state variables (v, depends on v, and v,)
and the conirol variable u, this constraint is a mixed control state constraint.

In Figure 7.5 the normal load factor corresponding to the solution A (x ) is given for vari-
ous values of 7 ,,,. In the numerical solution of the problem we used p=20 and [=2.

e > 6.8
7

T max= 6

' N max™= 3

nlx) I

= 4

7 pax™ 3

7 tmax™ 2

O r

—1

; —

0o - 2.5R SR

Normal load factor 7 for various values of 7 ;.
Figure 7.5

The convergence history of the solution process corresponding to the case n,,,= 4 is given
in Appendix F, Table F2.

7.1.3. Restriction on the velocity (first order state constraint).

In many practical cases the velocity of the glider must stay below a certain limit. This
yields, in the formulation of the optimal control problem the following state constraint :

v (x)€ v, OSxS3R, (7.1.3.1)

which states that the relative velocity of the glider is not to exceed the limit v ,,,. Using
(7.1.1.9) we obtain :

S, v, x) = v (v, P - v 2, 0 x<$5R. . (7.1.3.2)

Differentiating (7.1.3.2), to the independent variable x yields the function 83 (this func-
tion is defined by (3.3.5.7) - (3.3.5.8)) :

1 In most aerospace control applications, the acceleration is limited to 4-6g.
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dv, du,
dx dx

dv,
St vy uax) = 2v, 7;?_ + 2(vy~u, ) 0< x €58 (7.1.3.3)

Substituting the equations of motion of the glider into (7.1.3.3) reveals that the function
S3 contains the control explicitly and hence the constraint is of first order. ¥

For values of v,,,>58.6 m/s the constraint (7.1.3.2.} is inactive on the entire interval of
control. For values v, S 58.6 m/s the state constraint has a contact point near x = 2.5R.
In Figure 7.6 the velocity ¥, (x ) is given for three different values of v .

60 -
v, (x )I

Yoar > 58.6
Vo™= 20
Voo™ 42

o 2.5R sk~ %

Gtider velocity v, for various values of v ,,.
Figure 7.6

The convergence history corresponding to the case v = 50 is given in Appendix F, Table
F3..

7.1.4. Restriction on the altitude {second order state constraint).

The solution trajectory of the unconstrained glider problem reveals that the glider dives
first towards the earth and then regains altitude in the second half of the interval, as a
result of the thermal. In many cases however, the glider is not allowed to flight below a
certain altitude. The altitude of the glider is determined by :

% = :L 0<x<5R, (7.14.1)
X
¥€0) = yo. . (7.14.2)

where y, is the altitude at the initial point x =0. (In the implementation the actual value
of y¢. Which is arbitrary, was set to zero.)

The altitude constraint which states that the glider may never fly below a certain limit
becomes : :

t We note that the state constraint (7.1.3.2) does not satisfy (5.1.2.4) and hence in the implementation,
the constraint is transformed using the technigue outlined in Appendix B.
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y(x}2Z vy, OSx<5R. (7.14.3)
or, in the terminology of problem (SCOCP).
S53)= =y + ¥, €0 (7.14.4)

Differentiating to the independent variable x and substituting the equations of motion of
the glider yields (for a formal definition cf. (3.3.5.7) - (3.3.5.8)) :

Yy

Vx

SHvyw,) = — (7.14.5)

and

v, dv, 1 dv,
v? dx v, dx’

Sy, vy ux)= (7146}

which reveals that the state constraint (7.1.4.4) is of second order.

For values v,,;, <—81.5 m the state constraint (7.1.4.4) is inactive during the entire flight.
For values v ;2 —81.5 m, the state constraint has, similar to the constraint on the velo-
city, a contact point near x=2.5R. In Figure 7.7 the altitude y(x ) is given for four
different values of y,,;,.

0.4R

Y =13

¥ ﬂ ¥ min=—30
0 ¥ min= =50

~0.9% . —
0 A 2.5R 5R %
Glider altitude ¥ for various values of v,
Figure 7.7

The convergence history corresponding to the case y,,;,= —30 is given in Appendix F, Table
F4.

7.2. Reentry manoever of an Apollo capsule.

7.2.1. Description of the problem.

The problem deals with the reentry manocever of an Apollo capsule to the earth atmo-
sphere, which is depicted in Figure 7.8.

The space vehicle is modelled as a point mass, subject to a lift force L, a drag force D and
a gravity force W. The state variables are the velocity v, the flight~path angle 7y. the
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¢ h=fR

R

Variables of the Apollo reentry problem.
Figure 7.8
normalized altitude £=h /R and the distance on the earth’s surface {. These state vari-
ables satisfy the following set of differential equations :

v = —%pvch(u)~ (gl"iiz; (7.2.1.1)
€= Zsiny (7.2.1.3)
{= T:—gcos‘y | - (7.2.1.4)

where : R= earth’s radius (209.0352 10%f¢),
p=pee F¥E= atmospheric density (po=2.3769 10~3slug /f¢* and
B8=1/0.235 10"3f¢~1), :
' go= gravitational acceleration (23.2172 107% 103f¢ /s%).
Cpu )= CpotCpycos u = aerodynamical drag coefficient,
Cr(u)= C¢sin u = aerodynamical lift coefficient,
u = angle of attack = control variable,
S/m = frontal area / mass of vehicle.

The constants Cpo. Cpr . Cro and S/m differ for the problems discussed in following sec-
tions. ’

7.2.2. Solution of the unconstrained reentry problem.

The flight path of the Apollo capsule is for the problem discussed in this section governed
by the differential equations (7.2.1.1) - (7.2.1.4) with the following numerical constants
Cpo=0.88. Cp; =0.52, Cp; =—0.505 and S /m = 50000 10~5f¢%/slug.

During the reentry manoever the total stagnation point convective heating per unit area,
given by :
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T
7= [1ov3par.
p «

must be minimized.

The reentry manoever is started at the following initial point :

v(0) = 0.3510%fz/s

y(0) = ~5.75°

£00)= 4/R
{= o0

(7.2.2.1)

{7222}
(7.22.3)

{7.2.2.4}
{7.22.5}

and at the {variable) final time, the following terminal point conditions must be satisfied :

v(T)= 0.0165 105F¢/s

y(TY=  free

ET)= 0.75530/R
UT)= 516912 10°f¢

As a starling trajectory the data given by Bals ((1983), Table 17) were used.

04 05 0.02 1007

v@) ¥@) En)ia)

P

0.2 0 0.01 50

{03}

@)
()
vt}

10— t/f

Solution of the unconstrained reentry problem, state variables.

(7.2.2.6)
(7.2.27)
(7.2.2.8)
(7.2.2.9)

In Figure 7.9 the state variable histories corresponding to the numerical solution of the
problem are given. Figure 7.10 shows the optimal control history. The convergence history
corresponding to the numerical solution of the problem is given in Appendix F, Table F5.

138



Numerical solution of some problems

3.5r

ult )I

-3.5

0 05 10 — T

Solution of unconstrained reentry problem, control variable.
Figure 7.10

7.2.3. Restriction on the acceleration (mixed control state constraint).

The flight path of the Apollo capsule is for the problem discussed in this section governed
by the differential equations (7.2.1.1) - (7.2.1.3)% with the following numerical constants
Cpo=1.174, Cp =—0.9, C1 o= 0.6, S/m = 53200 10°f t?/stug .

The optimal control of the reentry manoever should be such that the velocity at the (vari-
able) final time 7" is maximized. i.e. the functional

J = —v(T), {7231}
must be minimized.

The reentry manoever is staried at the initial point :

v(0) = 0.36 10%f¢ /s (7.2.3.2)

y(0) = ~8.1° 1:0° (7.2.3.3)

£0)= 4/R (7.2.3.4)
After the reentry manoever the state variable y and £ should satisfy : k

y(T)= 0 ‘ {7.2.3.5}

&T)= 25/R : : {7.2.36)

During the reentry manoever the total acceleration of the vehicle should be bounded to
values which are bearable by the astronauts. In the formulation of the optimal control
problem this yields the following mixed control state constraint :

¥ Because there is no terminal point constraint for the state variable { and this variable is not present in
the equations (7.2.1.1) - (7.2.1.3), this variable may be omitted completely.
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%-F—Cz @Y + Co P € npag (7.23.7}

As with the glider problem of Section 7.1.2, the maximum normal load factor n ,,, is nor-
mally a value between 4 and 6.

The problem was solved for a number of different values of n,,,. For each of these runs
the data given by Bals ((1983), Table 14) were used. as a starting trajectory, which is an
estimate of the solution of the reentry problem when no constraints are present. The
maximum acceleration which arises during the reentry problem when no acceleration con-
straint is taken into account is 9.4g . Thus for values of n ,,, smaller than 9.4 the optimal
control will be restricted by the mixed control state constraint (7.2.3.7).

107 gy > 9.4
g—
=8
5(:)[ " max
7
5 b
06 0.5 10 /T

Normal load factor 2 for various values of 7 yg.
Figure 7.11

The normal load factor 2 {z) is given in Figure 7.11 for values of 7 ,,~ 9.8.7,6,V28. For
values lower than V28 no convergence could be achieved. These results are similar to those
of Gillessen {1974). Probably there is no feasible control of the reentry manoever possible
for values lower than V28§ and with the boundary conditions (7.2.3.3) - {7.2.3.7). The
convergence history of the case n ,,,= 6 is given in Appendix F. Table F6.

7.2.4. Restriction on the altitude (second order state constraint).

The reentry manoever of the Apollo capsule is now considered, subject 1o a restriction on
the altitude (cf. Bals (1983), Gillessen (1974). Hiltman (1983)).

An inspection of the solution of the unconstrained reentry problem discussed in Section
7.2.2 shows that after the vehicle has dived into the earth’s atmosphere, the altitude of
the vehicle £ is again increased, in order to minimize the heating of the front shield of the
vehicle. As a result of this increase in altitude the movement of the vehicle will be
directed from the earth for some time. This is a dangerous situation because during this
movement directed from the earth, small errors in the control of the vehicle may lead to
"hurling’ back to space. In order to decrease this danger, a constraint on the altitude £ is
added, once the first altitude minimum is passed. The constraint is thus of the following
form:
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S,= @) € £pan al €t€T, {7.24.1)

where a is an a priori specified quantity (actual value a= 0.3).

An inspection of the functions $4 and S obtained from (7.2.4.1), (7.2.1.1) - {(7.2.1.3) via
differentiation to the time yields that the state constraint (7.2.4.1) is of second order.

For the remaining details the problem is similar to the problem discussed in Section 7.2.2,
except for the final state of vy, which should satisfy :

y(I') = —26.237124°

5 s o (7.24.2)

As a starting trajectory the data given by Bals ((1983), Table 17) were used to solve the
unconstrained problem, which corresponds to the case §,,,>0.0101. Using each time the
solution obtained for the previous value of £, as an initial estimate, the value of £,
was decreased successively to 0.0090 and 0.0080. For values lower than £,,,,= 0.0080 no
convergence of the method could be achieved. This was due to the fact that the step size
became very small and hence there was no longer progress towards a solution point.

0.02

é(z)]

£ nax > 0.0101
£ nan= 0.0090
£,...=0.0080

0.01+

0

0 0.5 10— ¢/T
Relative altitude E for various values of £,,,..
Figure 7.12

In Figure 7.12 the altitude é(z} is shown for the values §,..>0.0101 and
£ 0= 0.0090, 0.0080. The convergence history corresponding to the case &= 0.0090 is
given in Appendix F, Table F7.

. Optimal control of servo systems along a prespccxﬁed path, with contraints on
the acceleration and the velocity.

In this section the optimal control of two dynamically independent servo systems, along a
prespecified path is considered subject to constraints on the accelerations and the velocities
of the individual servo systems.
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7.3.1. Statement of the problem.

The optimal control problem to be considered is a special case of the problem outlined in
Section 1.2, namely the case of two dynamically independent servo systems g; and g»,
which are to be controlled along a path Y(s) (depicted in Figure 7.13) from the point s =0
to the point s =1.

92T|
: s=1
1.0 <
s=0
[4) e
0 207 41
Path Y(s ).
Figure 7.13

The dynamic behaviour of the servo systems is supposed to be described by the following
differential equations :

7.4.@)= F(@) 0<:€T  i=12 (7.3.1.1)

To control the system along the path. the servo position coordinates ¢, and g, must
satisfy : '

2:(¢) = Y; (st 0<:<T  i=12 (7.3.1.2)

The optimal control problem is now, as in Section 1.2, to find a twice differentiable func-
tion 5 :{0,7]-[0,1], such that constraints of the type

1G: € Via s 0<r<T  i=12 © {7.3.1.3)
and

VF,(e ) S Foy 0T i=12 (7.3.14)
are satisfied and that in addition the following objective function is minimized (for fixed
cZ0):

I
T + %cof F)? de. (7.3.L.5)

(The final time T is supposed to be variable.}

As in Section 1.2 it is possible to eliminate the coordinates ¢; and the forces F; completely
from the statement of the optimal control problem, using (7.3.1.1} - (7.3.1.4). The state
constraints (7.3.1.3) become :

1Y, (s@ENsU € Vi 0S:ST i=1.2 (7.3.16)

Because the movement along the curve directed from the point s=0 to the point 5=1
corresponds with 5(z)>0, it is likely that the solution of the optimal control problem
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will (automatically) satisfy the condition : ;

15() 2 0 0 <T. (7.3.1.7)
Under the assumption that this condition is satisfied, the constraints (7.3.1.6) may be
rewritten as .

V...
s(e) € min s

< s ° R . ¥
Y, GGy OsesT | (7.3.1.8)

As will follow from the exact statement of the optimal control problem given below, the
constraint (7.3.1.8) is a state constraint of order one. Instead of using the nonsmooth
form (7.3.1.8) for the state constraint, the problem is simplified by using a smooth
approximation to the right hand side of {7.3.1.8). The constraint (7.3.1.8) is now replaced

by:
HOESACI)] 0St<ST. (7.3.1.9)

In Figure 7.14 both the right hand side of (7.3.1.8) and the function fc (s ) are plotted as a
function of the variable s, for the path of Figure 7.13.

157

fc(s}I

0.75¢

Vmax *

MER,
i=12Y;'(s)

fc(s)

0 0.5 10—~
State constraint function f, (s ).
Figure 7.14
For the approximation f, the smoothing spline of Schoenberg and Reinsch is used (cf. de
Boor (1978)).

Using relation (7.3.1.1) and the second time derivative of (7.3.1.2), the constraints
(7.3.1.4) become :

Y GENFEI+ Y, "GN € Apeey OSt€T i=12. (7.3.1.10)
with
F .
Apar i = == 1=12, (7.3.1.11)

The optimal control problem involves the selection of a twice differentiable function
5:10.71-[0.1] and a final time T > 0. that satisfy the constraints (7.3.1.9) and (7.3.1.11).
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Because the motion starts at s=0 and ends at s=1, we must also have 5(0)=0 and
s(T)=1.

For the sake of completeness we will now give a formal statement of the optimal control
problem, in the form which is used in combination with the numerical implementation of
the method.

The relative path position 5 is formally denoted by x,. An artificial state variable is used
for the value of the state constraint (7.3.1.9), i.e.

xe)=5@)~ f. &N 0s<T. (7.3.1.12)

The numerical implementation of the method is done for optimal contrel problems on the
fixed final time interval [0,1), therefore the optimal control problem must be transformed
1o this interval using a transformation )

t =17 0 7€, (7.3.1.13)

The variable 77 has the form of a parameter in the transformed optimal contirol problem,
which is formally taken into account using a state variable x; that satisfies :

x3r) =0 0sr€1. (7.3.1.14)
The second derivative of the relative path position playes the role of the control variable
and is therefore denoted by u.

The optimal control problem may now formally by stated as :
1

minimize x3(1) + }¢ J u(r)dr. (7.3.1.15)
subject to :
i1 = xaleotf (x40 0L 1<, (7.3.1.16)
£, = xglu—Ff(x Hxp+fo(x ) o< <1, {7.3.1.17}
3= 0 ' osr<€1, (73128}
x,{0) = 0. {(7.3.1.19)
x5(0) = —f. (O, (7.3.1.20}
(D=1, (7.3.1.21)
x:(1) = ~f. (1), {7.3.1.22}
xS0 o< <1, (7.3.1.23)
Y e Ju Y Mo+ Fo (20 = Apae s €0 i=12 0€7€1, (7.3.1.24)

=Yix Ju=Y;"x Mx ot fe (X)) = A s 0 i=12 0S7€1 {7.3.1.25)
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7.3.2. Numerical results of the servo problem.

The problem described in the previous section was solved for a number of different values
of the maximum servo velocities and accelerations and for different values of the parame-
ter ¢ which defines the objective function.

The numerical solutions discussed in this section were obtained using an equidistant grid
of 20 points in the first stage of the method (i.e. p=20). For the approximations to the
state variables quadratic polynomials were used on the grid intervals (i.e. I=2).

The maximum velocities and accelerations of the servo system with index 2 were taken
dependent on the values of the servo system with index 1 in the following way :
Va2 = -;‘ max 1+

Apuy 25 24560 1

15 ¢
§{1‘)T
V ax 1= 10.00
0.75 r
TR e anx,1= 3.00
- ‘—_ ._—"." e ”"‘"n.:::V-;::.“-:' me = 1.50
Vinax 1= 1.25
0 - .
0 0.5 1077
Path velocity for various values of V4, 1.
Figure 7.15

The first case 1o be considered is the case that the parameter ¢ and the maximum accelera-
tion A, 1 are kept fixed (c= 1_(_)'2 and A, 1= 3). In Figures 7.15 and 7.16 the path velo-
cities § and the accelerations ¢ ; which are numerical solutions to the problem for the
cases that V., 1510, Vo 153, Ve 1= 1.3 and V.. ;=1.25, are given. The dotted lines
indicate when a constraint is active on either the path velocity or on the acceleration of the
servo with index 1. :

From Figures 7.15 and 7.16 we note that the solutions corresponding to the cases
Vinax 1= 10 and V.. 1= 3 are indentical, which is a result of the fact that in these cases the
velocity constraint (7.3.1.10) is not active at all. In these cases the constraint on the
acceleration is almost always activee When the maximum velocity is decreased to
Veax 1= 1, then the acceleration constraint is only active part of the time and the con-
straint on the path velocity is active over some period of time. When. the maximum velo-
city is further decreased, the velocity constraint becomes active over a longer period of
time.
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Figure 7.16
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The second case to be considered is the case in which the maximum velocity is kept fixed
and where the maximum acceleration is varied (¢ = 1072, V., 1= 3). The path velocities §
and maximum accelerations ¢ which are numerical solutions to the problem are given in
Figures 7.17 and 7.18 for the cases A, 1= 10 and A,,,, 1= 3. The solution corresponding
to the case A,,, 1= 3 is again of the bang-bang type. In this case the acceleration constraint
(7.3.1.10) is almost always active. When the acceleration constraint is increased. the velo-
city constraint becomes active.

The last case that is considered is the case where the maximum velocities and accelerations
are kept fixed and where the parameter ¢ is varied (V0 1= 1.5 and 4, 1= 3). In Figure
7.19 the path velocities corresponding 1o the numerical solutions of the problem for the
cases ¢ =0.01, c= 1, ¢= 10 and ¢ = 100 are given. The solutions corresponding to the cases
¢ =10 and ¢ = 100 are unconstrained solutions, i.e. no constraints are active at all.
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In Table F8, Appendix F the convergence history corresponding to the case V., 1= 1.5,

Apax 1= 3 and ¢ =1 is given.
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8. Evaluation and final remarks.

8.1. Relations between the SQP method in function space and some other methods.

The SQP method in function space, described in the previous chapters for the solution of
state constrained optimal control problems, is essentially a method based on the abstract
formulation of the state constrained optimal control problems in infinite-dimensional
function spaces. The method consists of two stages. In the first stage the optimal control
problem is approximately solved using a fixed step integration scheme. Hence, the first
stage yields a rough approximation to the solution and a good estimate for the structure of
the solution. The problem is solved more accurately in the second stage, which determines
the exact locations of the junction and contact points of the state constraints. In the
numerical context this means that during the second stage the integration step is adjusted
in a neighborbood of junction and contact points. The first stage was developed by exten-
sion of the ideas of finite-dimensional sequential quadratic programming. based on the use
of inequality constrained subproblems, 1o the abstract formulation. The second stage is
based on a similar extension of the ideas of finite-dimensional sequential quadratic pro-
gramming to the abstract formulation, but now based on the use of equality constrained
subproblems.

A method which is strongly related to the first stage of the SQP method in function space,
is the method which converts the optimal control problem into a finite-dimensional
mathematical programming problem. This is done by approximating the control and the
state functions using piecewise polynomial functions. The polynomial coefficients that are
associated with this approximation become the variables in the mathematical programming
problem. The finite-dimensional mathematical programming problem is then solved using a
general purpose nonlinear programming method. Methods of this type are called methods
of direct discretization. As we are interested in the relation between the SQP method in
function space and methods of direct discretization, it will be assumed in the sequel, that a
sequential quadratic programming method is used to solve the finite-dimensional nonlinear
programming problem. Before we consider the relation between the SQP method in func-
tion space and methods of direct discretization, we will outline two specific methods of
direct discretization (cf. Kraft (1980, 1984)). '

One way to convert an optimal control problem into a nonlinear programming problem is
to approximate the control u{¢z) by means of a spline function on [0.7] {cf. de Boor
(1978)). Thereto a grid is chosen and the values of the control on the grid points, which
are called the spline knots, are the variables of the nonlinear programming problem. The
state variables of the system. x (¢ ). are treated as quantities dependent on the control u
and may, at any time point, be obtained as the numerical solution of an initial value prob-
lem. With this type of method, gradients are usually obtained via numerical
differentiation.

A refinement of this method, which significantly improves the accuracy of the solution
obtained, is to take the spline knots also as variables of the nonlinear programming prob-
lem, i.e. the control is approximated by a spline function on a variable grid.

Another way to convert an optimal control problem into a nonlinear programming prob-
lem is to approximate, not only the control, but also the state by means of spline func-
tions. The differential system -
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@)= flxledule)r) OSe=kT, (8.1.1)
is then converted into a number of equality constraints

fr))= fGE@ )T j=le (8.1.2)
which state that for the finite-dimensional approximation (X i), the differential sysiem
must be satisfied at the (collocation) points 7.

‘We note that the second method is in fact a refinement of the first method, as the second
method is equivalent to the first method, when the implicit Runge-Kutta scheme, discussed
in Section 6.1.1, is used as the integration scheme.

With both methods, state constraints can be treated in essentially three ways :
1) by taking care of them via penalty terms in the objective function.

2) via conversion into inequality constraints of the type :

y(©@ =0, {(8.1.3)
3(t) = max {0.8Cx (£ ). ), (8.1.4)
(7)€ yr, (8.1.5)

where yr is 2 ‘small’ quantity.
3) by replacing them by a finite number of inequalities of the form

S(x(tj),}f‘,)ﬁﬂ j=1 ..... (8.;6}

where the points ; are a finite subset of points of [0.7°].

Experience shows that the approaches 1) and 2), which are essentially similar. yielding
relatively inefficient procedures with relatively inaccurate solutions (cf. Well (1983)). It
is obvious that with the third approach the state constraints may be violated at all points,
except at the time points f;. According to the terminology of Kraft {1984), the state con-
straints are treated as a 'soft’ constraints with the third approach.

For problems without state constraints of order 2 1, the first stage of the SQP method in
‘function space is equivalent to the method of direct discretization that is based on the
~conversion of the optimal control problem into a nonlinear programming problem in fol-
lowing way : 7
The state function is approximated using [ th order piecewise polynomials on the intervals
defined by

O=to<t;< ...< =T, (8.1.7)

which are continuous at the points ¢, (r= 1....p—1). The control is analogously approxi-
mated by means of (! —1)th order piecewise polynomials on the same intervals (z, ., +3)

(r=0....p—1). The differential system is replaced by a finite number of equality con-
straints : :
iy = Fla(ry D, o), s) i=1..0 r=01,..p=-1 (8.1.8)

where the collocation points 7, +; are as defined in Section 6.1.1. The mixzed control state
constraints are replaced by a finite number of inequality constraints :
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Six (e )7y )€ 0 i=1,.01 r=0,..p—1, (8.1.9)
and the boundary conditions at ¢ =0 and ¢ =7 remain :

D(x(y) =0, (8.1.10)

E(x(@,)t,)=0. (8.1.11)

The objective function is approximated as a finite sum by means of the quadrature rule
(6.1.1.24), i.e.

~1 !
ho(x @) + T by X, folx (T4 0t Ty i) Ty as) + golx (2,)2,). (8.1.12)
r=0 i=1

The connection between the two methods (i.e. the first stage of the SQP method in func-
tion space and the method of direct discretization) is revealed by the special structure of
the collocation scheme for the linear multipoint boundary value problem, that follows
from the necessary conditions for optimality for problem (EQP/SCOCP). This special
structure indicates that the collocation equations are essentially equivalent to the neces-
sary conditions for optimality for the quadratic programming problem obtained from
problem (EQP/SCOCP) via the above mentioned discretization (cf. Section 6.1.2). Observ-
ing that the linear multipoint boundary value problem may be obtained via a Newton
approach from the nonlinear multipoint boundary value problem, that follows from the
optimality conditions for problem (SCOCP), yields the connection with the corresponding
nonlinear programming problem. :

Similar to the case of mixed control state constraints, it follows for problems with state
constraints of order 2 1, that when these constraints are replaced by interior point con-
straints of the form

S(x(z;)t;) €0 r=01,.p, , (8.1.13)

then the first stage of the SQP method in function space and the method of direct discreti-
zation using the approach 3) for the state constraints, are again equivalent.

However, in the case of the SQP method in function space, the state constraints of order 2
1 are, on boundary intervals replaced by the conditions

S/ xE)e)=0 j=0.1..p. (8.1.14)
at the entry points, and the conditions
SP(x (i (T 4 )T 0) = 0, (8.1.15)

at all collocation points, interior to boundary intervals. (p, is the order of the state con-
straint). This is an essential difference between both methods, because a similar approach
seems for direct discretization methods not possible. This is a result of the fact that the
active set strategy discussed in Section 5.2, is entirely based on the special, infinite-
dimensional relationship between the interior point constraints (8.1.14) and the mixed
control state constraints (8.1.15).

The advantage of the SQP method in function space, compared to the methods of direct
discretization, is that boundary intervals are approximated directly, instead of replacing
them by of a number of interior point constraints. In the terminology of Kraft (1984), the
state constraints are with the SQP method in function space, treated as 'hard’ constraints.
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Therefore, in general, the solution obtained from the first stage of the SQP method in
function space will be a better approzimation o the exact solution of the problem
{SCOCP), than the solution obtained from the direct discretization methods, where the
state constraints are treated as soft’ constraints.

In practice, direct discretization methods are often used for the same purpose as the first
stage of the SQP method in function space, i.e. to obtain the structure of the solution and a
rough estimate of the solution of the optimal control problem. The solution of the optimal
control problem can thereafter be obtained more accurately using. for instance, a method
for the solution of the nonlinear multipoint boundary value problem which may be
derived from the necessary conditions for optimality for the problem (SCOCP) (¢f. Bock
(1983), Bulirsch (1983), Maurer (1974, 1975)). This approach is essentially similar to the
stage 1 - stage 2 approach of the SQP method in function space, where the second stage is
started with the solution and the Lagrange multipliers obtained from the first stage. In
this context, a serious disadvantage of the direct discretization methods is that the
Lagrange multipliers obtained, corresponding to the solution of the nonlinear programming
problem, cannot be used as estimates for the Lagrange multipliers in the second stage. This
is due to the fact that the state constraints are treated differently in the first and the
second stage. With the function space approach, the state constraints are treated similarly
in both stages and hence the Lagrange multipliers obtained from the first stage can be used
directly as estimates for the Lagrange multipliers in the second stage.

The second stage of the SQP method in function space can be compared with the ‘multiple
shooting” approach. With this approach the optimality conditions for problem (SCOCP) are
used 1o derive a multipoint boundary value problem, which is solved using a multiple
shooting method. The control and the Lagrange multipliers corresponding to the state con-
straints are eliminated analytically. In general, the junction and contact points of the state
constraints are not known a priori and in addition, the right hand side of the set of
differential equations and the adjoint variable may be discontinuous at these points. There-
fore use is made of so-called switching functions which are used to locate these points, i.e.
a zero of a switching funciion coincides with a junction or contact point. The general form
of the multipoint boundary value problem is thus :

y=F{yr.z{yt) OLr€T, (8.1.16)
Gy0).y(TN= 0. , (8.1.17)
HGGE)i=0 foral t; (8.1.18)

At the junction and contact points one of the switching functions z; has an isolated zero,
i.e.

z(y@;)i;)=0 : (8.1.19)

The second stage of the function space method consists of the calculation of a direction of
search based on the numerical solution of problem (EQP/SCOCP) and of the active set
strategy described in Section 5.3. Without the active set strategy the second stage of the
method solves. in fact. a nonlinear multipoint boundary value problem, where the control
and the Lagrange multipliers corresponding to the state constraints are not eliminated as
with the multiplie shooting approach, but which are determined by nonlinear algebraic
equations. The active set strategy of Section 5.3 plays a role similar to the switching

151



Chapter 8

function concept. as it is (only) used to determine the exact location of the junction and
contact points. With the multiple shooting approach a thorough understanding of the first
and second order conditions for optimality, for state constrained optimal control problem,
is required and the actual conversion of the optimal control problem into a nonlinear mul-
tipoint boundary value problem in general, involves considerable work. With the SQP
method in function space the problem functions are the only ones used and hence no
conversion is required.

Reviewing the SQP method in function space in the context of Section 1.4, the first stage of
the method is essentially a direct method and is therefore likely to have a relatively large
region of convergence and which yields a relatively inaccurate solution. The second stage is
essentially an indirect method, which has a relatively small region of convergence and
which yields a relatively accurate solution. In the first stage of the method the structure
of the solution is determined. The second stage requires, as all indirect methods, the struc-
ture of the solution and a relatively good estimate of the solution as an initial starting
point. Because the first stage yields both the structure of the solution and an approxima¥
tion to -the solution, the second stage is automatically started with the structure and the
solution obtained from the first stage. The entire method may thus be viewed as a method
which combines the merits of both a direct and an indirect method.

8.2. Final remarks.

The results contained in Chapters 2 and 3 show that. at present, the optimality conditions
for state constrained optimal control problems can be derived rigorously from a number of
rather basic results on optimality in abstract vector spaces. Refinements dealing with the
continuity of the Lagrange multipliers at junction points can be derived from these
optimality conditions (e.g. ¢f. Maurer (1977)). An inspection of these refinements shows
however, that they need not hold for the optimal control problems with state equality
constraints, as considered in Section 5.1. Because the SQP method in function space
requires both the solution of problems with state equality and state inequality constraints,
it seems that these results have no application for the method presented in the thesis.

The SQP method in function space is essentially a Newton-like method applied to the first
order necessary conditions for optimality. For the SQP method in abstract vector spaces,
derived in Section 4.1, convergence results similar to those given by Kantorivich et al.
(1982), can be stated. In applying the SQP method to state constrained optimal control
problems several heuristic steps were taken. These heuristic adaptations of the SQP
method, complicate the derivation of convergence results greatly. Because the solution
method for the subproblem (EIQP/SCOCP/A) is also a heuristic adaptation of a method
for which convergence results can be derived, it is quite likely that the method converges.
but it seems hard to derive strict convergence results.

The main problem, in the derivation of the convergence results mentioned above, is the
fact that with the SQP method in function space, boundary arcs of state constraints of
order 2 1, are treated as ‘hard’ constraints. We note that finite-dimensional sequential
quadratic programming methods allow a rather complete convergence analysis (cf.
Schittkowski (1981)). Hence in the case that the SQP method in function space is
equivalent to a method of direct discretization (as outlined in the previous section) the
convergence results for the method of direct discretization using finite-dimensional sequen-
tial quadratic programming, will also hold for the SQP method in function space. Also in
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this case the solution method for the subproblem (EIQP/SCOCP/A} is identical with the
quadratic programming method reviewed on Appendix A, which allows a standard conver-
gence analysis.

The numerical results on the solution of some benchmark problems, given in Chapter 7.
show that the method can indeed be used for the solution of state constrained optimal .
control problems. The Apollo reentry problems are the most difficult problems which are
currently solved with the method. The sensitivity of the problem results in a relative ill-
conditioning of the matrices, which determine the subproblems to be solved. A dificulty
that had to faced in addition to the ill-conditioning of the matrices. was the fact that the
subproblems were unbounded below (indefinite projected Hessian of the Lagrangian)
except in a very small neighborhood of the solution. We note that the modifications which
were implemented in order to overcome these problems led to a significant improvement in
the implementation of the method. :

For relatively stiff optimal control problems (such as the Apollo reentry problems) the
collocation method, which is equivalent to an implicit Runge-Kutta integration scheme, can
be very efficient, as a result of the fact that the integration step size can be varied very
easily. This requires a mechanism, not present in the implementation yet, which selects the
grid (integration step sizes) automatically.

Another improvement in the implementation of the method may be achieved by using
quasi-Newton updates for the Hessian of the Lagrangian. When these updates are used, it
is no longer necessary to supply the second derivatives of the problem functions. This will
simplify the use of the program at the cost of the rate of convergence, which in general
will no longer be quadratic, but superlinear.
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Appendix A : A method for the solution of finite-dimensional quadratic program-
ming problems.

In this appendix we shall review a method for the solution of the following quadratic pro-
gramming problem (cf. Powell (1974), Gill et al. (1981)) :

Problem (FDEIQP) :
Minimize c'd +1d"Md, (A1}
subject to : Ayd = b, {A2)
Ad € by, {A3)

where : ¢ and d are it -vectors,

M is a symmetric i Xii matrix,

Ajand A, areresp. m (X% and i, XA matrices,

b, and b, are resp. ity and M, vectors.
We shall assume that problem (FDEIQP) has a solution for which the regularity constant
(cf. Chapter 2) may be set nonzero. The optimality conditions of Kuhn-Tucker (cf. Gill et

al. (1981)) then imply that there exist multipliers X ,€ R™Vand A e R™?, that satisfy

Md + ASh + Afho= — ¢, (A4)

Apjazd —by) =0 =17, , (A5}

Ay 20 j=1,.ms. (A6)
In addition, the second order necessary condition for optimality are

y'My 20 forall yeld 1A d=0AAyd=0 forall jels), (A7)
with

I = {j :Ayd=by ARy >0} (A8)

ie. the Hessian matrix M must be positive semi-definite on the tangent subspace of the
‘active’ constraints at 4. The second order sufficiency conditions have a similar form with
Z replaced by >. i.e. M must be posilive definite on the tangent subspace of the active
constraints at d .

The method we shall discuss is basically an iterative minimization of the objective func-
tion

J@) = c'd +1d"Md. (A9)
over the set of feasible points,
H = {d:A;d=bjA Ayd<by} ‘ {A10)

This means that a sequence (d /) is constructed for which
F@*H < F@')  foral i=01.... ' (A11)

and
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di ¢ H forall i=0.1.... \ (A12)
The method assumes that a feasible initial point d° is given, which is used as a first ele-
ment of the sequence.

In each iteration of the method, a key role is played by the socalled working set. This set
consists of the constraints {A2) and a subset of the constraints (A3) which must be
satisfied as equalities. The working set is an estimate for the set of active constraints in the
solution point.

Essentially one iteration consists of three steps :
1) Calculation of a direction of search Ad’.

2} Caleulation of a step size o;.

3) Updating the working set.

The direction of search is calculated such that the objective function is minimized with
respect to the constraints in the working set, i.e. 2 solution of

Problem (FDEQP) :
Minimize eT(d'+Ad) + 1(d'+Ad Y M(d’ +Ad), {A13)
subject to : A(d'+Ad) = by, {A14)
Adi+Ad) = b, {A15)

where (A15) denotes the subset of constraints {(A3), which are in the working set.

Because of the fact that for constraints in the working set equality holds, this problem is
equivalent to :

Minjdméze (e +dTM)Ad + %_AdrMAd. - [A16}
subject to : AjAd = 0, {A17)
AAd = 0. = {A18)

If M is positive definite on the subspace

Hi = {d:Ad=0A A,d=0}, (A19)
then the problem (A16) - (A18) will have a unique solution and hence the direction of
search Ad® is uniquely determined. If M is only positive semi-definite on H', the prob-
lem does not have a unique solution. In this case the direction Ad' is chosen to be the
negative gradient of f, i.e. the vector ¢ +Md', projected on H’. When the matrix M is

indefinite on H* then a solution 1o problem (FDEQP) does not exist, because along any
direction of negative curvature on H', i.e. any Ad that satisfies

AdTMAd <0, - {A20)
and
AdeH, ‘ {A21}

the value of the objective function is unbounded from below. When however, problem
(FDEIQP) has a solution, then along any direction of negative curvature of M of H', an
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inequality constraint, which is not in the working set, must become active. Hence, in the
case that M is indefinite, any direction of negative curvature is a suitable choice for Ad .
Once a (nonzero) direction of search is calculated, a step Size «; must be determined.

In the case that M is positive definite on A i, the step size o; is taken so that ]T is minim-
ized along Ad‘ on H', ie.

Ay di—b

~ L2 7 4

o, = min{l,
i AzIAdi

2 Adi>0) {A22)

A similar choice is made in the case that M is only positive semi-definite on H' :

(cT+dTM)IAd!  _ Azd'—by, A4
AdTMAdT Ay adi

o; = min {
i

2y AdP >0}, (423
If M is indefinite on H ¢, the step size «; is taken as

Ag;d'—b ; .
a; = min{~ "2 H A A, Ad >0} (A24)
J Ay Ad
The third step of an iteration consists of updating the working set.

A constraint is only added to the working set when it resiricts the step size «;. We note
that if the matrix of constraints

A,
Al

was of full row rank before the constraint was added, then it will also be of full row rank
after a constraint is added. For if this constraint was linearly dependent of some con-
straints already in the working set, then the constraint would not have restricted the step
size o, .

If the direction of search Ad’ is zero, then the minimum in the current subspace is
achieved and hence no further progress can be made with the current working set. The
subspace may be enlarged by deleting constraints with negative Lagrange multipliers from
the working set. If only one such constraint is deleted, then the direction of search Ad’,
computed as the solution of problem (FDEQP), will be directed into the feasible region (cf.
Powell (1974)).

When the direction of search Ad’ becomes zero and there are no constraints with a nega-
tive multiplier, then d/ is a solution of problem (FDEIQP).
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The method described above may be summarized as the algbrithm below :

Algorithm Al:

(0) d°cH?® given.
i = 0.

(i) Test for convergence.
Terminate if the minimum in the subspace H' is achieved and if the Lagrange multi-
pliers have correct sign.

(ii) Caladate a direction of search Ad*.

Gii) If 1A 1= 0 then goto (vii).

(iv) Calculate a step size o; and set

)

ditl = dl 4 oa;Adt

If the step size «; was restricted by one or more constraints, add one of these con-
straints to the working set.

(vi) i = i+1

goto (ii).

(vii) Delete a constraint with a negative Lagrange multiplier from the working set.

. goto (ii).
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Appendix B : Transformation of state constraints.
Consider problem (SCOCP) with a scalar state constraint

Tx(@)t)€ 0 foral OSt<T, (B1)
for which condition (5.1.2.4).is not satisfied. This means that the functions 77 defined as :

T{x.z) i=0

r TiWx 2 )f (e d) 4 T/~ Mx t) j=1.p (B2)
do not satisfy the condition :
Tilxt)=0 forall j=01...p—1. ' {B3)

The transformation requireé the introduction of p additional state variables, denoted y;
(j=1,..p). that satisfy the differential equations :

¥ = Yier i=1..p~1 ) (B4}

, = TP(xat) (B5)
with initial conditions :

7,(0) = TI"4(x(0).0) j=1,.p. ; (B6)
For a trajectory (x .y .« ) that satisfies (3.1.2), (3.1.3), (B4). (B5) and (B6). we have

v (8) =TI Wale)e) OSt€T (B7)

The state constraint {B1} is now replaced by :
Saax )y @)e) = yy(t)< 0 0<:<T, ' (B8)

which makes no difference for the solution of the orginal problem (SCOCP). However, one
may easily verify that for the transformed problem we have
Yi+1 j=01.p~-1

St = TP(x u.t) j=p

(B9}

and hence condition {5.1.2.4) is satisfied for the transformed problem.
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Appendix C : Results on the reduction of the working set.

During the execution of Algorithm 5.8, which determines a solution of problem

"(EIQP/SCOCP/A), the direction of search can become zero. In this case it is possible that
further progress towards a solution can be achieved by a suitable reduction of the working
set. In this appendix we shall investigate this reduction of the working set.

We note that when the direction of search becomes zero, then the current estimate of the
solution of problem (EIQP/SCOCP/A), (d}.d}}. is the solution to problem (EQP/SCOCP)
with the current working set.

The working set of iteration i will be denoted as :
Wi o= WiXWLX X W g - (c1)

Reducing the working set in iteration i yields W/ C Wi™!. The direction of search
(Adf,Ad]D), in iteration { will be determined from the solution of problem (EQP/SCOCP)
with the working set W'. Because all equality constraints of problem (EIQP/SCOCP/A)
will also hold for solutions to problem (EQP/SCOCP), the direction of search satisfies :

Adl = f,Irlad} + It lad] ae. 05t<7T, {cz)
D, [olagi(0o) = 0, {c3)
ETIAdNT) = 0. {ce)

A requirement for the choice of the working set W' is that a step size o; can be deter-
mined so that (di*!1.d/*') ig at least A-feasible. This requires that the direction of search
must satisfy :

S [EMAdIGED + S, [ Adi D € 0 forall eWi ! [=1.k, (CS)
Su[tPAdiE) € 0 forall 7eW(Th 1=1.k,, (c6)

i.e. the direction of search (Ad}.Ad]) must be feasible for the grid points which were in
the working set in the previous iteration. Obviously, this requirement is satisfied for all
time points which remain in the working set in iteration i, because for these time points
(C5) and (C6) will hold as equalities. The choice of the working set W' is governed by
the fact that (C5) and (C6) must also hold for time points which are deleted from the
working set in iteration i —1. In view of this choice we shall first prove Lemma C1.

To simplify notation, the superscript i-1 is omitted for the Lagrange multipliers, which are
used in the sequel.

Without loss of generality we shall assume that the working set W™, (I=1,..k,+k,)
consists of one boundary interval [z{z}] and. in addition, that the working sets Wit
(I=1,..k,) contain one contact point t5, (U =1,..k,).

Lemma C1: Suppose the solutions of problem (EQP/SCOCP) with the working sets Wi™1
and W' are unigue. Let (d!.d}} be the solution of problem (EQP/SCOCP) with working set
Wi~ and the multipliers (X 7.5 Ji.B1.5;1) satisfy the conditions of Theorem 5.5. Suppose
that the multipliers W, (1 =1,..k,} are continuous on the intervals (t{ %), {I=1,.%k ) and
that the mudtipliers Wy 4, (I=1.k;) are p-times differentiable on the intervals

(5 M) =1k,
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Ad} = d, —d},
Adl = 4, - d},
where (d, d, ) is the solution of problem (EQP/SCOCP) with working set W' C wi-L,

If W' is obtained from W™l and if an interval {t14,)C Wi, (1SIS€ ky) with t<t, is
eliminated from the working set,ie. if

Wio= WX W TN )X W T XL XWTE
then
‘2
S A XS 10, 16 18d 1 (0 )+ S 1, [ 18d i 2 )) @ > 0. (c7)
5

If Wiis obtained from Wi~ and if an interval [t 71

Kyt kg o .
<ty <th 2! is eliminated from the working set, then

YC WY, (1SISky) with

-kl*l
LE1
()52, LA dt + 3 7 5450 I8d i) > 0 (c8)
o l-o-l i=1
where
N0 le) .
Ao t) = (—~1)"'——+—— for all t’i +l$t€tél+l {c9)
ra
Pf-l“ﬁk !
. - - +,
BT = Bh+ GO —— ) =120 (c10)
dt

If Wiis obtamed from WiT) and if an interval Gy

EyH o~ kg +
<, <t4 2! is eliminated from the working set, then

]CW,{ +l (1<l<3€2) with

z - k +1 &g+l
[ Ae)Sa[e]adi@) ar + ng;, 1947 e 1adiGe, ) > 0 (c11)
;:1"' i= .
where : Hio {t ) is defined by (C9) and
P
e e e VA é{ﬁ_m’ "' =) j=12.p. (c1z)
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Reduction of the working set

If W' is obtained from W'™' and if an interval (t,t)C WiTh, (181<k,) with
t’; + <t;<t 2<£; ™ is eliminated from the working set, then

iy
[ Ao @)S2, [t 10di) de > 0 (c13)
L1

where : T (¢t ) is defined by (C9).
If W' is obtained from W'™! and if a contact point the Wil (1S1<k,) is eliminated
from the working set, then

U118 [£518di4) > 0. c14)
Proof : As a notation for the objective function of problem (EQP/SCOCP) we shall use

f(d, d,). Because (d}.d}) is a solution to problem (EQP/SCOCP) with working set Wi~}
and multipliers (X /7.7 .%.8/1.%;1). we have

r
FdidiXad, ad,) — [X7(ad ~f.[t]ad,—f,[t]ad,) at + & D,[0]ad, (0) +
4]

i
i3

Xy
EEITA, @)+ T [ 7, XSy [t]1ad, +S,,[t18d,) dar +
1=1,]

K, 7 3
S [ WSS 1Ad, +55,1018d,) dt +
=1 ko i

1
L

o ¢
BASH e 1ad, (617 + 5,382, [14 104, ¢4) | = O,
i=1 '

forall Ad,eW, [0, Ad, e L, lorl™. (Ci5}

Because the solutions of problem (EQP/SCOCP) with the working sets Wi~ and W' are
supposed to be unique and the working set is reduced, we have

7, .d,) < 7aidi), (cis)
and hence, (f is convex),
7'(ai diadi.adl) < 0. . (c17)

Because for the direction of search (Ad).Ad}), equations (C2), (C3) and {C4) hold, (C15)
yields :

i
ky 2 _ ‘
T [N S0 )adi+8 2 1ad)) dr +
1=1,1
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Ryl
2
[ A eSS 2 180 +55, [ 1ad) ae +
1 L 252
1

B
»

1}

{

BN o kg ip Ryt = ! i(pl
2 BASi ey 1Adi eyt ) + 58 [eh 180 4D

j=1

= = J(di diXadiad)) > 0 (c18)

For all time points which remain in the working set. equality will hold. Therefore (C7)
and (C14) follow directly from (C18).
Equations (C8), (C11) and (C13) follow indirectly from (C18) using

ol ’ D op ; L 3 )
S M@ XS5 e ladi+ 55,0t 1ad)) ae + 3 BASH: eyt 1adi(e,") > 0(C19)
kgHl =1

51

Similar to the integration by parts performed in Section 5.1.1 on (5.1.1.33) this yields :

‘k]%»i

2

f Mo ¢ )San 2 ]ad! dt +

‘fl+r
L) P . 3 . 3 N . 4 :
)y l:?f,"Sé;;*[xii” Wiy ™y + 547 sk ey 1A e D) > 00 (c20)
i=1
which implies (C8), (C11) and (C13).

0

The results contained in Lemma C1 are used to develope the active set strategy for the case
that the working set is to be reduced. We shall consider a number of different cases in the
lemmas below.

Lemma C2: Assume the hypotheses of Lemma C1 hold, 1€ {1...k}, re{1....p3},

mEH < o, (cz1)
and

G, )y c with

If W is obtained from W'=! and if the interval (£, 1% ) is eliminated from the working
set and Ad/ is continuous on the interval (t,%.; 1% ), then there exist a 8 >0, such that for
all 0<tt,—t1L, €8,

S LAY + S [51adiG)) < O, {c22)

Proof : (C7) gives with ¢ (=tr and t,= 4.

7
e

[ @)X e1adl + 53, [t1ad) de = G —6L O M ENS 1w [ Al @) +
5L
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Reduction of the working set

SuBNAED + oL —51,) < 0, (c23)
and hence if £,%, —7,1, is ‘sufficiently small’ this yields
M (DS 1, 2,184 GD) + 84, [ 11Ad i, D) < 0, (c24)

which in view of (C21) is equivalent to (C22).
(]

We note that in case Z,! is an entry- respectively exit point, an analogous result can be
derived under the hypothesis that Ad, is continuous on (z,1.,%,, ) resp. (z,1, ., ).

Lemma C3 : Assume the hypotheses of Lemma CI hold,l€{1,.k,}, p;=1 and r € {0,....p>}.

(i) Suppose
74 <0, (c25)
and
£ = ¢l

If Wi is obtained from Wi~! and if the interval [t,%1,% ) is eliminated from the work-
ing set, then there exists a 8> 0, such that for all 0<t,%,—1,°<38,

Sax[£,210d (2,2 < 0. (C26)
(ii) Suppose
75 <0, {c27)
and
;2

t,? =t

If W is obtained from Wi~! and if the interval (1,2, t,%] is eliminated from the work-
ing set, then there exists a 8> 0, such that for all 0<1z,°~t,%., <8,

S t21Adi(27) < 0. (C28)

Proof : (C8) is used to prove (C26) in the following way

1

-~

2
r+l

Mo (IS 2, [t 1Ad () de + #3855 [,21Ad (2, > 0. (c29)

-~

This gives
[ + 30 G202 —22) S 521801 G2) +
%'77_01 %1085 =t DS [1,51 184 (5,%1) + 0 (t% =53 > 0. (C30)

Because the time point t_,2+ 1 is not removed from the working set. the second term is zero,
and hence for sufficiently small’ £,%; —,% we have

7S+ 1 Mot &2Xt% =t l Sax [£,718d1(52) > 0. (c31)

Also for “sufficiently small’ £,%; —z,, condition (C25) yields
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v+ %—;’_)01 20—t <0, : (c32)
and hence (C31) implies (C26).
(C28) follows similar from (C11).
] .
Lemma C4 : Assume the hypotheses of Lemma CI hold, [€{1,.k 3}, py=2 and r €{0,1,...5,}.
(i) Suppose, in addition, that t,°=t",
) i;fll
Vip— o g <0, {033)
Lyt
If W' is obtained from Wi~ and if the interval [t,°1,% ) is eliminated from the work-
ing set, then there is a 8> 0, such that for all 0<%, ~£,2€ 8,
Sa [821adi? < 0. (c34)

(i) Suppose, in addition, that 1,°=1t}

I 17111
17[1 - ﬁ > 0, - (635}
PR ’ '
7h <0, (C36)
[t.26%.1 c Wi g (c37)

If W' is obtained from W' and if the interval (,%1,%., ) is eliminated from the work-
ing set, then there is a 8> 0, such that for all 0<2,%,—1,°< 8,

Sa i 1adi%,) < 0. {c38)

(iii) Suppose, in addition, that 1,°=1t}
0 ’74‘}2
Vo + _=s < 0, {039)
P PN .

If Wi is obtained from W2 and if the interval [t,2, 1,7} is eliminated from the work-
ing set, then there is a 8§ >0, such that for all 0<1,°~1% <8,

S [5A8d5D) < 0. (c40)

(iv)Suppose, in eddition, that t,°=1t}

=1
vV
7% + =—as— > 0, (ce1)
[ Ftat )
vh > 0, {c42)
2. 271 c with. (c43)

If Wi is obtained from Wi~ and if the interval (8,2, 1,%) is eliminated from the work-
ing set, then there is a 8 >0, such that for all 0<i,>~t,2,<8,

San 6,2, 1adi(52 ;) < 0. {ce4)
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Reduction of the working set

Proof : We shall first prove part {i), which follows from (C8). For the case p =2, this
yields :

2
L]

f 'f)o[ (3 )S2b: [t ]Ad;(t ) dt + 1’3182!,‘ [t 2]Ad (l 2) + Vil le[t Z]Ad (t 2) > 0. {045)
2

The last term of (C45) is now considered as :

SHEA + SHLEIGED = L [sule]+ saleMi6)], (ct6)

SHEA+ SHLIEAL G = (52l + S, 0], 2 (c47)

((C46) and (C47) are true because d} and d, both satisfy the linear differential system of
problem (EQP/SCOCP)). And hence,

SLIE2IAdIG?) = —[sﬂ, it ]Ad‘(t)] (c48)

An approximation of (C48) is :
So 651 184550 ) = Sy, [1,718d 12D

531671841 D) = =3 +0( % =5, (C49)
L1 — &
which becomes : ) -
— S [5,210d 1 (2,5 - -
$3 67184 = ~ i%]—— + 0@t =1 (cs50)

. 2
ey — &

because £,%, remains in the working set.
The remaining terms of (C45) are treated similar as in the proof of Lemma C3, part (i).
this gives :
: =1
7728
7Y - W + 1% 2P (6,1 |2 [£,718d1 67 + 0G5 ~22) > 0. (C51)
r+l
For ‘sufficiently small’ 7,%, ~r,° we have
-0 5112 ba
vll - __'2""""";" + 1 (tri'l_t )T'ol(t ) < 0 (CSZ)

whenever {C33) holds. This yields (C34).

To prove part (ii), we consider (C45) with 7,5, replaced by £,%,. Because the time point
2 will remain in the working set as a contact point we have

Sa[2182i (%) = 0. (c53)
Therefore (C49) becomaes :
Sl 10d it 2)

=2 =2 + O(E;'z-l-l _E:Z)' (054}
a1 < 4

53,0z, E]Ad HeP) =

Now (C45) with ,%,; replaced by £,%, gives :
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Th + (G =10 (G50 |Sau 650 181G 50) + 02 ~27) > 0. (Css)
For "sufficiently small’ 2,5, ~¢,% we have
A+ @R -Mg(th) <0, ' (Cs6)
whenever (C36) holds. This yields (C38).

The proofs of parts (iii) and (iv) are omitted because they are straightforward
modifications of the proofs of parts (i) and (ii), based on {C11). '
[}

Lemma C5: Assume the hypotheses of Lemma CI hold, Le{1,.k ;) and re{1,..p,—1}. Sup-
pose in addition that

Ao (2,2 < 0. (C57)

(2. 1%, lc Wi e (cs8)

If W is obtained from Wl and if the interval (¢t,°.1 1,5 ) is eliminated from the working
set, then there is a 8 >0, such that for dl 0<t,%; —1,%.; €8,

Sa 162182120 < 0. (C59)

A proof of Lemma C5 is omitted because it is a direct analogue to the proof of Lemma C2,
based on expression (C13).

Lemma C6 ¢ Assume the hypotheses of Lemma CI hold, 1€ {1,.;Ic o and re{0.1...5,). Sup-
pose in addition that

Uy < 0. (c60)

If W' is obtained from W™ and if the time point ty is eliminated from the working set,
then

So. [t4]adiel) > 0. (c61)

A proof of Lemma C6 is omitted because it follows almost immediate from Lemma C1.
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LQ-factorization of the matrix of constraint normals

Appendix D : LQ-factorization of the matrix of constraint normals C.

D1 : Structure of the matrix of constraint normals C.
D2 : LQ-factorization of a block banded system using Householder transformations.

D3 . LQ-factorization of the matrix C after modifications in the working set.

This appendix deals with the LQ-factorization of the matrix of constraint normals C {(cf.
(6.1.2.11)), which is an important issue in the application of the Null space method for the
solution of the collocation scheme. The standard approach for dense matrices is 10 compute
the LQ-factorization of an m XA matrix by means of Householder transformations. This
requires approximately M -(7 — /3) flops. if M< & (cf. Golub et al. (1983), p.148). In the
present case 7 and A are 'large’ (/.7 >100) which makes the standard approach not
feasible. Fortunately, the matrix C is a block banded system for which an LQ-
factorization algorithm can be used which preserves its sparsity. In Appendix D1 the
structure of the matrix C is considered in more detail. The computation of the LQ-
factorization of a block banded system using Householder transformations is thereafter
discussed in Appendix D2. For the solution of problem (EIQP/SCOCP/A) via Algorithm
5.8, it is necessary to solve a series of problems (EQP/SCOCP). each with a slightly
modified working set. It is possible to obtain the LQ-factorization of the modified matrix
C in this situation using the LQ-factorization of the matrix C belonging to the previous
working set. This is discussed in Appendix D3,

Appendix D1 : Structure of the matrix of constraint normals C.

The matrix C defined by (6.1.2.11) ~ (6.1.2.13) turns out to have the following structure :

61 ]‘11
52 ]ﬂz

Cs  |aa

c= ' , I . (D1.1)

Cr-1 a1

C, Ialc

<

ny nz n3 -1 y,

where the matrices C; are m; Xn; matrices and a; (2 0) denotes the number of rows of
block C; which have no overlap with the rows of block C;,;. For the last block (_f,c we

define a = m,. Because C is an /1 X/ matrix :
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[ .
m= 3 a, {D1.2)
=1
IC
= ) on;. ' {D1.3)
i=1

There are various alternatives for the actual choice of the submatrices C,. One possible
choice is 1o set C, =C, for all r. However, as revealed by the Definition (6.1.2.12) the sub-
matrices C, still contain a number of trivial elements. One alternative is to split the blocks
C. (r=0.1...p—1) into two submatrices c 2r+1 and C 1 42, Whete the matrix Czrﬂ con-
1ains the first n columns of the block C, and Ca, 42 the remaining [ (m +n ) columns. A
second alternative is to splitt depending on the upperpart of the last {(m +n ) columns C,
into two or more submatrices. For simplicity this road was not followed in the actual
implementation. The submatrices are chosen as :

K,
N[ ]
(4]
— 0
Co ey = 7 r=01,.. P11 (DI4)
i
7
7
[
¢+ {+n + ki) r=0
i=1
Mo ay = [ (D1.5}
e ++2n + Y k(T,4:) r=1.2,..p~1
p=1
(The matrices N, [z, ] are ¢, Xn matrices.)
Norgy 5= N r=01...., P -1, . (Df6}
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C2r +2

Mmaor42

Nor2 -

c2p+l

Map+1

n2p+1

. The total number of submatrices C ; is

L =

i

2p

The numbers a;

Azr+1 =

A4z *

Q2p +1

0

0
G 11r
G21r

Gl 1r
G 1r

0
0
Hy,

Hyy,
le

LQ-factorization of the matrix of constraint normals

Relry 44l RE[7, 0] O

G-

(l+1)n + iig("'h.”)

Iim+n)
-7

n+gqg.

n

+1.
are :

c
n +ec

E[T]|

i=1

r=0

r=12,..p—1

i _
in + Zk(Tlr-H)'

i=1

n+g,

0
. le[‘rlr+1]
Hllr
Hllr
H,
r=0.1...p-1,
r=01...p-1,

r=01.,..p—1, (D17)

(D1.38)
(D19)
(D1.10)

(D1.11}
(D1.12)

(D1.13)

(D1.14)

(D1.15)

(D1.16)

If the matrix C is stored in the same way as dense matrices are stored, then the storage
would require
Y m;-n; <m-i, this would be rather inefficient. In view of the fact that the LQ-
factorization exploits the block structure of the matrix C an obvious choice is to store the
matrices C_, as dense matrices. i

m-n locations.

Because the matrix C

is large and sparse, i.e.
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Appendix D2 : LQ-factorization of a block banded system using Householder
transformations.

In this appendix the LQ-factorization of a block banded system, i.e. the matrix C, will be
considered. Thereto to the notations and terminology of Appendix D1 are adopted.

For the sake of completeness we shall first recapitulate the Householder transformation
which is used 10 zero a number of elements of an 7 ~vector v (e.g. cf. Golub et al. (1983)
or Lawson et al. {1974)).

Essentially a Householder transformation applied to an A -vector is an a X7 orthogonal
matrix of the form :

Q=1 +b al, (D2.1)
where u is an 7 -vector and &= —lull?/2,
vy Vi
Vp~1 Vp-1
Ve Ve
Vo4l Vp+1
v = v‘l_l ’ Q'V = V;)-; {02.2}
Xv’;] 0
vl? O
Viyr1
Vi1
Va
v

The effect of the matrix ¢ in transforming the vector v, is depicted by (D2.2) and can be
described by means of three nonnegative integers p. [ and I, (with p <1,;%!;) as follows :

1) i p > 1, then the components v ...V, ; are 1o be left unchanged.
2) Component v, is permitted to change and is called the pivot element.
3) If p <I;~1, then components Vp 41se-esVp = ATE 1O be left unchanged.
4) If 1,5 1;, then the components v, ......v;, are o be zeroed.

5) If I,<n . then components v, y+1meoVy aTe 1o be left unchanged.

The components of the vector u and the factor b, necessary to compute the Householder
matrix Q(p.l.0,), which has the above mentioned properties follow from the algorithm
below (cf. Lawson et al. (1974)) :
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Algorithm D1 (p,1,,1,,%,b,u,5)
1
I, 2
() s = —signlv,) v+ L v
i=ly
Gi) & =0 i=1..p—1
(i) w, = v, — 5
(iv) u; =0 i=p+l,. 01
(V) w; = v ' i=lx ...... lz
i) w =0 i=l+1,..7
(viD b = su,
(viii)
I + b7 hat ifb # 0
Qlpdsly) = | ifb =0

In most cases it suffices when matrix-vector products of the form Q-v can be computed.
We note that because { is symmetric we have (Q-v ) =+v7.(. Using the vector u and the
factor & as computed by Algorithm D1. the multiplication @ v can efficiently make use of

the special structure of the matrix @, as follows :
gv=v +btulyv=v +tu, {D2.3)

with :

t W™ v /5. , (D24)

Because matrix-matrix products of the form @-A and A-Q consist of a number of
matrix-vector products, this type of multiplication allows a similar use of the structure of
the matrix Q.

As a first step towards the LQ-factorization of the matrix C we will consider the LQ-
factorization of the block banded system (D1.1) using the standard procedure for dense
matrices, which may be described as follows :

Algorithm D2
cl=C
For j:= 1tom
do
Caleulate a Householder transformation Q;(j.j+1.7t) that zerces the elements

(G.j+1)....0jA) of the matrix C/-Q; (j.j+1.7).
Calculate C/* i= C1.Q,(j.j+17).
od

In order to give a simple description of the inefficiency of Algorithm D2 for the LQ-
factorization of the matrix C, we consider the following slightly different form of a
banded system, which is also denoted as the matrix C (strictly speaking it is & special case
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of the matrix (D1.1), where the submatrices ; contain trivial elements).

7

C)zH
~
nlE

w >

n

~

n

The matrices € ; and D ; are /i X7 matrices, with m € 7.

Lemma D3 : If Algorithm D2 is used to triangularize the block banded system (D2.5), then
the matrix C™, ie. the matrix C! after i times m orthogonalization steps, (15i <I_), has

the following form
L,
F,y
Ciﬁ) -
m

Ls
F,

m

ok
o

mo ifi-m)

n

n

BF: B R B

~H

(D2.5)

dr F F

H

{D26)

J

$

5
{
&

o
hH

where the submatrices L; are mXm lowertriangular matrices (j= 1....,
F; {j=1,..i}are m X matrices and the matrix G; is an m Xi(n —m ) matrix.

i), the submatrices

Proof : The proof is given by induction. Therefore the case i =1 is considered first.

The kth row of the matrix C/ is denoted by ¢/. The rows of the matrix C? satisfy :

et =+ utw /b)),

where the vector u! is calculated by Algorithm D1 and thus satisfies :
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yut=0 for all 1=2R+1,....A. {D2.8)
Because ‘

ci=0 forall k=2m+1,..7 and 1=1,..27, : (D29)
we obtain

=l for all k=2m+1,...m. {D2.10)

As a consequence of (D2.8), the elements of the columns 27 +1..7 will remain
unchanged.

Thus ‘fill-in’ is generated in the rows m+1....2M and columns 1....7. The matrices
D;.....Dy 3 and C,,....C, remain unchanged.

The orthogonalization steps for [ =2,...m are essentially the same as this first step. because
the block structure of C! is almost the same as the structure of C°.
After m steps we have :
¢, D, L, 0 0O
w — —_
0 ’CZ . F ] Gl Cfgh

ie. the matrices Fy and G, represent the 'fill-in" in the rows m+1,...2m ‘and columns
1,..n. The dimension of the matrix G, ism X(7A —m ).

To prove the induction step i =i +1 we use the following result :

“The first im rows and columns of C# and CU+D% are identical.” (cf. Tewar-
son (1973)).

Because i €1, —1 it suffices to consider the triangularization of

V G; ’ Lol D ”
G z
E= ) . {p2.11)
Di |7
¢, m
i(R—m) R it '3

The approach is now essentially the same as before. In the first step the vector u satisfies :
w =0 k>i(R—m)+24. : ' (D2.12)

Because only the first 2m rows of E contain nonzero entries in the columns
l..i{A—m)+2r, fill-in will only be generated in rows m+1...2m and columns
lo..i{n=m}+2m. Observing that this proces is essentially the same for the steps
j=2...m, we obtain the desired result. We note that during these steps the total amount
of fill-in has iricreased with m (7 —m ).

n]

The result of Lemma D3 indicates that during the factorization proces of C, fill-in is gen-
erated in a way that, if m <7, large nonzero submatrices are generated. Fortunately it is
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possibie to modify the procedure such that this problem is circumvented. This modification
was invented by Reid (1967) and makes use of the block structure of the matrix C as
depicted by (D1.1).

The essence of the approach is that instead of zeroing all elements of a row with one
Householder transformation, the elements of a row are zeroed by several Householder
transformations. Each of these Householder transformations is constructed so that it
zeroes all elements on one row of one specific block and leaves the elements of all other
blocks unaffected. For the statement of the Algorithm D3 we need the following terminol-
ogy. Suppose that the nonzero elements of the jih row of the matrix C are in the subma-
trices C; and 5;“ and that the column indices, relative to the matrix C, of the first and
the last column of the submatrix C; are respectively i, and i, The column index of the
last column of the matrix C_;H is denoted by i3 Algorithm D2 is modified into :

Algorithm D3
Cl=C
Forj = 1tom
do

Calculate @ Householder transformation ;l( jiyia) that zeroes the elements
(i i i2) of the matrix CJ QM7 i 1.82).

Calculate a Householder transformation Q(jiy+1.i;) that zerces the elements
(j i+ 1) i) of the matrix C!-Q}j i142) Q) it 1is).

Calculate C/ ' := C1-QMji1in}Q(j it 1is).
od

Reffering to the proof of Lemma D3, we observe that in Algorithm D3 the vector u for the
Householder transformations is chosen so that during this proces only fill-in is generated
in the pivotal column. The triagularization of the matrix C follows essentially the same
pattern as in Lemma D3, with the matrix G; containing only zeroes.

This approach has the following two advantages if m <A :

1) There is a considerable saving in fops.
In the terminology of Lemma D3, using the standard approach the elements of the sub-
matrix G; must all be zeroed (cf. Reid (1967)).

2) Except for the pivol elements u, . the nontrivial elements of the vectors ¥ can be stored
by overwriting the entries of the matrix C, similar to the standard procedure with
Householder triangularization of dense matrices. This is possible because the matrix G,
contains only trivial elements and hence requires no storage.

In the actval implementation of the LQ-factorization the matrix L is formed explicitly.
This matrix can be stored efficiently by taking the sparse block structure into account. A
simple analysis reveals that, except in very special cases, the matrix Q is a dense matrix.
Because of this nonsparsity the matrix Q is not formed explicitly, but it is stored in fac-
tored form. ie. the vectors u defining the Householder matrices Q' and Q7 are stored.
Hence the storage of the Householder factors requires the same amouni of storage as the
storage of the matrix C.
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Appendix D3 : LQ-factorization of the matrix C after modifications in the working
set.

The solution of problem (EIQP/SCOCP/A) requires, in general, the solution of several
problems (EQP/SCOCP) with a slightly modified working set. A numerical approximation
to the solution of problem (EQP/SCOCP) is obtained as the solution of the collocation
scheme. A modification of the working set of problem (EQPKSCOCP) translates into
modifications in the matrix of constraint normals C.

We mention the following possible modifications and their influences on the matrix C,
that follow immediate from Section 6.1.2 :

Modification of the working | Modification of the matrix C
set of problem (EQP/SCOCP)

A mixed control state con- | A row is added to C
straint changes from inactive
to active at a collocation point
A state constraint becomes a | A row is added to C
contact point at a grid point
A boundary arc of a state | { rows areadded to C
constraint is expanded with )
one grid interval
A state constraint has a con- | [+(p,—1) rows are added to
tact point which changes into | C {p, is the order of the state
a boundary arc of one grid in- | constraint)

terval ‘

In the table above the modifications are all constraints which change from inactive 1o
active. A similar table can be made up for the reverse case, i.e. constraints which change
from active to inactive. The resulting modification of the matrix C is in this case that rows
are deleted from the matrix C. We note that modifications of the working set of a state
constraint may result in a modification of the matrix C of more than one row.

In linearly constrained optimization it is common practice to make use of the previous fac-
torization of the matrix of constraint normals, with the calculation of the factorization of
the modified matrix of constraint normals. We do not intend to give a survey on methods
for the calculation of these updated LQ-factorizations. for this we refer to Gill et al.
(1974a), Golub et al. (1983, p.437) and Lawson et al. (1974, p.174 and p.208). Most of
these techniques focus on calculating an update for the matrix L. The matrix Q is con-
sidered to be either explicitly formed, or to be dxscarded completely immediately after the
factorization.

In the present case however, the matrix §, which can only be stored in factored form,
playes a key role in the Null space method. Because it is our desire to preserve the sparsity
properties of the factored form of the matrix Q. a suitable way of updating the factoriza-
tion is to ‘restart’ the LQ-factorization algorithm at a suitable point. We shall outline the
method first without making explicit reference to the sparsity of the matrix C.

Let
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; .
CoMd = [LoMd O]IQ""‘ {D3.1)
and .
w o |, o o | (D3.2)
CH = c3 cre = Ccae :

where C$¥ is an M;X” matrix. The LQ-factorization of the matrix C°“ is known and the
TOWS fity, . . . , 72 of the matrix C are modified.

The LQ-factorization (D3.1) is now rewritten as :

cr Lo (D3.3)
cge Q.08 = LY 0 )
where the matrix Q¢ is the product of the Householder transforms which were used to
obtain LY, ie.
C{03¢ = L. {D34)
Now consider
o pyold i Id Ly 0
crev QI = ng Qti = ngwQ%ld (D35)

Once the matrix CF“Q% is calculated. the LQ-factorization proces can be restarted with
the triangularization of row m,+1. We note that this method is essentially the ‘removal
part’ of method 2 of Lawson et al. (1974) (p.177-178).

Now consider this method for updating the LQ-factorization of the block banded system
{D1.1). In the implementation of the method, a copy of the matrix C is preserved. When
the working set is modified. this copy is modified first. The LQ-factorization of the previ-
ous matrix C is thereafter updated using this modified matrix.

For the calculation of the product C¥¥Q9¥ . we consider the actual block structure of the
matrix C which follows from Appendix D1.

c2r’ V “ig
—igtm

62r +1 —
Figure D1

The blocks C. 2 +1 and c. 2r 42 contain the coefficients of the linear equations, correspondmg
to the constraints on the grid interval [z, 1, 4y).

If the factorization proces is to be restarted at row ig+m as depicted above, the calculation
of the matrix C¥*Q%“ involves only Householder iransformations used in the previous
factorization proces for the triangularization of rows igigtl....., igtm—1. When the fac-
torization proces would be restarted at another point, this would involve also Householder
transformations from other blocks. (Note : the row of the blocks C. 2, and 62, 42 never
overlap.) Because this strategy allows a simple implementation, this strategy was adopted
for implementation.
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Appendix E : Computational details.

E1: Calculation of the Lagrange multipliers for the active set strategy.

E2: Approximation of the Lagrange multipliers of problem (EIQP/SCOCP).
E3 : Calculation of the matrices My, M; and M.

E4 : Strategy in case of rank deficiency of the matrix of constraint normals.
E5: Automatic adjustment of the penalty constant of the merit function.
E6 : Computation of the merit function.

E7: Miscellaneous details.

The Appendices E1 - E7 deal with a number of computational details of rather specialized
nature. In Appendix E1 the computation of the Lagrange multipliers, required for the
active set strategy of Algorithm 5.8, is discussed. The computation of the Lagrange multi-
pliers, which are used for the computation of the merit function, is discussed in Appendix
E2. The matrices My, M3 and M, (cf. (4.2.1.12) - (4.2.1.14)) can be computed in two
different ways, this is discussed in Appendix E3. In Appendix E4 the case of rank
deficiency of the matrix of constraint normals. which may arise during the execution of
Algorithm 5.8, is considered. A procedure for the automatic adjustment of the penalty
constant of the merit function is given in Appendix ES and the computation of the merit
function is discussed in Appendix E6. Appendix E7 deals with some details related to the
implementation of the method.

Appendix E1 : Calculation of the Lagrange multipliers for the active set strategy.

For the solution of problem (EIQP/SCOCP/A), more specifically for the active set strategy
(cf. Section 5.2), the Lagrange multipliers (Mo Fir 54 1) are required. These multipliers
are related to the multipliers "'wk and B,;', which are obtained via the solution of the

linear multipoint boundary value problem, by (5.2.23), (5.2.26) and (5.2.27), ie.

Pk (£ -

Mo () 1= ("1)pk"-~('i-;;—-—" for all t1’+k+~<~t€t_§1“— k=1,.k, (E11}
t
P e
- - - — ,
vt = B+ (T p Pr:‘*‘; 674 j=le.p k=1..k, (E12)
it

L ‘n
— = - kybk -k ke .
R G Vi jW—(n’ -) j=l..p k=1..k, (EL3)

where p; is the order of the state constraint § z;( {As in Appendix C, it is assumed that
R -:: +k])

The collocation method yields a numerical approzimation to the multipliers 7, 4, at the

the working set $,, bas only one boundary arc [t s

collocation points 7, ,;. Because a boundary interval contains at least one grid interval
[¢, £, +1] and each grid interval contains ! collocation points, there are at least [ values
N +& available.
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To obtain a numerical approximation to the multipliers (g J¢, 1745 2) from (E1.1) -

(E1.3). a numerical approximation to the time function S+ (¢ ) is required on the entire
k w&,w]

interval [fﬁ'+ Ly

One possible approach is to approximate the function ; 4+ (¢ ) on the grid intervals with
an {{—1)th order polynomial. However, this approximation will in general be discontinu-
ous at the grid points ¢,. It is reasonable to expect that 'T)k‘.,,k (¢) is a C™-function on

i -& &+
(“1 1 ey

+
). ie. e ,++ () is continuous at the time points ¢, € (i PR

Therefore a more logical choice is to consider an interpolation of ¥, s (z ) over the entire

1+& -k Y

interval (¢, ). In the implementation M 4 (¢) is approximated using a cubic

spline (cf. de Boor, {1978)) over the entire boundary interval. This interpolation technique
is suitable for dealing with the cases p, = 1 and p, =2, because a cubic spline has continu-
ous first and second derivatives. For cases With p;, >2, a higher order spline interpolation
should be used, because in general, the third derivative of a cubic spline has discontinui-
lies.

Appendix E2 : Approximation of the Lagrange multipliers of problem (EIQP/SCOCP).

In this Appendix we shall consider the calculation of approxzimations 1o the Lagrange mul-
tipliers of problem (EIQP/SCOCP), as they are required for the calculation of the merit
function.

First consider the exact solution of problem (EIQP/SCOCP). which is also a special case of
problem (EQP/SCOCP). Using the multipliers defined by (E1.1) - (E1.3), the Lagrange
multipliers corresponding to the state constraints of problem (EIQP/SCOCP) satisf v

& gtk

Fal)= T &)  forall V<< =1,..kz (E2.1)
;“ - "!1‘-;?1 k=1,... .kz, (522)
P =05 =1k, ' (E2.3)

For this solution the multipliers (P, ¥/ 1) (j=2..p,) must satisfy (cf. (3.3.6.2) -
(3.3.6.6)) :

Firlt=0 j=2...p k=1lo.k,, (E24)
Vist=0 j=2..p k=1..k, (E2.5)

Instead of solving problem (EIQP/SCOCP) exactly. the solution of problem (EIQP/SCOCP)
is approximated, by using the solution of problem (EIQP/SCOCP/A). Based on (E2.1) -
(E2.3) we use the multipliers (o, 70 .V,3) as approximations to the Lagrange multipliers
corresponding to the state constraints of problem (EIQP/SCOCP). Thus it is neglected that
(E2.4) and (E2.5) may not hold exactly.

We now consider the adjoint variable of problem (EIQP/SCOCP). Similar to the approach
followed above we first consider the exact solution of problem (SCOCP). In this case the
adjoint variable X, which is obtained as a solution to the linear multipoint boundary value
problem of Section 5.1.3, satisfies the conditions of Theorem 3.16 for i =p. The adjoint
variable which satisfies the conditions of Theorem 3.16 for i =0 may thus be obtained as
(cf. (3.3.62) - (3.3.6.6)) :
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& Mk y+4 ()
dth‘]

- - ky 2 "
A)=x@)+ §F T

k=l j=l

Sise ¥ oSt €T {E26)

It is this multiplier that is used for the calculation of the merit function.

The multipliers 7),, & and ¢ corresponding to the solution of problem (EIQP/SCOCP) are
approximated by the multipliers 7, & and . which are directly obtained as the solution
of the linear multipoint boundary value problem.

Appendix E3 : Calculation of the matrices M,, M3 and M 4"

In this appendix the calculation of the Hessian of the Lagrangian, more specifically of the
matrices M,. M5 and M, is considered.

We recall that the matrices M;, M ; and M 4 are defined by (4.2.1.12) - (42.1.14) as : ¥ '

Moltl= fo le]+ Me)efi [t 1+ me)sS,,, k] O0sesT, - (E3Y)
Miltli= fo le 1+ Al )af [t 1+ m(e )28 . [2] o€t €T, (E3.2)
MIT= foule] + AN Iafu e+ ny(e )68, 02 ] 0L€T (E3.3)

We note that in the definition of the matrix M, use was made of the assumption done in
Chapter 5 :

Shaultl=0  foral j=01..p-1 k=1.., ’ {E34)

The multiplier A is the multiplier whose calculation was discussed in Appendix E2 and is
computed by (E2.6).

The £ ollowmg lemma shows that the matrices M,, M5 and M 4 can also be calculated using
multipliers o).

Lemma El1: If

S5dt]l=0  forall k=01..p—1 j=1,..k, | (E3.5)
and
Ae)= K@)+ kf, Pf,(—l)”““‘ a ,’Z"f"(t)sg,;‘[slf o<, (E36)
£=1,=1 arf*™!
then
Mit]= foult]+ X(@)xfo [t 1+ M()x8E[t]  0K:€T, (E37)
Miltl= fo le]+ X(@)xf, [t 1+ 7, x88[t] 0€¢<€T, (E38)
Milt]= fou le1+ X(e)xfo fe 1+ MG 28811 0<e<T, (E39)

where S is defined by (3.3.5.11).
Proof : To prove (E3.7) - (E3.9) we have 1o show that

 For the sake of brevity the iteration index { was omitted for the multipliers.
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Medaf lel= K@ ef, 1+ Fue )58, [r]  0Ke£T, ‘ (E3.10)
AMedaflt] = X )xf, [t 1+ M6 )288,,0t]  o0Ke€T, (E3.11)
Medsf le]= X af, [t ]+ T2 )288,1t1 07T, {(E3.12}

where T}, denotes the last &, components of the vector 7 and S4,,. §8,, and S§4,, denote
the Hessian of the last &, components of the vector $7.

Considering (E3.10). using (E3.6) we obtain :
AE)rfnlt]= X@)af, [t 1 +

kg &M e @) ‘
P Y St P s ] 0Se<T. (ESI3)
dt

k=1j=1

From Section 3.3.5 we recall the definition of §7 :

Sho= Suy + SI5 j=1lepe. (E3.14)
and hence

Sk = Sl + SiGLf + SiaM. i=tl.p. (E3.15)
Using (E3.5) this becomes :

She = Stad + SEM i=lepe. | (E3.16)
and hence

Shie = Sk, + S350Sy + S5l J=Llipi. (E3.17)

Using (E3.5) once more we obtain :

. 0 i=1.., 21
Shfx = - (E3.18)
SZ{,\,\ ] = D

Substitution of (E3.18) in (E3.13) yields (E3.10).

The proof of (E3.11) and (E3.12) follows similar lines.
a

Lemma E1 shows that there are two alternatives for the calculation of the matrices M,
M, and M, Now consider the case that the step size «; in Algorithm 4.4 equals one. In
this case A‘=A‘"}, i.e. the current estimate of the multiplier A is the multiplier A of the
previous iteration (the adjoint variable corresponding to the solution of problem
(EIQP/SCOCP/A) in the previous iteration). This adjoint variable is obtained from the
multipliers X and 1 which were obtained as the solution of the linear multipoint boun-
dary value problem, via relation (E3.6). (cf. Appendices E1 and E2). It is well known
that in general, the numerical differentiation of %, yields relatively large truncation errors
in A. Therefore the actual calculation of the matrices M4, M3 and M 4 is done using (E3.7).
(E3.8) and (E3.9) with X and %, corresponding to the solution of the last linear mul-
tipoint boundary value problem. When the step size &; not equals one X and 7, are
modified in a way similar to all other multipliers in Algorithm 4.4.
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Appendix E4 : Strategy in case of ramk deficiency of the matrix of constraint nor-
mals C.

In Algorithm 5.8 it was assumed that throughout the solution process of problem
(EIQP/SCOCP/A). the matrix of constraint normals C has full row rank. However, in
practice it turns out that this assumption may not always be satisfied.

‘We shall first analyse this phenomenon from the point of view of finite-dimensional qua-
dratic programming. In this case, the constraints, which restrict the step size, are added to
the wdrking set one by one, therefore the matrix of constraint normals will never become
rank deficient. Considering the addition of constraints to the working set in Algorithm 5.8,
we observe that (in case of state constraints with order 2 1) more than one row can be
added to the matrix C at the same time (cf. Appendix D3).

An alternative point of view follows from the consideration of working sets for problem
(EQP/SCOCP). 1t is not difficuit 1o establish examples for which a solution does not exist.
Consider the following example :

meuze f d2de, {E4.1}
sub;ectto d, ()= d,(t) 0%:<T, , (E4.2)
d,(0) = _ (E4.3)
d. @)= dypy 0<t; €t 2,<T, o (E44)
4, 0= dypax 0S¢ €13 (E4.5}

If £3<t;. then problem (E4.1) - (E4.5) has a solution and if £32¢,, then (E4.1) - (EQ.S)
may fail to have a solution. In the latter case the matrix of constraint normals will be
rank deficient.

We now turn to the consideration of possible remedies for the case that rank deficiency is
encountered.

A remedy suggested by Han (1981) in the context of finite-dimensional quadratic pro-
gramming? is 1o use a least squares interpretation of the constraints. At first sight this
seems a suitable alternative, because we have already an LQ-factorization available for the
matrix of constraint normals (cf. Appendix D2). A complete orthogonal decomposition can
be obtained by premultiplication with orthogonal matrices which zero the linear dependent
rows.

However, when there are state constraints of order 2 1 present, the solution procedure
relies entirely on the transformation of state equality constraints into interior point con-
straints and mixed control state constraints. This transformation is based on the fact that
(d, 4, ) satisfies the linear differential system of problem (EQP/SCOCP). If the solution of
the collocation scheme would be obtlained using a least squares interpretation of the matrix
of constraint normals, then this transformation would no longer be valid, because (d, .d, )
will no longer satisfy the linear equations which were obtained via collocation on the

+ With the method described by Han (1981) also more than one constraint can be added to the wotking
set at one time.
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linear differential equations. Hence for problems with state constraints of order 2 1, this
remedy fails. :

Therefore the following. heuristic, strategy is followed. When rank deficiency is encoun-
tered, a kind of restoration phase is started. which calculates a feasible point with a matrix
of constraint nermals of full row rank. This restoration phase follows essentially the same
strategy as the phase 1 of the Algorithm 5.8 as outlined in Section 5.2. For the sake of
brevity, we shall not go into the details of this phase. From the new point, obtained from
the restoration phase, the Algorithm 5.8 is restarted.

We note that with this strategy cycling is possible to occur, i.e. Algorithm 5.8 may return
1o the same situation. Therefore a check on cycling is made whenever a constraint is to be
deleted from the working set. i.e. using a unique code for all possible working sets, it is
verified whether the current working set is equivalent to any of the previous working sets.

Appendix E5 : Automatic adjustment of the penalty constant of the merit function.

The merit function {cf. {4.3.8)) is used in the first phase of Algorithm 4.4. The penalty
constant p is, in first instance, supposed to be specified in advance and for a 'sufficiently
high value of p the direction of seach obtained as the solution of problem
(EIQP/SCOCP/A) will be a direction of descent of the merit function.

Essentially, the role of the penalty constant p is to balance a decrease of the objective
function versus violation of the constraints. Taking a very large value for p would there-
fore have the effect of placing large penalties on constraint violation and making the merit
function relatively insensitive to decreasing the objective function. This makes a pro-
cedure for the automatic adjustment of the penalty constant attractive, for is such a pro-~
cedure is available, it is possible to start with a relatively low value of p. The procedure
will then increase the value of p automatically to a “sufficiently high’ value. ’

The procedure is essentially based on the result contained in the lemma below.
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Lemma E2: Let the merit function be defined by (4.3.8) and let the problem functions satis-
fy the assumptions of problem (SCOCP). For any direction of search (d,, d,, A=A, 11—y,
£, G~0, fi—p) for which (d,.d,) is a solution to problem (EIQP/SCOCPXA) with
Lagrange multipliers { N7 .G i) that satisfy

AuE)Z 0 ae OS¢ST k=1, %k, (E5.1)
£, (t) is nondecreasing on [0.T] k=1,..k,. (E5.2)
let
Y T ! T 4T M, M| \d,
M, d,) = d,(0) M, (0) + Of(d, an ML oM.l | %t
&, (Y Myd (7). ' (E5.3)
r
Wd, d, N3 = Id, (0% + f (R (N2 + 1d, N2y dt + 1d (T W2, (E5.4)
L))

IA—A =0 =85 =0 f—pllf i= 15—0l2 + Ug—ulh? + Th5,—v 12 +
i

I
[ WX =N WPHIF ()= NP HI R )-mae WD de. (ES.5)
¢

If there are a 8 >0 and an €> 0, such that
M(d, d,)2 8i{d, d,NE, (E56)

1(d, d N2 2 (A=A A= 1£~E6 =0 a—ulif, (E57)
then, for all p>0
—M {ONd, & X=X A= E—E.F—0 i—p) 2 L181(d,d, 05 +

Be _
2
The proof of this lemma is a rather lengthy derivation and follows similar lines as the

proof of part b of Theorem 4.2 of Schittkowski (1981). We note that in the proof use is
made of the conditions (E5.1) and (E5.2).

Now we shall consider the existence of a number 8 >0, as mentioned in the hypotheses of
Lemma E2. Because a solution of problem (EIQP/SCOCP/A) is also a solution of problem
(EQP/SCOCP), the second order sufficient optimality condition of part (ii) of Theorem 2.16
may be expressed for problem (EQP/SCOCP) at this point. This sufficient optimality condi-
toin assumes the existence of a §> 0, such that

L, d, X586 . 1)(8x Su)8x 8u) = M(Sx.8u) > SI(5x Sudii, (E5.9)
for all (8x 8u) satisfying

-;; IA=N A —n1.E—E.6—0 f—ulZ. : (E5.8)
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8% = f e BBx + £, [t Bu ae. 0St€7T, (E5.10)
D, [0J8x(0) = 0, (ES.11)
E[Thx(T)= 0, (E5.12)
R It1ox + Rt u =0 ae. 0S:t<7T. {E5.13)

Condition (E5.9) is equivalent to (E5.6) and hence the first part of the hypotheses of
Lemma E2 hold, whenever the second order sufficiency condition of Theorem 2.16 holds
for problem (EQP/SCOCP) and (d, d,) satisfy the homogeneous constrainis (E5.10) -
(E5.13). Because (d, .d,) satisfy the inhomogeneous relations {4.2.1.22) - (4.2.1.25), the
hypotheses of Lemma E2 may fail to hold, even when the second order optimality condi-
tions hold for the solution of problem (EQP/SCOCP). However. this situation is only
likely to occur ‘far from the solution’, i.e. when the inhomogeneous terms in the relations
(4.2.1.22) - (4.2.1.25) are relatively large. Considering the second part of the hypotheses
of Lemma E2, we notice that an € >0 exists, whenever Il (d, .d, 3 = 0.

The adjustment of the penalty constant is primarily based on expression (E5.8), i.e. if
8> 0 and €> 0 both exist, then the penalty constant is increased, such that
8¢ 1

> 0. (E5.14)
2 p

In the case that (E5.9) cannot be satisfied for any §> 0, it is likely that the inhomogeneous
terms in (4.2.1.22) - {4.2.1.25) are relatively large. In this case the direction of search will
still be a direction of descent of the merit function, for a 'sufficiently high’ value of p,
because (d, .d, ) will be a direction of descent of the penalty term of the merit function.
The penalty constant in iteration i of Algorithm 4.4, denoted p; is adjusted using the
algorithm below. This adjustment takes place between steps (iv) and (v} of Algorithm 4.4.
Algorithm E3
Given x' w' Mool u' and d} d} A Aot A and piy.
If M(didl) > Othen
8; = M(did)D/N(dj.dn3 3
€ = N(dl MM =N = i =t 0 ol g —pi 2
Pi = Pi-1 '
while p; <2/(8,‘6,‘ }
do
p; = 10-p;
od

else
Pi "= Pioa
while (d, d, ) is no direction of descent

do
p; = 10-p;
od
Fi
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Appendix E6 : Computation of the merit function.

The computation of the merit function (4.3. 8) is based on the quadrature rules dlscussed
in Section 6.1.1, i.e.

T -
[o@)rae ~"F b X@idlr, ). (E6.1)
o r=0 i=1

where b, = ¢, 41— .
A consideration of the terms of the merit function that involve the mixed control state
constraints S, yields that (E6.1) gives a suitable approximation for the penalty term :

Z f('nuSu (x XNt p) + 2 pSlk(x U 'nlkt'p) )dt (F6.2)
k=10

Because the constraints §,, are taken active and inactive per collocation point.
Similarily, consider the term : '

ky, T _ _
Z f(nZk S (x Mot :P) + %pSzk (x Mot ;P)z) dt. (E6.3)
k=10
Because the constraints S,, are taken active and inactive per grid interval, formula (E6.1)
is not suitable for the calculation of this term. For this would lead to penalizing con-
straints at collocation points where the constraint is not active. Therefore (E6.3) is
approximated using a trapeziodal quadrature rule, i.e.

T -
f¢>(t )dt ~ "Zl%h, (6@, ) + ¢t 41)). (E6.4)
0 r=0 .

The merit function (4.3.8) is thus computed using the quadrature formula (E6.1) for all
terms but (E6.3), which is computed by means of the quadrature formula (E6.4).

Appendix E7 : Miscellaneous details. -

In this appendix we shall discuss some details regarding the implementation of the
method.

Restoration phase

Before the first stage of Algorithm 4.4 is started, a restoration phase is executed. This res-
toration phase is essentially the same as the one used in the sequential gradient-restoration
method of Miele (1980). The restoration phase is used in order to obtain an approxlmately
feasible point and starts at an initial point, which is specified in advance.

The direction of search in the restoration phase is determined as the solution of a linear-
quadratic optimal control problem which is similar to problem (EIQP/SCOCP/A). More
specifically, the constraints of this problem are the same as those of problem
(EIQP/SCOCP/A), but the objective function (4.2.1.5) is replaced by :
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I
4, 0 d, (0 + [ld Y d,@)] dr +d, (TYd,(T) (E7.1)
o

d,(t)
d, ()
As a merit function the penalty part of (4.3.8) is used. i.e.

T ky _
P(x,u,'r)}.é:t)) b %{ f(llx'—f(x,u.t)ﬁ2+ ZS;;(x,u,’qlg,t;p)z‘(-
) =1

Cky K,
2 SuGemytipy®ydt + LY. Sulxvyt; p¥ +

(=1 ji=1
1D (x(ON2 + UWE(x(T).T )||2], . (E7.2)
with :
Suxumyep)= maxi{Sylxut). ~ny/pl (E7.3)
§21 (x Mok :p) = max {Sz; (x .t) il i 771 fp}, {5?4}

The restoration phase is terminated once the norm of the direction of search is below a
specified quantity.

Implementation of the line minimization.

The approximate line minimization outlined in Section 4.3 was implemented with B=-24-

and e=% . In addition to the condition (4.3.12) which must be satisfied for the step size
a=B%, the penalty term (E7.2) must satisfy :

Pla) < max [P*.Plo}] | (E7.5)

where {a} was used to replace (x' +ad/), v’ +ad!, nita(Hi—n]), £ +e(—¢),
Obviously. condition (E7.5) ascertains that ‘away from the solution’, i.e. at points where
P < P{0}. the penalty term in the merit function is not increased.

Non-convergence of Algorithm 5.8

Non-convergence of the solution procedure of problem (EIQP/SCOCP/A) is possible to
occur as a result of the following conditions :

1) Problem (EIQP/SCOCP/A) has no bounded solution.

2)  The constraints of problem (EIQP/SCOCP/A) are inconsistent {no feasible point).
3) . The maximum number of iterations in Algorithm 5.8 exceeded.

4)  Cycling detected (cf. Appendix E4).

5) The maximum number of grid modifications exceeded.

5) Rank deficiency of the matrix of constraint normals was encountered too many times
{cf. Appendix E4). )

In each of these cases, Algorithm 5.8 is terminated. The last estimate for the solution of

problem (EIQP/SCOCP/A) which was used in Algorithm 5.8, is used as a direction of

search in Algorithm 4.4. After the determination of the step size o, Algorithm 4.4 is con-

tinued at step (i), ie. an initialization step is executed which determines first order esti- _

mates for the Lagrange multipliers at the new point.
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Numerical results

Appendix F : Numerical results.

This appendix contains a number of tables, with the convergence histories that correspond
to the numerical solution process of some of the problems discussed in Chapter 7. The
Tables F1 - F8 contain : ‘

Table | Convergence history of

F1 unconstrained glider problem.

F2 glider problem with acceleration constraint, n ,,,= 4.
F3 glider problem with velocity constraint, v .= 30.

F4 glider problem with altitude constraint, ¥ ;= —30.

E5 unconstrained reentry problem.

Fé reentry problem with acceleration constraint, n ,,,=6.
F7 reentry problem with altitude constraint, £,,,.= 0.0090.
F8 servo problem with V., =15, 4, ;3. ¢=1.

On top of each table the number of gridpoints (p ) and the order of the polynomials (1)
are given. In most cases the convergence table consists of three parts. The first part shows
the convergence behaviour of the method in the restoration phase (cf. Appendix E7). The
second part of the convergence table shows the convergence behaviour in the first stage of
the method. The last part of the table shows the convergence behaviour in the second
stage. The columns of the convergence table contain the following entities :

IT Iteration number
T Type of iteration (R = Restoration step, | = Initialization step.
G = Gradient step, N = Newton step)
D28 Norm of direction of search
OBJECTIVE Value of objective function
MERIT FUNCTION  Value of merit function
LAGRANGIAN Value of Lagrangian part of merit function
PCRIT Value of penalty part of merit function (excl. penalty constant)
RHOP Penalty constant
QP Number of iteration steps used for the solution of
problem (EIQP/SCOCP/A)
1G Number of grid modifications
IR Number of times that rank deficiency of the matrix C was encounted
QPZ Number of linear conjugate gradient steps done during the solution of
problem (EIQP/SCOCP/A)
DN Dimension of Null space of matrix C after solution of
" problem (EIQP/SCOCP/A)
DR Dimension of Range space of matrix C7 after solution of
problem (EIQP/SCOCP/A)
C Termination condition of Algorithm 5.8 (x= Subproblem unbounded
from below)

Below the convergence table the solutions obtained for the state and control vectors are
given at the time points ¢ =0,¢=0.1..... £ = 1 and the active set is listed.
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-]
-

NUMBER OF GRIDPOINTS
ORDER OF POLYNOMIALS

ITT ALPHA | ID2}
0.100+01
0.100+01
0.100+01

0.420+02
0.12p+01
0.70D+00

O R
1R
2 R

OBJECTIVE

END OF RESTORATION PHASE

0.54D+02
0.27D0+02
0.98D+01
0.120+01
0.120+00
0.96D-03
0.54D-06
0.54D-12

. 250+00
.500+00
.100+01
.10D+01
.10D+01
.10D+01
.10D+01
.100+01

VEeNOVdWW
2Z22Z2Z22Z2w
Q0000000

10

.1438259741770+02
.104205654109D+02
.6809121775090+01
.6212446629120+01
.7293390161490+01
.730229160801D+01
0.730234079927D+01
0.7302340814460+01
0.730234081446D+01

o000 OoO0

MERIT FUNCTION

.6870964963790+00
.299617907164D0-02
.7219438831110-04

0ooco

.144793154540D+02
.1110152036100+02
.B96346291391D+01
.747159816745D+01
.7302540233750+01
.7302340835360+01
0.730234081446D+01
0.730234081446D+01
0.730234081446D+01

[=X=YuleloXal

STATE VECTOR X

0.00D+00
0.10D0+00

.10D+01

.4163100000000000D+02
.41597485717678650+02
.4157592617424896D+02
.4093517077559683D+02
.4515684885800978D+02
.58494283314891400+02
.4633108933433880D+02
0.42263589277387140+02
0.42509915570026740+02
0.41964079593929320+02
0.41631000000000000+02

0000000

CONTROL VECTOR U

0.00D+00 0.3937363552837666D+00
0.100+00 0.17714230349708260+00
0.200+00 0.40915883740529250-02
0.300+00 0.1465000480114400D-01
0.400+00 0.3422476328260546D+00
0.500+00 0.1167894645278496D+01
. 0.600+00 0.30834163653544290+00
0.700+00 -0.1297259035420115D0-01
0.800+00 -0.3058723511818187D-01
0.90D0+00 0.1201131065970742D+00
0.100+01 0.3113677415067381D+00

-0.1344000000000000D+01
-0.30052056688434710+01
=0.1174722101782393D+02
-0.23878396266362710+02
-0.28653765820180150+02
0.3129540981681352D0+01
0.32854598466572750+02
0.26506648055080310+02
0.13057527091732550+02
0.27317633385004900+01
-0.1344000000000000D+01

CONVERGENCE HISTORY OF THE UNCONSTRAINED GLIDER PROBLEM,

LAGRANGIAN

.1447905196150+02
.106509887755D+02
.789460581076D+01
.7321750106750+01
.7302451253110+01
.730234083099D+01
.7302340814460+01
.730234081446D+01
.730234081446D+01

000000000

TABLE F1

[s )= }=)

O00CQ00000

PCRIT

.14D+04
.80D+01
.14D0+00

.53D0+00
.90D0+02
.21D+03
.30D+02
.18D-01
.87D0-06
.56D-14
.11D-25
.72D~23

[~}

CO00O000COo

RHOP 1IQP IG IR

.10D-02
.10D~02
.10D-02

.10D0-02
.100-01
.100-01
.10D~01
.10D-01
.100-01
.100+02
.100+02
.100+02

o]
[¢]
0

[=NeXoRuR N R AN

O0Q000O0000

0000000 Oo

QrPz

(=X =y

DR

304
304
304

308
304
305
308
304
304
304
304
304

A x1puaddy
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NUMBER OF GRIDPOINTS =
COROER OF POLYNOMIALS =

IT

0
1
2

COCLAOU DWW

**s*% grid update { add )

T

R
24
R

ALPHA

G.10D+01
G.10D+02
G.100+01

IRL:F2N

0.420+02
0.120+01
.700+00

80
2

OBJECTIVE

END OF RESTORATION PHASE

RZIZZZZ™

START OF SECOND STAGE

Q.50D+Q0
0.100+01
G.1QD+01
0.100+01
0.100+01
©.100+01
0.100+01

9@ N Q.100+01
10 N 0.100+01
11 N O.10D+01
12 N 0.10D+01

X E grid update (shift) *%%¢% FROM (.4200000000000+00 TO
rmak grid update (shift) *s+xx FROM 0.5700000000000+00 TO

*rres grid update (shift) *¥%**x FROM 0.574380249681D+00 TO

N
N
N
N
N

0.100+01
0. 100+012
0.100+01
Q.100+01
0.100+01

18 N 0. 100+01
19 N Q.100+01
20 N 0.,10D+01

0.480+02
0.110+0Q2
0.110+01
0.180~01
0.200-04
0.850-06
0.310~12

0.970-01
0.84D~02
0.850-06
0.820~12

0.14D+01
0.867D-02
0.25D-04
0.48D-09
0.230-12

0.50D~-02
0.93D-07
0.32D-12

0.1438259741770+02
0.820986379606D+01
0.663089620432D+01
0.7098452648068D+01
0.7897005238020+01
0.7897004247740+01
0.788700424776D+01
0.7887004247760+01

MERIT FUNCTION

0.6870064963790+00
0.2996179071640~-02
0.72194368831110~04

0.1434138239180+02
0.9150291518740+01
0.7915319286700+01
0.7B9701205659D+01
0.7897004247880+01
0.7897004247760+01
0.7897004247760+01
0.789700424776D+01

*eedk AT 0,570000000000D0+00

0.7887001787250+01
0.78859870107850+01
0.788640758805D+01
0.788649773282D+01

.7956842442800+01
.7902386325800+01
.7898670061248D+01
.7896702976230+01
.7B896702976260D+01

[whalwgole]

0.7896843289170+01
0.78967030755980+01
0.7896702979810+01

LAGRANGIAN

0.1434114285330+02
0.8770832242850+01
0.7906126246680+01
0.782700853002D+01
0.7897004247890+01
0.7897004247760+01
0.7887004247760+01
0.7897004247760+01

0.420827886610D+00
0.5743602496810+00

0. 85743768878420+00

PCRIT

0.140+04
0.600+01
0.,140+00

0.500+00
Q.76D+03
0.180+02
0.710-02
0.820~09
0.490-20
0.740~26
0.69D~286

0.80D+01
G.18D~02
0.300-03
0.300-03

0.380+01
0.300-01
0.420-06
g.1860~18
0.460~-23

0.8580~04
Q0.460-11
0.630-23

RHO® IQP IG IR

0.100~-02 g ¢ O
0. 10002 0 0 O
0.100-02 0O 0 0

0.100~02
0.10D-02 2
0.100-02
0.100-02
0.100-02
0.100+08
Q.100+0%
0.100+05

QOO0 ROBUIO
cCo0O0QQOC
ooOROOOC

ooCo
[aNaR o)
[aNeRnw)

a 0 0
o 0 0o
o o ¢
c 0 0
g © o
g 0 O
o o ¢
o o

QPZ

GO

12
11

DR

304
304
304

307
320
320
319
319
319
319
319

326
326
326
326

326
326
32¢

S3nSa.L EorEWNN



i

S

STATE VECTOR X

G.00D+00
.10D+00
. 20D+00
. 300+00
.40D+00
.500+00
. 800+00
Q.70D+00
0.B0OD+00
0.900+00
0.100+01

cQooO0

0.4163100000000000D+02
0.41385083812926420+02
0.41334865808473080+02
0.41002758373160510+02
0.45721388741278020+02
0.54840827816728880+02
0.4693881078434232D0+02
0.4256432311183258D+02
0.4234923322475413D0+02
0.41754036540423450+02
0.4163100000000000D0+02

CONTROL VECTOR U

0.0056+00
0.10D+00
0.200+00
0.300+00
0.40D+00
[¢]

0.900+00
0.10D+01

0.45952142033663440+00
0.22227284522123430+00
(.33701691187359360~01
0.4107886720033678D~01
0.46506181753092780+00
(.75581698602144170+00
0.41654886408183760+00
0.96766405642138750-02
~0.37074093784465460-02
0.16580614510069980+00
0.3834520206598484D+00

-0, 13440000000000000+01
-0.1142013708039133D+01
-0.86908016922637670+01
-0.1992131584983075D+02
-0.22568043638999846D+02
0.25152024163291380+01
0.26553230147743380+02
0.22238691474826290+02
0.9798333785312984D+01
0.72486679391794680+00
~0. 13440000000000010+01

JUNCTION AND CONTACT POINTS QF CONSTRAINT S1

1

CONVERGENCE HISTORY GLIDER PROBLEM WITH CONSTRAINT ON THE ACCELERATION (NMAX

G.4208278866100+00 0,5743768876420+00

TABLE F2

a})..

d xpuaddy
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NUMBER OF GRIDPOINTS = 20

ORDER OF

T T

0 R
1R

ALPHA

0.10D+01
0.100+01

POLYNOMIALS = 2

flozl |

0.18D0+01
0.120+00

OBJECTIVE

END OF RESTORATION PHASE

CHNOUDBORUNN
R22ZRXIZ2ZZZIZTNMZ M

Q.25D+00

Q.480+00
0.130+00
0.13D0+00
0. 18D+00
Q. 280+00
0.28D+00
0.80D+00
0.100+01
Q.100+01
Q. 10D+01
0.100+01
C.100+01

0.30D+02

0.210+02
0.180+02
0.18D0+02
0.14D+02
0.,120+02
0.880+01
0.630+01
0.280+01
0.110+00
0.560~03
0.180-08
0.280~12

START QF SECOND SYAGE

waken grid update (shift) ***»* FROM 0.S00000000000D+00 TO

P
~
2222

#aesd geid update (shift) *#%kx FROM 0.4850887207680+00 TO

N
21 N
N
N

24 N

**xxk grid update {(shift) wesik FROM 0.487889500463D+00 TO

25 N
26 N
27 N
28 N

*ew** grid update (shift) ***%%x FROM 0.487244467986D+00 TO

29 N
30 N
31N
32N

0.100+01
0.10D+01
G.10D+01
0.10D+01
0.10D+01
0.10D+01

0.10D+01
0.10D+01
0.10D+01
0.10D+01
0.100+01

0.100+01
€.10D+01
0.10D+01
0.10D+01

0.100+01
0.100+01
0.100+01
0.100+01

0,750+01
0.94D+00
0.720-01
0.450-03
0.300~08
0.820~12

0.120+01
0.520~01
0.710-04
0.15D~06
C.400-12

Q. 200+00
0.130-02
0.200-086
0.300-12

0.520-01
0.880~-04
¢.220~08
0.370~12

0.1447755423970+02
0,119002080119D+02
0.11920020801180+02
0.1167492792060+02
0.1094180587270+02
0.1038381752030+02
0.98130587120730+01
0.821486584679D+01
0.8834792648000+01
$.8426909620610+01
0.8324058829280+01
0.841216267664D0+01
0.841242856181D+01
0.84124285686550+01
0.8412428586550+01

0.6788807914010+01
0.9095776547010+01
0.8420107286390+01
0.8428091320010+01
0.842813047582D0+01
0.8428130477770+01

0.8706827273620+01
0.8434088309330+01
0.8428800652180+01
0.842852313388D+01
0.8426823133910+01

0.838280985800D0+01
0.8420004287800+01
0.8428812205820+01
0.8428812308800+01

0.8416840318560+0D1
0.8428818410800+01
0.8428802801110+01
0.8428802881170+01

MERIT FUNCTION

0.1032088138590-03
0.368906902594D-07

Q.1448084708470+02
Q.120802437400D+02
0.1672321073870+02
0.136292406930D+02
0.128680936114D+02
0.1220221778020+02
0.1160635312580+02
0.13114555382380+02
0.1048919778800+02
0.87976865047180+01
0.8603012431730+01
0.8412429611780+01
0.8412428866550+01
0.841242856655%0+01
0.8412428566550+01

LAGRANGIAN

0.144808470478D+02
0.1162646699200+02
0.1211006883930+02
0.1217439182840+02
0.112983988075D+02
0.10614382768050+02
0. 100854008754D0+02
0.9387196131280+01
0.892180269188D+01
0.8536283663680+01
0.8412637115320+01
0.841242857206D+01
0.8412428566550+01
0.8412428566550+01
0.8412428566550+01

0.4850887207680+00

0.487669500463D+00

0.48724446798680+00

0.4871341768510+00

PCRLT

0.210+00
0.74D0~04

0.74D-04

0.930+01 -

0.920+01
0.280+01
0.31D+01
0.320+01
0.300+01
0.380+01
0.310+01
0.260+01
0.38D+00
0.210-05
0.130-14
0.1680-26
0.14D-26

0.420+03
Q.720+02
0.480+00
0.270-04
0.820-11
0.29D-22

0.86D+01
0.780-01
0.27D0-08
0.200-11
0.18D-22

0.230+00
0.500~04
0.8590~-11
Q.730-23

0.160-01
Q.230~06
0.34D~11
0.12D-22

RMOP 1QP I6 IR

0.100-02
0.10D-02

0.100-02
0.100+00
0.10D+01
0.100+01
0.100+01
0, 100+01
0.100+01
0. 10D+01
0.100+01
0.10D+01
0.100+01
0.100+01
0.100+02
0.100+01
0.100+01

34
0

COOOVOOODOIRWMY

o000 Q000 o000

[=R=JaRe

4]
G

COO0QOUOOOOOO00

==X =1~] oooOO UO000

0000

4]
4]

COOoCO0OOLTROOO0

oC0o0 cooow CoOOCO0

juReRuge]

aQrPz

DR

185
185

188
188
18%
188
186
186
186
186
186
188
186
186
186
186
186

i88
186
186
186
186
186

186
88
186
186
186

186
186
186
188

188
186

186
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*rxw% qrid update {shift) **%*x FROM O.4871341768510+00 TO

A3 N 0. 100+D1
34 N 0.100+01

0.300~04 0.842878600627D+01
0.300-10 0,8428802884880+01

wheds grid ypdate {(shift) #*»*ex FROM  0,.487134113437D+00 TQ

35 N 0.100+01 0.380-08 (.8428802884150+D1
36 N 0.10D+01 0.45D-12 0.8428802884870+01

kEdkk mrid update (shift) *#¥%x FROM 0.4871341134300+00 10

7 N 0.10D+01 0.36D-08 0.8428802885800+01

48 N 0.10D+01

Q.. -

0. 100+00
0. 200+00
0.300+00
0. 40D+00
0.500+00
.600+00
0.70D+00
0.80D+00
0.80D+00
0.10D+01

0.4 1831000000000000-0%
0.39382822225214620+02
0.38231754050559880+02
0,37628636175210610+02
0.40398281921013490+02
0.498651922056843B80+02
0.41981356922203834D+02
0.39714731852981900+02
0.39628483011650860+02
0.397970425215656480+02
0, 4163100000000Q000D+02

CONTROL VECTOR U

Q.000+00
0.10D+00
0.20D+00
0.30D+00
G.400+00
0.500+00
0.600+00
G.700D+00
0.80D+00
0.900+00
0.100+01

0.85348294392964840+00
0.33778039241062350+00
0.62745753410106540~01
0.22033860756926280-02
0.34227330116992180+00
0.10608518289433680+01
$.26113119338940940+00
~0.43572211815212220-01
-0.60514884381681960~02
0. 26698404853998760+00
0.83056442747550090+00

0.80D~-13 0.8428802884070«01

-0, 18440000000000000+01
0.62212871263452930+01
~{.20069080374433020+00
~0.12837558085743890+02
~(0.18941285970397420+02
0.346163705617733300+01
0.23850126968963700+02
0.15128742653845320+02
0.11349403338641240+01
-0.70948573937036710+01
~0.13440000000000000+01

JUNCTION AND CONTACT POIRTS OF CONSTRAINT 82

1 0.4871341134370+00

CONVERGENCE HISTORY GLIDER PROBLEM WITH CONSTRAINT ON THE VELOCITY (VMAX = 50).

0.487134113437D+00
0.4871341134300+00

0.4871341134370+00

.69302514082123870+00

L.85847450921048700106+00
-638323373956611280+00
.BB17720823723863D+0Q0
.90712665135876160+00
.BB01B167761431760+00
.72243791312855820+00
.62943844218325220+00
L65211015087851170+00
0.69390832877800130+00

OQLOOVLOCO

TABLE F3

.B3728250358808810+00 -

0.53D-08
0.26D-19

0.76D-18
0.88D-23

0.760~16
0.480~23

W~

N~

37
37

37
37

37
37

186
188

iBé
186

186
186

A xwpuaddy
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NUMBER OF GRIDPQINTS
ORDER OF POLYNOMIALS

IT

0
1
2

DORNOUNDWW

*4x2% grid update (shift) ***** FROM 0.5000000000000+00 TO
*xxd% norm grid shift wesex

T

R
R
R

ALPHA

0.10D+01
0.10D0+01
0.10D+01

I1o2] |

0.180+01
0.12D+00
0.96D-03

OBJECTIVE

END OF RESTORATION PHASE

1
N
N
N
N
N
N
N

START OF SECOND STAGE

0.25D+00
0.25D0+00
0.50D0+00
0.100+01
0.100+01
0.10D+01
0.10D+01

9 N 0.10D+01
10 N 0.10D+01
11 N 0.100+01
12 N 0.100+01

wekkr grid update (shift) ****» FROM 0.493118684429D0+00 TO O
*exnk norm grid shift ®=exxs

13 N 0.100+01
14 N 0.100+01
15 N 0.100+01

0.29D0+02
0.200+02
0.14D+02
0.540+01
0.480+00
0.220-01
0.46D-04

0.31D+01
0.27D0+00
0.20D0-02
0.76D-06

0.68D+00
0.15D0-01
0.60D-05

0.1448061761200+02
0.1183804731930+02
0.1034149408360+02
0.8714158318810+01
0.8333489369620+01
0.862805774699D+01
0.8632124332560+01
0.8632127999330+01

0.795195082838D0+01
0.870607851151D+01
0.863497067307D+01
0.863540285897D+01

0.8778281617130+01
0.863708670844D+01
0.8635544641180+01

MERIT FUNCTION

0.103221077676D0-03
0.3690825439810-07
0.175704572894D-15

0.144806177947D+02
0.1215491883720+02
0.109534360172D0+02
0.1027656420120+02
0.8860433188460+01
0.863217279998D+01
0.8632127998952D0+01
0.8632127999350+01

0.688131557149D0-02

0.1457161747300-02

kakk*x grid update (shift) #***% FROM 0.4945758461760+00 TO O.

s2sk% norm grid shift s**»«

16 N 0.100+01
17 N 0.100+01

#*2%% grid update (shift) ***** FROM 0.494584519993D+00 TO O
*kwe® norm grid shift *=esss

18 N 0.100+01

*rwad grid update (shift) *%**% FROM 0.494584530490D+00 TO O
wnkdk norm grid shift *xeex )

19 N 0.10D0+01
20 N 0.100+01
21 N 0.100+01

0.400-02
0.51D0-06

0.490-05

0.530-09
0.16D0-11

0.8636393691180+01

0.8635546006560+01

0.863554696793D+01

0.863554594209D+01
0.8635545941980+01

0.56D-12 0.8635545941980+01

0.867381724852D~05

0.1049727226670-07

0.1140490479830-11

LAGRANGIAN

0.1448061779470+02
0.1168800047060D+02
0.1021480142160+02
0.8919397293130+01
0.8636815310540+01
0.863213318140D+01
0.863212799944D+01
0.863212799935D0+01

0.493118684429D+00

.494575846176D+00

494584519993D+00

.4945845304900+00

.494584530491D+00

PCRIT

0.21D+00
0.74D-04
0.35D-12

0.35D0-12
0.93D+01
0.150+02
0.270+02
0.450+01
0.790-03
0.16D-08
0.46D~19

0.54D+02
0.250+01
0.330-03
0.480-10

0.270+01
0.67D-02
0.18D-08

0.91D-04
0.78D-11

Q.13D-09

0.160-17
0.16D-21
0.120-22

RHOP IQP IG IR

0.10D-02
0.10D-02
0.100-02

0.100-02
0.100+00
0.100+00
0.10D+00
0.100+00
0.100+00
0.100+00
0.100+04
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246
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247
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247
247
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247
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247
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Vol

STATE VECTOR X

0.00D+00
0.100+00
0. 20D+00
0.30D+00
0. 400+00
G.500+Q0
0.600+00
Q.700+00
¢.80D+00
0.800+00
0.100+01

0.41631000000000000+02
0.38657949046431280+02
0.37161659168485070+02
0.3673152659982233D+02
0.3912360698286116D+02
0.4897853329396234D+02

0.41565323218354480+02

0.368335840383141830+02
0.3921301113798262D+02
0.39509475680780670+02
0.41863100000000000D+02

CONTROL VECTOR U

0.000+00
0.10D+00
6. 20D+00
0.300+00
0.400+00
Q.500+00
0.800+00
0.700+00
¢.800+00
0.900+00
0.100+01

SURCTION AND

1

0.95666780772138500+00
0.35900666223407760+00
0.5355751116877010D~0)
=-0.5100088783443401D-02
0.33403623717339660+00
0.1116288203511648D+01
0.2646954328340047D+00
~0.432198623185118620~01
~0.18848884408798830-02
0.277874400659368040+00
0.8782832387756803D+00

0.4945845304910+00

-0.13440000000000000+01
0.79072972498778340+01
0.13820234505374810+01

~0.1178B6477340178630+02

" =0.1969547642147334D+02

0.20380028811447610+01
0.2302090819485750D+02
0.14247758639831350+02
0.223133B72839223420+00
~0.78766745216457270+01%
=0.1344000000000000D+02

CONTACT POINTS OF CONSTRAINT 52

0. 0000000000000000D+00
0.13034017808650950~01
0.27698123249609490-01
0.14015624200512150~01
-0.31212481550428810-01
-0.59876553036208440-01
-0.24148107210011110-01
0.25248468035686969D-01
0.43276325848638840-01
0.3143357121353832D-01
0.1843806748626511D-01

-0.3228363479138142D-01
0.2045452376884987490+00
0.3718808384028388D-01

~0.3208822B469775130+00
~5.508424865872773510+00
0.40320000357153110~-01
0.55367468456512980+00
0.36202975525331580+00
0.5466232884885979D-02

~0.19953982663761930+00
~0.32461580047101880-01

CONVERGENCE HISTORY GLIDER PROBLEM WITH ALTITUDE CONSTRAINT {YMIN = -30).

TABLE F4

4 xwpuaddy



NUMBER OF GRIDPOINTS = 50
ORDER OF POLYNOMIALS =

IT

PWUNMD

VOEONNGOAd

ZZ2Z222mZmEZ2rmZ T Z I T mMZAoZ 2 M2 mMImZmTMZEaZZH

T ALPHA

0.100+01
0.10D+01
0.100+01
0.10D+01
0, 10D+01

BRVDD

I1o2}]

0.880+00
0.350+00
0.8680-01
0.28D-02
0.430~08

3

OBJECTIVE

END OF RESTORATION PHASE

0.100+01
0.10D+01
0.100401
0.100+01
0. 10D+01L
0.,10D+01
0.,100+01
0.100+01
0.10D+01
0.100+01
0.100+01
0.10D+01
0.100+01
0.100+01
0.10D+01
0.10D+01

Q.100+01
0.100+01

0.10D+03

0.500+00
0.100+01
0.100+01
0.10D+01%
0.100+01
0,100+01
0.100+01

G.71D0-01
0.7iD-01
0.710-01
0.710-01
0.710-01
0.710-01
0.710-01
0.71D-01
0.710-01
0.71D-01
0.710-01
0.71D-01
0.71D-01
0.710-01
0.710-01
0.71D0-01

0.100+02
0.140+01

0.66D~01

0.18D+02
Q.330+00
0.920+00
0.400-01
0.310-03
0.140-05
0.30D-10

0.1680700273260-01
0. 1680504581500~01
0. 1680504581500-01
0.1680343093380~-01
0. 1680343093850-01
0.1680174721120~01
0.1680174721120-01)
0.1680003175270-01
0.1680008175270~01
0.1879825613770-01
0,31679828613770~01
0. 1679839831950-01
0.1679830981960-01
0.1879443037610~01
0. 1679443087510-01
0.167823000849D0-01
0. 1679230908480~01
0.1678998290874D0~01
0.1678998200740-01
0.167873794309D~-01
0,1678737943080-01
0.1678439701820-01
0.1678439701820-01
0.16878087904160-01
0.167808780418D~01
0.,1677656271010-03
0.1677656271010~01
0.167709581960D~01
0.1677095819600~01
0.167630301015D0~01
0.167630301015D~-01
0.1675060016020~01
0.1678060016020~01
0.31643956133650-01
0.1651281862850-01
0.1651281962650-01
0. 1650894020600-01
0.16500984020600-01
Q. 1650472494420-01
0.1647515426180-01
¢, 16482560908370-01
0.,1648212918030-01
0.1648212846300~01
0.1648212846290-01
0.1648212846290-01

MERIT FUNCTION

0.,2848278493060-03
$3.1142164716180-05
{.114081807660D-08
0.381570131351D~14
0.2764889244750-26

0.1680700273280~01
0.168060467524D-01
0.1680504683570~01
0.168034308662D-01
0.1680343080450-01
0.1680174736770-01
0.1680174743610~01
0.1680003203260D~01
0.1680003212310~01
0.1679825663000-01
0.1679825674980-01
0.1679640009890-01
0.1879640025500-012
0.1679443155980-01
0.1879443176400-01
0.1879231084380-01
0.1679231111420-01
0.18789985658000-01
0.167899858444D~01)
0.1678738323120-01
0.167873837357D-01
0.1678440287720-01
0.1678440338870-01
0.1678088772300~01
0.1878088880960~01
0.1677657677150~01
0.16776%7853200-01
0.1677098317890-01
0.1677098638820~01
0.167630819313D-01
0.1676308904600~01
0.1675073127010-01
0.167507520574D-01
0.1655961239780-01
0.18512811648900-01
0.1653961957680~02
0.1651011432100-01
0.16851012333460~01
0.1849588158250~-01
0.1648238324270-01
0.1648213982750~01
0.1648212846820-01
0.1648212848290~01
0.1648212846290~01
0.1648212846200~01

LAGRANGIAN

0,168070027325D-01
0.,1680504675220-01
0.168050468355D0-01
0.188034308661D-01
0. 168034309043D0-01
0.1680174736760-01
0.1680174743600~01
0.1680008203240-01
0.1680003212300-01
0.1679825662980-01
0.1679828674870~01
0.167964000987D-01
0.1679640025490-01
0.187944315597D-01
0.1679443176380-01
0.1679231084380-01
0.1678231111410-01
0.1678998856708D-01
Q. 167898859443D0-01
0.1678738323110-01
0.1678738373560-01
.1678440267710-01
0.1678440339950-01
0.1678088772280-01
0.167808888095D0-01
0.167765767713D-01
0.167765785218D0-01
0.168770968317960-01
0.16770986387290~01
0.167630819308D-01
Q.167630880455D~01
0.167507312684D-01
0.1678075208570-01
0.165088992686D-01
0.1851270003970-01
0.1653950796750-01
0.1651011430790-01
0.1651012332140~01
0.1648051256120-01
0.1648220900210-01
0.1648212897160-01
0.164821284830D-01
0.1648212846290-01
0.1648212848280-01
0.164821284828D~01

PCRITY

0.590+00
0.230-02
0.23D-05
0.780-11
0.55D0~22

0.240-23

CONVERGENCE HISTORY UNCONSTRAINED REENTRY PROBLEM.

TABLE FS

RHOP IQP IG IR QPZ

0.100-02
0.100-02
0.10D-02
0.100-02
0.100-02

¢.100-02
0,100~02
0.100-02
0. 100-02
0.100-02
0, 100-02
0.10D-02
0.100-02
0.10D-02
0.100-02
0.10D-02
0.10D-02
0.100-02
0.100-02
0.100-02
0.100-02
0.100-02
0.100-02
0.100-02
0.100-02
0.100-02
0.10D-02
0.100-02
0.10D-02
0.10D0-02
0.10D-02
0.100-02
0.100-02
0.100-02
0.100-02
0.100-02
0.100-02
0.100-02
0.100-02
0.100-02
0.10D-02
0.10D0-02
0.100-02
0.100-02
0.100-02
0.10D-01
0.100+01
0.100+01
0.100+01
0.100+01
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148
148
148

148
148
148
148
148
148
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148
148
148
148
148
148
148
148
148
148
148
148
148
148
148
148
148
148
148
148
148
148
148
148
148
148
148
148
148
148
148
148
148
148
148
148
148
148

DR

1007
1007
1007
1007
1007

1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
i0o7
1007
1007
1007
1007
1007
1007
1007
1007
1007
1007
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=  NUMBER OF GRIDPOINTS = 50
¥R ORDER OF POLYNOMIALS = 3
1T T ALPHA bBran CBJECTIVE
0 R 0.100+01 0.35D+00
1 R 0.100+01 0.210+00
2 R 0.100+01 0.20D-01
3 R 0.100+01 0.290D-03
END OF RESTORATION PHASE
a1 -0.266086386893D+00
4 N 0.500+00 0©.1BD+02 -0.2676154727820+00
5 N 0.50D+00 0.11D+02 -0.26764912586840+00
B N 0.10D+01 0.710+01 -0.2876058B08870+00
7 N 0.100+01 0.380+00 -0.267585918311D0+00
8 N 0.100+01 0.55D-01 -0.2675698380530+00
¢ N 0.100+01 ©0.11D-02 -0.287569832480D+00
10 N 0.3100+01 0.30D-04 -0.2675698324890+00
11 N 0.10D+01 0.120-09 ~-0,267569832489D+00

seadd grid update (
*xaxw grid update

11
1z
13
14
15

START OF SECOND STAGE

N
N
N
N
N

0. 100+01
0.100+01
0.100+01
0.10D+01
G.100+01

add
( add

0.130+00
0.22D+00
0.36D~-02
©.110-03
0.B85D-08

MERIT FUNCTION

0.2304901002870+00
0.1398217234860~02
0.1040629454190~06
0.136149530964D-14

~0,2660863849510+00
~0.2670591486620+00
~0.2673044170480+00
-0Q.2675098499300+00
~{.2675697431860+00
~0.2675698324860+00
~0.2675698324800+00
~{.2875688324890+00
~0.26756983248090+00

} wwdde AT 0, 1861270166540+00

} wwmwk AT

-0.2675698324890+00
-0,2675707887450+00
~-0.267564582654D+00
-0.2675645100940+00
-0.2675645109880+00

0.293872983346D+00

LAGRANGIAN

~0.268086384951D+00
~0.2867074737774D+00
~0.2673199016270+00
-0.2675339984800+00
~0.267569832199D0+00
~0.2675698324870+00
~0.26875698324900+00
-0.2875698324880+00
-0.267569832488D+00

bk grid update (shift) s*xwx EROM 0, 1861270168540+00 TO 0.1873322085020+00
“xunn grig update (shift) s+&s» FROM 0,293B872983346D+00 TO " 0.2964B0810204D+00

*kxxn norm grid shift sxkks

wresd norm grid shift *wkes

N
N
N
N
N
N

N

N
N
N
N

N

0.100+01
0.10D+01
0.10D+01
0.10D+01
0.100+01
0.10D+01
0.100+01

0.100+01
0.100+01
0.10D+01
0.100+01
0.10D+01

0.640+01
0.650+01
0.330+00
0.150+00
0.25D-03
0.110-03
G.380~08

0.350+01
0.740+00
0.810-02
0.390-04
0.13D-08

~0.2675645109880+00
-0.2889796930640+00
-0.267598382251D+00
~0.2675699629980+00
-0, 2875642516220+00
-0.2675642380010+00
~0.2676642379990+00

-0, 2675642379680+00
~0.2677982697930+00
~0,.2675453282740+00
-0.2675426952110+00
~0.2875426932620+00

0.180035664764D-01

0.112314974881D~01

«sss% grid update {shift) ®esss FROM 0.192307692308D+00 TO 0.187153814806D+00
wrens grid update (shift) **e=+ FROM 0.3076923076020+00 TO 0.2863489855700+00

*ee®k® mqorm grid shift =rmes

0.1134331182240-01

PCRIT

0.46D+01
0.28D~01
0.210-08
0.270-13

0.270-13
0.3iD-03
0.31D0-03
0.48D-03
0.18D~0%
0.300-10
0.65D~17
0.460-23
0.470~24

0.16D-01
0.320-01
0.250~01
0.280~01
0.250~01

0.380+01
0.180+00
0.180-03
0.140-05
0.180-08
0.710-12
0,150-20

0.380~03
0. 180~03
¢.82p-02
0.82D-02
0.820-02

RHO® IQP IG IR

0.10D+00
0.100+00
0.100+00
0.100+00

0.100+00
Q. 100+00
0.100+00
0.100+00
0. 100+00
0. 10D+G0
0.100+00
0. 100+00
0.100+00
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132
130
130
130

131
132
131
133
133
133
133
133
133

187
137
137
137
137

137
137
137
137
137
137
137

137
137
137
137
137

DR

822
824
824
824

823
822
823
821
B21
821
a21
821
821
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8585
855
855
855
855

855
885
855
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61

32 N

N 0.100+01
N Q.100+0%
30 N 0.10D+02
N 0.10D+01
0.100+01

0.280+01
0.170+00
0.85D~03
0.170-04
G.210-08

-0.2675426832620+00
-0.2676340831310+00
~0.267565097284D+00
~0.2675642872110+00
~0.2675642872000+00

*ekdx grig update (shift) **s*& FROM (.286848585870D+Q0 TO

*eke% ngem Qricd shift weeks

~-0.28675642872000+00
~0.26756430389860+00
~0.2675642869280+00

33 N 0.100+01 Q.17D-02
34 N 0.10D+01
35 N 0,10D+01

0.140-03
0.s88b~08

STATE VECTOR X

0.000+00
Q.100+00
Q.200+00
0.30D+00
0.40D+00
0.80D+00Q
0.80D+Q0
0.700+00
0.80D+00
0,900+00
0.100+01

0.36000000000000000+00
0.36073043704043470+Q0
0.34520166298679320+Q0
0.30647142301436540+00
0.28906539576445568D+00
0.28171722435947170+00
0.2773366479898915D0+00
0.2742353856574811070+00
0.27176105835084460+00
0.26960201524 185520+00
0.2675642869291477D+00

CONTROL VECTOR U

0.000+00
0.100+00
0.200+00
0.30D+00
0.400+00
0.500+00

0.800+00
0.10D+01

0.13553860763732540+01
0. 1383897950963398D+01
0.87476977518745280+00
0.4101397228499013D+00
~0.401376217768064600+00
~0,62848524562956890+00
-0.7385460022357578D+00
~0.81612127602068420+00
-0.87962024078930450+00
~0.93442707669118340+00
-0.98278794323280480+00

0.1504874417970-03

-0, 14137160000000000+00
~0,120%4449452247640+00
~0.72488963948854490-01
0.25395432371517270-01
0.34284362289183190~01
0.21477290445846820~01
0.14230617922984630~01
0.96454800405498860-02
0.62114418960738540-02
0.316447.29827774750~-02
-0.1594008776631664D~186

JURNCTION AND CONTACT POINTS OF CONSTRAINT S51

1

0.187153814806D+00 0.2964994833120+00

0.2964994833120+00

0.19138700000000000~01
0.13574026217138440-01
0.9224775292482341D-02
0.8311710938497064D-02
0.9624662718706274D0~02
0.1054421287240238D~01
0.,11122933728213140~01
0.11507146888641250-01
0.11760936453776660-01
0.1191083991417772D-01
0.1198170000000000D0-02

0.780+00
0.370-02
C.820~-07
0.420-14
0.24D0-21

0,450-08
0.230-10
0.320-20

[=R=g=FoRo]

OO0

9,24681444331834810+03
0,24681444331834810+03
0,24681444331834810+03
0.24881444331834810+03
0.24681444331834810+03
0.24681444331834810+03
0.24681444331834810+03
0.24681444331834810+03
0.2468144433183481D+03
0.24681444331834810+03
0.248681444331834810+03

CONVERGENCE HISTORY REENTRY PROBLEM WITH ACCELERATION CONSTRAINT (NMAX = 6).

TABLE F6

[=1vReguRe]

[=X»Ru]

[sJalay el -]

coO

137
137
137
137
137

T137

137
137

855
855
8585
855
ass

855
855
858

SIS oLIaMNN



NUMBER OF GRIDPOINTS =
ORDER OF POLYNOMIALS = 3

- IT T
s

oo

ALPHA

0 R 0.10D+01
1 R 0.100+01

CONNOONUNADWWAONN

22Z2Z222222222Z2222222Z22222Z222HZHIZHZHZHZH

END OF RESTORATION PHASE

0.500+00
0.100+01
0.250+00
0.500+00
0.100+01

0.13D+00
0.13D+00
0.13D+00
0.13D0+00
0.25D+00
0.25D+00
0.500+00
0.50D+00
0.500+00
0.50D0+00
0.50D0+00
0.13D+00
0.130+00
0.13D+00
0.130+00
0.130+00
0.13D+00
0.13D+00
0.13D+00
0.13D+00
0.250+00
0.250+00
0.250+00
0.50D0+00
0.10D+01
0.10D+01
0.100+01
0.100+01
0.100+01

o2}

0.120+01
0.43D+00

0.28D+01
0.58D+00
0.16D+01
0.550+00
0.43D+00

0.16D+01
0.110+01
0.72D+00
0.50D+00
0.400+00
0.95D0+00
0.130+01
0.15D+01
0.10D0+01
0.570+00
0.250+00
0.13D+00
0.13D+00
0.13D0+00
0.12D+00
0.11D+00
0.110+00
0.980-01
0.91iD-01
0.920-01
0.91D-01
0.84D-01
0.74D-01
0.62D0-01
0.37D-01
0.280-02
0.18D0-04
0.43D-06
0.20D0-08

START OF SECOND STAGE

0000000000000 000O0O0OO0O00000DOOOO00O

0.
0.
0.
0.
0.
0.
.

OBJECTIVE

.1717519474840-01
.1695977966220-01
.169597796622D-01
.1660376851210-01
.166037685121D-01

1664290241230-01

.1664290241230-01
.1668325225110-01
.1669325225110-01
.167070959760D0-01
.167070959760D-01
.1667375620700-01
.166469337234D0-01
.166252110713D~-01

1660759092610-01

.1657925268300-01
.165609410521D0-01
.165375504157D0-01
.165304139627D-01
.1652928793540-01

1652981116430-01

.165304670927D-01
.1653057736000~-01
.1653067658980-01

165307657106D-01
165308456545D-01
1653091730990-01

.165309814967D0-01
.1653103895640-01
.1653109035410-01
.1653113628550-01
.1653121871200-01
.165312830071D~01

1653133283840-01
165314101292D-01
1653149169670-01
1653149234090-01
165314923387D~-01
1653149233870-01
165314923387D0-01

oo

0000000000000 00OODCOOODCODOOO00COO00O000

MERIT FUNCTION

.155420617729D0+00
.745799264260D-02

.294036982010D0-01
.224786684619D-01
.2249327080880~01
.173939275829D0-01
.1764678769140-01
.600704713217D-01
.657038226574D-01
.318487010994D-01

328875380472D0-01

.207413279508D-01
.207485302717D-01
.200709335110D-01
.196015381263D-01
.191788345987D-01
. 18780568667 1D-01

1845664971670-01

.179539599217D0-01
.1750447979420-01
.170721989033D0-01
.168357928508D-01
.166729259270D-01
.166234863771D~01
.1660955122920-01
.165985211864D0-01
.165895554588D-01
.165820276936D0-01
.1657550231390-01
.165697031202D0-01
.1656447481990-01
.165597430313D-01
.1655547893580-01
.1655194031710-01
.1654720511580-01

1654263380750-01

.1653819068180-01
.165327796676D-01

165314923405D-01

.165314923387D0-01

0.1653149233870-01
0.165314923387D-01

0000000000000 0000000O000000O0000000DOC0O00D0

LAGRANGIAN

.218457055584D-01
.181733685245D0-01
.181918466830D-01
.1664839141590-01
.1690125152440-01
.554136218893D~02
.168075463666D~01
.146835950931D-01
.1867572246500D0-01
.167122315207D0-01
.167194338416D-01
.1668517520900-01
.1665751297010-01
.166350175322D-01
.166166749103D0-01
.165885118941D-01
.165696367846D~01
.165471185088D-01
.165374080721D-01
.1653360855300-01
.165322542664D0-01
.1653178302210-01

165317284987D-01

.165316837030D~01
.1663164690180-01
.165316167180D-01
.1653159203590-01
-165315719329D-01
.165315556348D0-01
.1653154248570-01

1653153192880-01

-1653151614220-01
.1656315064438D-01
. 165315006004D0-01
.165314946245D-01
.165314923405D-01
.1653149233870-01
-1653149233870-01
.1653149233870-01
.165314923387D-01

*»xx* grid update (shift) ****+ FROM 0.480000000000D+00 TO 0.491385569084D+00

*xxxd norm grid shift s

zZzz2z2222Z

0.100+01
0.100+01
0.100+01
0.100+01
0.10D0+01
0.100+01
0.100+01

0.10D+01
0.39D0-01
0.11D-01
0.110-03
0.170-05
0.42D0-07
0.570-09

0.
0.
0.
0.
0.
0.
o.

0.1138556908350-01

168978787647D-01
165489950175D-01
1663241287950~01
1653256282570-01
1653256305880-01
1853256305880-01
165325630588D-01

PCRIT

0.31D+00
0.15D-01

0.15D-01
0.86D-02
0.86D-02
0.15D-02
0.15D0-02
0.11D-02
0.98D0-03
0.34D-03
0.320-03
0.81D-04
0.81D-04
0.68D-04
0.59D-04
0.51D-04
0.43D-04
0.37D-04
0.28D-04
0.190-04
0.110-04
0.600-05
0.28D-05
0.18D-05
0.16D-05
0.130-05
0.12D0-08
0.100-05
0.880-06
0.76D-06
0.66D~-086
0.56D-06
0.48D-06
0.41D0-06
0.31D~-06
0.220-06
0.13D-06
0.26D-07
0.35D-13
0.93D-22
0.53D-24
0.69D-24

0.41D+01

0.22D-01
0.56D-05
0.19D-08
0.43D-12
0.23D-15
0.480-19

RHOP IQP IG IR

.10D+01
.10D+01

(=)=

.10D+01
.10D+01
. 10D+01
.100+01
10D+01
.10D+03
10D+03
.10D+03
.10D+03
.100+03
.100+03
.10D+03
.10D0+03
100+03
10D0+03
.100+03
.100+03
.10D+03
.10D+03
. 10D0+03
10D0+03
.10D+03
. 10D0+03
.10D+03
.10D+03
10D+03
. 100+03
100+03
10D+03
.10D+03
. 10D+03
.100+03
.10D+03

O000D0O000000O0O00ODO000000000O000O0D0000O0

0.10D+03

000000000000 0000000C000O0DODO0O00O00OOMOWODL

0000000

0000000000000 000000UOO00000O00OOOOCDOO0ODOO

0000000

QO00O0CDODOOO0O00VO0DO0C00OOOO00COODO0000000000

000000

QPz

=N

BNENSRNONNNW

DR

711
710

711
711
710
710
711
711
711
711
711
711
711
711
711
711
711
711
711
711
711
711
711
711
711
711
711
711
711
711
711
711
711
711
711
711
711
731
711
711
711
711

711
711
711

711

711
711
711

A xwuaddy



661

#see% grig update (Shift) *xes FROM  (,401385563084D+00 TO
k% norm grid shift **xsse [ 2035085228350-02

42 N 0.100+01 0.16D+00
43 N 0.100+01 0.260-02
44 N 0.100+01 0.130-03
45 N 0.10D0+01 0.15D-05
46 N 0.100+01 0.34D-07
47 N 0.100+01 0.480-02

0.1646215498680~01
0.3165332833258D-01
0,1653283013740~01
0. 16532830088100-01
0, 1653283088100-01
0.1653283088100-02

=xese gridg update (Shift) *»ess EROM  (0,489150483885D+00 TO

*xxed norm grid shift weses

48 N 0.10D+01
48 N 0.10D+01
50 N.O.10D+01
51 N 0.100+01

0.8680531398800-04

0.480-02 0.165328324938D0~01
'0.930-05 0.1653283104220-01
0.910-06 0.1653283104480-01
0.790-08 0.165328310448D-01

seaxn grid update (shift) **s+ FROM 0.4B9063678541D+00 TO

#¥%%% norm grid shift sess«

$2 N {,10D0+01
63 N 0.100+01
%4 N 0.200+01

0.3833691119280-06

0.21D-04 0.1653283105180-01
0.750-07 0.165328310448D-01
0.400-08 0.185328310448D~01

skune grid update {(Shift) **3éx FROM  0.4880632951720+00 TO

waaaE ngrm grid shift sexes

85 N 0,3100+01
56 N 0.100+01

0.68D~11

STATE VECTOR X

0.000+00
0.100+00
0.200+00
0.300+00
Q.400+00
0.500+00
0.800+00
Q.70D+00
0.80D+00
0.800+00
0.100+01

0.3500000000000000D+00
0.35059714125698680+00
0.3288086737473640D+00
0.10141586214887730+00
0.77066064386630800-01
0.7280891%544382313D-01
0.68001263430333640-01

0.5480059833805496D~01 .

0.3305189431837365D-01
0. 20689802772381980-01
0.12389290000038450-01

CONTROL VECTOR U

0.000+00
G.100+00
Q.200+00
0.300+00
0.400+00
0.800+00
0. 800+00
0.70D0+00
Q.800+00
0.900+00
0. 100+01

0.10868734870264610+01

0.11037187874273810+01

0.84901492282780568D+00
~0.1444883622039660D+01
~0.2261954226972686D0+01
~0.17927415830172440+01
~0.17064746114487570+01
~0.18640609398764450+01
~0.21147840856706738D+01
~0.20068288170413500+01
=-0.2144879112843408D+01

0.1037813376900-09

0.857D-08 0.165328310448D-01
0.185328310448D-01

=0.10038853200000000+00
~0.70517124075742550~-01
-0.6503938484791618D0~01

0.77740656945505260~01

0.10726245529513070+00
-0.14536815616371220-01
-0.13817762571950760+00
-0.15244757528413740+00
~0.77525876093834520~01
=-0.18919337736531240+00
-0.4578246880002607D+00

JUNCTION AND CONTACT POINTS OF CONSTRAINT 82

1 0.488063295278D+00

0.4891504838850+00

0.489063678541D+00

0.4890632051720+00

0.4890832952760+00

0.18138330000000000-01
0.1341260228804272D0~-01
0.931706226974456510-02
0.62052167948708170-02
0.82698964605732340~02
0.89727024301721230-02
0.79182464702871540-02
0.59836004871910490~02
0.50807159653158870-02
0.45106894606%88510-02
0.36022639990988170~02

0.140+00

0 ©
Q.24D~04 0 ¢
0.26D-08 0 ©
0.820~12 0 0
0.150~15 0 0O
0.320-19 D o
0.220-0% o 0
0.510-10 0o 0
0.990~13 o 0
0.930-17 o o
0.43D0-10 o 0
0.130-14 o 0
0.180-17 ¢ «
0.32D-17 0o 0
0.490-22 0 0

0.0000000000000000D+Q0
0.13770001748098960+02
0.274216748252326800+02
0.3616909665510078D+02
0.3947367069705462D+02
0.42434836180559760+02
0.4528116923553719D+02
0.4773721985888177D+02
0.49443326281828640+02
0.50485444997086090+02
0.5110198000000011D+02

CONVERGENCE HISTORY REENTRY PROBLEM WITH ALTITUDE CONSTRAINT (XIMAX = 0.008).
TABLE F7

OO0 PO0O0O

cOo

80
57
52

71
71

711
731
711
711
711
711

711
711
711
711

711
711
711

711
711

SIMSBL POLLOUNN



n NUMBER OF GRIDPOINTS = 40
8 ORDER OF POLVNOMIALS = 2
ITT ALPHA o2l
0 R 0.100+01 ©0.38D0-01
1 R 0.100+401 - 0.100-03

OBJECTIVE

END OF RESTORATION PHASE

Q.2574848852670+01

MERIT FUNCTION

0.4237496349780~086
0.8607684355028D~15

0.2534523368170+01

LAGRANGIAN

0.2632687682700+01
0.242832025815D+01
0.241556317715D+01
0.243044554424D+01
0.24304458214680+01
0.243044552146D+01

21

2 N 0.10D+01 0.760+00 0.240648367287D+01 0.243547619323D+01
I N 9.10D+01  0.83D-0)1 0.2431979320630+01 0D.2423840722500+01
4 N D.IDD+01 0.38D-02 0.2432002282890+01 ©.243126807128D+01
p £.10D0+01 0.28D0-08 0.2432082397800+01 0.2431268959630+01

a.300+01  §.110-11  0.2432092397800+01 0.243128895098630+01
START OF SECONMD STAGE

wxxke grig update (shift) srexx EROM 0. 2500000000000+00 TO
ssunx grig update (shift) *x%=x FROM (.3500000000000+00 TO
wxesk grid update (shift) *x**x FROM §.500000000000D+00 TO
#hddk grid update (shift) s**wx FROM 0.7000000000000+00 TO
*xaa¥ grid update (shife) *s*»x EROM 0,85000000000Q0+00 TO
“exa% noem grig shift *#*%x 0 2853004882530-01

6 N 0.10D+01 0.18D+D0 0.2436073707260+01

7 N 0.10D+03 0.120-01 0.2432241214810+01 .

8 N 0.100+03% ©0.158D-04 0.2431867100590+01

9 N 0.10D+01 0.220-10 0.2431867119160+01

warre grid update (shift) ***e+ FROM 0.2695426100850+00 TO
maais grid update (shift) ***e* FROM  0.3373752153920+00 TQ
#axae grig update (shift) *¥%%x FROM 0,488368704743D+00 TO
*xaks grid update (snift)} **%++« FROM 0.671468951075D+00 TO
*xvex grig update (shift) ***+x FROM 0.847879561438D+00 TO
sk norm grig shift ***x% (0 1516085621310-02

10 N 0.100+01 0.830-02 0.2431802586080+01

11 N 0.100+01 0.180-03 0.2431873117100+01

12 N 0.10D+01 0.26D-08 0.24318688635950+01

whkmr orid ypdate (shift) ***x« FROM 0,2677679786000+00 TO
*aeae grid update (shift) **+«« FROM 0.3392913010130+00 TO
weed% grig update (shift) **#*xx FROM 0.4883597883840+00 TO
whats grig update (shift) *reee FROM 0.67159888634204+00 TO
*skn% grig update (shift) *=*%&x FROM 0.8478843402400+00 TO
*xxad moem grid shift #»rex 0 _3416880260110-02

13 N ©.100+01 OG.170~0%1 0.24315521566110+01

14 N, 0.100+01 0.14D0-04 0.2431869288230+01

15 N 0.100+01 0.300-10 0.2431888584550+01

wdann grid update (shift) *wser FROM 0.26776560736820+00 TO
wwden ogrid update (shift) s**sx FROM 0,3392465356790+00 TO
*wsad grid update (shift) ***«x FROM 0.4888026887670+00 TO
*axed grid update (shift) s« PROM 0.6750155066020+00 TO
whswe grig update (shift) ***4* FROM 0,8487359638570+00 TO
*ese¥ norm grid shift *xses 0 149149608191D-02

0. 2695426100950+00 - -

0.387375215392D+00
0.488368704743D0+00
0.671469951075D+00"
0.847879561438D+00

0.2677879766000+00
0.339291301013D0+00
0.4883597983840+00
0.8718986563420+00
0.8478843402400+00

0.2877656073620+00
0.338248535579D+00
0.488902688787D+00
0.6750165066020+00
0.84B7359638570+00

0.267768829340D+00
0.337755039497D+00
0.487975431092D+00
0.6746526230120+00
0.B49B252712210+00

PCRIT

Q.850-06
G.17D-14

0.37D-02
.140-01
0.170-01
0.16D-03
0.160~03
0.16D-03

| 0.13p-01

0. 160~-03
0.940~10
0.28D~21

0.350~04
0.38D-06
0.320-086

0.680-04
0.310-06
0.310-06

RHOP

0.100+01
0.10D+01

0.100+01
0.10D+01
0.100+01
G.10D+02
G.100+02
0.100+02

1QP IG IR
0 D O
8 0 0
17 G O
11 ¢ 0O
0O 0 O
O 0 o
9 0 0
0 ¢ Q
G 0 0
o 0 0
o 0 0
o 0 0
g 0 ¢
0 0 o
C o 0
o 0 0
o 0 0O
o 0 0

Pz

weao

wemo

[ARR

18
18

19
18

DR

192
181

196
204
204
204
204
204

204
204
204
204

204
204
204

204
204
204

A xipuaddy
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Jreeds agarm grid shift seess

16 N 0.10D+01 0.66D0-02 0.2431654982870+01

17 N 0.10D+01 0.45D-03 0.2431B7048146D+01
18 N 0.100+01 0.580-07 0.2431867827240+01
19 N 0.100+01 0.380-13 0.2431867628020+01

weed geid update (shift) *esss FROM 0,2677688283480+00
aesks grid update (shift) *+sss« FROM O, 337755038497D+00
waxwn grid update (shift) **++x FROM 0.4876754310820+00
skt grid update (shift) *#%=+ FROM 0.86746526238180+00
sexx® norm grid shift *xsss 0 1457440788310-02

0,620-02 0.2431918732090+01
0.110-03 0.2431870948700+01
0.84D-09 0.2431868680110+01

20 N 0.10D+01
21 N 0.1Q00+01
22 N 0,100+01

*ekix grid update (shift) *++%» FROM 0,.267763478421D0+00
sxaer grid update {shift) =*sx» FROM (.3392124802850+00
*heEx grid update (shift) seses FROM 0.4879747708000+00
ik grid update {shift) *«*%s FROM (.6746417119300+00
*kxedk norm grid shift ssese () _3266258531810-04

0.14D-03 0,243186678349D+01
0.530~07 0,2431868858060+01
0.280-13 0.2431B6865486D+01

*xxsx grid update (shift) **xwx FROM 0.2677600377320+00
#x243 grid update (shift) *eksx FROM (,3391799177000+00
*xx.grid update (shift) **ssx FROM 0,487975464986D+00
sewex grid update (shift) *ksss FROM 0.6746502088650+00
*k¥x% porm grid shift s+ssx 0, 1396671672650-02

0.243181889085D+01
0.2431869823130+01
0.242186765281D+01
0.2431887653580+01

23 N 0.10D0+01
24 N 0.10D+01
25 N 0.100+01

26 N 0.100+01 0.820-02
27 N 0.10D+01 0.480-03
28 N 0.10D+01 0.800-07
29 N 0,100+01 0.90D~14

warkk grid update (shift) %+»ex FROM 0,2677539730360+00
ket grigd upcdate (shift) **xxr FROM (.337784246027D+00
wnnkk grig update (shift) s=x»x% FROM 0.674649868584210+00
seenx norm grid shift exxes g, 238685609480D-04

30 N 0.10D+01
31 N 0.10D+01

0.110-03 0.2431868077500+01
0,240-08 0.2431867648250+01 -

wwkdx arid update (shift) ****» FROM (.26777783160680+00
waxar grid update (shift) »»*»sx FROM 0.337777359951D+00
®xxvs grid updete (shift) =s»»= FROM 0.6746560760094D+00
0.313896042167D-04

32 N 0.100+01
33 N 0.10D+01

0.15D0~03 0.2431865823240+01
0.300-08 0,243186764945D0+01

ke gridg update {(shift) *s=xe« FROM 0.2877464420020+00
Avand gerid updete (shift) **=«x FROM 0.3377773196520+00
R mrig update (shift) *xx=x FROM 0.674642262767D+00
rraks norm grid shift *+exs 0, 205517203630D-06

34 N 0,10D+01 0.10D-05 0.24318678538070+01
35 N 0,100+01 0.79D-13 0.2431867649320+01
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CONSTRAINT $1 ACTIVE AT COLLOCATION POINTS
1 35 a0 ’
CONSTRAINT 52 ACTIVE AT BREAK POINTS

1 5 7
b3 10 14
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1 0.8498252712210+00 0©.1000000000000+01
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Notations and symbols

Notations and symbols.

Throughout the thesis the following notations are used :

~

N(h)
R(2)

X

r

<x x>
x‘x
kD)
X

e

S(i €)
8J (u:Bu)
J )
J(u)

x ()

ae.

ess sup

Ir]

asM
Forfu
A--!
A+
AT
w(Ad)

R

Rn
clorl
L. lor)
L (W)
Wi.l07]

NBViorl

A variable with a hat (7) denotes either a solution of an optimization problem or
a Lagrange multiplier corresponding to the solution of an optimization problem.
Null space of the operator & .

Range space of the operator k.

Dual space of the Banach space X .

Element of the dual space of the Banach space X .

Resuit of the linear functional x” € X" actingon x€X.

Same as <x’,x>.

When g is an operator and B a set, then 2~ (B) denotes the set {x € X:2 (x Je B}.
If K is a set. then K~ denotes the dual cone (cf. Definition 2.3).

If S is an operator then S° denotes the adjoint operator (cf. Definition 2.4).
Neighborhood of the vector &.

Frechet differential of the operator 7 at u with variation Su.

Frechet derivative of the operator J at u.

Second Frechet derivative of the operator J atu.

Y, ctor(x (2)).

almost everywhere.

essential supremum.

Replaces argument lists with £(z ), (¢), A(¢), etc. in Chapter 3 and argument
lists with x /(¢ ), uf(¢ ), X' (¢ ), etc. in Chapters 4, 5 and 6. -

Denotes the tensor product of a vector @ with a block matrix M.

Denote partial derivatives of the function f(x u # ) with respect to x and «. .
Inverse of matrix A .

Pseudo-inverse of matrix A.

Transpose of matrix A .

Condition number of matrix A , i.e. FA#-1A™4. The 2-norm is used for matrix
norms.

Spaces

Space of real numbers.

Euclidian space of n -vectors.

Space of continuous functions on [0.7].

Space of measurable and essentially bounded function on [0,7°).

Space of measurable and essentially bounded function on the closed set W;.
Space of absolutely continuous functions on [0.7 ] with measurable and
essentially bounded time derivatives.

Normalized space of functions on [0,7] of bounded variation.
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Notations and symbols

Symbols used in terms of nonlinear programming in Banach spaces.

AWM )
C(M i)
Kkl
L(S.K &)
(M)

S

@)

RSB

BN DN N B¢ T8 e, by b

210

(Chapters 1, 2 and 4)

Cone of admissible directions to M at @, (cf. Definition 2.5).
Conical hull of M —{iz}, (cf. Definition 2.7).

Set of points for second order optimality conditions (cf. (2.3.10)).
Linearizing cone of S™HX ) at @, (cf. Definition 2.8).

Sequential tangent cone of M at @, (cf. Definition 2.6).

Obijective functional of problems (Py) and (2,).

Cone defining constraints in problem (Py).

Banach space used in the definition of problem (P;).

Lagrange multiplier of problem (P,).

Lagrangian of problem (P;).

Constraint set in problem (P).

Constraint operator in problem (2 ;).

Constraint set in problem (Pg).

Banach space used in the definition of problems (Pg) and (P, ).
Variable in optimization problems (P;) and (P{).

Constraint set in problem (EIP).

Cone defining constraints in problem (EIP).

Objective functional of problem (EIP).

Inequality constraint operator of problem (EIP).

Equality constraint operator of problem (EIP).

Banach space used in the definition of problem (EIP).
Variable in optimization problem (EIP).

Banach space used in the definition of problem (EIP).
Banach space used in the definition of problem (EIP).
Regularity constant (¢f. Theorem 2.10).

Lagrange multiplier of problem (EIP) (corresponding to g2 ).
Lagrange multiplier of problem (EIP) (corresponding to & ).
Lagrangian of problem (EIP).

Merit function dependent of step size (cf. Section 4.1.2).
Mapping used to imitate an inner product in Banach space.
Current estimate for the solution in Algorithm 4.1.

Current estimate for Lagrange multiplier $° in Algorithm 4.1.
Current estimate for Lagrange multiplier 2° in Algorithm 4.1.
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Notations and symbols

Symbols used in terms of optimal control.
(Chapters 1,3, 4and 5)

Time variable.

Final time.

State variable.

Control variable.

Problem function of problem (SCOCP) (objective function).

Problem function of problem (SCOCP) {objective function).

Problem function of problem (SCOCP) {objective function).

Problem function of problem (SCOCP) (differential system).
Problem function of problem (SCOCP) (initial point constraints).
Problem function of problem (SCOCP) (terminal point constraints).
Problem function of problem (SCOCP) {mixed control state constraints).
Problem function of problem (SCOCP) (state constraints).
Constraint set in problem (SCOCP) (control constraints).

Dimension of state vector x .

Dimension of control vector u,

Dimension of vector function D.

Dimension of vector function £.

Dimension of vector function §.

Dimension of vector function S,.

Lagrange multipliers corresponding to the differential system

also called adjoint variable.

Lagrange multipliers corresponding to the initial point constraints D.
Lagrange multipliers corresponding to the terminal point constraints £.
Lagrange multipliers corresponding to the mixed control state
constraints §. '

Lagrange multipliers corresponding to state constraints §,.

Time derivative of the Lagrange multiplier £.

Discontinuity of the Lagrange multiplier £ at time point ¢; .
Hamiltonian (cf. (3.3.3.1)).

Functions defined by (3.3.5.7) - (3.3.5.8), that have the interpretation
of time derivatives of the state constraint S,;.

Order of the state constraint S,; (cf. (3.3.5.9)).

Vector function of state constraints {¢f. (3.3.5.10)).

Vector function of mixed control state constraints (cf. (3.3.5.11)).

Augmented Hamiltonian (cf. (3.3.6.1)).

Adjoint variable in alternative formulation of optimality conditions.
Muttiplier in alternative formulation of optimality conditions.
Mutltiplier in alternative formulation of optimality conditions.

211



Notations and symbols

x{(t) Current estimate for the state variable in Algorithm 4.4,

ui(e) Current estimate for the control variable in Algorithm 4.4.

M) Current estimate for the adjoint variable in Algorithm 4.4.

UHED Current estimate for the multiplier 7, in Algorithm 4.4,

£1(e) Current estimate for the multiplier £ in Algorithm 4.4.

nie) Current estimate for the multiplier 7); in Algorithm 4.4.

v Current estimate for the multiplier »; in Algorithm 4.4.

o! - Current estimate for the multiplier o in Algorithm 4.4.

! Current estimate for the multiplier g in Algorithm 4.4.

M, Matrix in definition of subproblems {cf. (4.2.1.11)).

M, Matrix in definition of subproblems (cf. (4.2.1.12)).

M, Matrix in definition of subproblems (cf. (4.2.1.13)).

M, Matrix in definition of subproblems (cf. (4.2.1.14)).

Ms Matrix in definition of subproblems (cf. (4.2.1.15)).

Mg Matrix in definition of subproblems (cf. (4.2.1.16)).

W, Working set of state constraint $ -

Rl] Vector function of state equality constraints (cf. (4.2.1.19)).

Rrle] Vector function of mixed control state equality constraints
(ef. (5.1.2.14)).

I(e) Index set of active constraints at time point ¢ .

k@) Number of constraints in the set 7(z ).

mf Number of boundary intervals of working set W,.

mf Number of contact points of working set W,.

[eh; -1 2551 j-th boundary interval in working set W,.

tlzm," v J-th contact point in working set W,.

Al Grid for the junction and contact points of the mixed
control state constraints (cf. (4.2.2.1)).

A? Grid for the junction and contact points of the state constraints
(cf. (4.22.1)).

A Alx A%

B Number of points of the grid A/.

t/ Time point i of grid A/.

J3 Set of boundary points of constraint Sy, (cf. Definition 4.3).

I# Set of boundary points of constraint S (cf. Definition 4.3).

MC-) Merit function (cf. (4.3.8)).

T (2) Multiplier for active set strategy {cf. (5.2.23)).

vl Muliiplier for active set sirategy (cf. (5.2.26)).

7 Multiplier for active set strategy (cf. (5.2.27)).
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Notations and symbdls

Symbols used in the numerical implementation.
(Chapter 6)

Order of polynomials on grid intervals.
Number of grid intervals.

Collocation points relative to the interval [0.1].
Grid point (r =0,1,....p).

Collocation point i on the interval [z, £, 4]
Size of grid interval.

Weight in quadrature formula (6.1.1.22).
Weight in quadrature formula (6.1.1.24).

Junction or contact point.

Lagrange multiplier associated with interior point constraints (6.1.2.8).
Lagrange multiplier associated with mixed control state constraints {(4.2.1.25).
Numerical approximation to 4, (¢, ).

Numerical approximation to 4, {7, 4;).

Numerical approximation to d, (7, ;).

Numerical approximation to A, (z, +).

Numerical approximation to A, (¢, —).

Numerical approximation to A, (T, 4;).

Numerical approximation to A, (0).

Numerical approximation to A, (7).

Numerical approximation to 7; {7, 4; ).

Transformed adjoint variable (cf. (6.1.2.26)).

Transformed multiplier 17 # (cf. (6.1.2.27)).

Matrix in objective function of quadratic programming problem (cf. (6.1.2.34)).
Matrix of constraint normals in quadratic programming problem (cf. (6.1.2.35)).
Vector in objective function of quadratic programming problem {cf. (6.1.2.34)).
Variable in quadratic programming problem.

Inhomogeneous part of constraints (cf. (6.1.2.35)).

Lagrange multiplier of quadratic programming problem (6.1.2.34) - (6.1.2.35).
Dimension of vector d.

Number of constraints, i.e. row dimension of the matrix C.

Range space part of vector d , i.e. Cdp=5b.

Null space part of vector d . i.e. Cdy=0.

AL X/ matrix whose columns are a base for the range space of the matrix C7.
A X {7~ ) matrix whose columns are a base for the null space of the

matrix C. s ‘ : '
Lower-triangular matrix in LQ-factorization of the matrix C.

Orthogonal matrix in LQ-factorization of the matrix C.

M Xm identy matrix.

Jj-th columns of the identy matrix.
Scaling matrices.
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Samenvatting

Het doel van dit proefschrift is een beschrijving te geven van een nieuwe methode voor het
numeriek oplossen van optimale besturingsproblemen met toestandsbeperkingen.

Allereerst worden de optimaliseringsproblemen geintroduceerd en beschouwd in een
abstrakte formulering. Het voordeel van zo'n abstrakie benadering is dat voorwaarden
voor optimaliteit, die voor oplossingen van de optimaliseringsproblemen moeten gelden,
afgeleid kunnen worden voor de abstrakte formulering. Dit houdt in dat men zich in eerste
instantie niet hoeft te bekommeren om de details van de probleem specificatie.- Voor de
abstrakt geformuleerde optimaliseringsproblemen worden een aantal min of meer
standaard resultaten uit de literatuur herhaald.

Omadat toestandsbeperkte optimale besturingsproblemen geidentificeerd kunnen worden als
speciale gevallen van de  abstrakte optimaliseringsproblemen, kumnen de
optimaliteitsvoorwaarden voor de abstrakte problemen direct hierop worden toegepast. In
de formulering van de optimale besturingsproblemen gaan de optimaliteitsvoorwaarden
voor de abstrakte problemen over in het bekende minimum principe.

De methode die wordt voorgesteld voor de numerieke oplossing van de optimale
besturingsproblemen, wordt eerst gepresenteerd in een abstrakte formulering. De methode
is een analogie met de methode van het sequentieel kwadratisch programmeren, hetgeen een
bekende methode is voor het oplossen van eindig dimensionale niet-lineaire
programmeringsproblemen. Dit houdt in dat de methode een iteratieve 'descent’ methode
is, waarbij de zoekrichting bepaald wordt door het oplossen van een subprobleem met een
kwadratische objektfunktie en lineaire beperkingen. Een stapgrootte wordt bepaald door
het minimaliseren van een exakte penalty funktie. De toepassing van de (abstrakte)
methode voor toestandsbeperkie optimale besturingsproblemen wordt gecompliceerd door
het feit dat de subproblemen niet eenvoudig opgelost kunnen worden, als de struktuur van
de oplossing niet bekend is. Daarom is een modificatie van de subproblemen noodzakelijk.
Als gevolg van deze modificatie zal de methode. in het algemeen. niet convergeren naar een
oplossing van het besturingsprobleem, maar naar een punt dichtbij een oplossing. Daarom
is een tweede stap nodig die, uilgaande van de struktuur bepaald in de eerst stap. de
oplossing exak1 bepaald. '

De numerieke implementatie van de methode komt in essentie neer op het numeriek
oplossen van een lineair meerpunts randwaarde probleem. Hiervoor zijn in principe
verschillende methoden geschikt. echter de collocatie methode die hier gekozen is heeft
enige belangrijke voordelen ten opzichie van andere mogelijke methoden. Het stelsel van
lineaire vergelijkingen dat resulteert uit de collocatie methode kan efficient opgelost worden
met behulp van sparse matrix technieken.

Enige numerieke resultaten van hel programma voor enkele prakiische problemen zijn
samengevat. Omdat numerieke resultaten voor twee van deze problemen tevens in de
literatuur vermeld zijn, is een vergelijking met andere methoden mogelijk.

Uiteindelijk wordt de relatie gegeven tussen de voorgestelde methode en enige uit de
literatuur bekende methoden.
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Curriculum vitae

De schrijver van dit proefschrift werd op 23 mei 1956 te Vlaardingen geboren. Van 1968
tot 1973 volgde hij M.AV.O. te Den Haag. Daarna bezocht hij tot 1978 de RK. H.TS.
Rijswijk, alwaar hij onderwijs volgde aan de afdeling der elektrotechniek.

Na het behalen van het HTS diploma trad hij in dienst bij de Nederlandse Philips bedrijven
B.V. te Eindhoven als ontwerper bij de elektrische bedrijfsmechanisatie professionele
componenten en materialen van de produkt divisie Elcoma. Daarnaast begon hij in dat
zelfde jaar met de studie voor elektrotechnisch ingenieur aan de technische universiteit te
Eindhoven. In het kader van deze studie verrichtte hij, onder verantwoording van Prof. Dr.
Ir. P. Eijkhoff, van mei 1982 tot mei 1983 een afstudeeronderzoek op het Natuurkundig
Laboratorium van Philips in de groep measurement and control, onder leiding van Ir. AF.
Verkruissen.

Na het behalen van de graad van elektrotechnisch ingenieur (met lof), trad hij op 1 juni
1983, in dienst van het Centrum voor Fabricage Technieken. als wetenschappelijk
© medewerker in de groep machine and process control van het vakgebied signal processing,
hetgeen een onderdeel is van het CAM centre. Gedurende de afgelopen jaren heeft hij zich
in het kader van =zijn werk bezig gehouden met optimale baansturing van vrij
programmeerbare mechanismen. De door hem ontwikkelde methode voor het numeriek
oplossen van optimale besturingsproblemen met toestandsbeperkingen is het onderwerp
van dit proefschrift. Sedert 1 september 1986 is hij groepleider van de groep machine and
process control.

Sinds november 1984 is hij tevens verbonden als docent aan de avond H.T.S. van het
LH.B.O. te Eindhoven. alwaar hij onderwijs geeft in de meet - en regeltechniek aan de
eindexamen klas van de onderafdeling werktuigbouwkunde.
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STELLINGEN

De door Craven afgeleide noodzakelijke voorwaarden voor oplossingen van optimale
besturingsproblemen met toestandsbeperkingen zijn niet correct, als gevolg van een foutief
aangenomen representatie van de Lagrange multiplicatoren die geassocieerd zijn met de
toestandsbeperkingen.

Craven B.D. (1978) Mathematical Programming and Control Theory. Chapman and Hall
mathematics series, London.

De numerieke testvoorbeelden gebruikt door Miele en Wu zijn zinvol om de correctheid te
testen van een implementatie van een methode voor het numeriek oplossen van een
optimaal besturingsprobleem. Daarentegen zijn ze te eenvoudig om een uitspraak te
rechtvaardigen met betrekking tot de geschiktheid van de methode voor het oplossen van
algemenere optimale besturingsproblemen.

Miele A. and AK. Wu {1980) Sequential conjugate gradient-restoration algorithm for
optimal control problems with nondifferential constraints and general boundary
conditions. Part 2 : examples. Optimal Control Applications and Methods, Vol. 1.

m

De noodzakelijke voorwaarden voor optimaliteit van Russak zijn in wezen een andere
formulering van de noodzakelijke voorwaarden voor optimaliteit van Jacobson, Lele en
Speyer. De voorwaarden van Russak zijn daarom niet superieur, zoals opgemerkt wordt
door van Loon.

Jacobson D.H., M.M. Lele, and J.L. Speyer (1971) New necessary conditions of optimality
for control problems with state-variable inequality constraints. Journal of
Mathematical Analysis and Applications 35, p. 255-284.

Loon P. van (1982) A dynamic theory of the firm : production, finance and investment.
PhD thesis, Tilburg University. The Netherlands, p. 142.

Russak B. (1970) On general problems with bounded state variables. Journal of
Optimization Theory and Applications, Vol. 6, No. 6.



Uit het bewijs van sielling 4.2, deel b van Schittkowski, blijkt dat de ‘augmented
Lagrangian’ ook gebruikt kan worden als ‘merit’ funktie in een SQP-methode. voor het
oplossen van niet-lineaire programmeringsproblemen met ongelijkheidsbeperkingen,
waarbij de zoekrichting gevonden‘ wordt als de oplossing van een Kkwadratisch
programmeringsprobleem met alleen gelijkheidsbeperkingen.

Schittkowski K. (1981) The nonlinear programming method of Wilson, Han and Powell with
an augmented Lagrangian type line search function. Part 1 : convergence analysis.
Numer. Math. 38, p. 83-114,

De conditie die door Kurcyusz de "Kuhn-Tucker" conditie wordt genoemd is in feite de
"constraint qualification’ van Abadie (zie Bazaraa e.a. (1976)). Aangezien de Abadie en de
Kuhn-Tucker "constraint qualifications’ niet equivalent zijn, is de door Kurcyusz gebruikte
benaming verwarrend. ‘

Bazaraa M.S. and C.M. Shetiy (1976) Foundations of Optimization. Springer-Verlag, New
York.

Kurcuysz S. (1976) On the existence and nonexistence of Lagrange multipliers in Banach
spaces. Journal of Optimization Theory and Applications, Vol. 20, No. 1, p. 81-110.



Voor de praktische toepassing van de theorie over de optimale ‘open loop besturing van
dynamische sysiemen op geregelde processen, is het van belang dat ingezien wordt dat de
besturing van een geregeld proces in veel gevallen gesplitst kan worden in een ‘open loop’
besturingsprobleem en een (quasi- Jstationair regelprobleem.

(o)

k(o) ult) x(t)

regelaar proces

a

|

figuur 1

Een en ander is weergegeven in bovenstaande figuur. De besturing # en de daarbij
behorende toestand X worden bepaald als de oplossing van een ‘open loop’ optimaal
besturingsprobleem, d.w.z. de terugkoppeling wordt genegeerd. Vervoligens wordt de
regelaar ontworpen op basis van een lineair model van het proces, dat verkregen wordt
door lineariseren van het proces model langs de trajectorie (x (¢ .4 (2 )).

Wanneer bij de besturing van een electro-mechanisch servosysteem uitgegaan wordt van
het tweede-orde-model zoals beschreven door Bouwens, dan kan een aan figuur 1
equivalent besturingsschema verkregen worden door voorwaartse koppeling van de
gewenste snelheid en versnelling.

versnellings set point

model van servo + mechanica

positie set point

figuur 2

Bij de implementatie van bovenstaand schema kan de differentiatie van de set-point-
functie y{z ) veelal analytisch geschieden, omdat 7{¢) in de meeste gevallen een vooraf
bekende analytische struktiuur heeft.

Bouwens H.B. (1984) Servo design procedure. Philips CFT report 15/83.



Bij de optimale besturing van een digitaal geregeld proces is het vaak zinvol om de optimale
besturing te berekenen op basis van een tijdcontinu proces-model. Immers de keuze van de
bemonstertijd voor de (tijddiscrete) regeling van het proces geschiedt op basis van de
gewenste eigenschappen van het geregelde proces (bemonstertijd meestal zo klein mogelijk).
terwijl de keuze van de tijddiscretisatie bij het uitrekenen van de optimale besturing
geschiedt op basis van numerieke argumenten (integratiestap meestal zo groot mogelijk en
eventueel variabel).

De veronderstelling van een tweede-orde-model voor het dynamisch gedrag van een
electro-mechanisch servo-systeem correspondeert bij een electrisch aangedreven robot met
de veronderstelling van starre lichamen voor de armdelen en oneindig stijve transmissies
tussen armdelen en aandrijvingen. Voor een goede regeling van een robot is het in het
algemeen noodzakelijk de interactie tussen de vrijheidsgraden te compenseren volgens het
zogenaamde "inverse plant’ principe.

Machielsen K.C.P. (1983) Some aspects of the dynamic behaviour of an assembly robot.
M.Sc. thesis. Eindhoven University of Technology. The Netherlands.

K.C.P. Machielsen, 31 maart 1987.



