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Preface

This book is an expanded version of supplementary notes that we used for a course on

ordinary differential equations for upper-division undergraduate students and begin-

ning graduate students in mathematics, engineering, and sciences. The book intro-

duces the numerical analysis of differential equations, describing the mathematical

background for understanding numerical methods and giving information on what

to expect when using them. As a reason for studying numerical methods as a part

of a more general course on differential equations, many of the basic ideas of the

numerical analysis of differential equations are tied closely to theoretical behavior

associated with the problem being solved. For example, the criteria for the stability

of a numerical method is closely connected to the stability of the differential equation

problem being solved.

This book can be used for a one-semester course on the numerical solution of dif-

ferential equations, or it can be used as a supplementary text for a course on the theory

and application of differential equations. In the latter case, we present more about

numerical methods than would ordinarily be covered in a class on ordinary differential

equations. This allows the instructor some latitude in choosing what to include, and

it allows the students to read further into topics that may interest them. For example,

the book discusses methods for solving differential algebraic equations (Chapter 10)

and Volterra integral equations (Chapter 12), topics not commonly included in an

introductory text on the numerical solution of differential equations.
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viii PREFACE

We also include MATLAB R© programs to illustrate many of the ideas that are

introduced in the text. Much is to be learned by experimenting with the numerical

solution of differential equations. The programs in the book can be downloaded from

the following website.

http://www.math.uiowa.edu/NumericalAnalysisODE/

This site also contains graphical user interfaces for use in experimenting with Euler’s

method and the backward Euler method. These are to be used from within the

framework of MATLAB.

Numerical methods vary in their behavior, and the many different types of differ-

ential equation problems affect the performance of numerical methods in a variety of

ways. An excellent book for “real world” examples of solving differential equations

is that of Shampine, Gladwell, and Thompson [74].

The authors would like to thank Olaf Hansen, California State University at San

Marcos, for his comments on reading an early version of the book. We also express

our appreciation to John Wiley Publishers.
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Introduction

Differential equations are among the most important mathematical tools used in pro-

ducing models in the physical sciences, biological sciences, and engineering. In this

text, we consider numerical methods for solving ordinary differential equations, that

is, those differential equations that have only one independent variable.

The differential equations we consider in most of the book are of the form

Y ′(t) = f(t, Y (t)),

where Y (t) is an unknown function that is being sought. The given function f(t, y)
of two variables defines the differential equation, and examples are given in Chapter

1. This equation is called a first-order differential equation because it contains a

first-order derivative of the unknown function, but no higher-order derivative. The

numerical methods for a first-order equation can be extended in a straightforward way

to a system of first-order equations. Moreover, a higher-order differential equation

can be reformulated as a system of first-order equations.

A brief discussion of the solvability theory of the initial value problem for ordi-

nary differential equations is given in Chapter 1, where the concept of stability of

differential equations is also introduced. The simplest numerical method, Euler’s

method, is studied in Chapter 2. It is not an efficient numerical method, but it is an

intuitive way to introduce many important ideas. Higher-order equations and systems

of first-order equations are considered in Chapter 3, and Euler’s method is extended

1



2 INTRODUCTION

to such equations. In Chapter 4, we discuss some numerical methods with better

numerical stability for practical computation. Chapters 5 and 6 cover more sophisti-

cated and rapidly convergent methods,namely Runge–Kutta methods and the families

of Adams–Bashforth and Adams–Moulton methods, respectively. In Chapter 7, we

give a general treatment of the theory of multistep numerical methods. The numerical

analysis of stiff differential equations is introduced in several early chapters, and it

is explored at greater length in Chapters 8 and 9. In Chapter 10, we introduce the

study and numerical solution of differential algebraic equations, applying some of the

earlier material on stiff differential equations. In Chapter 11, we consider numerical

methods for solving boundary value problems of second-order ordinary differential

equations. The final chapter, Chapter 12, gives an introduction to the numerical solu-

tion of Volterra integral equations of the second kind, extending ideas introduced in

earlier chapters for solving initial value problems. Appendices A and B contain brief

introductions to Taylor polynomial approximations and polynomial interpolation.



CHAPTER 1

THEORY OF DIFFERENTIAL

EQUATIONS: AN INTRODUCTION

For simple differential equations, it is possible to find closed form solutions. For

example, given a function g, the general solution of the simplest equation

Y ′(t) = g(t)

is

Y (t) =

∫
g(s) ds+ c

with c an arbitrary integration constant. Here,
∫
g(s) ds denotes any fixed antideriva-

tive of g. The constant c, and thus a particular solution, can be obtained by specifying

the value of Y (t) at some given point:

Y (t0) = Y0.

Example 1.1 The general solution of the equation

Y ′(t) = sin(t)

is

Y (t) = − cos(t) + c.

3



4 THEORY OF DIFFERENTIAL EQUATIONS: AN INTRODUCTION

If we specify the condition

Y
(π

3

)
= 2,

then it is easy to find c = 2.5. Thus the desired solution is

Y (t) = 2.5 − cos(t).

The more general equation

Y ′(t) = f(t, Y (t)) (1.1)

is approached in a similar spirit, in the sense that usually there is a general solution

dependent on a constant. To further illustrate this point, we consider some more

examples that can be solved analytically. First, and foremost, is the first-order linear

equation

Y ′(t) = a(t)Y (t) + g(t). (1.2)

The given functions a(t) and g(t) are assumed continuous. For this equation, we

obtain

f(t, z) = a(t)z + g(t),

and the general solution of the equation can be found by the so-called method of

integrating factors.

We illustrate the method of integrating factors through a particularly useful case,

Y ′(t) = λY (t) + g(t) (1.3)

withλ a given constant. Multiplying the linear equation (1.3) by the integrating factor

e−λt, we can reformulate the equation as

d

dt

(
e−λtY (t)

)
= e−λtg(t).

Integrating both sides from t0 to t, we obtain

e−λtY (t) = c+

∫ t

t0

e−λsg(s) ds,

where

c = e−λ t0Y (t0). (1.4)

So the general solution of (1.3) is

Y (t) = eλt

[
c+

∫ t

t0

e−λsg(s) ds

]
= ceλt +

∫ t

t0

eλ(t−s)g(s) ds. (1.5)

This solution is valid on any interval on which g(t) is continuous.

As we have seen from the discussions above, the general solution of the first-order

equation (1.1) normally depends on an arbitrary integration constant. To single out
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a particular solution, we need to specify an additional condition. Usually such a

condition is taken to be of the form

Y (t0) = Y0. (1.6)

In many applications of the ordinary differential equation (1.1), the independent vari-

able t plays the role of time, and t0 can be interpreted as the initial time. So it is

customary to call (1.6) an initial value condition. The differential equation (1.1) and

the initial value condition (1.6) together form an initial value problem

Y ′(t) = f(t, Y (t)),
Y (t0) = Y0.

(1.7)

For the initial value problem of the linear equation (1.3), the solution is given by

the formulas (1.5) and (1.4). We observe that the solution exists on any open interval

where the data function g(t) is continuous. This is a property for linear equations.

For the initial value problem of the general linear equation (1.2), its solution exists

on any open interval where the functions a(t) and g(t) are continuous. As we will

see next through examples, when the ordinary differential equation (1.1) is nonlinear,

even if the right-side function f(t, z) has derivatives of any order, the solution of the

corresponding initial value problem may exist on only a smaller interval.

Example 1.2 By a direct computation, it is easy to verify that the equation

Y ′(t) = −[Y (t)]2 + Y (t)

has a so-called trivial solution Y (t) ≡ 0 and a general solution

Y (t) =
1

1 + c e−t
(1.8)

with c arbitrary. Alternatively, this equation is a so-called separable equation, and its

solution can be found by a standard method such as that described in Problem 4. To

find the solution of the equation satisfying Y (0) = 4, we use the solution formula at

t = 0:

4 =
1

1 + c
,

c = −0.75.

So the solution of the initial value problem is

Y (t) =
1

1 − 0.75e−t
, t ≥ 0.

With a general initial value Y (0) = Y0 6= 0, the constant c in the solution formula

(1.8) is given by c = Y −1
0 − 1. If Y0 > 0, then c > −1, and the solution Y (t) exists

for 0 ≤ t < ∞. However, for Y0 < 0, the solution exists only on the finite interval
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[0, log(1 − Y −1
0 )); the value t = log(1 − Y −1

0 ) is the zero of the denominator in the

formula (1.8). Throughout this work, log denotes the natural logarithm.

Example 1.3 Consider the equation

Y ′(t) = −[Y (t)]2.

It has a trivial solution Y (t) ≡ 0 and a general solution

Y (t) =
1

t+ c
(1.9)

with c arbitrary. This can be verified by a direct calculation or by the method described

in Problem 4. To find the solution of the equation satisfying the initial value condition

Y (0) = Y0, we distinguish several cases according to the value of Y0. If Y0 = 0,

then the solution of the initial value problem is Y (t) ≡ 0 for any t ≥ 0. If Y0 6= 0,

then the solution of the initial value problem is

Y (t) =
1

t+ Y −1
0

.

For Y0 > 0, the solution exists for any t ≥ 0. For Y0 < 0, the solution exists only on

the interval [0,−Y−1
0 ). As a side note, observe that for 0< Y0 < 1 with c = Y −1

0 −1,

the solution (1.8) increases for t ≥ 0, whereas for Y0 > 0, the solution (1.9) with

c = Y −1
0 decreases for t ≥ 0.

Example 1.4 The solution of

Y ′(t) = λY (t) + e−t, Y (0) = 1

is obtained from (1.5) and (1.4) as

Y (t) = eλt +

∫ t

0

eλ(t−s)e−s ds.

If λ 6= −1, then

Y (t) = eλt

{
1 +

1

λ+ 1
[1 − e−(λ+1)t]

}
.

If λ = −1, then

Y (t) = e−t (1 + t) .

We remark that for a general right-side function f(t, z), it is usually not possible

to solve the initial value problem (1.7) analytically. One such example is for the

equation

Y ′ = e−t Y 4

.

In such a case, numerical methods are the only plausible way to compute solutions.

Moreover, even when a differential equation can be solved analytically, the solution
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formula, such as (1.5), usually involves integrations of general functions. The inte-

grals mostly have to be evaluated numerically. As an example, it is easy to verify that

the solution of the problem

{
Y ′ = 2 t Y + 1, t > 0,
Y (0) = 1

is

Y (t) = et2
∫ t

0

e−s2

ds+ et2 .

For such a situation, it is usually more efficient to use numerical methods from the

outset to solve the differential equation.

1.1 GENERAL SOLVABILITY THEORY

Before we consider numerical methods, it is useful to have some discussions on prop-

erties of the initial value problem (1.7). The following well-known result concerns

the existence and uniqueness of a solution to this problem.

Theorem 1.5 Let D be an open connected set in R
2, let f(t, y) be a continuous

function of t and y for all (t, y) in D, and let (t0, Y0) be an interior point of D.

Assume that f(t, y) satisfies the Lipschitz condition

|f(t, y1) − f(t, y2)| ≤ K |y1 − y2| all (t, y1), (t, y2) in D (1.10)

for some K ≥ 0. Then there is a unique function Y (t) defined on an interval

[t0 − α, t0 + α] for some α > 0, satisfying

Y ′(t) = f(t, Y (t)), t0 − α ≤ t ≤ t0 + α,

Y (t0) = Y0.

The Lipschitz condition on f is assumed throughout the text. The condition (1.10)

is easily obtained if ∂f(t, y)/∂y is a continuous function of (t, y) overD, the closure

of D, with D also assumed to be convex. (A set D is called convex if for any two

points in D the line segment joining them is entirely contained in D. Examples of

convex sets include circles, ellipses, triangles, parallelograms.) Then we can use

K = max
(t,y)∈D

∣∣∣∣
∂f(t, y)

∂y

∣∣∣∣ ,

provided this is finite. If not, then simply use a smaller D, say, one that is bounded

and contains (t0, Y0) in its interior. The number α in the statement of the theorem

depends on the initial value problem (1.7). For some equations, such as the linear

equation given in (1.3) with a continuous function g(t), solutions exist for any t, and

we can take α to be ∞. For many nonlinear equations, solutions can exist only in
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bounded intervals. We have seen such instances in Examples 1.2 and 1.3. Let us look

at one more such example.

Example 1.6 Consider the initial value problem

Y ′(t) = 2t[Y (t)]2, Y (0) = 1.

Here

f(t, y) = 2ty2,
∂f(t, y)

∂y
= 4ty,

and both of these functions are continuous for all (t, y). Thus, by Theorem 1.5 there

is a unique solution to this initial value problem for t in a neighborhood of t0 = 0.

This solution is

Y (t) =
1

1 − t2
, −1 < t < 1.

This example illustrates that the continuity of f(t, y) and ∂f(t, y)/∂y for all (t, y)
does not imply the existence of a solution Y (t) for all t.

1.2 STABILITY OF THE INITIAL VALUE PROBLEM

When numerically solving the initial value problem (1.7), we will generally assume

that the solution Y (t) is being sought on a given finite interval t0 ≤ t ≤ b. In that

case, it is possible to obtain the following result on stability. Make a small change in

the initial value for the initial value problem, changing Y0 to Y0 +ǫ. Call the resulting

solution Yǫ(t),

Y ′
ǫ (t) = f(t, Yǫ(t)), t0 ≤ t ≤ b, Yǫ(t0) = Y0 + ǫ. (1.11)

Then, under hypotheses similar to those of Theorem 1.5, it can be shown that for all

small values of ǫ, Y (t) and Yǫ(t) exist on the interval [t0, b], and moreover,

‖Yǫ − Y ‖∞ ≡ max
t0≤t≤b

|Yǫ(t) − Y (t)| ≤ c ǫ (1.12)

for some c > 0 that is independent of ǫ. Thus small changes in the initial value Y0

will lead to small changes in the solution Y (t) of the initial value problem. This is a

desirable property for a variety of very practical reasons.

Example 1.7 The problem

Y ′(t) = −Y (t) + 1, 0 ≤ t ≤ b, Y (0) = 1 (1.13)

has the solution Y (t) ≡ 1. The perturbed problem

Y ′
ǫ (t) = −Yǫ(t) + 1, 0 ≤ t ≤ b, Yǫ(0) = 1 + ǫ
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has the solution Yǫ(t) = 1 + ǫe−t. Thus

Y (t) − Yǫ(t) = −ǫe−t,

|Y (t) − Yǫ(t)| ≤ |ǫ| , 0 ≤ t ≤ b.

The problem (1.13) is said to be stable.

Virtually all initial value problems (1.7) are stable in the sense specified in (1.12);

but this is only a partial picture of the effect of small perturbations of the initial

value Y0. If the maximum error ‖Yǫ − Y ‖∞ in (1.12) is not much larger than ǫ,
then we say that the initial value problem (1.7) is well-conditioned. In contrast, when

‖Yǫ − Y ‖∞ is much larger than ǫ [i.e., the minimal possible constant c in the estimate

(1.12) is large], then the initial value problem (1.7) is considered to be ill-conditioned.

Attempting to numerically solve such a problem will usually lead to large errors in

the computed solution. In practice, there is a continuum of problems ranging from

well-conditioned to ill-conditioned, and the extent of the ill-conditioning affects the

possible accuracy with which the solution Y can be found numerically, regardless of

the numerical method being used.

Example 1.8 The problem

Y ′(t) = λ [Y (t) − 1] , 0 ≤ t ≤ b, Y (0) = 1 (1.14)

has the solution

Y (t) = 1, 0 ≤ t ≤ b.

The perturbed problem

Y ′
ǫ (t) = λ[Yǫ(t) − 1], 0 ≤ t ≤ b, Yǫ(0) = 1 + ǫ

has the solution

Yǫ(t) = 1 + ǫeλt, 0 ≤ t ≤ b.

For the error, we obtain

Y (t) − Yǫ(t) = −ǫeλt, (1.15)

max
0≤t≤b

|Y (t) − Yǫ(t)| =

{
|ǫ| , λ ≤ 0,

|ǫ| eλb, λ ≥ 0.

If λ < 0, the error |Y (t) − Yǫ(t)| decreases as t increases. We see that (1.14) is well-

conditioned when λ ≤ 0. In contrast, for λ > 0, the error |Y (t) − Yǫ(t)| increases

as t increases. And for λb moderately large, say λb ≥ 10, the change in Y (t) is

quite significant at t = b. The problem (1.14) is increasingly ill-conditioned as λ
increases.

For the more general initial value problem (1.7) and the perturbed problem (1.11),

one can show that

Y (t) − Yǫ(t) ≈ −ǫ exp

(∫ t

t0

g(s) ds

)
(1.16)
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with

g(t) =
∂f(t, y)

∂y

∣∣∣∣
y=Y (t)

for t sufficiently close to t0. Note that this formula correctly predicts (1.15), since in

that case

f(t, y) = λ (y − 1) ,

∂f(t, y)

∂y
= λ,

∫ t

0

g(s) ds = λt.

Then (1.16) yields

Y (t) − Yǫ(t) ≈ −ǫeλt,

which agrees with the earlier formula (1.15).

Example 1.9 The problem

Y ′(t) = −[Y (t)]2, Y (0) = 1 (1.17)

has the solution

Y (t) =
1

t+ 1
.

For the perturbed problem,

Y ′
ǫ (t) = −[Yǫ(t)]

2, Yǫ(0) = 1 + ǫ, (1.18)

we use (1.16) to estimate Y (t) − Yǫ(t). First,

f(t, y) = −y2,

∂f(t, y)

∂y
= −2y,

g(t) = −2Y (t) = − 2

t+ 1
,

∫ t

0

g(s) ds = −2

∫ t

0

ds

s+ 1
= −2 log(1 + t) = log(1 + t)−2,

exp

[∫ t

0

g(s) ds

]
= elog(t+1)−2

=
1

(t+ 1)2
.

For t ≥ 0 sufficiently small, substituting into (1.16) gives

Y (t) − Yǫ(t) ≈
−ǫ

(1 + t)2
. (1.19)
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Figure 1.1 The direction field of the equation Y ′ = Y and solutions Y = ±et

This indicates that (1.17) is a well-conditioned problem.

In general, if
∂f(t, Y (t))

∂y
≤ 0, t0 ≤ t ≤ b, (1.20)

then the initial value problem is generally considered to be well-conditioned. Al-

though this test depends on Y (t) over the interval [t0, b], one can often show (1.20)

without knowing Y (t) explicitly; see Problems 5, 6.

1.3 DIRECTION FIELDS

Direction fields serve as a useful tool in understanding the behavior of solutions

of a differential equation. We notice that the graph of a solution of the equation

Y ′ = f(t, Y ) is such that at any point (t, y) on the solution curve, the slope is f(t, y).
The slopes can be represented graphically in direction field diagrams. In MATLAB R©,

direction fields can be generated by using the meshgrid and quiver commands.

Example 1.10 Consider the equation Y ′ = Y . The slope of a solution curve at a

point (t, y) on the curve is y, which is independent of t. We generate a direction field

diagram with the following MATLAB code:

First draw the direction field:

[t,y] = meshgrid(-2:0.5:2,-2:0.5:2);
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Figure 1.2 The direction field of the equation Y ′ = 2tY 2 and the solution Y = 1/
`
1 − t2

´

dt = ones(9); %Generates a matrix of 1’s.

dy = y;

quiver(t,y,dt,dy);

Then draw two solution curves:

hold on

t = -2:0.01:1;

y1 = exp(t); y2 = -exp(t);

plot(t,y1,t,y2)

text(1.1,2.8,’\itY=e^t’,’FontSize’,14)
text(1.1,-2.8,’\itY=-e^t’,’FontSize’,14)
hold off

The result is shown in Figure 1.1.

Example 1.11 Continuing Example 1.6, we use the following MATLAB M-file to

generate a direction field diagram and the particular solutionY = 1/(1−t2) in Figure

1.2.

[t,y] = meshgrid(-1:0.2:1,1:0.5:4);

dt = ones(7,11); dy = 2*t.*y.^2;

quiver(t,y,dt,dy);

hold on

tt = -0.87:0.01:0.87;
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yy = 1./(1-tt.^2);

plot(tt,yy)

hold off

Note that for large y values, the arrows in the direction field diagram (Figure 1.2)

point almost vertically. This suggests that a solution to the equation may exist only

in a bounded interval of the t axis, which, indeed, is the case.

PROBLEMS

1. In each of the following cases, show that the given function Y (t) satisfies the

associated differential equation. Then determine the value of c required by the

initial condition. Finally, with reference to the general format in (1.7), identify

f(t, z) for each differential equation.

(a) Y ′(t) = −Y (t) + sin(t) + cos(t), Y (0) = 1;

Y (t) = sin(t) + ce−t.

(b) Y ′(t) =
[
Y (t) − Y (t)2

]
/t, Y (1) = 2; Y (t) = t/(t+ c), t > 0.

(c) Y ′(t) = cos2(Y (t)), Y (0) = π/4; Y (t) = tan−1(t+ c).

(d) Y ′(t) = Y (t)[Y (t) − 1], Y (0) = 1/2; Y (t) = 1/(1 + cet).

2. Use MATLAB to draw direction fields for the differential equations listed in

Problem 1.

3. Solve the following problem by using (1.5) and (1.4):

(a) Y ′(t) = λY (t) + 1, Y (0) = 1.

(b) Y ′(t) = λY (t) + t, Y (0) = 3.

4. Consider the differential equation

Y ′(t) = f1(t)f2(Y (t))

for some given functions f1(t) and f2(z). This is called a separable differential

equation, and it can be solved by direct integration. Write the equation as

Y ′(t)

f2(Y (t))
= f1(t),

and find the antiderivative of each side:
∫

Y ′(t) dt

f2(Y (t))
=

∫
f1(t) dt.

On the left side, change the integration variable by letting z = Y (t). Then the

equation becomes ∫
dz

f2(z)
=

∫
f1(t) dt.
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After integrating, replace z by Y (t); then solve for Y (t), if possible. If these

integrals can be evaluated, then the differential equation can be solved. Do

so for the following problems, finding the general solution and the solution

satisfying the given initial condition.

(a) Y ′(t) = t/Y (t), Y (0) = 2.

(b) Y ′(t) = te−Y (t), Y (1) = 0.

(c) Y ′(t) = Y (t)[a− Y (t)], Y (0) = a/2, a > 0.

5. Check the conditioning of the initial value problems in Problem 1. Use the test

(1.20).

6. Check the conditioning of the initial value problems in Problem 4 (a), (b). Use

the test (1.20).

7. Use (1.20) to discuss the conditioning of the problem

Y ′(t) = Y (t)2 − 5 sin(t) − 25 cos2(t), Y (0) = 6.

You do not need to know the true solution.

8. Consider the solutions Y (t) of

Y ′(t) + aY (t) = de−bt

with a, b, d constants and a, b > 0. Calculate

lim
t→∞

Y (t).

Hint: Consider the cases a 6= b and a = b separately.



CHAPTER 2

EULER’S METHOD

Although it is possible to derive solution formulas for some ordinary differential

equations, as is shown in Chapter 1, many differential equations arising in applications

are so complicated that it is impractical to have solution formulas. Even when a

solution formula is available, it may involve integrals that can be calculated only by

using a numerical quadrature formula. In either situation, numerical methods provide

a powerful alternative tool for solving the differential equation.

The simplest numerical method for solving the initial value problem is called

Euler’s method. We first define it and give some numerical illustrations, and then

we analyze it mathematically. Euler’s method is not an efficient numerical method,

but many of the ideas involved in the numerical solution of differential equations are

introduced most simply with it.

Before beginning, we establish some notation that will be used in the rest of this

book. As before, Y (t) denotes the true solution of the initial value problem with the

initial value Y0:

Y ′(t) = f(t, Y (t)), t0 ≤ t ≤ b,

Y (t0) = Y0.
(2.1)

15
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Numerical methods for solving (2.1) will find an approximate solution y(t) at a

discrete set of nodes,

t0 < t1 < t2 < · · · < tN ≤ b. (2.2)

For simplicity, we will take these nodes to be evenly spaced:

tn = t0 + nh, n = 0, 1, . . . , N.

The approximate solution will be denoted using y(t), with some variations. The

following notations are all used for the approximate solution at the node points:

y(tn) = yh(tn) = yn, n = 0, 1, . . . , N.

To obtain an approximate solution y(t) at points in [t0, b] other than those in (2.2),

some form of interpolation must be used. We will not consider that problem here,

although there are standard techniques from the theory of interpolation that can be

easily applied. For an introduction to interpolation theory, see, e.g., [11, Chap. 3],

[12, Chap. 4], [57, Chap. 8], [68, Chap. 8].

2.1 DEFINITION OF EULER’S METHOD

To derive Euler’s method, consider the standard derivative approximation from be-

ginning calculus,

Y ′(t) ≈ 1

h
[Y (t+ h) − Y (t)]. (2.3)

This is called a forward difference approximation to the derivative. Applying this to

the initial value problem (2.1) at t = tn,

Y ′(tn) = f(tn, Y (tn)),

we obtain

1

h
[Y (tn+1) − Y (tn)] ≈ f(tn, Y (tn)),

Y (tn+1) ≈ Y (tn) + hf(tn, Y (tn)). (2.4)

Euler’s method is defined by taking this to be exact:

yn+1 = yn + hf(tn, yn), 0 ≤ n ≤ N − 1. (2.5)

For the initial guess, use y0 = Y0 or some close approximation of Y0. Sometimes

Y0 is obtained empirically and thus may be known only approximately. Formula

(2.5) gives a rule for computing y1, y2, . . . , yN in succession. This is typical of most

numerical methods for solving ordinary differential equations.

Some geometric insight into Euler’s method is given in Figure 2.1. The line

z = p(t) that is tangent to the graph of z = Y (t) at tn has slope

Y ′(tn) = f(tn, Y (tn)).
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Figure 2.1 An illustration of Euler’s method derivation

Using this tangent line to approximate the curve near the point (tn, Y (tn)), the value

of the tangent line

p(t) = Y (tn) + f(tn, Y (tn))(t − tn)

at t = tn+1 is given by the right side of (2.4).

Example 2.1 The true solution of the problem

Y ′(t) = −Y (t), Y (0) = 1 (2.6)

is Y (t) = e−t. Euler’s method is given by

yn+1 = yn − hyn, n ≥ 0 (2.7)

with y0 = 1 and tn = nh. The solution y(t) for three values of h and selected values

of t is given in Table 2.1. To illustrate the procedure, we compute y1 and y2 when

h = 0.1. From (2.7), we obtain

y1 = y0 − hy0 = 1 − (0.1)(1) = 0.9, t1 = 0.1,

y2 = y1 − hy1 = 0.9 − (0.1)(0.9) = 0.81, t2 = 0.2.

For the error in these values, we have

Y (t1) − y1 = e−0.1 − y1
.
= 0.004837,

Y (t2) − y2 = e−0.2 − y2
.
= 0.008731.
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Table 2.1 Euler’s method for (2.6)

h t yh(t) Error Relative

Error

0.2 1.0 3.2768e − 1 4.02e − 2 0.109

2.0 1.0738e − 1 2.80e − 2 0.207

3.0 3.5184e − 2 1.46e − 2 0.293

4.0 1.1529e − 2 6.79e − 3 0.371

5.0 3.7779e − 3 2.96e − 3 0.439

0.1 1.0 3.4867e − 1 1.92e − 2 0.0522

2.0 1.2158e − 1 1.38e − 2 0.102

3.0 4.2391e − 2 7.40e − 3 0.149

4.0 1.4781e − 2 3.53e − 3 0.193

5.0 5.1538e − 3 1.58e − 3 0.234

0.05 1.0 3.5849e − 1 9.39e − 3 0.0255

2.0 1.2851e − 1 6.82e − 3 0.0504

3.0 4.6070e − 2 3.72e − 3 0.0747

4.0 1.6515e − 2 1.80e − 3 0.0983

5.0 5.9205e − 3 8.17e − 4 0.121

Example 2.2 Solve

Y ′(t) =
Y (t) + t2 − 2

t+ 1
, Y (0) = 2 (2.8)

whose true solution is

Y (t) = t2 + 2t+ 2 − 2(t+ 1) log(t+ 1).

Euler’s method for this differential equation is

yn+1 = yn +
h(yn + t2n − 2)

tn + 1
, n ≥ 0

with y0 = 2 and tn = nh. The solution y(t) is given in Table 2.2 for three values

of h and selected values of t. A graph of the solution yh(t) for h = 0.2 is given in

Figure 2.2. The node values yh(tn) have been connected by straight line segments in

the graph. Note that the horizontal and vertical scales are different.

In both examples, observe the behavior of the error as h decreases. For each fixed

value of t, note that the errors decrease by a factor of about 2 when h is halved. As
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Figure 2.2 Euler’s method for problem (2.8), h = 0.2

an illustration, take Example 2.1 with t = 5.0. The errors for h = 0.2, 0.1, and 0.05,

respectively, are

2.96 × 10−3, 1.58 × 10−3, 8.17 × 10−4

and these decrease by successive factors of 1.93 and 1.87. The reader should do the

same calculation for other values of t, in both Examples 2.1 and 2.2. Also, note that

the behavior of the error as t increases may be quite different from the behavior of

the relative error. In Example 2.2, the relative errors increase initially, and then they

decrease with increasing t.

MATLAB R© program. The following MATLAB program implements Euler’s method.

The Euler method is also called the forward Euler method. The backward Euler

method is discussed in Chapter 4.

function [t,y] = euler for(t0,y0,t end,h,fcn)

%

% function [t,y]=euler for(t0,y0,t end,h,fcn)

%

% Solve the initial value problem

% y’ = f(t,y), t0 <= t <= b, y(t0)=y0

% Use Euler’s method with a stepsize of h. The user must

% supply a program to define the right side function of the

% differential equation. Use some name, say deriv, and a
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Table 2.2 Euler’s method for (2.8)

h t yh(t) Error Relative

Error

0.2 1.0 2.1592 6.82e − 2 0.0306

2.0 3.1697 2.39e − 1 0.0701

3.0 5.4332 4.76e − 1 0.0805

4.0 9.1411 7.65e − 1 0.129

5.0 14.406 1.09 0.0703

6.0 21.303 1.45 0.0637

0.1 1.0 2.1912 3.63e − 2 0.0163

2.0 3.2841 1.24e − 1 0.0364

3.0 5.6636 2.46e − 1 0.0416

4.0 9.5125 3.93e − 1 0.0665

5.0 14.939 5.60e − 1 0.0361

6.0 22.013 7.44e − 1 0.0327

0.05 1.0 2.2087 1.87e − 2 0.00840

2.0 3.3449 6.34e − 2 0.0186

3.0 5.7845 1.25e − 1 0.0212

4.0 9.7061 1.99e − 1 0.0337

5.0 15.214 2.84e − 1 0.0183

6.0 22.381 3.76e − 1 0.0165

% first line of the form

% function ans=deriv(t,y)

% A sample call would be

% [t,z]=euler for(t0,z0,b,delta,’deriv’)

%

% Output:

% The routine eulercls will return two vectors, t and y.

% The vector t will contain the node points

% t(1)=t0, t(j)=t0+(j-1)*h, j=1,2,...,N

% with

% t(N) <= t end-h, t(N)+h > t end-h

% The vector y will contain the estimates of the solution Y

% at the node points in t.

%

n = fix((t end-t0)/h)+1;

t = linspace(t0,t0+(n-1)*h,n)’;

y = zeros(n,1);
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y(1) = y0;

for i = 2:n

y(i) = y(i-1)+h*feval(fcn,t(i-1),y(i-1));

end

2.2 ERROR ANALYSIS OF EULER’S METHOD

The purpose of analyzing Euler’s method is to understand how it works, be able to

predict the error when using it, and perhaps accelerate its convergence. Being able to

do this for Euler’s method will also make it easier to answer the same questions for

other, more efficient numerical methods.

For the error analysis, we assume that the initial value problem (1.7) has a unique

solution Y (t) on t0 ≤ t ≤ b, and further, that this solution has a bounded sec-

ond derivative Y ′′(t) over this interval. We begin by applying Taylor’s theorem to

approximating Y (tn+1),

Y (tn+1) = Y (tn) + hY ′(tn) + 1
2h

2Y ′′(ξn)

for some tn ≤ ξn ≤ tn+1. Using the fact that Y (t) satisfies the differential equation,

Y ′(t) = f(t, Y (t)),

our Taylor approximation becomes

Y (tn+1) = Y (tn) + hf(tn, Y (tn)) + 1
2h

2Y ′′(ξn). (2.9)

The term

Tn+1 = 1
2h

2Y ′′(ξn) (2.10)

is called the truncation error for Euler’s method, and it is the error in the approximation

Y (tn+1) ≈ Y (tn) + hf(tn, Y (tn)).

To analyze the error in Euler’s method, subtract

yn+1 = yn + hf(tn, yn) (2.11)

from (2.9), obtaining

Y (tn+1) − yn+1 = Y (tn) − yn + h[f(tn, Y (tn)) − f(tn, yn)]

+ 1
2h

2Y ′′(ξn).
(2.12)

The error in yn+1 consists of two parts: (1) the truncation error Tn+1, newly intro-

duced at step tn+1; and (2) the propagated error

Y (tn) − yn + h[f(tn, Y (tn)) − f(tn, yn)].
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The propagated error can be simplified by applying the mean value theorem to f(t, z),
considering it as a function of z,

f(tn, Y (tn)) − f(tn, yn) =
∂f(tn, ζn)

∂y
[Y (tn) − yn] (2.13)

for some ζn between Y (tn) and yn. Let ek ≡ Y (tk)− yk, k ≥ 0, and then use (2.13)

to rewrite (2.12) as

en+1 =

[
1 + h

∂f(tn, ζn)

∂y

]
en + 1

2h
2Y ′′(ξn). (2.14)

These results can be used to give a general error analysis of Euler’s method for the

initial value problem.

Let us first consider a special case that will yield some intuitive understanding of

the error in Euler’s method. Consider using Euler’s method to solve the problem

Y ′(t) = 2t, Y (0) = 0, (2.15)

whose true solution is Y (t) = t2. Then, from the error formula (2.14), we have

en+1 = en + h2, e0 = 0,

where we are assuming the initial value y0 = Y (0). This leads, by induction, to

en = nh2, n ≥ 0.

Since nh = tn,

en = htn. (2.16)

For each fixed tn, the error at tn is proportional to h. The truncation error is O(h2),
but the cumulative effect of these errors is a total error proportional to h.

We now turn to a convergence analysis of Euler’s method for solving the general

initial value problem on a finite interval [t0, b]:

Y ′(t) = f(t, Y (t)), t0 ≤ t ≤ b,
Y (t0) = Y0.

(2.17)

For the complete error analysis, we begin with the following lemma. It is quite

useful in the analysis of most numerical methods for solving the initial value problem.

Lemma 2.3 For any real t,
1 + t ≤ et,

and for any t ≥ −1, any m ≥ 0,

0 ≤ (1 + t)m ≤ emt. (2.18)

Proof. Using Taylor’s theorem yields

et = 1 + t+ 1
2 t

2eξ
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with ξ between 0 and t. Since the remainder is never negative, the first result is

proved. Formula (2.18) follows easily.

For this and several of the following chapters, we assume that the derivative func-

tion f(t, y) satisfies the following stronger Lipschitz condition: there exists K ≥ 0
such that

|f(t, y1) − f(t, y2)| ≤ K |y1 − y2| (2.19)

for −∞ < y1, y2 < ∞ and t0 ≤ t ≤ b. Although stronger than necessary, it

simplifies the proofs. In addition, given a function f(t, y) satisfying the weaker

condition (1.10) and a solution Y (t) to the initial value problem, the function f can

be modified to satisfy (2.19) without changing the solution Y (t) or the essential

character of the initial value problem (2.17) and its numerical solution.

Theorem 2.4 Let f(t, y) be a continuous function for t0 ≤ t ≤ b and−∞ < y <∞,

and further assume that f(t, y) satisfies the Lipschitz condition (2.19). Assume that

the solution Y (t) of (2.17) has a continuous second derivative on [t0, b]. Then the

solution {yh(tn) | t0 ≤ tn ≤ b} obtained by Euler’s method satisfies

max
t0≤tn≤b

|Y (tn) − yh(tn)| ≤ e(b−t0)K |e0| +
[
e(b−t0)K − 1

K

]
τ(h), (2.20)

where

τ(h) = 1
2h ‖Y ′′‖∞ = 1

2h max
t0≤t≤b

|Y ′′(t)| (2.21)

and e0 = Y0 − yh(t0).
If, in addition, we have

|Y0 − yh(t0)| ≤ c1h as h→ 0 (2.22)

for some c1 ≥ 0 (e.g., if Y0 = y0 for all h, then c1 = 0), then there is a constant

B ≥ 0 for which

max
t0≤tn≤b

|Y (tn) − yh(tn)| ≤ Bh. (2.23)

Let en = Y (tn) − y(tn), n ≥ 0. Let N ≡ N(h) be the integer for which

tN ≤ b, tN+1 > b.

Define

τn = 1
2hY

′′(ξn), 0 ≤ n ≤ N(h) − 1,

based on the truncation error in (2.10). Easily, we obtain

max
0≤n≤N−1

|τn| ≤ τ(h)

using (2.21).

Recalling (2.12), we have

en+1 = en + h [f(tn, Yn) − f(tn, yn)] + hτn. (2.24)
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We are using the common notation Yn ≡ Y (tn). Taking bounds using (2.19), we

obtain

|en+1| ≤ |en| + hK |Yn − yn| + h |τn| ,

|en+1| ≤ (1 + hK) |en| + hτ(h), 0 ≤ n ≤ N(h) − 1. (2.25)

Apply this recursively to obtain

|en| ≤ (1 + hK)n |e0| +
[
1 + (1 + hK) + · · · + (1 + hK)n−1

]
hτ(h).

Using the formula for the sum of a finite geometric series,

1 + r + r2 + · · · + rn−1 =
rn − 1

r − 1
, r 6= 1, (2.26)

we obtain

|en| ≤ (1 + hK)n |e0| +
[
(1 + hK)n − 1

K

]
τ(h). (2.27)

Using Lemma 2.3, we obtain

(1 + hK)n ≤ enhK = e(tn−t0)K ≤ e(b−t0)K ,

and this with (2.27) implies the main result (2.20).

The remaining result (2.23) is a trivial corollary of (2.20) with the constantB given

by

B = c1e
(b−t0)K +

1

2

[
e(b−t0)K − 1

K

]
‖Y ′′‖∞ .

The result (2.23) is consistent with the behavior observed in Tables 2.1 and 2.2

earlier in this chapter, and it agrees with (2.16) for the special case (2.15). When h
is halved, the boundBh is also halved, and that is the behavior in the error observed

earlier. Euler’s method is said to converge with order 1, because that is the power of

h that occurs in the error bound. In general, if we have

|Y (tn) − yh(tn)| ≤ chp, t0 ≤ tn ≤ b (2.28)

for some constant p ≥ 0, then we say that the numerical method is convergent with

order p. Naturally, the higher the order p, the faster the convergence we can expect.

We emphasize that for the error bound (2.20) to hold, the true solution must be

assumed to have a continuous second derivative Y ′′(t) over [t0, b]. This assumption

is not always valid. When Y ′′(t) does not have such a continuous second derivative,

the error bound (2.20) no longer holds. (See Problem 11.)

The error bound (2.20) is valid for a large family of the initial value problems.

However, it usually produces a very pessimistic numerical bound for the error, due to

the presence of the exponential terms. Under certain circumstances, we can improve

the result. Assume
∂f(t, y)

∂y
≤ 0, (2.29)
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K ≡ sup
t0≤t≤b

−∞<y<∞

∣∣∣∣
∂f(t, y)

∂y

∣∣∣∣ <∞. (2.30)

Note the relation of (2.29) to the stability condition (1.20) in Chapter 1. Also assume

that h has been chosen so small that

1 − hK ≥ −1, t0 ≤ t ≤ b, −∞ < z <∞.

Returning to (2.14), we have

en+1 = en + h
∂f(tn, ζn)

∂y
en + 1

2h
2Y ′′(ξn) (2.31)

with ζn between Y (tn) and yn. Using (2.29) and (2.30), we have

1 ≥ 1 + h
∂f(tn, ζn)

∂y
≥ 1 − hK ≥ −1.

When combined with (2.31), we have

|en+1| ≤ |en| + ch2, t0 ≤ tn ≤ b, (2.32)

where

c = 1
2 ‖Y

′′‖∞ = 1
2 · max

t0≤t≤b
|Y ′′(t)| .

In addition, assume e0 = 0. Applying (2.32) inductively, we obtain

|en| ≤ nch2 = c (tn − t0) h. (2.33)

The error is bounded by a quantity proportional to h, and the coefficient of the h term

increases linearly with respect to the point tn, in contrast to the exponential growth

given in the bound (2.20).

The error bound in Theorem 2.4 is rigorous, and is useful in providing an insight

to the convergence behavior of the numerical solution. However, it is rarely advisable

to use (2.20) for an actual error bound, as the next example shows.

Example 2.5 The problem

Y ′(t) = −Y (t), Y (0) = 1 (2.34)

was solved earlier in this chapter, with the results given in Table 2.1. To apply (2.20),

we have ∂f(t, y)/∂y = −1, K = 1. The true solution is Y (t) = e−t; thus

max
0≤t≤b

|Y ′′(t)| = 1.

With y0 = Y0 = 1, the bound (2.20) becomes

∣∣e−tn − yh(tn)
∣∣ ≤ 1

2h
(
eb − 1

)
, 0 ≤ tn ≤ b. (2.35)
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As h→ 0, this shows that yh(t) converges to e−t. However, this bound is excessively

conservative. As b increases, the bound increases exponentially. For b = 5, the bound

is ∣∣e−tn − yh(tn)
∣∣ ≤ 1

2h
(
e5 − 1

)
≈ 73.7h, 0 ≤ tn ≤ 5.

And this is far larger than the actual errors shown in Table 2.1, by several orders of

magnitude. For the problem (2.34), the improved error bound (2.33) applies with

c = 1
2 (see Problem 7). A more general approach for accurate error estimation is

discussed in the following section.

2.3 ASYMPTOTIC ERROR ANALYSIS

To obtain more accurate predictions of the error, we consider asymptotic error esti-

mates. Assume that Y is 3 times continuously differentiable and

∂f(t, y)

∂y
,

∂2f(t, y)

∂y2

are both continuous for all values of (t, y) near (t, Y (t)), t0 ≤ t ≤ b. Then one can

prove that the error in Euler’s method satisfies

Y (tn) − yh(tn) = hD(tn) + O(h2), t0 ≤ tn ≤ b. (2.36)

The termO(h2) denotes a quantity of maximal size proportional toh2 over the interval

[t0, b]. More generally, the statement

F (h; tn) = O(hp), t0 ≤ tn ≤ b

for some constant p means

max
t0≤tn≤b

|F (h; tn)| ≤ c hp

for some constant c and all sufficiently small values of h.

Assuming y0 = Y0, the usual case, the function D(t) satisfies an initial value

problem for a linear differential equation,

D′(t) = g(t)D(t) + 1
2Y

′′(t), D(t0) = 0, (2.37)

where

g(t) =
∂f(t, y)

∂y

∣∣∣∣
y=Y (t)

.

WhenD(t) can be obtained explicitly, the leading error term hD(tn) from the formula

(2.36) usually provides a quite good estimate of the true error Y (tn) − yh(tn), and

the quality of the estimation improves with decreasing stepsize h.
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Example 2.6 Consider again the problem (2.34). Then D(t) satisfies

D′(t) = −D(t) + 1
2e

−t, D(0) = 0.

The solution is

D(t) = 1
2 te

−t.

Using (2.36), the error satisfies

Y (tn) − yh(tn) ≈ 1
2htne

−tn . (2.38)

We are neglecting the O(h2) term, since it should be substantially smaller than the

term hD(t) in (2.36), for all sufficiently small values of h. To check the accuracy of

(2.38), consider tn = 5.0 with h = 0.05. Then

1
2htne

−tn
.
= 0.000842.

From Table 2.1, the actual error is 0.000817, which is quite close to our estimate of

it.

How do we obtain the result given in (2.36)? We sketch the main ideas but do not

fill in all of the details. We begin by approximating the error equation (2.31) with

ên+1 =

[
1 + h

∂f(t, Y (tn))

∂y

]
ên + 1

2h
2Y ′′(tn). (2.39)

We have used

∂f(tn, ζn)

∂y
≈ ∂f(t, Y (tn))

∂y
,

Y ′′(ξn) ≈ Y ′′(tn).

This will cause an approximation error

en − ên = O(h2), (2.40)

although that may not be immediately evident. In addition, we may write

ên = hδn, n = 0, 1, . . . , (2.41)

on the basis of (2.33); and for simplicity, assume δ0 = 0.

Substituting (2.41) into (2.39) and then canceling h, we obtain

δn+1 =

[
1 + h

∂f(t, Y (tn))

∂y

]
δn + 1

2hY
′′(tn)

= δn + h

[
∂f(t, Y (tn))

∂y
δn + 1

2Y
′′(tn)

]
.
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This is Euler’s method applied to (2.37). Applying the earlier convergence analysis

for Euler’s method, we have

max
t0≤tn≤b

|D(tn) − δn| ≤ Bh

for some constant B > 0. We then multiply by h to get

max
t0≤tn≤b

|hD(tn) − ên| ≤ Bh2.

Combining this with (2.40) demonstrates (2.36), although we have omitted a number

of details.

We comment that the function D(t) defined by (2.37) is continuously differen-

tiable. Then the error formula (2.36) allows us to use the divided difference

yh(tn+1) − yh(tn)

h

as an approximation to the derivative Y ′(tn) (or Y ′(tn+1)),

Y ′(tn) − yh(tn+1) − yh(tn)

h
= O(h). (2.42)

The proof of this is left as Problem 16.

2.3.1 Richardson extrapolation

It is not practical to try to find the function D(t) from the problem (2.37), principally

because it requires knowledge of the true solution Y (t). The real power of the formula

(2.36) is that it describes precisely the error behavior. We can use (2.36) to estimate

the solution error and to improve the quality of the numerical solution, without an

explicit knowledge of the function D(t). For this purpose, we need two numerical

solutions, say, yh(t) and y2h(t) over the interval t0 ≤ t ≤ b.
Assume that t is a node point with the stepsize 2h, and note that it is then also a

node point with the stepsize h. By the formula (2.36), we have

Y (t) − yh(t) = hD(t) + O(h2),

Y (t) − y2h(t) = 2hD(t) + O(h2).

Multiply the first equation by 2, and then subtract the second equation to eliminate

D(t), obtaining

Y (t) − [2 yh(t) − y2h(t)] = O(h2). (2.43)

This can also be written as

Y (t) − yh(t) = yh(t) − y2h(t) + O(h2). (2.44)

We know from our earlier error analysis that Y (t)− yh(t) = O(h). By dropping the

higher-order term O(h2) in (2.43), we obtain Richardson’s extrapolation formula

Y (t) ≈ ỹh(t) ≡ 2yh(t) − y2h(t). (2.45)
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Table 2.3 Euler’s method with Richardson extrapolation

t Y (t) − yh(t) yh(t) − y2h(t) eyh(t) Y (t) − eyh(t)

1.0 9.39e − 3 9.81e − 3 3.6829346e − 1 −4.14e − 4

2.0 6.82e − 3 6.94e − 3 1.3544764e − 1 −1.12e − 4

3.0 3.72e − 3 3.68e − 3 4.9748443e − 2 3.86e − 5

4.0 1.80e − 3 1.73e − 3 1.8249877e − 2 6.58e − 5

5.0 8.17e − 4 7.67e − 4 6.6872853e − 3 5.07e − 5

Dropping the higher-order term in (2.44), we obtain Richardson’s error estimate

Y (t) − yh(t) ≈ yh(t) − y2h(t). (2.46)

With these formulas, we can estimate the error in Euler’s method and can also obtain

a more rapidly convergent solution ỹh(t).

Example 2.7 Consider (2.34) with stepsize h = 0.05, 2h = 0.1. Then Table 2.3

contains Richardson’s extrapolation results for selected values of t. Note that (2.46)

is a fairly accurate estimator of the error, and that ỹh(t) is much more accurate than

yh(t).

Using (2.43), we have

Y (tn) − ỹh(tn) = O(h2), (2.47)

an improvement on the convergence order of Euler’s method. We will consider again

this type of extrapolation for the methods introduced in later chapters. However, the

actual formulas may be different from (2.45) and (2.46), and they will depend on the

order of the method.

2.4 NUMERICAL STABILITY

Recall the discussion of stability for the initial value problem given in Section 1.2. In

particular, recall the result (1.12) bounding the change in the solution Y (t) when the

initial condition is perturbed by ε. To perform a similar analysis for Euler’s method,

we define a numerical solution {zn} by

zn+1 = zn + hf(tn, zn), n = 0, 1, . . . , N(h) − 1 (2.48)

with z0 = y0 + ǫ. This is analogous to looking at the solution Y (t; ε) to the perturbed

initial value problem, in (1.11). We compare the two numerical solutions {zn} and

{yn} as h→ 0.
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Let en = zn − yn, n ≥ 0. Then e0 = ǫ, and subtracting yn+1 = yn + hf(tn, yn)
from (2.48), we obtain

en+1 = en + h [f(tn, zn) − f(tn,yn)] .

This has exactly the same form as (2.24),with τn set to zero. Using the same procedure

as that following (2.24), we have

max
0≤n≤N(h)

|zn − yn| ≤ e(b−t0)K |ǫ| .

Consequently, there is a constant ĉ ≥ 0, independent of h, such that

max
0≤n≤N(h)

|zn − yn| ≤ ĉ |ǫ| . (2.49)

This is the analog to the result (1.12) for the original initial value problem. This

says that Euler’s method is a stable numerical method for the solution of the initial

value problem (2.17). We insist that all numerical methods for initial value problems

possess this form of stability, imitating the stability of the original problem (2.17). In

addition, we require other forms of stability, based on replicating additional properties

of the initial value problem; these are introduced later.

2.4.1 Rounding error accumulation

The finite precision of computer arithmetic affects the accuracy in the numerical

solution of a differential equation. To investigate this effect, consider Euler’s method

(2.5). The simple arithmetic operations and the evaluation of f(xn, yn) will usually

contain errors due to rounding or chopping. For definitions of chopped and rounded

floating-point arithmetic, see [12, p. 39]. Thus what is actually evaluated is

ŷn+1 = ŷn + hf(xn,ŷn) + δn, n ≥ 0, ŷ0 = Y0. (2.50)

The quantity δn will be based on the precision of the arithmetic, and its size is affected

by that of ŷn. To simplify our work, we assume simply

|δn| ≤ cu · max
x0≤x≤xn

|Y (x)| , (2.51)

where u is the machine epsilon of the computer (see [12, p. 38]) and c is a constant

of magnitude 1 or larger. Using double precision arithmetic with a processor based

on the IEEE floating-point arithmetic standard, u
.
= 2.2 × 10−16.

To compare {ŷn} to the true solution Y (x), we begin by writing

Y (xn+1) = Y (xn) + hf(xn, Y (xn)) + 1
2h

2Y ′′(ξn), (2.52)

which was obtained earlier in (2.9). Subtracting (2.50) from (2.52), we get

Y (xn+1) − ŷn+1 = Y (xn) − ŷn + h[f(xn, Y (xn)) − f(xn, ŷn)]

+ 1
2h

2Y ′′(xn) − δn, n ≥ 0
(2.53)
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with Y (x0) − ŷ0 = 0. This equation is analogous to the error equation given earlier

in (2.12), with the role of the truncation error 1
2h

2Y ′′(ξn) in that earlier equation

replaced by the term

1
2h

2Y ′′(ξn) − δn = h

[
1
2hY

′′(ξn) − δn
h

]
. (2.54)

If the argument in the proof of Theorem 2.4 is applied to (2.53) rather than to (2.12),

then the error result (2.20) generalizes to

|Y (xn) − ŷn| ≤ c1

{
1
2h

[
max

x0≤x≤b
|Y ′′(x)|

]
+
cu

h

[
max

x0≤x≤b
|Y (x)|

]}
(2.55)

for x0 ≤ xn ≤ b, we obtain

c1 =
e(b−x0)K − 1

2K
,

and K is the supremum of |∂f(x, y)/∂y|, defined in (2.30). The term in braces on

the right side of (2.55) is obtained by bounding the term in brackets on the right side

of (2.54) and using the assumption (2.51).

In essence, (2.55) says that

|Y (xn) − ŷn| ≤ α1h+
α2

h
, x0 ≤ xn ≤ b

for appropriate choices of α1,α2. Note that α2 is generally small because u is small.

Thus the error bound will initially decrease as h decreases; but at a critical value of

h, call it h∗, the error bound will increase, because of the term α2/h. The same

qualitative behavior turns out to apply also for the actual error Y (xn) − yn. Thus

there is a limit on the attainable accuracy, and it is less than the number of digits

available in the machine floating-point representation. This same analysis is valid

for other numerical methods, with a term of the form

cu

h

[
max

x0≤x≤b
|Y (x)|

]

to be included as part of the global error for the numerical method. With rounded

floating-point arithmetic, this behavior can usually be improved on. But with chopped

floating-point arithmetic, it is likely to be accurate in a qualitative sense: ash is halved,

the contribution to the error due to the chopped arithmetic will double.

Example 2.8 Solve the problem

Y ′(x) = −Y (x) + 2 cos(x), Y (0) = 1

using Euler’s method. The true solution is Y (x) = sinx + cosx. Use a four digit

decimal machine with chopped floating-point arithmetic, and then repeat the calcu-

lation with rounded floating-point arithmetic. The machine epsilon in this arithmetic

is u = 0.001. Finally, give the results of Euler’s method with exact arithmetic. The
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Table 2.4 Effects of rounding/chopping errors in Euler’s method

h x Chopped arithmetic Rounded arithmetic Exact arithmetic

Y (x) − ŷh(x) Y (x) − ŷh(x) Y (x) − yh(x)

0.04 1 −1.00e − 2 −1.70e − 2 −1.70e − 2

2 −1.17e − 2 −1.83e − 2 −1.83e − 2

3 −1.20e − 3 −2.80e − 3 −2.78e − 3

4 1.00e − 2 1.60e − 2 1.53e − 2

5 1.13e − 2 1.96e − 2 1.94e − 2

0.02 1 7.00e − 3 −9.00e − 3 −8.46e − 3

2 4.00e − 3 −9.10e − 3 −9.13e − 3

3 2.30e − 3 −1.40e − 3 −1.40e − 3

4 −6.00e − 3 8.00e − 3 7.62e − 3

5 −6.00e − 3 8.50e − 3 9.63e − 3

0.01 1 2.80e − 2 −3.00e − 3 −4.22e − 3

2 2.28e − 2 −4.30e − 3 −4.56e − 3

3 7.40e − 3 −4.00e − 4 −7.03e − 4

4 −2.30e − 2 3.00e − 3 3.80e − 3

5 −2.41e − 2 4.60e − 3 4.81e − 3

results with decreasing h are given in Table 2.4. The errors for the answers that

are obtained by using floating–point chopped and/or rounded decimal arithmetic are

based on the true answers rounded to four digits.

Note that the errors with the chopped case are affected at h = 0.02, with the error

at x = 3 larger than when h = 0.04 for that case. The increasing error is clear with

the h = 0.01 case, at all points. In contrast, the errors using rounded arithmetic

continue to decrease, although the h = 0.01 case is affected slightly, in comparison

to the true errors when no rounding is present. The column with the errors for the

case with exact arithmetic show that the use of the rounded decimal arithmetic has

less effect on the error than does the use of chopped arithmetic. But there is still an

effect.

PROBLEMS

1. Solve the following problems using Euler’s method with stepsizes of h =
0.2, 0.1, 0.05. Compute the error and relative error using the true solution

Y (t). For selected values of t, observe the ratio by which the error decreases

when h is halved.

(a) Y ′(t) = [cos(Y (t))]2, 0 ≤ t ≤ 10, Y (0) = 0;
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Y (t) = tan−1(t).

(b) Y ′(t) =
1

1 + t2
− 2[Y (t)]2, 0 ≤ t ≤ 10, Y (0) = 0;

Y (t) =
t

1 + t2
.

(c) Y ′(t) =
1

4
Y (t)

[
1 − 1

20
Y (t)

]
, 0 ≤ t ≤ 20, Y (0) = 1;

Y (t) =
20

1 + 19e−t/4
.

(d) Y ′(t) = −[Y (t)]2, 1 ≤ t ≤ 10, Y (1) = 1;

Y (t) =
1

t
.

(e) Y ′(t) = te−t − Y (t), 0 ≤ t ≤ 10, Y (0) = 1;

Y (t) =

(
1 +

1

2
t2
)
e−t.

(f) Y ′(t) =
t3

Y (t)
, 0 ≤ t ≤ 10, Y (0) = 1;

Y (t) =

√
1

2
t4 + 1.

(g) Y ′(t) =
(
3t2 + 1

)
Y (t)2, 0 ≤ t ≤ 10, Y (0) = −1;

Y (t) = −
(
t3 + t+ 1

)−1
.

2. Compute the true solution to the problem

Y ′(t) = −e−tY (t), Y (0) = 1.

Using Euler’s method, solve this equation numerically with stepsizes of h =
0.2, 0.1, 0.05. Compute the error and relative error using the true solution Y (t).

3. Consider the linear problem

Y ′(t) = λY (t) + (1 − λ) cos(t) − (1 + λ) sin(t), Y (0) = 1.

The true solution is Y (t) = sin(t) + cos(t). Solve this problem using Euler’s

method with several values of λ and h, for 0 ≤ t ≤ 10. Comment on the

results.

(a) λ = −1; h = 0.5, 0.25, 0.125.

(b) λ = 1; h = 0.5, 0.25, 0.125.

(c) λ = −5; h = 0.5, 0.25, 0.125, 0.0625.

(d) λ = 5; h = 0.125, 0.0625.
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4. As a special case in which the error of Euler’s method can be analyzed directly,

consider Euler’s method applied to

Y ′(t) = Y (t), Y (0) = 1.

The true solution is et.

(a) Show that the solution of Euler’s method can be written as

yh(tn) = (1 + h)tn/h, n ≥ 0.

(b) Using L’Hospital’s rule from calculus, show that

lim
h→0

(1 + h)1/h = e.

This then proves that for fixed t = tn,

lim
h→0

yh(t) = et.

(c) Let us do a more delicate convergence analysis. Use the property ab =
eb log a to write

yh(tn) = etn log(1+h)/h.

Then use the formula

log(1 + h) = h− 1
2h

2 + O(h3)

and Taylor expansion of the natural exponential function to show that

Y (tn) − yh(tn) = 1
2htne

tn + O(h2).

This shows that for h small, the error is almost proportional to h, a phe-

nomenon already observed from the numerical results given in Tables 2.1

and 2.2.

5. Repeat the general procedures of Problem 4, but do so for the initial value

problem

Y ′(t) = cY (t), Y (0) = 1

with c 6= 0 a given constant.

6. Check the accuracy of the error bound (2.35) for b = 1, 2, 3, 4, 5 and h =
0.2, 0.1, 0.05. Compute the error bound and compare it with Table 2.1.

7. Consider again the problem (2.34) of Example 2.5. Let us derive a more

accurate error bound than the one given in Theorem 2.4. From (2.14) we have

en+1 = (1 − h) en + 1
2h

2e−ξn .
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Using this formula with 0 < h ≤ 1, and recalling e0 = 0, show the error bound

|en| ≤ 1
2htn.

Compare this error bound to the true errors in Table 2.1.

Hint: 1 − h ≤ 1 and e−ξn ≤ 1.

8. Compute the error bound (2.20), assuming y0 = Y0, for the problem (2.8) given

earlier in this chapter. Compare the bound with the actual errors given in Table

2.2, for b = 1, 2, 3, 4, 5 and h = 0.2, 0.1, 0.05.

9. Repeat Problem 8 for the equation in Problem 1 (a).

10. For Problems 1 (b)–(d), the constant K in (2.19) will be infinite. To use the

error bound (2.20) in such cases, let

K = 2 · max
t0≤t≤b

∣∣∣∣
∂f(t, Y (t))

∂y

∣∣∣∣ .

This can be shown to be adequate for all sufficiently small values of h. Then

repeat Problem 8 for Problem 1 (b)–(d).

11. Consider the initial value problem

Y ′(t) = α tα−1, Y (0) = 0,

where α > 0. The true solution is Y (t) = tα. When α 6= integer, the true solu-

tion is not infinitely differentiable. In particular, to have Y twice continuously

differentiable, we need α ≥ 2. Use the Euler method to solve the initial value

problem for α = 2.5, 1.5, 1.1 with stepsize h = 0.2, 0.1, 0.05. Compute the

solution errors at the nodes, and determine numerically the convergence orders

of the Euler method for these problems.

12. The solution of

Y ′(t) = λY (t) + cos(t) − λ sin(t), Y (0) = 0

is Y (t) = sin(t). Find the asymptotic error formula (2.36) in this case. Also

compute the Euler solution for 0 ≤ t ≤ 6, h = 0.2, 0.1, 0.05, and λ = 1,−1.

Compare the true errors with those obtained from the asymptotic estimate

Y (tn) − yn ≈ hD(tn).

13. Repeat Problem 12 for Problem 1 (d). Compare for 1 ≤ t ≤ 6,h = 0.2, 0.1, 0.05.

14. For the example (2.8), with the numerical results in Table 2.2, use Richardson’s

extrapolation to estimate the error Y (tn) − yh(tn) when h = 0.05. Also,

produce the Richardson extrapolate ỹh(tn) and compute its error. Do this for

tn = 1, 2, 3, 4, 5, 6.
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15. Repeat Problem 14 for Problems 1 (a)–(d).

16. Use Taylor’s theorem to show the standard numerical differentiation method

Y ′(tn+1) =
Y (tn+1) − Y (tn)

h
+ O(h).

Combine this with (2.36) to prove the error result (2.42).



CHAPTER 3

SYSTEMS OF DIFFERENTIAL

EQUATIONS

Although some applications of differential equations involve only a single first-order

equation, most applications involve a system of several such equations or higher-order

equations. In this chapter, we consider systems of first-order equations, showing

how Euler’s method applies to such systems. Numerical treatment of higher-order

equations can be carried out by first converting them to equivalent systems of first-

order equations.

To begin with a simple case, the general form of a system of two first-order differ-

ential equations is

Y ′
1(t) = f1(t, Y1(t), Y2(t)),
Y ′

2(t) = f2(t, Y1(t), Y2(t)).
(3.1)

The functions f1(t, z1,z2) and f2(t, z1, z2) define the differential equations, and the

unknown functions Y1(t) and Y2(t) are being sought. The initial value problem

consists of solving (3.1), subject to the initial conditions

Y1(t0) = Y1,0, Y2(t0) = Y2,0. (3.2)

37
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Example 3.1

(a) The initial value problem

Y ′
1(t) = Y1(t) − 2Y2(t) + 4 cos(t) − 2 sin(t), Y1(0) = 1,

Y ′
2(t) = 3Y1(t) − 4Y2(t) + 5 cos(t) − 5 sin(t), Y2(0) = 2

(3.3)

has the solution

Y1(t) = cos(t) + sin(t), Y2(t) = 2 cos(t).

This example will be used later in a numerical example illustrating Euler’s

method for systems.

(b) Consider the system

Y ′
1(t) = AY1(t)[1 −BY2(t)], Y1(0) = Y1,0,

Y ′
2(t) = CY2(t)[DY1(t) − 1], Y2(0) = Y2,0

(3.4)

with constants A,B,C,D > 0. This is called the Lotka–Volterra predator–

prey model. The variable t denotes time, Y1(t) the number of prey (e.g., rabbits)

at time t, and Y2(t) the number of predators (e.g., foxes). If there is only a

single type of predator and a single type of prey, then this model is often a

reasonable approximation of reality. The behavior of the solutions Y1 and Y2

is illustrated in Problem 8.

The initial value problem for a system of m first-order differential equations has

the general form

Y ′
1(t)= f1(t, Y1(t), . . . , Ym(t)), Y1(t0) = Y1,0,

...

Y ′
m(t)= fm(t, Y1(t), . . . , Ym(t)), Ym(t0)= Ym,0.

(3.5)

We seek the functions Y1(t), . . . , Ym(t) on some interval t0 ≤ t ≤ b. An example of

a three-equation system is given later in (3.21).

The general form (3.5) is clumsy to work with, and it is not a convenient way to

specify the system when using a computer program for its solution. To simplify the

form of (3.5), represent the solution and the differential equations by using column

vectors. Denote

Y(t) =



Y1(t)

...

Ym(t)


, Y0 =



Y1,0

...

Ym,0


, f(t,y) =



f1(t, y1, . . . , ym)

...

fm(t, y1, . . . , ym)


 (3.6)

with y = [y1, y2, . . . , ym]T . Then (3.5) can be rewritten as

Y′(t) = f(t,Y(t)), Y(t0) = Y0. (3.7)
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This resembles the earlier first-order single equation, but it is general as to the number

of equations. Computer programs for solving systems will almost always refer to the

system in this manner.

Example 3.2 System (3.3) can be rewritten as

Y′(t) = AY(t) + G(t), Y(0) = Y0

with

Y =

[
Y1

Y2

]
, A =

[
1 −2

3 −4

]
,

G(t) =

[
4 cos(t) − 2 sin(t)

5 cos(t) − 5 sin(t)

]
, Y0 =

[
1

2

]
.

In the notation of (3.6), we obtain

f(t,y) = Ay + G(t), y = [y1, y2]
T.

The general theory in Chapter 1 for a single differential equation generalizes in

an easy way to systems of first-order differential equations, once we have introduced

appropriate notation and tools for (3.6). For example, the role of the partial differential

∂f/∂y is replaced with the Jacobian matrix

fy(t,y) =

[
∂fi(t, y1, . . . , ym)

∂yj

]m

i,j=1

. (3.8)

We replace the absolute value |·| with a vector norm. A convenient choice is the

maximum norm:

‖y‖∞ = max
1≤i≤m

|yi| , y ∈ R
m.

With this, we can generalize the Lipschitz condition (2.19) to

‖f(t,y) − f(t, z)‖∞ ≤ K ‖y − z‖∞ , y, z ∈ R
m, t0 ≤ t ≤ b, (3.9)

K = max
t0≤t≤b

max
1≤i≤m

sup
y∈Rm

m∑

j=1

∣∣∣∣
∂fi(t,y)

∂yj

∣∣∣∣ .

3.1 HIGHER-ORDER DIFFERENTIAL EQUATIONS

In physics and engineering, the use of Newton’s second law of motion leads to systems

of second-order differential equations, modeling some of the most important physical

phenomena of nature. In addition, other applications also lead to higher-order equa-

tions. Higher-order equations can be studied either directly or through equivalent

systems of first-order equations.
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m

θ=0 mg

θ(t)
l

Figure 3.1 The schematic of pendulum

As an example, consider the second-order equation

Y ′′(t) = f(t, Y (t), Y ′(t)), (3.10)

where f(t, y1, y2) is given. The initial value problem consists of solving (3.10) subject

to the initial conditions

Y (t0) = Y0, Y ′(t0) = Y ′
0 . (3.11)

To reformulate this as a system of first-order equations, denote

Y1(t) = Y (t), Y2(t) = Y ′(t).

Then Y1 and Y2 satisfy

Y ′
1(t) = Y2(t), Y1(t0) = Y0,

Y ′
2(t) = f(t, Y1(t), Y2(t)), Y2(t0) = Y ′

0 .
(3.12)

Also, starting from this system, it is straightforward to show that the solution Y1 of

(3.12) will also have to satisfy (3.10) and (3.11), thus demonstrating the equivalence

of the two formulations.

Example 3.3 Consider the pendulum shown in Figure 3.1, of mass m and length l.
The motion of this pendulum about its centerline θ = 0 is modeled by a second-order
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differential equation derived from Newton’s second law of motion. If the pendulum is

assumed to move back and forth with negligible friction at its vertex, then the motion

is modeled fairly accurately by the equation

ml
d2θ

dt2
= −mg sin(θ(t)), (3.13)

where t is time and θ(t) is the angle between the vertical centerline and the pendulum.

The description of the motion is completed by specifying the initial position θ(0) and

initial angular velocity θ′(0). To convert this to a system of two first-order equations,

we may write

Y1(t) = θ(t), Y2(t) = θ′(t).

Then (3.13) and the initial conditions can be rewritten as

Y ′
1(t) = Y2(t), Y1(0) = θ(0)

Y ′
2(t) = −g

l
sin(Y1(t)), Y2(0) = θ′(0).

(3.14)

This system is equivalent to the initial value problem for the original second-order

equation (3.13).

A general differential equation of order m can be written as

dmY (t)

dtm
= f

(
t, Y (t),

dY (t)

dt
, . . . ,

dm−1Y (t)

dtm−1

)
, (3.15)

and the initial conditions needed to solve it are given by

Y (t0) = Y0, Y ′(t0) = Y ′
0 , . . . , Y (m−1)(t0) = Y

(m−1)
0 . (3.16)

It is reformulated as a system of m first-order equations by introducing

Y1(t) = Y (t), Y2(t) = Y ′(t), . . . , Ym(t) = Y (m−1)(t).

Then the equivalent initial value problem for a system of first-order equations is

Y ′
1(t)=Y2(t), Y1(t0)=Y0,

...
...

Y ′
m−1(t)=Ym(t), Ym−1(t0)=Y

(m−2)
0 ,

Y ′
m(t)=f(t, Y1(t), . . . , Ym(t)), Ym(t0)=Y

(m−1)
0 .

(3.17)

A special case of (3.15) is the order m linear differential equation

dmY

dtm
= a0(t)Y + a1(t)

dY

dt
+ · · · + am−1(t)

dm−1Y

dtm−1
+ b(t). (3.18)
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This is reformulated as above, with

Y ′
m = a0(t)Y1 + a1(t)Y2 + · · · + am−1(t)Ym + b(t) (3.19)

replacing the last equation in (3.17).

Example 3.4 The initial value problem

Y ′′′(t) + 3Y ′′(t) + 3Y ′(t) + Y (t) = −4 sin(t),

Y (0) = Y ′(0) = 1, Y ′′(0) = −1
(3.20)

is reformulated as

Y ′
1(t)=Y2(t), Y1(0)=1,

Y ′
2(t)=Y3(t), Y2(0)=1,

Y ′
3(t)=−Y1(t) − 3Y2(t) − 3Y3(t) − 4 sin(t), Y3(0)=−1.

(3.21)

The solution of (3.20) is Y (t) = cos(t) + sin(t), and the solution of (3.21) can be

generated from it. This system will be solved numerically later in this chapter.

3.2 NUMERICAL METHODS FOR SYSTEMS

Euler’s method and the numerical methods discussed in later chapters can be applied

without change to the solution of systems of first-order differential equations. The

numerical method should be applied to each equation in the system, or more simply,

in a straightforward way to the system written in the matrix–vector format (3.7). The

derivation of numerical methods for the solution of systems is essentially the same as

is done for a single equation. The convergence and stability analyses are also done

in the same manner.

To be more specific, we consider Euler’s method for the general system of two

first-order equations that is given in (3.1). By following the derivation given for

Euler’s method in obtaining (2.9), Taylor’s theorem gives

Y1(tn+1) = Y1(tn) + hf1(tn, Y1(tn), Y2(tn)) +
h2

2
Y ′′

1 (ξn),

Y2(tn+1) = Y2(tn) + hf2(tn, Y1(tn), Y2(tn)) +
h2

2
Y ′′

2 (ζn)

for some ξn, ζn in [tn, tn+1]. Dropping the error terms, we obtain Euler’s method for

a system of two equations for n ≥ 0:

y1,n+1 = y1,n + hf1(tn, y1,n, y2,n),

y2,n+1 = y2,n + hf2(tn, y1,n, y2,n).
(3.22)
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In matrix–vector format, this is

yn+1 = yn + hf(tn,yn), y0 = Y0. (3.23)

The convergence and stability theory of Euler’s method and of the other numerical

methods also generalizes. The key is to use the matrix–vector notation introduced

earlier in the chapter together with (3.8)–(3.9). This allows a straightforward imitation

of the proofs given in earlier chapters for a single equation.

Let m = 2 as above, and consider Euler’s method (3.22) together with the exact

initial values y1,0 = Y1,0, y2,0 = Y2,0. If Y1(t), Y2(t) are twice continuously

differentiable, then it can be shown that

|Y1(tn) − y1,n| ≤ ch, |Y2(tn) − y2,n| ≤ ch

for all t0 ≤ tn ≤ b, for some constant c. In addition, the earlier asymptotic error

formula (2.36) will still be valid; for j = 1, 2, we obtain

Yj(tn) − yj,n = Dj(tn)h+ O(h2), t0 ≤ tn ≤ b.

Thus Richardson’s extrapolation and error estimation formulas will still be valid. The

functionsD1(t),D2(t) satisfy a particular linear system of differential equations, but

we omit it here. Stability results for Euler’s method generalize without any significant

change. Thus in summary, the earlier work for Euler’s method generalizes without

significant change to systems. The same is true of the other numerical methods

given earlier, thus justifying our limitation to a single equation for introducing those

methods.

MATLAB R© program. The following is a MATLAB code eulersys implementing

the Euler method to solve the initial value problem (3.7). It can be seen that the

code eulersys is just a slight modification of the code euler for for solving a

single equation in Chapter 2. The program can automatically determine the number

of equations in the system.

function [t,y] = eulersys(t0,y0,t end,h,fcn)

%

% function [t,y]=eulersys(t0,y0,t end,h,fcn)

%

% Solve the initial value problem of a system

% of first order equations

% y’ = f(t,y), t0 <= t <= b, y(t0)=y0

% Use Euler’s method with a stepsize of h.

% The user must supply a program to compute the

% right hand side function with some name, say

% deriv, and a first line of the form

% function ans=deriv(t,y)

% A sample call would be

% [t,z]=eulersys(t0,z0,b,delta,’deriv’)
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Table 3.1 Solution of (3.3) using Euler’s method

j t Yj(t) Yj(t) − yj,2h(t) Yj(t) − yj,h(t) Ratio yj,h(t) − yj,2h(t)

1 2 0.49315 −5.65e − 2 −2.82e − 2 2.0 −2.83e − 2

4 −1.41045 −5.64e − 3 −2.72e − 3 2.1 −2.92e − 3

6 0.68075 4.81e − 2 2.36e − 2 2.0 2.44e − 2

8 0.84386 −3.60e − 2 −1.79e − 2 2.0 −1.83e − 2

10 −1.38309 −1.81e − 2 −8.87e − 3 2.0 −9.40e − 2

2 2 −0.83229 −3.36e − 2 −1.70e − 2 2.0 −1.66e − 2

4 −1.30729 5.94e − 3 3.19e − 3 1.9 2.75e − 3

6 1.92034 1.59e − 2 7.69e − 3 2.1 8.17e − 3

8 −0.29100 −2.08e − 2 −1.05e − 2 2.0 −1.03e − 2

10 −1.67814 1.26e − 3 9.44e − 4 1.3 3.11e − 4

%

% The program automatically determines the

% number of equations from the dimension of

% the initial value vector y0.

%

% Output:

% The routine eulersys will return a vector t

% and a matrix y. The vector t will contain the

% node points in [t0,t end]:

% t(1)=t0, t(j)=t0+(j-1)*h, j=1,2,...,N

% The matrix y is of size N by m, with m the

% number of equations. The i-th row y(i,:) will

% contain the estimates of the solution Y

% at the node points in t(i).

%

m = length(y0);

n = fix((t end-t0)/h)+1;

t = linspace(t0,t0+(n-1)*h,n)’;

y = zeros(n,m);

y(1,:) = y0;

for i = 2:n

y(i,:) = y(i-1,:) + h*feval(fcn,t(i-1),y(i-1,:));

end
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Example 3.5

(a) Solve (3.3) using Euler’s method. The numerical results are given in Table 3.1,

along with Richardson’s error estimate

Yj(tn) − yj,h(tn) ≈ yj,h(tn) − yj,2h(tn), j = 1, 2.

In the table, h = 0.05, 2h = 0.1. It can be seen that this error estimate is quite

accurate, except for the one case j = 2, t = 10. To get the numerical solution

values and their errors at the specified node points t = 2, 4, 6, 8, 10, we used

the following MATLAB commands, which can be included at the end of the

program eulersys for this example.

n1 = (n-1)/5;

for i = n1+1:n1:n

e(i,1) = cos(t(i))+sin(t(i))-y(i,1);

e(i,2) = 2*cos(t(i))-y(i,2);

end

diary euler sys1

fprintf(’ h = 6.5f\n’, h)

disp(’ t y(1) e(1) y(2) e(2)’)

for i = n1+1:n1:n

fprintf(’2.0f%10.2e%10.2e%10.2e%10.2e\n’, ...

t(i), y(i,1),e(i,1),y(i,2),e(i,2))

end

diary off

The right-hand side function for this example is defined by the following.

function z = eulersys fcn(t,y);

z = zeros(1,2);

z(1) = y(1)-2*y(2)+4*cos(t)-2*sin(t);

z(2) = 3*y(1)-4*y(2)+5*cos(t)-5*sin(t);

(b) Solve the third-order equation in (3.20), using Euler’s method to solve the

reformulated problem (3.21). The results for y(t) = Y1(t) = sin(t) + cos(t)
are given in Table 3.2, for stepsizes 2h = 0.1 and h = 0.05. The Richardson

error estimate is again quite accurate.

Other numerical methods apply to systems in the same straightforward manner.

Also, by using the matrix form (3.7) for a system, there is no apparent change in the

numerical method. For example, the Runge–Kutta method (5.20), given in Section

5.2 of Chapter 5, is

yn+1 = yn +
h

2
[f(tn, yn) + f(tn+1, yn + hf(tn, yn))], n ≥ 0. (3.24)
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Table 3.2 Solution of (3.20) using Euler’s method

t y(t) y(t) − y2h(t) y(t) − yh(t) Ratio yh(t) − y2h(t)

2 0.49315 −8.78e − 2 −4.25e − 2 2.1 −4.53e − 2

4 −1.41045 1.39e − 1 6.86e − 2 2.0 7.05e − 2

6 0.68075 5.19e − 2 2.49e − 2 2.1 2.70e − 2

8 0.84386 −1.56e − 1 −7.56e − 2 2.1 −7.99e − 2

10 −1.38309 8.39e − 2 4.14e − 2 2.0 4.25e − 2

Interpret this for a system of two equations with

yn =

[
y1,n

y2,n

]
, f(tn,yn) =

[
f1(tn, y1,n, y2,n)

f2(tn, y1,n, y2,n)

]
,

yn+1 = yn + 1
2h[f(tn,yn) + f(tn+1,yn + hf(tn,yn))], n ≥ 0. (3.25)

In component form, the method is

yj,n+1 = yj,n + 1
2h[fj(tn, y1,n, y2,n)

+fj(tn+1, y1,n + hf1(tn, y1,n, y2,n),

y2,n + hf2(tn,y1,n, y2,n))]

(3.26)

for j = 1, 2. The matrix–vector format (3.25) can be programmed very conveniently

on a computer. We leave its illustration to the problems.

PROBLEMS

1. Let

A =

[
1 −2

2 −1

]
, Y =

[
Y1

Y2

]
,

G(t) =

[
−2e−t + 2

−2e−t + 1

]
, Y0 =

[
1

1

]
.

Write out the two equations that make up the system

Y′(t) = AY(t) + G(t), Y(t0) = Y0.

The true solution is Y(t) = [e−t, 1]T .

2. Express the system (3.21) to the general form of Problem 1, giving the matrix

A.

3. Convert the following higher-order equations to systems of first-order equa-

tions.
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(a) Y ′′′(t) + 4Y ′′(t) + 5Y ′(t) + 2Y (t) = 2t2 + 10t+ 8,
Y (0) = 1, Y ′(0) = −1, Y ′′(0) = 3.

The true solution is Y (t) = e−t + t2.

(b) Y ′′(t) + 4Y ′(t) + 13Y (t) = 40 cos(t),
Y (0) = 3, Y ′(0) = 4.

The true solution is Y (t) = 3 cos(t) + sin(t) + e−2t sin(3t).

4. Convert the following system of second-order equations to a larger system

of first-order equations. This system arises from studying the gravitational

attraction of one mass by another:

x′′(t) =
−cx(t)
r(t)3

, y′′(t) =
−cy(t)
r(t)3

, z′′(t) =
−cz(t)
r(t)3

Here c is a positive constant and r(t) = [x(t)2 + y(t)2 + z(t)2]1/2, with t
denoting time.

5. Using Euler’s method, solve the system in Problem 1. Use stepsizes of h =
0.1, 0.05, 0.025, and solve for 0 ≤ t ≤ 10. Use Richardson’s error formula to

estimate the error for h = 0.025.

6. Repeat Problem 5 for the systems in Problem 3.

7. Consider solving the pendulum equation (3.13) with l = 1 and g = 32.2 ft/s2.

For the initial values, choose 0 < θ(0) ≤ π/2, θ′(0) = 0. Use Euler’s method

to solve (3.14), and experiment with various values ofh so as to obtain a suitably

small error in the computed solution. Graph t vs. θ(t), t vs. θ′(t), and θ(t) vs.

θ′(t). Does the motion appear to be periodic in time?

8. Solve the Lotka–Volterra predator–prey model of (3.4) with the parameters

A = 4, B = 1
2 , C = 3, D = 1

3 , and use eulersys to solve approximately

this model for 0 ≤ t ≤ 5. Use stepsizes h = 0.001, 0.0005, 0.00025. Use the

initial values x(0) = 3, y(0) = 5. Plot x and y as functions of t, and plot x
versus y. Comment on your results. We return to this problem in later chapters

when we have more efficient methods for its solution.





CHAPTER 4

THE BACKWARD EULER METHOD AND

THE TRAPEZOIDAL METHOD

In Section 1.2 of Chapter 1, we discussed the stability property of the initial value

problem (1.7). Roughly speaking, stability means that a small perturbation in the

initial value of the problem leads to a small change in the solution. In Section 2.4 of

Chapter 2, we showed that an analogous stability result was true for Euler’s method. In

general, we want to work with numerical methods for solving the initial value problem

that are numerically stable. This means that for any sufficiently small stepsize h, a

small change in the initial value will lead to a small change in the numerical solution.

Indeed, such a stability property is closely related to the convergence of the numerical

method, a topic we discuss at length in Chapter 7. For another example of the relation

between convergence and stability, we refer to Problem 16 for a numerical method

that is neither convergent nor stable.

A stable numerical method is one for which the numerical solution is well behaved

when considering small perturbations, provided that the stepsize h is sufficiently

small. In actual computations, however, the stepsizeh cannot be too small since a very

small stepsize decreases the efficiency of the numerical method. As can be shown,

the accuracy of the forward difference approximations, such as [Y (t+ h)− Y (t)]/h
to the derivative Y ′(t), deteriorates when, roughly speaking, h is of the order of the

square root of the machine epsilon. Hence, for actual computations, what matters

49
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is the performance of the numerical method when h is not assumed very small. We

need to further analyze the stability of numerical methods when h is not assumed to

be small.

Examining the stability question for the general problem

Y ′(t) = f(t, Y (t)), Y (t0) = Y0 (4.1)

is too complicated. Instead, we examine the stability of numerical methods for the

model problem

Y ′(t) = λY (t) + g(t), Y (0) = Y0 (4.2)

whose exact solution can be found from (1.5). Questions regarding stability and

convergence are more easily answered for this problem, and the answers to these

questions can be shown to usually be the answers to those same questions for the

more general problem (4.1).

Let Y (t) be the solution of (4.2), and let Yǫ(t) be the solution with the perturbed

initial data Y0 + ǫ:

Y ′
ǫ (t) = λYǫ(t) + g(t), Yǫ(0) = Y0 + ǫ.

Let Zǫ(t) denote the change in the solution

Zǫ(t) = Yǫ(t) − Y (t).

Then, subtracting (4.2) from the equation for Yǫ(t), we obtain

Z ′
ǫ(t) = λZǫ(t), Zǫ(0) = ǫ.

The solution is

Zǫ(t) = ǫeλt.

Typically in applications, we are interested in the case that eitherλ is real and negative

or λ is complex with a negative real part. In such a case, Zǫ(t) will go to zero as

t→ ∞ and, thus, the effect of the ǫ perturbation dies out for large values of t. (See a

related discussion in Section 1.2 of Chapter 1.) We would like the same behavior to

hold for the numerical method that is being applied to (4.2).

By considering the function Zǫ(t)/ǫ instead of Zǫ(t), we obtain the following

model problem that is generally used to test the performance of various numerical

methods:
Y ′ = λY, t > 0,
Y (0) = 1.

(4.3)

In the following, when we refer to the model problem (4.3), we always assume that

the constant λ < 0 or λ is complex and with Real(λ) < 0. The true solution of the

problem (4.3) is

Y (t) = eλ t, (4.4)

which decays exponentially in t since the parameter λ has a negative real part.
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The kind of stability property we would like for a numerical method is that when

it is applied to (4.3), the numerical solution satisfies

yh(tn) → 0 as tn → ∞ (4.5)

for any choice of the stepsize h. The set of values hλ, considered as a subset of the

complex plane, for which yn → 0 as n→ ∞, is called the region of absolute stability

of the numerical method. The use of hλ arises naturally from the numerical method,

as we will see.

Let us examine the performance of the Euler method on the model problem (4.3).

We have

yn+1 = yn + hλ yn = (1 + hλ) yn, n ≥ 0, y0 = 1.

By an inductive argument, it is not difficult to find

yn = (1 + hλ)n, n ≥ 0. (4.6)

Note that for a fixed node point tn = nh ≡ t, as n→ ∞, we obtain

yn =

(
1 +

λt

n

)n

→ eλt.

The limiting behavior is obtained using L’Hospital’s rule from calculus. This confirms

the convergence of the Euler method. We emphasize that this is an asymptotic property

in the sense that it is valid in the limit as h→ 0.

From formula (4.6), we see that yn → 0 as n→ ∞ if and only if

|1 + hλ| < 1.

For λ real and negative, the condition becomes

−2 < hλ < 0. (4.7)

This sets a restriction on the range of h that we can take to apply Euler’s method,

namely, 0 < h < −2/λ.

Example 4.1 Consider the model problem with λ = −100. Then the Euler method

will perform well only when h < 2×100−1 = 0.02. The true solutionY (t) = e−100t

at t = 0.2 is 2.061 × 10−9. Table 4.1 lists the Euler solution at t = 0.2 for several

values of h.

4.1 THE BACKWARD EULER METHOD

Now we consider a numerical method that has the property (4.5) for any stepsize h
when applied to the model problem (4.3). Such a method is said to be absolutely

stable.
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Table 4.1 Euler’s solution at x = 0.2 for Example 4.1

h yh(0.2)

0.1 81
0.05 256
0.02 1
0.01 0
0.001 7.06e − 10

In the derivation of the Euler method, we used the forward difference approxima-

tion

Y ′(t) ≈ 1

h
[Y (t+ h) − Y (t)].

Let us use, instead, the backward difference approximation

Y ′(t) ≈ 1

h
[Y (t) − Y (t− h)]. (4.8)

Then the differential equation Y ′(t) = f(t, Y (t)) at t = tn is discretized as

yn = yn−1 + h f(tn, yn).

Shifting the index by 1, we then obtain the backward Euler method

{
yn+1 = yn + h f(tn+1, yn+1), 0 ≤ n ≤ N − 1,
y0 = Y0.

(4.9)

Like the Euler method, the backward Euler method is of first-order accuracy, and a

convergence result similar to Theorem 2.4 holds. Also, an asymptotic error expansion

of the form (2.36) is valid. The method of proof is a variation on that used for Euler’s

method in Section 2.3 of Chapter 2.

Let us show that the backward Euler method has the desired property (4.5) on the

model problem (4.3). We have

yn+1 = yn + hλ yn+1,

yn+1 = (1 − hλ)−1yn, n ≥ 0.

Using this together with y0 = 1, we obtain

yn = (1 − hλ)−n. (4.10)

For any stepsize h > 0, we have |1 − hλ| > 1 and so yn → 0 as n→ ∞.

Continuing with Example 4.1, in Table 4.2 we give numerical results for the back-

ward Euler method. A comparison between Tables 4.1 and 4.2 reveals that the back-

ward Euler method is substantially better than the Euler method on the model problem

(4.3).
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Table 4.2 Backward Euler solution at x = 0.2 for Example 4.1

h yh(0.2)

0.1 8.26e − 3
0.05 7.72e − 4
0.02 1.69e − 5
0.01 9.54e − 7

0.001 5.27e − 9

The major difference between the two methods is that for the backward Euler

method, at each timestep, we need to solve a nonlinear algebraic equation

yn+1 = yn + h f(tn+1, yn+1) (4.11)

for yn+1. Methods in which yn+1 must be found by solving a rootfinding problem

are called implicit methods, since yn+1 is defined implicitly. In contrast, methods that

give yn+1 directly are called explicit methods. Euler’s method is an explicit method,

whereas the backward Euler method is an implicit method. Under the Lipschitz

continuity assumption (2.19) on the function f(t, z), it can be shown that if h is small

enough, the equation (4.11) has a unique solution.

Traditional rootfinding methods (e.g., Newton’s method, the secant method, the

bisection method) can be applied to (4.11) to find its root yn+1; but often that is a

very time-consuming process. Instead, (4.11) is usually solved by a simple iteration

technique. Given an initial guess y
(0)
n+1 ≈ yn+1, define y

(1)
n+1, y

(2)
n+1, etc., by

y
(j+1)
n+1 = yn + h f(tn+1, y

(j)
n+1), j = 0, 1, 2, . . . . (4.12)

It can be shown that if h is sufficiently small, then the iterates y
(j)
n+1 will converge to

yn+1 as j → ∞. Subtracting (4.12) from (4.11) gives us

yn+1 − y
(j+1)
n+1 = h [f(tn+1, yn+1) − f(tn+1, y

(j)
n+1)],

yn+1 − y
(j+1)
n+1 ≈ h · ∂f(tn+1, yn+1)

∂y
[yn+1 − y

(j)
n+1].

The last formula is obtained by applying the mean value theorem to f(tn+1, z),
considered as a function of z. This formula gives a relation between the error in

successive iterates. Therefore, if

∣∣∣∣h · ∂f(tn+1, yn+1)

∂y

∣∣∣∣ < 1, (4.13)

then the errors will converge to zero, as long as the initial guess y
(0)
n+1 is a sufficiently

accurate approximation to yn+1.
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The preceding iteration method (4.12) and its analysis is a special case of the theory

of fixed-point iteration for solving a nonlinear equation z = g(z). The iteration

scheme is

zj+1 = g(zj), j = 0, 1, 2, . . . (4.14)

with z0 an initial estimate of the solution being sought. Denote by α the solution

we are seeking for the equation z = g(z). Assuming that g(z) is continuously

differentiable in a neighborhood of α, we have that the iteration (4.14) will converge

if

|g′(α)| < 1 (4.15)

and if the initial estimate z0 is chosen sufficiently close toα; see [11, §2.5], [12, §3.4],

[68, §6.3]. Applying this notation to our iteration (4.12), α = yn+1 is the fixed point,

and

g(z) ≡ yn + h f(tn+1, z).

The convergence condition (4.13) is simply the condition (4.15).

In practice, one uses a good initial guess y
(0)
n+1, and one chooses an h that is so

small that the quantity in (4.13) is much less than 1. Then the error yn+1 − y
(j)
n+1

decreases rapidly to a small quantity as j increases, and often only one iterate needs

to be computed. The usual choice of the initial guess y
(0)
n+1 for (4.12) is based on the

Euler method

y
(0)
n+1 = yn + hf(tn, yn). (4.16)

This is called a predictor formula, as it predicts the root of the implicit method.

For many equations, it is usually sufficient to do the iteration (4.12) once. Thus,

a practical way to implement the backward Euler method is to do the following one-

point iteration for solving (4.11) approximately:

yn+1 = yn + h f(tn+1, yn),

yn+1 = yn + h f(tn+1, yn+1).

The resulting numerical method is then given by the formula

yn+1 = yn + h f(tn+1, yn + h f(tn+1, yn)). (4.17)

It can be shown that this method is still of first-order accuracy. However, it is no

longer absolutely stable (see Problem 1).

MATLAB R© program. We now turn to an implementation of the backward Euler

method. At each step, with yn available from the previous step, we use the Euler

method to compute an estimate of yn+1:

y
(1)
n+1 = yn + hf(tn, yn).

Then we carry out the iteration

y
(k+1)
n+1 = yn + h f(tn+1, y

(k)
n+1)
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until the difference between successive values of the iterates is sufficiently small,

indicating a sufficiently accurate approximation of the solution yn+1. To prevent an

infinite loop of iteration, we require the iteration to stop if 10 iteration steps are taken

without reaching a satisfactory solution; in this latter case, an error message will be

displayed.

function [t,y] = euler back(t0,y0,t end,h,fcn,tol)

%

% function [t,y] = euler back(t0,y0,t end,h,fcn,tol)

%

% Solve the initial value problem

% y’ = f(t,y), t0 <= t <= b, y(t0)=y0

% Use the backward Euler method with a stepsize of h.

% The user must supply an m-file to define the

% derivative f, with some name, say ’deriv.m’, and a

% first line of the form

% function ans=deriv(t,y)

% tol is the user supplied bound on the difference

% between successive values of the backward Euler

% iteration. A sample call would be

% [t,z]=euler back(t0,z0,b,delta,’deriv’,1.0e-3)

%

% Output:

% The routine euler back will return two vectors,

% t and y. The vector t will contain the node points

% t(1)=t0, t(j)=t0+(j-1)*h, j=1,2,...,N

% with

% t(N) <= t end, t(N)+h > t end

% The vector y will contain the estimates of the

% solution Y at the node points in t.

%

% Initialize.

n = fix((t end-t0)/h)+1;

t = linspace(t0,t0+(n-1)*h,n)’;

y = zeros(n,1);

y(1) = y0;

i = 2;

% advancing

while i <= n

%

% forward Euler estimate

%

yt1 = y(i-1)+h*feval(fcn,t(i-1),y(i-1));

% one-point iteration
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count = 0;

diff = 1;

while diff > tol & count < 10

yt2 = y(i-1) + h*feval(fcn,t(i),yt1);

diff = abs(yt2-yt1);

yt1 = yt2;

count = count +1;

end

if count >= 10

disp(’Not converging after 10 steps at t = ’)

fprintf(’%5.2f\n’, t(i))

end

y(i) = yt2;

i = i+1;

end

4.2 THE TRAPEZOIDAL METHOD

One main drawback of both the Euler method and the backward Euler method is the

low convergenceorder. Next we present a method that has a higher convergenceorder

and in which, at the same time, the stability property (4.5) is valid for any stepsize h
in solving the model problem (4.3).

We begin by introducing the trapezoidal rule for numerical integration:

∫ b

a

g(s) ds ≈ 1
2 (b− a) [g(a) + g(b)] . (4.18)

This rule is illustrated in Figure 4.1. The graph of y = g(t) is approximated on [a, b]
by the linear function y = p1(t) that interpolates g(t) at the endpoints of [a, b]. The

integral of g(t) over [a, b] is then approximated by the integral of p1(t) over [a, b].
By using various approaches, we can obtain the more complete result

∫ b

a

g(s) ds = 1
2 (b− a) [g(a) + g(b)] − 1

12 (b− a)
3
g′′(ξ) (4.19)

for some a ≤ ξ ≤ b.
We integrate the differential equation

Y ′(t) = f(t, Y (t))

from tn to tn+1:

Y (tn+1) = Y (tn) +

∫ tn+1

tn

f(s, Y (s)) ds. (4.20)
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t

y

a b

y=g(t)

y=p
1
(t)

Figure 4.1 Illustration of trapezoidal rule

Use the trapezoidal rule (4.18) to approximate the integral. Applying (4.19) to this

integral, we obtain

Y (tn+1) = Y (tn) + 1
2h [f(tn, Y (tn)) + f(tn+1, Y (tn+1))]

− 1
12h

3Y (3)(ξn)
(4.21)

for some tn ≤ ξn ≤ tn+1. By dropping the final error term and then equating both

sides, we obtain the trapezoidal method for solving the initial value problem (1.7):

yn+1 = yn + 1
2h [f(tn, yn) + f(tn+1, yn+1)] , n ≥ 0, (4.22)

with y0 = Y0.

The truncation error for the trapezoidal method is

Tn+1 = − 1
12h

3Y (3)(ξn). (4.23)

It can be shown that the trapezoidal method is of second-order accuracy. Assuming

y0 = Y0, we can show

max
t0≤tn≤b

|Y (tn) − yh(tn)| ≤ ch2

for all sufficiently small h, with c independent of h. The method of proof is a variation

of that used for Euler’s method in Chapter 2. In addition, the trapezoidal method is
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absolutely stable. This higher order and its absolute stability has made the trapezoidal

method an important tool when solving partial differential equations of parabolic type;

see Section 8.1 in Chapter 8.

Notice that the trapezoidal method is an implicit method. In a general step, yn+1

is found from the equation

yn+1 = yn +
h

2
[f(tn, yn) + f(tn+1, yn+1)], (4.24)

although this equation can be solved explicitly in only a relatively small number of

cases. The discussion for the solution of the backward Euler equation (4.11) applies

to the solution of the equation (4.24), with a slight variation. The iteration formula

(4.12) is now replaced by

y
(j+1)
n+1 = yn +

h

2
[f(tn, yn) + f(tn+1, y

(j)
n+1)], j = 0, 1, 2, . . . . (4.25)

If y
(0)
n+1 is a sufficiently good estimate of yn+1 and if h is sufficiently small, then the

iterates y
(j)
n+1 will converge to yn+1 as j → ∞. The convergence condition (4.13) is

replaced by ∣∣∣∣
h

2
· ∂f(tn+1, yn+1)

∂y

∣∣∣∣ < 1. (4.26)

Note that the condition (4.26) is somewhat easier to satisfy than (4.13), indicating

that the trapezoidal method is slightly easier to use than the backward Euler method.

The usual choice of the initial guess y
(0)
n+1 for (4.25) is based on the Euler method

y
(0)
n+1 = yn + hf(tn, yn), (4.27)

or an Adams–Bashforth method of order 2 (see Chapter 6)

y
(0)
n+1 = yn +

h

2
[3f(tn, yn) − f(tn−1, yn−1)]. (4.28)

These are called predictor formulas. In either of these two cases for generating y
(0)
n+1,

compute y
(1)
n+1 from (4.25) and accept it as the root yn+1. In the first step (n = 0), we

use the Euler predictor formula rather than the predictor (4.28). With both methods of

choosing y
(0)
n+1, it can be shown that the global error in the resulting solution {yh(tn)}

is still O(h2). If the Euler predictor (4.27) is used to define y
(0)
n+1, and if we accept

y
(1)
n+1 as the value of yn+1, then the resulting new scheme is

yn+1 = yn +
h

2
[f(tn, yn) + f(tn+1, yn + h f(tn, yn))] , (4.29)

known as Heun’s method. The Heun method is still of second-order accuracy.

However, it is no longer absolutely stable.
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MATLAB program. In our implementation of the trapezoidal method, at each step,

with yn available from the previous step, we use the Euler method to compute an

estimate of yn+1:

y
(0)
n+1 = yn + hf(tn, yn).

Then we use the trapezoidal formula to do the iteration

y
(k+1)
n+1 = yn +

h

2

[
f(tn, yn) + f(tn+1, y

(k)
n+1)

]

until the difference between successive values of the iterates is sufficiently small,

indicating a sufficiently accurate approximation of the solution yn+1. To prevent an

infinite loop of iteration, we require the iteration to stop if 10 iteration steps are taken

without reaching a satisfactory solution; and in this latter case, an error message will

be displayed.

function [t,y] = trapezoidal(t0,y0,t end,h,fcn,tol)

%

% function [t,y] = trapezoidal(t0,y0,t end,h,fcn,tol)

%

% Solve the initial value problem

% y’ = f(t,y), t0 <= t <= b, y(t0)=y0

% Use trapezoidal method with a stepsize of h. The

% user must supply an m-file to define the derivative

% f, with some name, say ’deriv.m’, and a first line

% of the form

% function ans=deriv(t,y)

% tol is the user supplied bound on the difference

% between successive values of the trapezoidal

% iteration. A sample call would be

% [t,z]=trapezoidal(t0,z0,b,delta,’deriv’,1e-3)

%

% Output:

% The routine trapezoidal will return two vectors,

% t and y. The vector t will contain the node points

% t(1) = t0, t(j) = t0+(j-1)*h, j=1,2,...,N

% with

% t(N) <= t end, t(N)+h > t end

% The vector y will contain the estimates of the

% solution Y at the node points in t.

%

% Initialize.

n = fix((t end-t0)/h)+1;

t = linspace(t0,t0+(n-1)*h,n)’;

y = zeros(n,1);

y(1) = y0;
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i = 2;

% advancing

while i <= n

fyt = feval(fcn,t(i-1),y(i-1));

%

% Euler estimate

%

yt1 = y(i-1)+h*fyt;

% trapezoidal iteration

count = 0;

diff = 1;

while diff > tol & count < 10

yt2 = y(i-1) + h*(fyt+feval(fcn,t(i),yt1))/2;

diff = abs(yt2-yt1);

yt1 = yt2;

count = count +1;

end

if count >= 10

disp(’Not converging after 10 steps at t = ’)

fprintf(’%5.2f\n’, t(i))

end

y(i) = yt2;

i = i+1;

end

Example 4.2 Consider the problem

Y ′(t) = λY (t) + (1 − λ) cos(t) − (1 + λ) sin(t), Y (0) = 1, (4.30)

whose true solution is Y (t) = sin(t) + cos(t). Euler’s method is used for the

numerical solution, and the results for several values of λ and h are given in Table

4.3. Note that according to the formula (2.10) for the truncation error, we obtain

Tn+1 = 1
2h

2Y ′′(ξn).

The solution Y (t) does not depend on λ. But the actual global error depends strongly

on λ, as illustrated in the table; and the behavior of the global error is directly linked

to the size of λh and, thus, to the size of the stability region for Euler’s method. The

error is small, provided that |λ| h is sufficiently small. The cases of an unstable and

rapid growth in the error are exactly the cases in which |λ|h is outside the range (4.7).

We then apply the backward Euler method and the trapezoidal method to the solution

of the problem (4.30). The results are shown in Tables 4.4 and 4.5, with the stepsize

h = 0.5. The error varies with λ, but there are no stability problems, in contrast to

the Euler method. The solutions of the backward Euler method and the trapezoidal

method for yn+1 were done exactly. This is possible because the differential equation

is linear in Y . The fixed-point iterations (4.12) and (4.25) do not converge when |λ|h
is large.
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Table 4.3 Euler’s method for (4.30)

λ t Error Error Error

h = 0.5 h = 0.1 h = 0.01

−1 1 −2.46e − 1 −4.32e − 2 −4.22e − 3

2 −2.55e − 1 −4.64e − 2 −4.55e − 3

3 −2.66e − 2 −6.78e − 3 −7.22e − 4

4 2.27e − 1 3.91e − 2 3.78e − 3

5 2.72e − 1 4.91e − 2 4.81e − 3

−10 1 3.98e − 1 −6.99e − 3 −6.99e − 4

2 6.90e + 0 −2.90e − 3 −3.08e − 4

3 1.11e + 2 3.86e − 3 3.64e − 4

4 1.77e + 3 7.07e − 3 7.04e − 4

5 2.83e + 4 3.78e − 3 3.97e − 4

−50 1 3.26e + 0 1.06e + 3 −1.39e − 4

2 1.88e + 3 1.11e + 9 −5.16e − 5

3 1.08e + 6 1.17e + 15 8.25e − 5

4 6.24e + 8 1.23e + 21 1.41e − 4

5 3.59e + 11 1.28e + 27 7.00e − 5

Table 4.4 Backward Euler solution for (4.30); h = 0.5

t Error Error Error

λ = −1 λ = −10 λ = −50

2 2.08e − 1 1.97e − 2 3.60e − 3

4 −1.63e − 1 −3.35e − 2 −6.94e − 3

6 −7.04e − 2 8.19e − 3 2.18e − 3

8 2.22e − 1 2.67e − 2 5.13e − 3

10 −1.14e − 1 −3.04e − 2 −6.45e − 3

Equations with λ negative but large in magnitude are examples of stiff differential

equations. Their truncation error may be satisfactorily small with not too small a

value of h, but the large size of |λ| may force h to be much smaller in order that λh
is in the stability region. The backward Euler method and the trapezoidal method

are therefore very desirable because their stability regions contain all λh where λ is

negative or λ is complex with negative real part. For stiff differential equations, one

must use a numerical method with a large region of absolute stability, or else h must

be chosen very small. The backward Euler method is preferred to the trapezoidal

method when solving very stiff differential equations (see Problems 14, 15), although
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Table 4.5 Trapezoidal solution for (4.30); h = 0.5

t Error Error Error

λ = −1 λ = −10 λ = −50

2 −1.13e − 2 −2.78e − 3 −7.91e − 4

4 −1.43e − 2 −8.91e − 5 −8.91e − 5

6 2.02e − 2 2.77e − 3 4.72e − 4

8 −2.86e − 3 −2.22e − 3 −5.11e − 4

10 −1.79e − 2 −9.23e − 4 −1.56e − 4

it is of lower-order. There are other methods, of higher-order, for approximating stiff

differential equations (see [44], [72, Chap. 8]); this is an active area of research.

More extensive discussions on numerically solving stiff differential equations can be

found later in Chapters 8 and 9.

PROBLEMS

1. Show that the method defined by formula (4.17) is not absolutely stable.

2. Show that the trapezoidal method (4.22) is absolutely stable, but the scheme

(4.29) is not.

3. Use backward Euler’s method to solve Problem 3 of Chapter 2.

4. Use the trapezoidal method to solve Problem 3 of Chapter 2.

5. Apply the backward Euler method to solve the initial value problem in Problem

11 of Chapter 2 for α = 2.5, 1.5, 1.1, with h = 0.2, 0.1, 0.05. Compute the

error in the solution at the nodes,determine the convergence orders numerically,

and compare the results with those obtained by Euler’s method.

6. Apply the trapezoidal method to solve the initial value problem in Problem 11

of Chapter 2 for α = 2.5, 1.5, 1.1, with h = 0.2, 0.1, 0.05. Compute the error

in the solution at the nodes, determine numerically the convergence orders,

and compare the results with that of the Euler method and the backward Euler

method.

7. Solve the equation

Y ′(t) = λY (t) +
1

1 + t2
− λ tan−1(t), Y (0) = 0;

Y (t) = tan−1(t) is the true solution. Use Euler’s method, the backward

Euler method, and the trapezoidal method. Let λ = −1,−10,−50, and

h = 0.5, 0.1, 0.001. Discuss the results. In implementing the backward Euler
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method and the trapezoidal method, note that the implicit equation for yn+1

can be solved explicitly without iteration.

8. Apply the backward Euler method to the numerical solution ofY ′(t) = λY (t)+
g(t) withλ < 0 and large in magnitude. Investigate how smallhmust be chosen

for the iteration

y
(j+1)
n+1 = yn + h f

(
tn+1, y

(j)
n+1

)
, j = 0, 1, 2, . . .

to converge to yn+1. Is this iteration practical for very large values of |λ|?

9. Repeat Problem 5 of Chapter 3 using the backward Euler method.

10. Determine whether the midpoint method

yn+1 = yn + h f
(
tn+1/2,

1
2 (yn + yn+1)

)
,

where tn+1/2 = (tn + tn+1)/2, is absolutely stable.

11. Let θ ∈ [0, 1] be a constant, and denote tn+θ = (1− θ) tn + θ tn+1. Consider

the generalized midpoint method

yn+1 = yn + h f(tn+θ, (1 − θ) yn + θ yn+1)

and its trapezoidal analog

yn+1 = yn + h [(1 − θ) f(tn, yn) + θ f(tn+1, yn+1)] .

Show that the methods are absolutely stable when θ ∈ [1/2, 1]. Determine the

regions of absolute stability of the methods when 0 ≤ θ < 1
2 .

12. As a special case in which the error of the backward Euler method can be ana-

lyzed directly, we consider the model problem (4.3) again, with λ an arbitrary

real constant. The backward Euler solution of the problem is given by the

formula (4.10). Following the procedure for solving Problem 4 (c) in Chapter

2, show that

Y (tn) − yh(tn) = −λ
2tne

λ tn

2
h+ O(h2).

13. Let Y (t) be the solution, if it exists, to the initial value problem (1.7). By

integrating, show that Y satisfies

Y (t) = Y0 +

∫ t

t0

f(s, Y (s)) ds.

Conversely, show that if this equation has a continuous solution on the interval

t0 ≤ t ≤ b, then the initial value problem (1.7) has the same solution.



64 THE BACKWARD EULER METHOD AND THE TRAPEZOIDAL METHOD

14. As in the previous problems, consider the model problem (4.3) with a real

constant λ < 0. Show that the solution of the trapezoidal method is

yh(tn) =

(
1 + 1

2λh

1 − 1
2λh

)n

, n ≥ 0.

Rewrite the solution formula as

yh(tn) = exp

(
[log(1 + 1

2λh) − log(1 − 1
2λh)]

h
tn

)
,

and use Taylor polynomial expansions of log (1 ± u) about u = 0 to show that

Y (tn) − yh(tn) = − 1
12h

2λ3tne
λtn + O(h4).

So for h small, the error is almost proportional to h2.

15. Use the formula (4.10) for the backward Euler method and the formula from

Problem 14 for the trapezoidal method to show that the backward Euler method

performs better than the trapezoidal method problem (4.3) with λ negatively

very large.

16. In this exercise, we consider a method with third-order truncation errors, which

is not convergent or stable.

(a) Given Y (t) 3 times continuously differentiable, show that

Y (tn+1) = 3Y (tn) − 2Y (tn−1) + 1
2h[Y

′(tn) − 3Y ′(tn−1)]

+ 7
12h

3Y ′′′(tn) + O(h4). (4.31)

Thus a numerical method for solving the differential equation

Y ′(t) = f(t, Y (t))

is

yn+1 = 3yn − 2yn−1 + 1
2h[f(tn, yn) − 3f(tn−1, yn−1)], n ≥ 1.

This is a numerical method whose truncation error is O(h3). It is an

example of a multistep method (see Chapter 6). To use the method, we

need a value for y1, called an artificial initial value, in addition to the

initial value y0 = Y0.

Hint: To prove (4.31), use a quadratic Taylor expansion about the point

tn for Y (t), including an error term R3(t). Use this to evaluate Y (tn−1)
and Y (tn+1), along with Y ′(tn−1). Substitute into

Y (tn+1) −
{
3Y (tn) − 2Y (tn−1) + 1

2h[Y
′(tn) − 3Y ′(tn−1)]

}
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to obtain the final term in (4.31).

(b) Now apply the method to solve the very simple initial value problem

Y ′(t) ≡ 0, Y (0) = 1,

whose solution is Y (t) ≡ 1. Show that if the initial values are chosen to

be y0 = 1, y1 = 1+h, then the numerical solution is yn = 1−h+h 2n.

Note that |y1 − Y (h)| = h → 0 as h → 0. Let tn = 1. Show that

|Y (1) − yn| → ∞ as h→ 0. Thus, the method is not convergent.

(c) A slight variant of the arguments of (b) can be used to show the instability

of the method. Show that with the initial values y0 = y1 = 1, the

numerical solution is yn = 1 for all n, while if the initial values are

perturbed to yǫ,0 = 1, yǫ,1 = 1 + ǫ, then the numerical solution becomes

yǫ,n = 1 − ǫ + ǫ 2n. Show that at any fixed node point tn = t > 0,

|yǫ,n − yn| → ∞ as h→ 0. Hence, the method is unstable.





CHAPTER 5

TAYLOR AND RUNGE–KUTTA

METHODS

To improve on the speed of convergence of Euler’s method, we look for approxima-

tions to Y (tn+1) that are more accurate than the approximation

Y (tn+1) ≈ Y (tn) + hY ′(tn),

which led to Euler’s method. Since this is a linear Taylor polynomial approximation,

it is natural to consider higher-order Taylor approximations. Doing this will lead to a

family of methods, called the Taylor methods, depending on the order of the Taylor

approximation being used.

In deriving a Taylor method, we need higher-order derivatives of the true solution,

and we obtain them using the solution itself by differentiating the differential equation.

Such expressions for higher-order derivatives are usually time-consuming. The idea

of Runge–Kutta methods is to use combinations of compositions of the right-side

function of the equation to approximate the derivative terms to a required order. The

resulting Runge–Kutta methods are among the most popular methods in solving initial

value problems.

67
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5.1 TAYLOR METHODS

To keep the initial explanations as intuitive as possible, we will develop a Taylor

method for the problem

Y ′(t) = −Y (t) + 2 cos(t), Y (0) = 1, (5.1)

whose true solution is Y (t) = sin(t) + cos(t). To approximate Y (tn+1) by using

information about Y at tn, use the quadratic Taylor approximation

Y (tn+1) ≈ Y (tn) + hY ′(tn) + 1
2h

2Y ′′(tn). (5.2)

Its truncation error is

Tn+1(Y ) = 1
6h

3Y ′′′(ξn), some tn ≤ ξn ≤ tn+1. (5.3)

To evaluate the right side of (5.2), we can obtain Y ′(tn) directly from (5.1). For

Y ′′(t), differentiate (5.1) to get

Y ′′(t) = −Y ′(t) − 2 sin(t) = Y (t) − 2 cos(t) − 2 sin(t).

Then (5.2) becomes

Y (tn+1) ≈ Y (tn) + h[−Y (tn) + 2 cos(tn)]

+ 1
2h

2[Y (tn) − 2 cos(tn) − 2 sin(tn)].

By forcing equality, we are led to the numerical method

yn+1 = yn + h[−yn + 2 cos(tn)]

+ 1
2h

2[yn − 2 cos(tn) − 2 sin(tn)], n ≥ 0 (5.4)

with y0 = 1. This should approximate the solution of the problem (5.1). Because the

truncation error (5.3) contains a higher power of h than was true for Euler’s method

[see (2.10)], it is hoped that the method (5.4) will converge more rapidly.

Table 5.1 contains numerical results for (5.4) and for Euler’s method, and it is clear

that (5.4) is superior. In addition, if the results for stepsizes h = 0.1 and 0.05 are

compared, it can be seen that the errors decrease by a factor of approximately 4 when

h is halved. This can be justified theoretically, as is discussed later.

In general, to solve the initial value problem

Y ′(t) = f(t, Y (t)), t0 ≤ t ≤ b, Y (t0) = Y0 (5.5)

by the Taylor method, select a Taylor approximation of certain order and proceed as

described above. For order p, write

Y (tn+1) ≈ Y (tn) + hY ′(tn) + · · · + hp

p!
Y (p)(tn), (5.6)
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Table 5.1 Example of second-order Taylor method (5.4)

h t yh(t) Error Euler Error

0.1 2.0 0.492225829 9.25e − 4 −4.64e − 2
4.0 −1.411659477 1.21e − 3 3.91e − 2
6.0 0.682420081 −1.67e − 3 1.39e − 2
8.0 0.843648978 2.09e − 4 −5.07e − 2

10.0 −1.384588757 1.50e − 3 2.83e − 2

0.05 2.0 0.492919943 2.31e − 4 −2.30e − 2
4.0 −1.410737402 2.91e − 4 1.92e − 2
6.0 0.681162413 −4.08e − 4 6.97e − 3
8.0 0.843801368 5.68e − 5 −2.50e − 2

10.0 −1.383454154 3.62e − 4 1.39e − 2

where the truncation error is

Tn+1(Y ) =
hp+1

(p+ 1)!
Y (p+1)(ξn), tn ≤ ξn ≤ tn+1. (5.7)

Find Y ′′(t), . . . , Y (p)(t) by differentiating the differential equation in (5.5) succes-

sively, obtaining formulas that implicitly involve only tnandY (tn). As an illustration,

we have the following formulas

Y ′′(t) = ft + fyf, (5.8)

Y (3)(t) = ftt + 2 ftyf + fyyf
2 + fy(ft + fyf), (5.9)

where

ft =
∂f

∂t
, fy =

∂f

∂y
, fty =

∂2f

∂t∂y
,

and so on are partial derivatives, and together with f , they are evaluated at (t, Y (t)).
The formulas for the higher derivatives rapidly become very complicated as the dif-

ferentiation order is increased.

Substitute these formulas into (5.6) and then obtain a numerical method of the

form

yn+1 = yn + hy′n +
h2

2
y′′n + · · · + hp

p!
y(p)

n (5.10)

by forcing (5.6) to be an equality. In the formula,

y′n = f(tn, yn) , y′′n = (ft + fyf) (tn, yn) ,

and so on, using the pattern of (5.8)–(5.9).

If the solution Y (t) and the derivative function f(t, z) are sufficiently differen-

tiable, then it can be shown that the method (5.10) will satisfy

max
t0≤tn≤b

|Y (tn) − yh(tn)| ≤ chp · max
t0≤t≤b

∣∣∣Y (p+1)(t)
∣∣∣ . (5.11)
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The constant c is similar to that appearing in the error formula (2.20) for Euler’s

method. A proof can be constructed along the same lines as that used for Theorem

2.4 in Chapter 2. In addition, there is an asymptotic error formula

Y (tn) − yh(tn) = hpD(tn) + O(hp+1) (5.12)

with D(t) satisfying a certain linear differential equation. The result (5.11) shows

that for any integer p ≥ 1, a numerical method based on the Taylor approximation

of order p leads to a convergent numerical method with order of convergence p. The

asymptotic result (5.12) justifies the use of Richardson’s extrapolation to estimate the

error and to accelerate the convergence (see Problems 3, 4).

Example 5.1 With p = 2, formula (5.12) leads to

Y (tn) − yh(tn) ≈ 1
3 [yh(tn) − y2h(tn)]. (5.13)

Its derivation is left as Problem 3 for the reader. To illustrate the usefulness of the

formula, use the entries from Table 5.1 with tn = 10:

y0.1(10)
.
= −1.384588757,

y0.05(10)
.
= −1.383454154.

From (5.13),

Y (10) − y0.05(10)
.
= 1

3 [0.001134603]
.
= 3.78 × 10−4.

This is a good estimate of the true error 3.62 × 10−4, given in Table 5.1.

5.2 RUNGE–KUTTA METHODS

The Taylor method is conceptually easy to work with, but as we have seen, it is tedious

and time-consuming to have to calculate the higher-order derivatives. To avoid the

need for the higher-order derivatives, the Runge–Kutta methods evaluate f(t, y) at

more points, while attempting to retain the accuracy of the Taylor approximation. The

methods obtained are fairly easy to program, and they are among the most popular

methods for solving the initial value problem.

We begin with Runge–Kutta methods of order 2, and later we consider some

higher-order methods. The Runge–Kutta methods have the general form

yn+1 = yn + hF (tn, yn;h), n ≥ 0, y0 = Y0. (5.14)

The quantity F (tn, yn;h) can be regarded as some kind of “average slope” of the

solution on the interval [tn, tn+1]. But its construction is based on making (5.14) act

like a Taylor method. For methods of order 2, we generally choose

F (t, y;h) = b1f(t, y) + b2f(t+ αh, y + βhf(t, y)) (5.15)
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and determine the constants {α, β, b1, b2} so that when the true solution Y (t) is

substituted into (5.14), the truncation error

Tn+1(Y ) ≡ Y (tn+1) − [Y (tn) + hF (tn, Y (tn);h)] (5.16)

will satisfy

Tn+1(Y ) = O(h3), (5.17)

just as with the Taylor method of order 2.

To find the equations for the constants, we use Taylor expansions to compute the

truncation error Tn+1(Y ). For the term f(t + αh, y + βhf(t, y)), we first expand

with respect to the second argument around y. Note that we need a remainderO(h2):

f(t+ αh, y + βhf(t, y)) = f(t+ αh, y) + fy(t+ αh, y)βhf(t, y) + O(h2).

We then expand the terms with respect to the t variable to obtain

f(t+ αh, y + βhf(t, y)) = f + ftαh+ fyβhf + O(h2),

where the functions are all evaluated at (t, y). Also, recall from following (5.10) that

Y ′′ = ft + fyf.

Hence

Y (t+ h) = Y + hY ′ +
h2

2
Y ′′ + O(h3)

= Y + hf +
h2

2
(ft + fyf) + O(h3).

Then

Tn+1(Y ) = Y (t+ h) − [Y (t) + hF (t, Y (t);h)]

= Y + hf + 1
2h

2(ft + fyf)

− [Y + hb1f + b2h (f + αhft + βhfyf)] + O(h3)

= h (1 − b1 − b2) f + 1
2h

2[(1 − 2 b2α) ft

+ (1 − 2 b2β)fyf ] + O(h3). (5.18)

The requirement (5.17) implies that the coefficients must satisfy the system






1 − b1 − b2 = 0,
1 − 2 b2α = 0,
1 − 2 b2β = 0.

Therefore

b2 6= 0, b1 = 1 − b2, α = β =
1

2b2
. (5.19)
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Y(t)+h F(t,Y(t);h)

z=Y(t)

t t+h

L
1

L
2

L
3

L
4

Figure 5.1 An illustration of Runge–Kutta method (5.20); the slope of L1 is f(t, Y (t)), that

of L2 is f(t + h, Y (t) + hf(t, Y (t))), and those of L3 and L4 are the average F (t, Y (t);h)

Thus there is a family of Runge–Kutta methods of order 2, depending on the choice

of b2. The three favorite choices are b2 = 1
2 , 3

4 , and 1.

With b2 = 1
2 , we obtain the numerical method

yn+1 = yn +
h

2
[f(tn, yn) + f(tn + h, yn + hf(tn, yn))], n ≥ 0. (5.20)

This is also Heun’s method (4.29) discussed in Chapter 4. The number yn+hf(tn, yn)
is the Euler solution at tn+1. Using it, we obtain an approximation to the derivative

at tn+1, namely,

f(tn+1, yn + hf(tn, yn)).

This and the slope f(tn, yn) are then averaged to give an “average” slope of the

solution on the interval [tn, tn+1], giving

F (tn, yn;h) = 1
2 [f(tn, yn) + f(tn + h, yn + hf(tn, yn))].

This is then used to predict yn+1 from yn, in (5.20). This definition is illustrated in

Figure 5.1 for F (t, Y (t);h) as an average slope of Y ′ on [t, t+ h].
Another choice is to use b2 = 1, resulting in the numerical method

yn+1 = yn + hf
(
tn + 1

2h, yn + 1
2hf(tn, yn)

)
. (5.21)
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Table 5.2 Example of second-order Runge–Kutta method

h t yh(t) Error

0.1 2.0 0.491215673 1.93e − 3
4.0 −1.407898629 −2.55e − 3
6.0 0.680696723 5.81e − 5
8.0 0.841376339 2.48e − 3

10.0 −1.380966579 −2.13e − 3

0.05 2.0 0.492682499 4.68e − 4
4.0 −1.409821234 −6.25e − 4
6.0 0.680734664 2.01e − 5
8.0 0.843254396 6.04e − 4

10.0 −1.382569379 −5.23e − 4

Example 5.2 Reconsider the problem (5.1):

Y ′(t) = −Y (t) + 2 cos(t), Y (0) = 1.

Here

f(t, y) = −y + 2 cos(t).

The numerical results from using (5.20) are given in Table 5.2. They show that the

errors in this Runge–Kutta solution are comparable in accuracy to the results obtained

with the Taylor method (5.4). In addition, the errors in Table 5.2 decrease by a factor

of approximately 4 when h is halved, confirming the second-order convergence of

the method.

5.2.1 A general framework for explicit Runge–Kutta methods

Runge–Kutta methods of higher-order can also be developed. An explicit Runge–

Kutta formula with s stages has the following form:

z1 = yn,

z2 = yn + ha2,1f(tn, z1),

z3 = yn + h [a3,1f(tn, z1) + a3,2f(tn + c2h, z2)] ,
...

zs = yn + h [as,1f(tn, z1) + as,2f(tn + c2h, z2)

+ · · · + as,s−1f(tn + cs−1h, zs−1)] ,

(5.22)

yn+1 = yn + h [b1f(tn, z1) + b2f(tn + c2h, z2)

+ · · · + bs−1f(tn + cs−1h, zs−1) + bsf(tn + csh, zs)] . (5.23)
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Here h = tn+1 − tn. The coefficients {ci, ai,j , bj} are given and they define the

numerical method. The function F of (5.14), defining a one-step method, is defined

implicitly through the formulas (5.22)-(5.23).

More succinctly, we can write the formulas as

zi = yn + h
i−1∑

j=1

ai,jf(tn + cjh, zj) , i = 1, . . . , s, (5.24)

yn+1 = yn + h
s∑

j=1

bjf(tn + cjh, zj) . (5.25)

The coefficients are often displayed in a table called a Butcher tableau (after J. C.

Butcher):

0 = c1

c2 a2,1

c3 a3,1 a3,2

...
...

. . .

cs as,1 as,2 · · · as,s−1

b1 b2 · · · bs−1 bs

(5.26)

The coefficients {ci} and {ai,j} are usually assumed to satisfy the conditions

i−1∑

j=1

ai,j = ci, i = 2, . . . , s. (5.27)

Example 5.3 We give two examples of well-known Runge–Kutta methods.

• The method (5.20) has the Butcher tableau

0
1 1

1/2 1/2

• A popular classical method is the following fourth-order procedure.

z1 = yn,

z2 = yn + 1
2h f (tn, z1) ,

z3 = yn + 1
2h f

(
tn + 1

2h, z2
)
,

z4 = yn + h f
(
tn + 1

2h, z3
)
,

yn+1 = yn + 1
6h
[
f (tn, z1) + 2f

(
tn + 1

2h, z2
)

+2f
(
tn + 1

2h, z3
)

+ f (tn + h, z4)
]
.

(5.28)
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The Butcher tableau is

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

(5.29)

Following an extended calculation modeled on that in (5.18), we can show

Tn+1 = O(h5).

When the differential equation is simply Y ′(t) = f(t) with no dependence of

f on Y , this method reduces to Simpson’s rule for numerical integration on

[tn, tn+1]. The method (5.28) can be easily implemented using a computer or a

programmable hand calculator, and it is generally quite accurate. A numerical

example is given at the end of the next section.

5.3 CONVERGENCE, STABILITY, AND ASYMPTOTIC ERROR

We want to examine the convergence of the one-step method

yn+1 = yn + hF (tn, yn;h), n ≥ 0, y0 = Y0 (5.30)

to the solution Y (t) of the initial value problem

Y ′(t) = f(t, Y (t)), t0 ≤ t ≤ b,
Y (t0) = Y0.

(5.31)

Using the truncation error of (5.16) for the true solution Y , we introduce

τn(Y ) =
1

h
Tn+1(Y ).

In order to show convergence of (5.30), we need to have τn(Y ) → 0 as h→ 0. Since

τn(Y ) =
Y (tn+1) − Y (tn)

h
− F (tn, Y (tn), h; f), (5.32)

we require that

F (t, Y (t), h; f) → Y ′(t) = f(t, Y (t)) as h→ 0.

Accordingly, define

δ(h) = sup
t0≤t≤b

−∞<y<∞

|f(t, y) − F (t, y, h; f)| , (5.33)

and assume

δ(h) → 0 as h→ 0. (5.34)
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This is occasionally called the consistency condition for the one-step method (5.30).

We can rewrite (5.32) in the form

Y (tn+1) = Y (tn) + hF (tn, Y (tn), h; f) + hτn(Y ). (5.35)

We then introduce

τ(h) = max
t0≤tn≤b

|τn(Y )| .

The condition (5.34) can be used to show τ(h) → 0 as h → 0; or we may show this

result by other means (e.g. see (5.17)).

We also need a Lipschitz condition on F, namely

|F (t, y, h; f) − F (t, z, h; f)| ≤ L |y − z| (5.36)

for all t0 ≤ t ≤ b, −∞ < y, z < ∞, and all small h > 0. This is in analogy with

the Lipschitz condition (1.10) for f(t, z) of Chapter 1 which was used to guarantee

the existence of a unique solution to the initial value problem for Y ′ = f(t, Y ). The

condition (5.36) is usually proved by using the Lipschitz condition (1.10) on f(t, y).
For example, with method (5.21), we obtain

|F (t, y, h; f) − F (t, z, h; f)|

=
∣∣f
(
t+ 1

2h, y + 1
2hf(t, y)

)
− f

(
t+ 1

2h, z + 1
2hf(t, z)

)∣∣

≤ K
∣∣y − z + 1

2h [f(t, y) − f(t, z)]
∣∣

≤ K
(
1 + 1

2hK
)
|y − z| .

The last two inequalities use the Lipschitz condition (1.10) for f . Choose L =
K(1 + 1

2K) for h ≤ 1.

Theorem 5.4 Assume that the Runge–Kutta method (5.30) satisfies the Lipschitz con-

dition (5.36). Then, for the initial value problem (5.31), the solution {yn} satisfies

max
t0≤tn≤b

|Y (tn) − yn| ≤ e(b−t0)L |Y0 − y0| +
[
e(b−t0)L − 1

L

]
τ(h), (5.37)

where

τ(h) ≡ max
t0≤tn≤b

|τn(Y )| . (5.38)

If the consistency condition (5.34) is also satisfied, then the numerical solution {yn}
converges to Y (t).

Proof. Subtract (5.30) from (5.35) to obtain

en+1 = en + h [F (tn, Yn, h; f) − F (tn, yn, h; f)] + hτn(Y ) (5.39)

in which en = Y (tn) − yn. Apply the Lipschitz condition (5.36) and use (5.38) to

obtain

|en+1| ≤ (1 + hL) |en| + hτn(h), t0 ≤ tN ≤ b. (5.40)
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As with the convergence proof in Theorem 2.4 for the Euler method, given in Section

2.2 of Chapter 2, this leads easily to the result (5.37).

In most cases, it is known by direct computation that τ(h) → 0 as h → 0, and in

that case, convergence of {yn} to Y (t) is immediately proved. But all that we need

to know is that (5.34) is satisfied. To see this, write

hτn(Y ) = Y (tn+1) − Y (tn) − hF (tn, Y (tn), h; f)

= hY ′(tn) +
h2

2
Y ′′(ξn) − hF (tn, Y (tn), h; f),

h |τn(Y )| ≤ hδ(h) +
h2

2
‖Y ′′‖∞ ,

τ(h) ≤ δ(h) +
1

2
h ‖Y ′′‖∞ .

Thus τ(h) → 0 as h → 0, completing the proof. The preceding examples are

illustrations of the theorem.

The following result is an immediate consequence of (5.37).

Corollary 5.5 If the Runge–Kutta method (5.30) has a truncation error Tn(Y ) =
O(hm+1), then the error in the convergence of {yn} to Y (t) on [t0, b] is O(hm).

It is not too difficult to derive an asymptotic error formula for the Runge–Kutta

method (5.30), provided one is known for the truncation error. Assume

Tn(Y ) = ϕ(tn)hm+1 + O(hm+2) (5.41)

with ϕ(t) determined by Y (t) and f(t, Y (t)). As an example, see the result (5.18) to

obtain this expansion for second-order Runge–Kutta methods. Strengthened forms

of (5.34) and (5.36) are also necessary. Assume

F (t, y, h; f) − F (t, z, h; f) =
∂F (t, y, h; f)

∂y
(y − z) + O((y − z)2) (5.42)

and also

δ1(h) ≡ sup
t0≤t≤b

−∞<y<∞

∣∣∣∣
∂f(t, y)

∂y
− ∂F (t, y, h; f)

∂y

∣∣∣∣→ 0 as h→ 0. (5.43)

In practice, both of these results are straightforward to confirm. With these assump-

tions, we can derive the formula

Y (tn) − yh(tn) = D(tn)hm + O(hm+1), (5.44)

with D(t) satisfying the linear initial value problem

D′(t) = fy(t, Y (t))D(t) + ϕ(t), D(t0) = 0. (5.45)
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Stability results can be obtained for Runge–Kutta methods in analogy with those

for Euler’s method as presented in Section 2.4 of Chapter 2. We omit any discussion

here.

As with Taylor methods, Richardson’s extrapolation can be justified for Runge–

Kutta methods using (5.44), and the error can be estimated. For the second-order

method (5.20), we obtain the error estimate

Y (tn) − yh(tn) ≈ 1
3 [yh(tn) − y2h(tn)],

just as we obtained it earlier for the second-order Taylor method; see Problem 3.

Example 5.6 Estimate the error for h = 0.05 and t = 10 in Table 5.2. Then

Y (10) − y0.05(10)
.
= 1

3 [−1.3825669379− (−1.380966579)]
.
= −5.34 × 10−4.

This compares closely with the actual error of −5.23 × 10−4.

Example 5.7 Consider the problem

Y ′ =
1

1 + x2
− 2Y 2, Y (0) = 0 (5.46)

with the solution Y = x/(1+x2). The method (5.28) was used with a fixed stepsize,

and the results are shown in Table 5.3. The stepsizes are h = 0.25 and 2h = 0.5.

The asymptotic error formula (5.44) becomes

Y (x) − yh(x) = D(x)h4 + O(h5), (5.47)

in this case, and this leads to the asymptotic error estimate

Y (x) − yh(x) = 1
15 [yh(x) − y2h(x)] + O(h5). (5.48)

In the table the column labeled “Ratio” gives the ratio of the errors for corresponding

node points as h is halved. The last column is an example of formula (5.48). Because

Tn(Y ) = O(h5) for method (5.28), Theorem 5.4 implies that the rate of convergence

of yh(x) to Y (x) is O(h4). The theoretical value of “Ratio” is 16, and as h decreases

further, this value will be realized more closely.

5.3.1 Error prediction and control

The easiest way to predict the error Y (t) − yh(t) in a numerical solution yh(t) is to

use Richardson’s extrapolation. Solve the initial value problem twice on the given

interval [t0, b], with stepsizes 2h and h. Then use Richardson’s extrapolation to

estimate Y (t)− yh(t) in terms of yh(t)− y2h(t), as was done in (5.13) for a second-

order method. The cost of estimating the error in this way is an approximately 50%
increase in the amount of computation, as compared with the cost of computing just
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Table 5.3 Example of Runge-Kutta method (5.28)

x yh(x) Y (x) − yh(x) Y (x) − y2h(x) Ratio 1
15

[yh(x) − y2h(x)]

2.0 0.39995699 4.3e − 5 1.0e − 3 24 6.7e − 5
4.0 0.23529159 2.5e − 6 7.0e − 5 28 4.5e − 6
6.0 0.16216179 3.7e − 7 1.2e − 5 32 7.7e − 7
8.0 0.12307683 9.2e − 8 3.4e − 6 36 2.2e − 7

10.0 0.09900987 3.1e − 8 1.3e − 6 41 8.2e − 8

yh(t). This may seem a large cost, but it is generally worth paying except for the

most time-consuming of problems.

It would be desirable to have computer programs that would solve a differential

equation on a given interval [t0, b] with an error less than a given error tolerance

ǫ > 0. Unfortunately, this is not possible with most types of numerical methods for

the initial value problem. If at some point twe discover that Y (t)−yh(t) is too large,

then the error cannot be reduced by merely decreasing h from that point onward in

the computation. The error Y (t) − yh(t) depends on the cumulative effect of all

preceding errors at points tn < t. Thus, to decrease the error at t, it is necessary to

repeat the solution of the equation from t0, but with a smaller stepsize h. For this

reason, most package programs for solving the initial value problem will not attempt

to directly control the error, although they may try to monitor or bound it. Instead,

they use indirect methods to affect the size of the error.

The error Y (tn)−yh(tn) is called the global error or total error at tn. Rather than

controlling this global error, we control another error. We introduce the following

initial value problem:

u′n(t) = f(t, un(t)) , t ≥ tn,
un(tn) = yn.

(5.49)

The solution un(t) is called the local solution to the differential equation at the point

(tn, yn). Using it we introduce the local error

LEn+1 = un(tn+1) − yn+1. (5.50)

This is the error introduced into the solution at the point tn+1 when assuming the

solution yn at tn is the exact solution. Most computer programs that contain error

control are based on estimating the local error and then controlling it by varying h
suitably. By so doing, they hope to keep the global error sufficiently small. If an error

parameter ǫ > 0 is given, the better programs choose the stepsize h to ensure that the

local error LEn+1 is much smaller, usually satisfying something like

|LEn+1| ≤ ǫ(tn+1 − tn). (5.51)

This is called controlling the error per unit stepsize, with which the global error is

generally also kept small. For many differential equations, the global error will then

be less than ǫ(tn+1 − t0).
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Table 5.4 Fehlberg coefficients αi, βij

i αi βi0 βi1 βi2 βi3 βi4

1 1
4

1
4

2 3
8

3
32

9
32

3 12
13

1932
2197

− 7200
2197

7296
2197

4 1 439
216

−8 3680
513

− 845
4104

5 1
2

− 8
27

2 − 3544
2565

1859
4104

− 11
40

For more detailed discussions of one-step methods, especially Runge–Kutta meth-

ods, see Shampine [72], Iserles [48, Chap. 3], and Deuflhard and Bornemann [33,

Chaps. 4-6].

5.4 RUNGE–KUTTA–FEHLBERG METHODS

To estimate the local error (5.50), various techniques can be used, including Richard-

son’s extrapolation. A novel technique was devised in the 1970s, and it has led to the

currently most popular Runge–Kutta methods. Rather than computing with a method

of fixed order, one simultaneously computes by using two methods of different orders.

The two methods share most of the function evaluations of f at each step from tn to

tn+1. Then the higher-order formula is used to estimate the error in the lower-order

formula. These methods are often called Fehlberg methods; we give one such pair of

methods, of orders 4 and 5.

Define six intermediate slopes in [tn, tn+1] by

v0 = f(tn, yn),

vi = f



tn + αih, yn + h
i−1∑

j=0

βijvj



 , i = 1, 2, 3, 4, 5.
(5.52)

Then the fourth- and fifth-order formulas are given by

yn+1 = yn + h
4∑

i=0

γivi, (5.53)

ŷn+1 = yn + h
5∑

i=0

δivi. (5.54)

The coefficients αi, βij , γi, δi are given in Tables 5.4 and 5.5.

The local error in the fourth-order formula (5.53) is estimated by

LEn+1 ≈ ŷn+1 − yn+1. (5.55)
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Table 5.5 Fehlberg coefficients γi, δi

i 0 1 2 3 4 5

γi
25
216

0 1408
2565

2197
4104

− 1
5

δi
16
135

0 6656
12825

28561
56430

− 9
50

2
55

Table 5.6 Example of fourth-order Fehlberg formula (5.53)

h t yh(t) Y (t) − yh(t) ŷh(t) − yh(t)

0.25 2.0 0.493156301 −5.71e − 6 −9.49e − 7
4.0 −1.410449823 3.71e − 6 1.62e − 6
6.0 0.680752304 2.48e − 6 −3.97e − 7
8.0 0.843864007 −5.79e − 6 −1.29e − 6

10.0 −1.383094975 2.34e − 6 1.47e − 6

0.125 2.0 0.493150889 −2.99e − 7 −2.35e − 8
4.0 −1.410446334 2.17e − 7 4.94e − 8
6.0 0.680754675 1.14e − 7 −1.76e − 8
8.0 0.843858525 −3.12e − 7 −3.47e − 8

10.0 −1.383092786 1.46e − 7 4.65e − 8

It can be shown that this is a correct asymptotic result as h → 0. By using this

estimate, if LEn+1 is too small or too large, the stepsize can be varied so as to give

a value for LEn+1 of acceptable size. Note the two formulas (5.53) and (5.54) use

the common intermediate slopes v0, . . . , v4. At each step, we need to evaluate only

six intermediate slopes. In a number of programs, the fifth-order solution ŷn+1 is

actually the numerical solution used, even though the error is being controlled only

for the fourth-order solution yn+1.

Example 5.8 Solve

Y ′(t) = −Y (t) + 2 cos(t), Y (0) = 1 (5.56)

whose true solution is Y (t) = sin(t) + cos(t). Table 5.6 contains numerical results

for h = 0.25 and 0.125. Compare the global errors with those in Tables 5.1 and 5.2,

where second-order methods are used. Also, it can be seen that the global errors in

yh decrease by factors of 17 to 21, which are fairly close to the theoretical value of 16
for a fourth-order method. The truncation errors, estimated from (5.55), are included

to show that they are quite different from the global error. The preceding examples

are illustrations of the theorem.

The method (5.52) to (5.55) uses ŷn+1 only for estimating the truncation error in

the fourth-order method. In practice, ŷn+1 is kept as the numerical solution rather than

yn+1; thus ŷn should replace yn on the right sides of (5.52) to (5.54). The quantity
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Table 5.7 Example of fifth-order method (5.54)

h t ŷn(t) Y (t) − ŷn(t)

0.25 2.0 0.493151148 −5.58e − 7
4.0 −1.410446359 2.43e − 7
6.0 0.680754463 3.26e − 7
8.0 0.843858731 −5.18e − 7

10.0 −1.383092745 1.05e − 7

0.125 2.0 0.493150606 −1.61e − 8
4.0 −1.410446124 8.03e − 9
6.0 0.680754780 8.65e − 9
8.0 0.843858228 1.53e − 8

10.0 −1.383092644 4.09e − 9

in (5.55) will still be the truncation error in the fourth-order method. Programs based

on this will be fifth-order, but they will vary their stepsize h to control the local error

in the fourth-order method. This tends to make these programs very accurate with

regard to global error.

Example 5.9 Repeat the last example, but use the fifth-order method described in the

preceding paragraph. The results are given in Table 5.7. Note that the errors decrease

by approximately 32 when h is halved, consistent with a fifth-order method.

5.5 MATLAB CODES

MATLAB R© contains an excellent suite of programs for solving the initial value

problem for systems of ordinary differential equations and related problems. The

programs use a variety of methods, and in this text we introduce and illustrate a few

of these programs. For a complete description of these programs and the various

options that are available when using them, go to the documentation for MATLAB

or to the excellent text by Shampine et al. [74]. Each such MATLAB program solves

a given differential equation in such a manner that the estimated local error in each

component of the solution satisfies a given error test. For a single equation the

estimated local error in passing from y(tn) to y(tn+1), call it e(tn), is to satisfy

|e(tn)| ≤ max {AbsTol, RelTol · |y(tn)|} .

The error tolerances AbsTol and RelTol can be specified by having the user run

the MATLAB program odeset; when left unspecified, the default tolerances are

AbsTol = 10−6, RelTol = 10−3. For a discussion of the construction of this MAT-

LAB suite for solving ordinary differential equations, see Shampine and Reichelt [73]

or Shampine, Gladwell, and Thompson [74].
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Figure 5.2 The solution values to (5.56) obtained by ode45 are indicated by the symbol o.

The curve line is obtained by interpolating these solution values from ode45 using deval

The code ode45 is an implementation of a method similar to the Runge–Kutta–

Fehlberg method presented earlier. The program ode45 uses a pair of formulas

of orders 4 and 5 by Dormand and Prince [34, cf. Table 2], again estimating the

local error as in (5.55). We illustrate the use of ode45 with the following program

test ode45.

Example 5.10 We illustrate the use of ode45 by solving the earlier test equation

(5.56). When calling test ode45, we useλ = −1 and the error tolerancesAbsTol=
10−6,RelTol = 10−4. In the program test ode45, odeset is used to set parameter

values that are used in ode45. For a complete description of these parameter values

and for more a complete discussion of the varied options for using ode45, consult the

MATLAB documentation. We note that in the call to program ode45, we specify the

derivative function by giving as an input the function handle @deriv. The output soln

from ode45 is a MATLAB structure, and it contains all of the information needed to

obtain the solution and to interpolate the solution to other values of the independent

variable. In our test program, we use the MATLAB program deval to carry out the

interpolation on an evenly spaced grid. This could have been done directly when

calling ode45, but we have chosen a more general approach to using ode45. Figures

5.2 and 5.3 contain, respectively, the interpolated numerical solution and the error in

it.
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Figure 5.3 The errors in the solution to (5.56) obtained using ode45

The code described in Example 5.10 proceeds as follows.

function test ode45(lambda,relerr,abserr)

%

% function test ode45(lambda,relerr,abserr)

%

% This is a test program for the ode solver ’ode45’.

% The test is carried out for the single equation

% y’ = lambda*y + (1-lambda)*cos(t) - (1+lambda)*sin(t)

% The initial value at t=0 is y(0)=1. The true solution is

% y = cos(t) + sin(t)

% The user can input the relative and absolute error

% tolerances to be used by ode45. These are incorporated

% using the initialization program ’odeset’.

% The program can be adapted easily to other equations and

% other parameter values.

% Initialize and solve

options = odeset(’RelTol’,relerr,’AbsTol’,abserr);

t begin = 0; t end = 20;

y initial = true soln(t begin);

num fcn eval = 0; % initialize count of derivative evaluations

soln = ode45(@deriv,[t begin,t end],y initial,options);
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% See below for function deriv.

% Produce the solution on a uniform grid using interpolation

% of the solution obtained by ode45. The points plotted with

% ’o’ are for the node points returned by ode45.

h plot = (t end-t begin)/200; t plot = t begin:h plot:t end;

y plot = deval(soln,t plot);

figure

plot(soln.x,soln.y,’o’,t plot,y plot)

title([’Interpolated solution:’,...

’ points noted by ‘‘o’’ are at ode45 solution nodes’])

xlabel([’\lambda = ’,num2str(lambda)])

disp(’press on any key to continue’)

pause

% Produce the error in the solution on the uniform grid.

% The points plotted with ’o’ are for the solution values

% at the points returned by ode45.

y true = true soln(t plot);

error = y true - y plot;

y true nodes = true soln(soln.x);

error nodes = y true nodes - soln.y;

figure

plot(soln.x,error nodes,’o’,t plot,error)

title(’Error in interpolated solution’)

xlabel([’\lambda = ’,num2str(lambda)])

norm error = norm(error,inf);

disp([’maximum of error = ’,num2str(norm error)])

disp([’number of derivative evaluations = ’,...

num2str(num fcn eval)])

function dy = deriv(t,y)

% Define the derivative in the differential equation.

dy = lambda*y + (1-lambda)*cos(t) - (1+lambda)*sin(t);

num fcn eval = num fcn eval + 1;

end % deriv

function true = true soln(t)

% Define the true solution of the initial value problem.

true = sin(t) + cos(t);

end % true soln

end % test ode45
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5.6 IMPLICIT RUNGE–KUTTA METHODS

Return to (5.24)–(5.25) for the definition of an s-stage Runge–Kutta (RK) method.

An s-stage implicit Runge–Kutta method has the form

zi = yn + h
s∑

j=1

ai,jf(tn + cjh, zj) , i = 1, . . . , s, (5.57)

yn+1 = yn + h

s∑

j=1

bjf(tn + cjh, zj) . (5.58)

It has the Butcher tableau

c1 a1,1 · · · a1,s

c2 a2,1 · · · a2,s

...
...

...

cs as,1 · · · as,s

b1 · · · bs

(5.59)

We give here a very brief introduction to implicit RK methods, referring to Chapter

9 for a more extensive discussion of the topic.

The equations (5.57) form a simultaneous system of s nonlinear equations for the

s unknowns z1, . . . , zs; and if the equation y′ = f(t, y) is a system of m differential

equations, then (5.57) is a simultaneous system of sm nonlinear scalar equations.

Why does one want to consider such a complicated numerical method? The answer

is that a number of such methods (5.57)-(5.58) have desirable numerical stability

properties that are important in solving a variety of important classes of differential

equations.

We introduce one approach to deriving many such methods. We begin by convert-

ing the differential equation

Y ′(t) = f(t, Y (t))

into an integral equation. Integrating the equation over the interval [tn, t], we obtain

∫ t

tn

Y ′(r) dr =

∫ t

tn

f(r, Y (r)) dr,

Y (t) = Y (tn) +

∫ t

tn

f(r, Y (r)) dr. (5.60)

Approximate the equation, first by replacing Y (tn) with yn, and then by replacing the

integrand with a polynomial interpolant of it. In particular, choose a set of parameters

0 ≤ τ1 < · · · < τs ≤ 1.

Let p(r) be the unique polynomial of degree < s that interpolates f(r, Y (r)) at the

node points {tn,i ≡ tn + τih : i = 1, . . . , s} on [tn, tn+1]; see Appendix B. Then
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(5.60) is approximated by

Y (t) ≈ yn +

∫ t

tn

p(r) dr. (5.61)

Using the Lagrange form of the interpolation polynomial [see (B.6) from Appendix

B], we write

p(r) =

s∑

j=1

f(tn,j, Y (tn,j))lj(r).

The Lagrange basis functions {lj(r)} can be obtained from (B.4). Then (5.61) be-

comes

Y (t) ≈ yn +

s∑

j=1

f(tn,j , Y (tn,j))

∫ t

tn

lj(r) dr. (5.62)

We now determine approximate values for {Y (tn,j) : j = 1, . . . , s} by forcing equal-

ity in the expression (5.62) at the points {tn,j}. Let {yn,j} denote these approximate

values. They are to be determined by solving the nonlinear system

yn,i = yn +

s∑

j=1

f(tn,j, yn,j)

∫ tn,i

tn

lj(r) dr, i = 1, . . . , s. (5.63)

If τs = 1, then we define yn+1 = yn,s. Otherwise, we define

yn+1 = yn +

s∑

j=1

f(tn,j, yn,j)

∫ tn+1

tn

lj(r) dr. (5.64)

The integrals in (5.63) and (5.64) are easily evaluated, and we will give a particular

case below with s = 2.

The general method of forcing an approximating equation to be true at a given

set of node points is called collocation, and the points {tn,i} at which equality is

forced are called the collocation node points. We should note that some Runge–Kutta

methods are not collocation methods. An example is the following implicit method

given by Iserles [48, p. 44]:
0 0 0

2/3 1/3 1/3

1/4 3/4

(5.65)

5.6.1 Two-point collocation methods

Let 0 ≤ τ1 < τ2 ≤ 1, and recall that tn,1 = tn + hτ1 and tn,2 = tn + hτ2. Then the

interpolation polynomial is

p(r) =
1

h (τ2 − τ1)
[(tn+1 − r) f(tn,1, Y (tn,1)) + (r − tn) f(tn,2, Y (tn,2))] .

(5.66)
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Following calculation of the integrals, the system (5.64) has the Butcher tableau

τ1 (τ 2
2 − [τ2 − τ1]

2)/ (2 [τ2 − τ1]) −τ 2
1 / (2 [τ2 − τ1])

τ2 τ 2
2 / (2 [τ2 − τ1]) ([τ2 − τ1]

2 − τ 2
1 )/ (2 [τ2 − τ1])

(τ 2
2 − [1 − τ2]

2)/ (2 [τ2 − τ1]) ([1 − τ1]
2 − τ 2

1 )/ (2 [τ2 − τ1])

(5.67)

As a special case, note that when τ1 = 0 and τ2 = 1, the system (5.64) becomes

yn,1 = yn,

yn,2 = yn + 1
2h [f(tn, yn,1) + f(tn+1, yn,2)] .

Substituting from the first equation into the second equation and using yn+1 = yn,2,

we have

yn+1 = yn + 1
2h [f(tn, yn) + f(tn+1, yn+1)] ,

which is simply the trapezoidal method.

Another choice that has very good convergence and stability properties is to use

τ1 = 1
2 − 1

6

√
3, τ2 = 1

2 + 1
6

√
3. (5.68)

The Butcher tableau is

`
3 −

√
3

´
/6 1/4

`
3 − 2

√
3

´
/12`

3 +
√

3
´
/6

`
3 + 2

√
3

´
/12 1/4

1/2 1/2

(5.69)

The associated nonlinear system is

yn,i = yn +

2∑

j=1

ai,jf(tn + τjh, yn,j), i = 1, 2, (5.70)

where we have used the implicit definition of {ai,j} that uses (5.59) to reference the

elements in (5.69). Then

yn+1 = yn +
h

2
[f(tn+1, yn,1) + f(tn+1, yn,2)] . (5.71)

This method, called the two stage Gauss method, is exact for all polynomial solutions

Y (t) of degree ≤ 4. Showing that it has degree of precision 2 is straightforward,

because the linear interpolation formula (5.66) is exact when Y ′(t) = f(t, Y (t)) is

linear. Proving that the degree of precision is 4 is a more substantial argument, and

we refer the reader to [48, p. 46]. It can be shown that the truncation error for this

method has size O(h5), and thus the convergence is O(h4). It also has desirable

stability properties, some of which are taken up in Problem 15 and some of which are

deferred to Chapter 9. A disadvantage of the method is the need to solve the nonlinear

system in (5.70).
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A number of other families of implicit Runge–Kutta methods are discussed in

Chapter 9. These methods have stability properties that make them especially useful

for solving stiff differential equations.

PROBLEMS

1. A Taylor method of order 3 for problem (5.1) can be obtained using the same

procedure that led to (5.4). On the basis of third-order Taylor approximation

Y (tn+1) ≈ Y (tn) + hY ′(tn) +
h2

2
Y ′′(tn) +

h3

6
Y ′′′(tn),

derive the numerical method

yn+1 = yn + h[−yn + 2 cos(tn)] +
h2

2
[yn − 2 cos(tn) − 2 sin(tn)]

+
h3

6
[−yn + 2 sin(tn)], n ≥ 0. (5.72)

Implement the numerical method (5.72) for solving the problem (5.1). Compute

with stepsizes of h = 0.1, 0.05 for 0 ≤ t ≤ 10. Compare to the values in Table

5.1, and also check the ratio by which the error decreases when h is halved.

Hint: To simplify the programming, just modify the Euler program given in

Chapter 2.

2. Compute solutions to the following problems with a second-order Taylor method.

Use stepsizes h = 0.2, 0.1, 0.05.

(a) Y ′(t) = [cos(Y (t))]2, 0 ≤ t ≤ 10, Y (0) = 0;

Y (t) = tan−1(t).

(b) Y ′(t) = 1/(1 + t2) − 2[Y (t)]2, 0 ≤ t ≤ 10, Y (0) = 0;

Y (t) = t/(1 + t2).

(c) Y ′(t) = 1
4Y (t)[1 − 1

20Y (t)], 0 ≤ t ≤ 20, Y (0) = 1;

Y (t) = 20/(1 + 19e−t/4).

(d) Y ′(t) = −[Y (t)]2, 1 ≤ t ≤ 10, Y (1) = 1;

Y (t) = 1/t.

(e) Y ′(t) = −e−tY (t), 0 ≤ t ≤ 10, Y (0) = 1;

Y (t) = exp (e−t − 1).

These were solved previously in Problems 1 and 2 of Chapter 2. Compare your

results with those earlier ones.
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3. Recall the asymptotic error for Taylor methods, given in (5.12). For second-

order methods, this yields

Y (tn) − yh(tn) = h2D(tn) + O(h3).

From this, derive the Richardson extrapolation formula

Y (tn) = 1
3 [4yh(tn) − y2h(tn)] + O(h3)

≈ 1
3 [4yh(tn) − y2h(tn)] ≡ ỹh(tn)

and the asymptotic error estimate

Y (tn) − yh(tn) = 1
3 [yh(tn) − y2h(tn)] + O(h3)

≈ 1
3 [yh(tn) − y2h(tn)].

Hint: Consider the formula

Y (tn) − y2h(tn) = 4h2D(tn) + O(h3)

and combine it suitably with the earlier formula for Y (tn) − yh(tn).

4. Repeat Problem 3 for methods of a general order p ≥ 1. Derive the formulas

Y (tn) ≈ 1

2p − 1
[2pyh(tn) − y2h(tn)] ≡ ỹh(tn)

with an error proportional to hp+1, and

Y (tn) − yh(tn) ≈ 1

2p − 1
[yh(tn) − y2h(tn)].

5. Use Problem 3 to estimate the errors in the results of Table 5.1, for h =
0.05. Also produce the Richardson extrapolate ỹh(tn) and calculate its error.

Compare its accuracy to that of yh(tn).

6. Derive the second-order Runge–Kutta methods (5.14) corresponding to b2 = 3
4

and b2 = 1 in (5.15). For b2 = 1, draw an illustrative graph analogous to that

of Figure 5.1 for b2 = 1
2 . Give the Butcher tableau for this method.

7. Give the Butcher tableau for each of the following methods.

(a) The second-order method (5.21)

(b) The Fehlberg formulas (5.53) and (5.54).

8. Solve the problem (5.1) with one of the formulas from Problem 6. Compare

your results to those in Table 5.2 for formula (5.20) with b2 = 1
2 .

9. Using (5.20), solve the equations in Problem 2. Estimate the error by using

Problem 3, and compare it to the true error.
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10. Implement the classical procedure (5.28), and apply it to the equation (5.1).

Solve it with stepsizes of h = 0.25 and 0.125. Compare with the results in

Table 5.6, the fourth-order Fehlberg example.

Hint: Modify the Euler program of Chapter 2.

11. Use the program of Problem 10 to solve the equations in Problem 2.

12. Modify the Euler program of Chapter 3 to implement the Runge–Kutta method

given in (3.26). With this program, repeat Problems 5 and 6 of Chapter 3.

13. Consider the predator-prey model of (3.4), with the particular constantsA = 4,

B = 0.5, C = 3, and D = 1
3 . Also, recall Problem 8 in Chapter 3.

(a) Show that there is a solution Y1(t) = C1, Y2(t) = C2, with C1 and C2

nonzero constants. What would be the physical interpretation of such a

solution Y (t)?
Hint: What are Y

′

1 (t) and Y
′

2 (t) in this case?

(b) Solve this system (3.4) with Y1(0) = 3, Y2(0) = 5, for 0 ≤ t ≤ 4, and

use the Runge–Kutta method of Problem 12 with stepsizes of h = 0.01
and 0.005. Examine and plot the values of the output in steps of t of 0.1.

In addition to these plots of t vs. Y1(t) and t vs. Y2(t), also plot Y1 vs. Y2.

(c) Repeat (b) for the initial values Y1(0) = 3, Y2(0) = 1, 1.5, 1.9 in succes-

sion. Comment on the relation of these solutions to one another and to

the solution of part (a).

14. Show that the implicit Runge–Kutta method (5.65) has a truncation error of size

O(h3). This can then be used to prove that the method has order of convergence

2.

15. Apply the implicit Runge–Kutta method (5.69) to the model problem

Y ′ = λY, t ≥ 0,

Y (0) = 1.

(a) Show that the solution can be written as yn = [R(λh)]
n

with

R (z) =
1 + 1

2z + 1
12z

2

1 − 1
2z + 1

12z
2
.

(b) For any real z < 0 show that |R (z)| < 1. In fact, this bound is true for

any complex z with Real (z) < 0, and this implies that the method is

absolutely stable.

16. Solve the equations of Problem 2 with the built-in ode45 function. Experiment

with several choices of error tolerances, including an absolute error tolerance

of AbsTol = 10−4 and ǫ = 10−6, along with a relative error tolerance of

RelTol = 10−8.
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17. Solve the equations of Problem 2 with the built-in ode23 function. Experiment

with several choices of error tolerances, including an absolute error tolerance

of AbsTol = 10−4 and ǫ = 10−6, along with a relative error tolerance of

RelTol = 10−8.

18. Repeat Problem 13 using ode45.

19. Consider the motion of a particle of mass m falling vertically under the earth’s

gravitational field, and suppose that the downward motion is opposed by a

frictional force p(v) dependent on the velocity v(t) of the particle. Then the

velocity satisfies the equation

mv′(t) = −mg + p(v), t ≥ 0, v(0) given .

Let m = 1 kg, g = 9.8 m/s2, and v(0) = 0. Solve the differential equation for

0 ≤ t ≤ 20 and for the following choices of p(v):

(a) p(v) = −0.1v, which is positive for a falling body.

(b) p(v) = 0.1v2.

Find answers to at least three digits of accuracy. Graph the functions v(t).
Compare the solutions.

20. Consider solving the initial value problem

Y ′(t) = t− Y (t)2, Y (0) = 0

on the interval 0 ≤ t ≤ 20. Create a Taylor series method of order 2. Implement

it in MATLAB and use stepsizes of h = 0.4, 0.2, and 0.1 to solve for an

approximation to Y . Estimate the error by using Problem 3. Graph the solution

that you obtain.

21. Repeat Problem 20 with various initial values Y (0). In particular, use Y (0) =
−0.2, −0.4, −0.6, −0.8. Comment on your results.

22. Repeat Problems 20 and 21, but use a second-order Runge–Kutta method.

23. Repeat Problems 20 and 21, but use the MATLAB code ode45. Do not attempt

to estimate the error since that is embedded in ode113.

24. Consider the problem

Y ′ =
1

t+ 1
+ c · tan−1(Y (t)) − 1

2
, Y (0) = 0

with c a given constant. Since Y ′(0) = 1
2 , the solution Y (t) is initially increas-

ing as t increases, regardless of the value of c. As best you can, show that there

is a value of c, call it c∗, for which (1) if c > c∗, the solution Y (t) increases

indefinitely, and (2) if c < c∗, then Y (t) increases initially, but then peaks and



IMPLICIT RUNGE–KUTTA METHODS 93

decreases. Using ode45, determine c∗ to within 0.00005, and then calculate

the associated solution Y (t) for 0 ≤ t ≤ 50.

25. (a) Using the Runge–Kutta method (5.20), solve

Y ′(t) = −Y (t) + t0.1(1.1 + t), Y (0) = 0,

whose solution is Y (t) = t1.1. Solve the equation on [0, 5], print-

ing the solution and the errors at t = 1, 2, 3, 4, 5. Use stepsizes h =
0.1, 0.05, 0.025, 0.0125, 0.00625. Calculate the ratios by which the errors

decrease when h is halved. How does this compare with the theoretical

rate of convergence of O(h2). Explain your results as best you can.

(b) What difficulty arises in attempting to use a Taylor method of order ≥ 2
to solve the equation of part (a)? What does it tell us about the solution?

26. Consider the three-stage Runge–Kutta formula

z1 = yn,

z2 = yn + ha2,1f(tn, z1),

z3 = yn + h [a3,1f(tn, z1) + a3,2f(tn + c2h, z2)] ,

yn+1 = yn + h [b1f(tn, z1) + b2f(tn + c2h, z2) + b3f(tn + c3h, z3)] .

Generalize the argument used in (5.14)–(5.19) for determining the two-stage

Runge–Kutta formulas of order 2. Determine the set of equations that the

coefficients {bj, cj, aij} must satisfy if the formula given above is to be of

order 3. Find a particular solution to these equations.





CHAPTER 6

MULTISTEP METHODS

Taylor methods and Runge–Kutta (RK) methods are known as single-step or one-step

methods, since at a typical step yn+1 is determined solely from yn. In this chapter,

we consider multistep methods in which the computation of the numerical solution

yn+1 uses the solution values at several previous nodes. We derive here two families

of the most widely used multistep methods.

Reformulate the differential equation

Y ′(t) = f(t, Y (t))

by integrating it over the interval [tn, tn+1], obtaining

∫ tn+1

tn

Y ′(t) dt =

∫ tn+1

tn

f(t, Y (t)) dt,

Y (tn+1) = Y (tn) +

∫ tn+1

tn

f(t, Y (t)) dt. (6.1)

We will develop numerical methods to compute the solution Y (t) by approximating

the integral in (6.1). There are many such methods, and we will consider only the most

95
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popular of them, the Adams–Bashforth (AB) and Adams–Moulton (AM) methods.

These methods are the basis of some of the most widely used computer codes for

solving the initial value problem. They are generally more efficient than the RK

methods, especially if one wishes to find the solution with a high degree of accuracy

or if the derivative function f(t, y) is expensive to evaluate.

To evaluate the integral

∫ tn+1

tn

g(t) dt, g(t) = Y ′(t) = f(t, Y (t)), (6.2)

we approximate g(t) by using polynomial interpolation and then integrate the inter-

polating polynomial. For a given nonnegative integer q, the AB methods use interpo-

lation polynomial of degree q at the points {tn, tn−1, . . . , tn−q}, and AM methods

use interpolation polynomial of degree q at the points {tn+1, tn, tn−1, . . . , tn−q+1}.

6.1 ADAMS–BASHFORTH METHODS

We begin with the AB method based on linear interpolation (q = 1). The linear

polynomial interpolating g(t) at {tn, tn−1} is

p1(t) =
1

h
[(tn − t)g(tn−1) + (t− tn−1)g(tn)]. (6.3)

From the theory of polynomial interpolation (Theorem B.3 in Appendix B),

g(t) − p1(t) = 1
2 (t− tn) (t− tn−1) g

′′(ζn) (6.4)

for some tn−1 ≤ ζn ≤ tn+1. Integrating over [tn, tn+1], we obtain

∫ tn+1

tn

g(t) dt ≈
∫ tn+1

tn

p1(t) dt = 1
2h[3g(tn) − g(tn−1)].

In fact, we can obtain the more complete result

∫ tn+1

tn

g(t) dt = 1
2h[3g(tn) − g(tn−1)] + 5

12h
3g′′(ξn) (6.5)

for some tn−1 ≤ ξn ≤ tn+1; see Problem 4 for a derivation of a related but somewhat

weaker result on the truncation error. Applying this to the relation (6.1) gives us

Y (tn+1) = Y (tn) + 1
2h[3f(tn, Y (tn)) − f(tn−1, Y (tn−1))]

+ 5
12h

3Y ′′′(ξn).
(6.6)

Dropping the final term, the truncation error, we obtain the numerical method

yn+1 = yn + 1
2h[3f(tn, yn) − f(tn−1, yn−1)]. (6.7)
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Table 6.1 An example of the second order Adams-Bashforth method

t yh(t) Y (t) − y2h(t) Y (t) − yh(t) Ratio 1
3
[yh(t) − y2h(t)]

2 0.49259722 2.13e − 3 5.53e − 4 3.9 5.26e − 4
4 −1.41116963 2.98e − 3 7.24e − 4 4.1 7.52e − 4
6 0.68174279 −3.91e − 3 −9.88e − 4 4.0 −9.73e − 4
8 0.84373678 3.68e − 4 1.21e − 4 3.0 8.21e − 5

10 −1.38398254 3.61e − 3 8.90e − 4 4.1 9.08e − 4

With this method, note that it is necessary to have n ≥ 1. Both y0 and y1 are

needed in finding y2, and y1 cannot be found from (6.7). The value of y1 must be

obtained by another method. The method (6.7) is an example of a two step method,

since values at tn−1 and tn are needed in finding the value at tn+1. If we assume

y0 = Y0, and if we can determine y1 ≈ Y (t1) with an accuracy O(h2), then the AB

method (6.7) is of order 2, that is, its global error is of size O(h2),

max
t0≤tn≤b

|Y (tn) − yh(tn)| ≤ ch2. (6.8)

We must note that this result assumes f(t, y) and Y (t) are sufficiently differen-

tiable, just as with all other similar convergence error bounds and asymptotic error

results stated in this book. In this particular case (6.8), we would assume that Y (t)
is 3 times continuously differentiable on [t0, b] and that f(t, y) satisfies the Lipschitz

condition of (2.19) in Chapter 2. We usually omit the explicit statement as to the

order of differentiability on Y (t) being assumed, although it is usually apparent from

the given error results.

Example 6.1 Use (6.7) to solve

Y ′(t) = −Y (t) + 2 cos(t), Y (0) = 1 (6.9)

with the solution Y (t) = sin(t) + cos(t). For illustrative purposes only, we take

y1 = Y (t1). The numerical results are given in Table 6.1, using h = 0.05. Note that

the errors decrease by a factor of approximately 4 whenh is halved,which is consistent

with the numerical method being of order 2. The Richardson error estimate is also

included in the table, using the formula (5.13) for second-order methods. Where the

error is decreasing like O(h2), the error estimate is quite accurate.

Adams methods are often considered to be “less expensive” than RK methods, and

the main reason can be seen by comparing (6.7) with the second-order RK method in

(5.20). The main task of both methods is to evaluate the derivative function f(t, y).
With second-order RK methods, there are two evaluations of f for each step from tn
to tn+1. In contrast, the AB formula (6.7) uses only one evaluation per step, provided

that past values of f are reused. Other factors affect the choice of a numerical method,

but the AB and AM methods are generally more efficient in the number of evaluations

of f that are needed for a given amount of accuracy.
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A problem with multistep methods is the need to generate some of the initial values

of the solution by using another method. For the second-order AB method in (6.7),

we must obtain y1; and since the global error in yh(tn) is to be O(h2), we must

ensure that Y (t1) − yh(t1) is also O(h2). There are two immediate possibilities,

using methods from preceding chapters.

Case (1) Use Euler’s method:

y1 = y0 + hf(t0, y0). (6.10)

Assuming y0 = Y0, this has an error of

Y (t1) − y1 = 1
2h

2Y ′′(ξ1)

based on (2.10) with n = 0. Thus (6.10) meets our error criteria for y1.

Globally, Euler’s method has only O(h) accuracy, but the error of a single step

is O(h2).

Case (2) Use a second-order RK method, such as (5.20). Since only one step in t is

being used, Y (t1) − y1 will be O(h3), which is more than adequate.

Example 6.2 Combine (6.10) with (6.7) to solve the problem (6.9) from the last

example. For h = 0.05 and t = 10, the error in the numerical solution turns out to be

Y (10) − yh(10)
.
= 8.90 × 10−4,

the same as before for the results in Table 6.1.

Higher-order Adams–Bashforth methods are obtained by using higher degree poly-

nomial interpolation in the approximation of the integrand in (6.2). (For an introduc-

tion to polynomial interpolation, see Appendix B.) The next higher-order example

following the linear interpolation of (6.3) uses quadratic interpolation. Let p2(t)
denote the quadratic polynomial that interpolates g(t) at tn, tn−1, tn−2, and then use

∫ tn+1

tn

g(t) dt ≈
∫ tn+1

tn

p2(t) dt.

To be more explicit, we may write

p2(t) = g(tn)ℓ0(t) + g(tn−1)ℓ1(t) + g(tn−2)ℓ2(t) (6.11)

with

ℓ0(t) =
(t− tn−1)(t− tn−2)

2h2
,

ℓ1(t) = − (t− tn)(t− tn−2)

h2
,

ℓ2(t) =
(t− tn)(t− tn−1)

2h2
.





(6.12)
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For the error, we have

g(t) − p2(t) = 1
6 (t− tn) (t− tn−1) (t− tn−2) g

′′′(ζn) (6.13)

for some tn−2 ≤ ζn ≤ tn+1.

It can be shown that

∫ tn+1

tn

g(t) dt = 1
12h[23g(tn) − 16g(tn−1) + 5g(tn−2)] +

3
8h

4g′′′(ξn)

for some tn−2 ≤ ξn ≤ tn+1. Applying this to (6.1), the integral formulation of the

differential equation, we obtain

Y (tn+1) = Y (tn) + 1
12h[23f(tn, Y (tn)) − 16f(tn−1, Y (tn−1))

+ 5f(tn−2, Y (tn−2))] + 3
8h

4Y (4)(ξn).

By dropping the last term, the truncation error, we obtain the third-order AB method

yn+1 = yn + 1
12h[23y′n − 16y′n−1 + 5y′n−2], n ≥ 2, (6.14)

where y′k ≡ f(tk,yk), k ≥ 0. This is a three step method, requiring n ≥ 2. Thus

y1, y2 must be obtained separately by other methods. We leave the implementation

and illustration of (6.14) as Problem 2 for the reader.

In general, it can be shown that the AB method based on interpolation of degree q
will be a (q + 1)-step method, and its truncation error will be of the form

Tn+1 = cqh
q+2Y (q+2)(ξn)

for some tn−q ≤ ξn ≤ tn+1. The initial values y1, . . . , yq will have to be generated

by other methods. If the errors in these initial values satisfy

Y (tn) − yh(tn) = O(hq+1), n = 1, 2, . . . , q, (6.15)

then the global error in the (q + 1)-step AB method will also be O(hq+1), provided

that the true solution Y is sufficiently differentiable. In addition, the global error will

satisfy an asymptotic error formula

Y (tn) − yh(tn) = D(tn)hq+1 + O(hq+2),

much as was true earlier for the Taylor and RK methods described in Chapter 5. Thus

Richardson’s extrapolation can be used to accelerate the convergence of the method

and to estimate the error.

To generate the initial values y1, . . . , yq for the (q + 1)-step AB method, and to

have their errors satisfy the requirement (6.15), it is sufficient to use a RK method

of order q. However, in many instances, people prefer to use a RK method of order

q + 1, the same order as that of the (q + 1)-step AB method. Other procedures are

used in the automatic computer programs for AB methods, and we discuss them later

in this chapter.
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Table 6.2 Adams-Bashforth methods

q Order Method T. Error

0 1 yn+1 = yn + hy′

n
1
2
h2Y ′′(ξn)

1 2 yn+1 = yn + h
2
[3y′

n − y′

n−1]
5
12

h3Y ′′′(ξn)

2 3 yn+1 = yn + h

12
[23y′

n − 16y′

n−1 + 5y′

n−2]
3
8
h4Y (4)(ξn)

3 4 yn+1 = yn + h

24
[55y′

n − 59y′

n−1 + 37y′

n−2 − 9y′

n−3]
251
720

h5Y (5)(ξn)

Table 6.3 Example of fourth order Adams-Bashforth method

t yh(t) Y (t) − y2h(t) Y (t) − yh(t) Ratio 1
15

[yh(t) − y2h(t)]

2 0.49318680 −3.96e − 4 −3.62e − 5 10.9 −2.25e − 5
4 −1.41037698 −1.25e − 3 −6.91e − 5 18.1 −7.37e − 5
6 0.68067962 1.05e − 3 7.52e − 5 14.0 6.12e − 5
8 0.84385416 3.26e − 4 4.06e − 6 80.0 2.01e − 5

10 −1.38301376 −1.33e − 3 −7.89e − 5 16.9 −7.82e − 5

The AB methods of orders 1 through 4 are given in Table 6.2; the column heading

“T. Error” denotes “Truncation Error”. The order 1 formula is simply Euler’s method.

In the table, y′k ≡ f(tk, yk).

Example 6.3 Solve the problem (6.9) by using the fourth-order AB method. Since

we are illustrating the AB method, we simply generate the initial values y1, y2, y3 by

using the true solution,

yi = Y (ti), i = 1, 2, 3.

The results for h = 0.125 and 2h = 0.25 are given in Table 6.3. Richardson’s error

estimate for a fourth-order method is given in the last column. For a fourth-order

method, the error should decrease by a factor of approximately 16 when h is halved.

In those cases where this is true, the Richardson’s error estimate is accurate. In no

case is the error badly underestimated.

Comparing these results with those in Table 5.6 for the fourth-order Fehlberg

method, we see that the present errors appear to be very large. But note that the

Fehlberg formula uses five evaluations of f(t, y) for each step of tn to tn+1; whereas

the fourth-order AB method uses only one evaluation of f per step, assuming that

previous evaluations are reused. If this AB method is used with an h that is only 1
5

as large (for a comparable number of evaluations of f ), then the present errors will

decrease by a factor of approximately 54 = 625. The AB errors will be mostly smaller

than those of the Fehlberg method in Table 5.6, and the work will be comparable

(measured by the number of evaluations of f ).
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Table 6.4 Example of Adams-Moulton method of order 2

t Y (t) − y2h(t) Y (t) − yh(t) Ratio 1
3
[yh(t) − y2h(t)]

2 −4.59e − 4 −1.15e − 4 4.0 −1.15e − 4
4 −5.61e − 4 −1.40e − 4 4.0 −1.40e − 4
6 7.98e − 4 2.00e − 4 4.0 2.00e − 4
8 −1.21e − 4 −3.04e − 5 4.0 −3.03e − 4

10 −7.00e − 4 −1.75e − 4 4.0 −1.28e − 4

6.2 ADAMS–MOULTON METHODS

As with the AB methods, we begin our presentation of AM methods by considering

the method based on linear interpolation. Let p1(t) be the linear polynomial that

interpolates g(t) at tn and tn+1,

p1(t) =
1

h
[(tn+1 − t)g(tn) + (t− tn)g(tn+1)].

Using this equation to approximate the integrand in (6.2), we obtain the trapezoidal

rule discussed in Chapter 4,

Y (tn+1) = Y (tn)+ 1
2h[f(tn, Y (tn))+f(tn+1, Y (tn+1))]− 1

12h
3Y ′′′(ξn). (6.16)

Dropping the last term, the truncation error, we obtain the AM method

yn+1 = yn + 1
2h[f(tn, yn) + f(tn+1, yn+1)], n ≥ 0. (6.17)

This is the trapezoidal method discussed in Section 4.2. It is a second-order method

and has a global error of size O(h2). Moreover, it is absolutely stable.

Example 6.4 Solve the earlier problem (6.9) by using the AM method (6.17) (the

trapezoidal method). The results are given in Table 6.4 for h = 0.05, 2h = 0.1, and

the Richardson error estimate for second-order methods is given in the last column.

In this case, the O(h2) error behavior is very apparent, and the error estimation is

very accurate.

Example 6.5 Repeat Example 6.4, but using the procedure described following

(4.28) in Chapter 4, with only one iterate being computed for each n. Then, the

errors do not change significantly from those given in Table 6.4. For example, with

t = 10 and h = 0.05, the error is

Y (10) − yh(10)
.
= −2.02 × 10−4.

This is not very different from the value of −1.75 × 10−4 given in Table 6.4. The

use of the iterate y
(1)
n+1 as the root yn+1 will not affect significantly the accuracy of
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Table 6.5 Adams-Moulton methods

q Order Method T. Error

0 1 yn+1 = yn + hy′

n+1 − 1
2
h2Y ′′(ξn)

1 2 yn+1 = yn + h
2
[y′

n+1 + y′

n] − 1
12

h3Y ′′′(ξn)

2 3 yn+1 = yn + h

12
[5y′

n+1 + 8y′

n − y′

n−1] − 1
24

h4Y (4)(ξn)

3 4 yn+1 = yn + h

24
[9y′

n+1 + 19y′

n − 5y′

n−1 + y′

n−2] − 19
720

h5Y (5)(ξn)

the solution for most differential equations. Stiff differential equations are a major

exception.

By integrating the polynomial of degree q that interpolates on the set of the nodes

{tn+1, tn, . . . , tn−q+1} to the function g(t) of (6.2), we obtain the AM method of

order q+ 1. It will be an implicit method, but in other respects the theory is the same

as for the AB methods described previously. The AM methods of orders 1 through 4
are given in Table 6.5, where y′k ≡ f(tk, yk). As in Table 6.2, the column heading

“T. Error” denotes “Truncation Error”. Note that the AM method of order 1 is the

backward Euler method, and the AM method of order 2 is the trapezoidal method.

The effective cost of an AM method is two evaluations of the derivative f(t, y)
per step in most cases and assuming that previous function values of f are reused.

This includes one evaluation of f to calculate an initial guess y
(0)
n+1, and then one

evaluation of f in the iteration formula for the AM method. For example, with the

trapezoidal method this means using the calculation

y
(0)
n+1 = yn + 1

2
h [3f(tn, yn) − f(tn−1, yn−1)] ,

y
(1)
n+1 = yn + 1

2
h[f(tn, yn) + f(tn+1, y

(0)
n+1)],

(6.18)

or using some other predictor formula for y
(0)
n+1 with an equivalent accuracy. With

this calculation, there is no significant gain in accuracy over the AB method of the

same order when comparing methods of equivalent cost.

Nonetheless, AM methods possess other properties that make them desirable for

use in many types of differential equations. The desirable features relate to stability

characteristics of numerical methods. Recall from Chapter 4, following (4.3), that

we study the behavior of a numerical method when applied to the model problem

Y ′(t) = λY (t), t > 0,
Y (0) = 1.

(6.19)

We always assume the constant λ < 0 or λ is complex with Real(λ) < 0. The true

solution of the problem (6.19) is Y (t) = eλ t, which decays exponentially in t since

the parameter λ has a negative real part. The kind of stability property that we would
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like for a numerical method is that when it is applied to (6.19), the numerical solution

satisfies

yh(tn) → 0 as tn → ∞ (6.20)

for any choice of stepsize h. With most numerical methods, this is not satisfied. The

set of values hλ, considered as a subset of the complex plane, for which yn → 0 as

n→ ∞, is called the region of absolute stability of the numerical method.

As seen in Chapter 4, the AM methods of orders 1 and 2 are absolutely stable,

satisfying (6.20) for all values of h. Such methods are particularly suitable for solving

stiff differential equations. In general, we prefer numerical methods with a larger

region of absolute stability; the larger is the region, the less restrictive the condition

on h in order to ensure satisfaction of (6.20) for the model problem (6.19). Thus a

method with a large region of absolute stability is generally preferred over a method

with a smaller region, provided that the accuracy of the two methods is similar. It can

be shown that for AB and AM methods of equal order, the AM method will have the

larger region of absolute stability; see Figures 8.1 and 8.2 in Chapter 8. Consequently,

Adams–Moulton methods are generally preferred over Adams–Bashforth methods.

Example 6.6 Applying the AB method of order 2 to equation (6.19) leads to the

finite difference equation

yn+1 = yn + 1
2hλ (3yn − yn−1) , n = 1, 2, . . . (6.21)

with y0 and y1 determined beforehand. Jumping ahead to (7.45) in Chapter 7, the

solution to this finite difference equation is given by

yh(tn) = γ0 [r0(hλ)]
n

+ γ1 [r1(hλ)]
n
, n ≥ 0 (6.22)

with r0(hλ) and r1(hλ) the roots of the quadratic polynomial

r2 = r + 1
2hλ (3r − 1) . (6.23)

When λ = 0, one of the roots equals 1, and we denote arbitrarily that root by r0(hλ)
in general: r0(0) = 1. The constants γ0 and γ1 are determined from y0 and y1. In

order to satisfy (6.22) for a given choice of hλ and for any choice of γ0 and γ1, it is

necessary to have

|r0(hλ)| < 1, |r1(hλ)| < 1. (6.24)

Solving this pair of inequalities for the case that λ is real, and looking only at the case

that λ < 0, we obtain

−1 < hλ < 0 (6.25)

as the region of absolute stability on the real axis. In contrast, the AM method of

order 2 has −∞ < hλ < 0 on the real axis of its region of stability. There is no

stability restriction on h with this AM method.
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6.3 COMPUTER CODES

Some of the most popular computer codes for solving the initial value problem are

based on using AM and AB methods in combination, as suggested in the discussion

preceding (6.18). These codes control the truncation error by varying both the stepsize

h and the order of the method. They are self-starting in terms of generating the initial

values y1, . . . , yq needed with higher-order methods of order q+1. To generate these

values, they begin with first-order methods and a small stepsize h and then increase

the order to generate the starting values needed with higher-order methods. The

possible order is allowed to be as large as 12 or more; this results in a very efficient

numerical method when the solution Y (t) has several continuous derivatives and is

slowly varying. A comprehensive discussion of Adams’ methods and an example of

one such computer code is given in Shampine [72].

MATLAB R© program. To facilitate the illustrative programming of the methods of

this chapter, we present a modification of the Euler program of Chapter 2. The

program implements the Adams–Bashforth formula of order 2, given in (6.7); and

it uses Euler’s method to generate the first value y1 as in (6.10). We defer to the

Problems section the experimental use of this program.

function [t,y] = AB2(t0,y0,t end,h,fcn)

%

% function [t,y]=AB2(t0,y0,t end,h,fcn)

%

% Solve the initial value problem

% y’ = f(t,y), t0 <= t <= b, y(t0)=y0

% Use Adams-Bashforth formula of order 2 with

% a stepsize of h. Euler’s method is used for

% the value y1. The user must supply a program for

% the right side function defining the differential

% equation. For some name, say deriv, use a first

% line of the form

% function ans=deriv(t,y)

% A sample call would be

% [t,z]=AB2(t0,z0,b,delta,’deriv’)

%

% Output:

% The routine AB2 will return two vectors, t and y.

% The vector t will contain the node points

% t(1)=t0, t(j)=t0+(j-1)*h, j=1,2,...,N

% with

% t(N) <= t end-h, t(N)+h > t end-h

% The vector y will contain the estimates of the

% solution Y at the node points in t.

%

n = fix((t end-t0)/h)+1;
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Figure 6.1 The solution values to (6.26) obtained by ode113 are indicated by the symbol o.

The curve line is obtained by interpolating these solution values from ode113 using deval.

t = linspace(t0,t0+(n-1)*h,n)’;

y = zeros(n,1);

y(1) = y0;

ft1 = feval(fcn,t(1),y(1));

y(2) = y(1)+h*ft1;

for i = 3:n

ft2 = feval(fcn,t(i-1),y(i-1));

y(i) = y(i-1)+h*(3*ft2-ft1)/2;

ft1 = ft2;

end

6.3.1 MATLAB ODE codes

Built-in MATLAB programs based on multistep methods are ode113 and ode15s.

These programs implement explicit and implicit linear multistep methods of various

orders, respectively. The program ode113 is used to solve nonstiff ordinary differen-

tial equations, using the Adams–Bashforth and Adams–Moulton methods presented

in this chapter. The code ode15s is for stiff ordinary differential equations, and it

is based on yet another variable order family of multistep methods, one that is dis-

cussed in Chapter 8. The programs are used in precisely the same manner as the

program ode45 discussed in Section 5.5 of Chapter 5; and the entire suite of MAT-
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Figure 6.2 The errors in the solution to (6.26) obtained using ode113. The errors at the

node points are indicated by the symbol o

LAB ode programs is discussed at length by Shampine and Reichelt [73]. Also, see

Shampine [72] for a thorough study of one-step and multistep methods and of their

implementation in computer software.

Example 6.7 We modify the program test ode45 by replacing ode45with ode113

throughout the code. The program ode113 is recommended for medium- to high-

accuracy solutions, but we will illustrate its use with the same example as in Section

5.5 of Chapter 5 for the program ode45. As before, we solve the test equation

Y ′(t) = −Y (t) + 2 cos(t), Y (0) = 1 (6.26)

and we use AbsTol = 10−6, RelTol = 10−4. Figures 6.1 and 6.2 illustrate, respec-

tively, the interpolated numerical solution and the error contained therein. Compare

these results to those in Figures 5.2 and 5.3 of Chapter 5. There are 229 derivative eval-

uations when using ode45 for this problem, whereas ode113 uses 132 evaluations.

This is a typical example for comparison of the number of derivative evaluations.

PROBLEMS

1. Use the MATLAB program for the AB method of order two to solve the equa-

tions in Problem 2 of Chapter 5. Include the Richardson error estimate for

yh(t) when h = 0.1 and 0.05.
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2. Modify the MATLAB program of this chapter to use the third-order AB method.

To calculate y1 and y2, use one of the second-order RK methods from Chapter

5. Then repeat Problem 1.

3. Use the program from Problem 2 to solve the continuing example problem

(6.9).

4. To make the error term in (6.5) a bit more believable, prove

∫ h

0

γ(s) ds− 1
2h[3γ(0)− γ(−h)] = 5

12h
3γ′′(0) + O(h4)

with γ (s) a 3 times continuously differentiable function for −h ≤ s ≤ h.

Hint: Expand γ(s) as a quadratic Taylor polynomial about the origin, with

an error term R3(t). Substitute that Taylor expansion into the left side of the

equation above, and obtain the right side. For simplicity, we have changed the

interval in (6.5) from [tn, tn+1] to [0, h]. The result extends to (6.5) by means

of a simple change of variable in (6.5), namely, t = tn + s, 0 ≤ s ≤ h. Also

note that if −h ≤ ξ ≤ h, then

γ′′(ξ) = γ′′(0) + ξγ′′′(ζ), some ζ between 0 and ξ

= γ′′(0) + O(h),
5
12h

3γ′′(ξ) = 5
12h

3γ′′(0) + O(h4),

since |ξ| ≤ h. This argument assumes γ (s) is 3 times continuously differen-

tiable.

5. Repeat the type of argument given in Problem 4, extending it to the Adams–

Bashforth method of order 3, given in Table 6.2.

6. Repeat the type of argument given in Problem 4, extending it to the Adams–

Moulton method of order 2, given in Table 6.5.

7. Repeat the type of argument given in Problem 4, extending it to the Adams–

Moulton method of order 3, given in Table 6.5.

8. Modify the MATLAB program of this chapter to use the AM method of order

2. For the predictor, use the AB method of order 2; for the first step y1, use the

Euler predictor. Iterate the formula (4.25) only once. Apply this to the solution

of the equations considered in Problem 1, and produce the Richardson error

estimate.

9. Use the MATLAB code ode113 to solve the equations in Problem 2 of Chapter

5. For error tolerances, use absolute error bounds AbsTol = 10−4 and ǫ =
10−6, along with a relative error tolerance RelTol = 10−8. Keep track of

the number of evaluations of f(t, y) that are used by the routine, and compare

it to the number used in your own programs for the Adams–Bashforth and

Adams–Moulton methods.
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10. (a) Using the program of Problem 1 for the AB method of order 2, solve

Y ′(t) = −50Y (t) + 51 cos(t) + 49 sin(t), Y (0) = 1

for 0 ≤ t ≤ 10. The solution is Y (t) = sin(t) + cos(t). Use stepsizes of

h = 0.1, 0.02, 0.01. In each case, print the errors as well as the answers.

(b) Using the program of Problem 8 for the AM method of order 2, repeat

part (a). Check the condition of (4.26).

(c) When the AM method of order 2 is applied to the equation in (a), the value

of yn+1 can be found directly. While doing so, repeat part (a). Compare

your results.

11. The Adams–Bashforth and Adams–Moulton methods are based on (6.1) to-

gether with the integration over [tn, tn+1] of a polynomial interpolating the

integrand Y ′(t) = f(t, Y (t)). As an alternative, consider integration over

[tn−1, tn+1], obtaining

Y (tn+1) = Y (tn−1) +

∫ tn+1

tn−1

f(t, Y (t)) dt. (6.27)

We can replace the integrand f(t, Y (t)) with an approximation based on inter-

polation. The simplest example is to use a constant interpolant; in particular,

∫ tn+1

tn−1

f(t, Y (t)) dt ≈
∫ tn+1

tn−1

f(tn, Y (tn)) dt = 2hf(tn, Y (tn)).

This leads to the numerical method

yn+1 = yn−1 + 2hf (tn, yn) , n ≥ 1. (6.28)

This is called the midpoint method. As with the Adams–Bashforth method

(6.7) of order 2, the value of y1 must be obtained by other means. Using the

type of argument given in Problem 4, show that

Y (tn+1) − [Y (tn−1) + 2hf(tn, Y (tn))] = − 1
3h

3Y ′′′ (tn) + O(h4).

Hint: Expand Y (t) as a quadratic Taylor polynomial about tn, with an error

term R3(t). Substitute that Taylor expansion into the left side of the equation

above to obtain the right side.

12. Using the same arguments as in Problem 11, consider interpolating Y ′(t) =
f(t, Y (t)) with a quadratic polynomial. Have it interpolate Y ′(t) = f (t, Y (t))
at the nodes {tn−1, tn, tn+1}. Use this to obtain the numerical method

yn+1 = yn−1 + 1
3 [hf (tn−1, yn−1)

+4f (tn, yn) + f (tn+1, yn+1)].
(6.29)
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As with the Adams–Moulton methods, this is an implicit method and the value

of yn+1 must be calculated by a rootfinding method. Also, the value of y1 must

be obtained by other means.

This is Simpson’s parabolic rule for numerical integration, and when applied,

as here, to solving differential equations, it is one part of Milne’s method, which

is mainly of historical interest, as the family of Adams methods have replaced

it in modern codes. We return to Simpson’s rule, however, when developing

numerical methods for solving Volterra integral equations in Chapter 12.

13. As an alternative to (6.27), consider

Y (tn+1) = Y (tn−3) +

∫ tn+1

tn−3

f(t, Y (t)) dt.

Using the same arguments as in Problem 12, consider interpolating Y ′(t) =
f(t, Y (t)) with a quadratic polynomial, but have it interpolate Y ′(t) at the

nodes {tn−2, tn−1, tn}. Use this to obtain the numerical method

yn+1 = yn−3 + 4
3h[2f (tn−2, yn−2)

−f (tn−1, yn−1) + 2f (tn, yn)].
(6.30)

This is an explicit method, and historically it has been used to estimate an

initial value y
(0)
n+1 for the iterative solution of equation (6.29) in Problem 12,

thus forming the other half of Milne’s method. The values of y1, y2, y3 must

be obtained by other means.

14. Repeat Problems 20 and 21 of Chapter 5 using the MATLAB code ode113.

Do not attempt to estimate the error since that is embedded in ode113.

15. Repeat Problem 24 of Chapter 5 using the MATLAB code ode113.





CHAPTER 7

GENERAL ERROR ANALYSIS FOR

MULTISTEP METHODS

We now present a general error analysis for multistep methods in solving the initial

value problem of a single first-order equation. In addition to explaining the underlying

behavior of the numerical methods, such a general error analysis allows us to design

better numerical procedures for various classes of problems. We begin by considering

the truncation error for multistep methods. Next, in Section 7.2, we look at a relatively

simple error analysis that is similar to that given for Euler’s method in Chapter 2; it is

an error analysis that works for many popular multistep methods. In Section 7.3 we

give a complete error analysis for all multistep methods, and we follow it with some

examples.

As before, let h > 0 and define the nodes by tn = t0 + nh, n ≥ 0. The general

form of the multistep methods to be considered is

yn+1 =

p∑

j=0

ajyn−j + h

p∑

j=−1

bjf(tn−j , yn−j), n ≥ p. (7.1)

The coefficients a0, . . . , ap, b−1, b0, . . . , bp are constants and p ≥ 0. Assuming

that |ap| + |bp| 6= 0, we consider this method a (p+ 1)-step method, because p+ 1
previous solution values are being used to compute yn+1. The values y1, . . . , yp must

111
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be obtained by other means, as was illustrated in Chapter 6 with the Adams methods.

Euler’s method is an example of a one-step method with p = 0 and

a0 = 1, b0 = 1, b−1 = 0.

If b−1 = 0, then yn+1 occurs on only the left side of equation (7.1). Such formulas

are called explicit methods. If b−1 6= 0, then yn+1 is present on both sides of (7.1),

and the formula is called an implicit method. As was discussed following (4.12) in

Chapter 4 for the backward Euler method, the solution yn+1 can be computed by

fixed point iteration,

y
(i+1)
n+1 =

p∑

j=0

ajyn−j +h

p∑

j=0

bjf(tn−j , yn−j)+hb−1f(tn+1, y
(i)
n+1), i = 0, 1, . . . ,

provided h is chosen sufficiently small.

Example 7.1

1. The midpoint method is defined by

yn+1 = yn−1 + 2hf(tn, yn), n ≥ 1 (7.2)

and it is an explicit two-step method. We discuss this method in more detail

later in the chapter.

2. The Adams–Bashforth and Adams–Moulton methods are all special cases of

(7.1), with

a0 = 1, aj = 0 for j = 1, . . . , p.

Also, refer to the formulas for these methods in Tables 6.2 and 6.5 of Chapter

6.

7.1 TRUNCATION ERROR

For any differentiable function Y (t), define the truncation error for integrating Y ′(t)
by

Tn(Y ) = Y (tn+1) −




p∑

j=0

ajY (tn−j) + h

p∑

j=−1

bjY
′(tn−j)



 (7.3)

for n ≥ p. Define the function τn(Y ) by

τn(Y ) =
1

h
Tn(Y ). (7.4)

In order to prove the convergence of the approximate solution {yn : t0 ≤ tn ≤ b} of

(7.1) to the solution Y (t) of the initial value problem

Y ′(t) = f(t, Y (t)), t ≥ t0,
Y (t0) = Y0,
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it is necessary to have

τ(h) ≡ max
tp≤tn≤b

|τn(Y )| → 0 as h→ 0. (7.5)

This is often called the consistency condition for the method (7.1). The speed of

convergence of the solution {yn} to the true solution Y (t) is related to the speed of

convergence in (7.5), and thus we need to know the conditions under which

τ(h) = O(hm) (7.6)

for some desired choice of m ≥ 1. We now examine the implications of (7.5) and

(7.6) for the coefficients in (7.1).

Theorem 7.2 Letm ≥ 1 be a given integer. For (7.5) to hold for all continuously dif-

ferentiable functionsY (t), that is, for the method (7.1) to be consistent, it is necessary

and sufficient that

p∑

j=0

aj = 1, (7.7)

−
p∑

j=0

jaj +

p∑

j=−1

bj = 1. (7.8)

Further, for (7.6) to be valid for all functions Y (t) that are m+1 times continuously

differentiable, it is necessary and sufficient that (7.7)–(7.8) hold and that

p∑

j=0

(−j)iaj + i

p∑

j=−1

(−j)i−1bj = 1, i = 2, . . . ,m. (7.9)

Proof. Note that

Tn(αY + βW ) = αTn(Y ) + βTn(W ) (7.10)

for all constants α, β and all differentiable functions Y,W . To examine the conse-

quences of (7.5) and (7.6), expand Y (t) about tn using Taylor’s theorem to obtain

Y (t) =
m∑

i=0

1

i!
(t− tn)iY (i)(tn) + Rm+1(t), (7.11)

Rm+1(t) =
1

m!

∫ t

tn

(t− s)mY (m+1)(s) ds

=
(t− tn)m+1

(m+ 1)!
Y (m+1)(ξn) (7.12)

with ξn between t and tn (see (A.4)–(A.6) in Appendix A). We are assuming that

Y (t) is m+ 1 times continuously differentiable on the interval bounded by t and tn.

Substituting into (7.3) and using (7.10), we obtain

Tn(Y ) =

m∑

i=0

1

i!
Y (i)(tn)Tn((t− tn)i) + Tn(Rm+1).
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It is necessary to calculate Tn((t− tn)i) for i ≥ 0.

• For i = 0,

Tn(1) = c0 ≡ 1 −
p∑

j=0

aj .

• For i ≥ 1,

Tn((t− tn)i) = (tn+1 − tn)i

−




p∑

j=0

aj(tn−j − tn)i + h

p∑

j=−1

bji(tn−j − tn)i−1




= cih
i

ci = 1 −




p∑

j=0

(−j)iaj + i

p∑

j=−1

(−j)i−1bj


 i ≥ 1. (7.13)

This gives

Tn(Y ) =

m∑

i=0

ci
i!
hiY (i)(tn) + Tn(Rm+1). (7.14)

From (7.12) it is straightforward that Tn(Rm+1) = O
(
hm+1

)
. If Y is m+ 2 times

continuously differentiable, we may write the remainder Rm+1(t) as

Rm+1(t) =
1

(m+ 1)!
(t− tn)m+1Y (m+1)(tn) + · · · ,

and then

Tn(Rm+1) =
cm+1

(m+ 1)!
hm+1Y (m+1)(tn) + O(hm+2). (7.15)

To obtain the consistency condition (7.5),assuming thatY is an arbitrary twice con-

tinuously differentiable function, we need τ(h) = O(h) and this requires Tn(Y ) =
O(h2). Using (7.14) with m = 1, we must have c0 = c1 = 0, which gives the set of

equations (7.7)–(7.8). In some texts, these equations are referred to as the consistency

conditions. It can be further shown that (7.7)–(7.8) are the necessary and sufficient

conditions for the consistency (7.5), even when Y is only assumed to be continuously

differentiable. To obtain (7.6) for some m ≥ 1, we must have Tn(Y ) = O(hm+1).
From (7.14) and (7.13), this will be true if and only if ci = 0, i = 0, 1, . . . ,m. This

proves the conditions (7.9) and completes the proof.

The largest value of m for which (7.6) holds is called the order or order of con-

vergence of the method (7.1).
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Example 7.3 Find all second-order two-step methods. Formula (7.1) is

yn+1 = a0yn + a1yn−1 + h [b−1f(tn+1, yn+1) + b0f(tn, yn)
+ b1f(tn−1, yn−1)] , n ≥ 1.

(7.16)

The coefficients must satisfy (7.7)–(7.9) with m = 2:

a0 + a1 = 1, −a1 + b−1 + b0 + b1 = 1, a1 + 2b−1 − 2b1 = 1.

Solving, we obtain

a1 = 1 − a0, b−1 = 1 − 1
4a0 − 1

2b0, b1 = 1 − 3
4a0 − 1

2b0 (7.17)

with a0, b0 indeterminate. The midpoint method is a special case in which a0 = 0,

b0 = 2. For the truncation error, we have

Tn(R3) = 1
6c3h

3Y (3)(tn) + O(h4), (7.18)

c3 = −4 + 2a0 + 3b0. (7.19)

The coefficients a0, b0 can be chosen to improve the stability, give a small truncation

error, give an explicit formula,or some combination of these. The conditions to ensure

stability and convergence cannot be identified until the general theory for (7.1) has

been given in the remainder of this chapter.

7.2 CONVERGENCE

We now give a convergence result for the numerical method (7.1). Although the

theorem will not cover all the multistep methods that are convergent, it does include

many methods of current interest, including those of Chapters 2, 4, and 6. Moreover,

the proof is much easier than that of the more general Theorem 7.6 given in Section

7.3.

Theorem 7.4 Consider solving the initial value problem

Y ′(t) = f(t, Y (t)), t ≥ t0,
Y (t0) = Y0

(7.20)

using the multistep method (7.1). Assume that the derivative function f(t, y) is con-

tinuous and satisfies the Lipschitz condition

|f(t, y1) − f(t, y2)| ≤ K |y1 − y2| (7.21)

for all −∞ < y1, y2 <∞, t0 ≤ t ≤ b, and for some constant K > 0. Let the initial

errors satisfy

η(h) ≡ max
0≤i≤p

|Y (ti) − yh(ti)| → 0 as h→ 0. (7.22)
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Assume that the solution Y (t) is continuously differentiable and the method is con-

sistent, that is, that it satisfies (7.5). Finally, assume that the coefficients aj are all

nonnegative,

aj ≥ 0, j = 0, 1, . . . , p. (7.23)

Then the method (7.1) is convergent and

max
t0≤tn≤b

|Y (tn) − yh(tn)| ≤ c1η(h) + c2τ(h) (7.24)

for suitable constants c1, c2. If the solution Y (t) ism+1 times continously differen-

tiable, the method (7.1) is of order m, and the initial errors satisfy η(h) = O(hm),
then the order of convergence of the method is m; that is, the error is of size O(hm).

Proof. Rewrite (7.3), and use Y ′(t) = f(t, Y (t)) to get

Y (tn+1) =

p∑

j=0

ajY (tn−j) + h

p∑

j=−1

bjf(tn−j, Y (tn−j)) + hτn(Y ).

Subtracting (7.1) from this equality and using the notation ei = Y (ti)−yi, we obtain

en+1 =

p∑

j=0

ajen−j + h

p∑

j=−1

bj [f(tn−j , Yn−j) − f(tn−j , yn−j)] + hτn(Y ).

Apply the Lipschitz condition (7.21) and the assumption (7.23) to obtain

|en+1| ≤
p∑

j=0

aj |en−j| + hK

p∑

j=−1

|bj| |en−j | + hτ(h).

Introduce the following error bounding function

fn = max
0≤i≤n

|ei| , n = 0, 1, . . . , N(h).

Using this function, we have

|en+1| ≤
p∑

j=0

ajfn + hK

p∑

j=−1

|bj| fn+1 + hτ(h),

and applying (7.7), we obtain

|en+1| ≤ fn + hcfn+1 + hτ(h), c = K

p∑

j=−1

|bj | .

The right side is trivially a bound for fn and thus

fn+1 ≤ fn + hcfn+1 + hτ(h).
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For hc ≤ 1
2 , which is true as h→ 0, we obtain

fn+1 ≤ fn

1 − hc
+

h

1 − hc
τ(h)

≤ (1 + 2hc)fn + 2hτ(h).

Noting that fp = η(h), proceed as in the proof of Theorem 2.4 in Chapter 2, from

(2.25) onward. Then

fn ≤ e2c(b−t0)η(h) +

[
e2c(b−t0) − 1

c

]
τ(h), t0 ≤ tn ≤ b. (7.25)

This completes the proof.

To obtain a rate of convergence of O(hm) for the method (7.1), it is necessary that

each step have an error

Tn(Y ) = O(hm+1).

But the initial values y0, . . . , yp need to be computed with an accuracy of onlyO(hm),
since η(h) = O(hm) is sufficient in (7.24).

The result (7.25) can be improved somewhat for particular cases, but the order

of convergence will remain the same. As with Euler’s method, a complete stability

analysis can be given, yielding a result of the form (2.49) in Chapter 2. The analysis is

a straightforward modification of that described in Section 2.4 of Chapter 2. Similarly,

an asymptotic error analysis can also be given.

7.3 A GENERAL ERROR ANALYSIS

We begin with a few definitions. The concept of stability was introduced with Euler’s

method, and we now generalize it. Let {yn : 0 ≤ n ≤ N(h)} denote the solution

of (7.1) with initial values y0, y1, . . . , yp for some differential equation Y ′(t) =
f(t, Y (t)) and for all sufficiently small values of h, say h ≤ h0. Recall that N(h)
denotes the largest subscript N for which tN ≤ b. For each h ≤ h0, perturb the

initial values y0, . . . , yp to new values z0, . . . , zp with

max
0≤n≤p

|yn − zn| ≤ ǫ. (7.26)

Note that these initial values are allowed to depend on h. We say that the family of

discrete numerical solutions {yn : 0 ≤ n ≤ N(h)}, obtained from (7.1), is stable if

there is a constant c, independent of h ≤ h0 and valid for all sufficiently small ǫ, for

which

max
0≤n≤N(h)

|yn − zn| ≤ cǫ, 0 < h ≤ h0. (7.27)

Consider all differential equation problems

Y ′(t) = f(t, Y (t)), t ≥ t0,
Y (t0) = Y0

(7.28)
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with the derivative function f(t, z) continuous and satisfying the Lipschitz condition

(7.21). Suppose further that the approximating solutions {yn} are all stable. Then

we say that (7.1) is a stable numerical method.

To define convergence for a given problem (7.28), suppose that the initial values

y0, . . . , yp satisfy

η(h) ≡ max
0≤n≤p

|Y (tn) − yn| → 0 as h→ 0. (7.29)

Then the solution {yn} is said to converge to Y (t) if

max
t0≤tn≤b

|Y (tn) − yn| → 0 as h→ 0. (7.30)

If (7.1) is convergent for all problems (7.28) with the properties specified immediately

following (7.28), then it is called a convergent numerical method. Convergence can

be shown to imply consistency; consequently, we consider only methods satisfying

(7.7)–(7.8). The necessity of the condition (7.7) follows from the assumption of

convergence of (7.1) for the problem

Y ′(t) ≡ 0, Y (0) = 1.

Just take y0 = · · · = yp = 1, and observe the consequences of the convergence of

yp+1 to Y (t) ≡ 1. We leave the proof of the necessity of (7.8) as Problem 8.

The convergence and stability of (7.1) are linked to the roots of the polynomial

ρ(r) = rp+1 −
p∑

j=0

ajr
p−j . (7.31)

Note that ρ(1) = 0 from the consistency condition (7.7). Let r0, . . . , rp denote the

roots of ρ(r), repeated according to their multiplicity, and let r0 = 1. The method

(7.1) satisfies the root condition if

(R1) |rj | ≤ 1, j = 0, 1, . . . , p, (7.32)

(R2) |rj | = 1 =⇒ ρ′(rj) 6= 0. (7.33)

The first condition requires all roots of ρ(r) to lie on the unit circle {z: |z| ≤ 1} in

the complex plane. Condition (7.33) states that all roots on the boundary of the circle

are to be simple roots of ρ(r).

7.3.1 Stability theory

All of the numerical methods presented in the preceding chapters have been stable,

but we now give an example of a consistent unstable multistep method. This is to

motivate the need to develop a general theory of stability.
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Example 7.5 Consider the two step method

yn+1 = 3yn − 2yn−1 + 1
2h [f(tn,yn) − 3f(tn−1, yn−1)] , n ≥ 1. (7.34)

It can be shown to have the truncation error

Tn(Y ) = 7
12h

3Y (3)(ξn), tn−1 ≤ ξn ≤ tn+1

and therefore, it is a consistent method. Consider solving the problem Y ′(t) ≡ 0,

Y (0) = 0, which has the solution Y (t) ≡ 0. Using y0 = y1 = 0, the numerical

solution is clearly yn = 0, n ≥ 0. Perturb the initial data to z0 = ǫ/2, z1 = ǫ, for

some ǫ 6= 0. Then the corresponding numerical solution can be shown to be

zn = ǫ · 2n−1, n ≥ 0. (7.35)

The reader should check this assertion. To see the effect of the perturbation on the

original solution, let us assume that

max
t0≤tn≤b

|yn − zn| = max
0≤tn≤b

|ǫ| 2n−1 = |ǫ| 2N(h)−1.

Since N(h) → ∞ as h → 0, the deviation of {zn} from {yn} increases as h → 0.

The method (7.34) is unstable, and it should never be used. Also, note that the root

condition is violated, since ρ(r) = r2 − 3r + 2 has the roots r0 = 1, r1 = 2.

To investigate the stability of (7.1), we consider only the special equation

Y ′(t) = λY (t), t ≥ 0,
Y (0) = 1

(7.36)

with the solution Y (t) = eλt; λ is allowed to be complex. This is the model problem

of (4.3), and its use was discussed in Chapter 4. The results obtained will transfer to

the study of stability for a general differential equation problem. An intuitive reason

for this is easily derived. Expand Y ′(t) = f(t, Y (t)) about (t0, Y0) to obtain

Y ′(t) ≈ f(t0, Y0) + ft(t0, Y0)(t− t0) + fy(t0, Y0)(Y (t) − Y0)

= λ(Y (t) − Y0) + g(t) (7.37)

with λ = fy(t0, Y0) and g(t) = f(t0, Y0) + ft(t0, Y0)(t − t0). This is a valid

approximation if |t− t0| is sufficiently small. Introducing V (t) = Y (t) − Y0,

V ′(t) ≈ λV (t) + g(t). (7.38)

The inhomogeneous term g(t) will drop out of all derivations concerning numerical

stability, because we are concerned with differences of solutions of the equation.

Dropping g(t) in (7.38), we obtain the model equation (7.36).
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In the case that Y′ = f(t,Y) represents a system of m differential equations,

which is discussed in Chapter 3, the partial derivative fy(t,y) becomes a Jacobian

matrix,

[fy(t,y)]ij =
∂fi

∂yj
, 1 ≤ i, j ≤ m.

Thus the model equation becomes

y′ = Λy + g(t), (7.39)

a system ofm linear differential equations with Λ = fy(t0,Y0). It can be shown that

in many cases, this system reduces to an equivalent system

z′i = λizi + γi(t), 1 ≤ i ≤ m (7.40)

with λ1, . . . , λm the eigenvalues of Λ (see Problem 6). With (7.40), we are back to

the simple model equation (7.36), provided we allow λ to be complex in order to

include all possible eigenvalues of Λ.

Applying (7.1) to the model equation (7.36), we obtain

yn+1 =

p∑

j=0

ajyn−j + hλ

p∑

j=−1

bjyn−j , (7.41)

(1 − hλb−1)yn+1 −
p∑

j=0

(aj + hλbj)yn−j = 0, n ≥ p. (7.42)

This is a homogeneous linear difference equation of order p+ 1, and the theory for

its solvability is completely analogous to that of (p + 1)-order homogeneous linear

differential equations. As a general reference, see Henrici [45, pp. 210–215] or

Isaacson and Keller [47, pp. 405–417].

We attempt to find a general solution by first looking for solutions of the special

form

yn = rn, n ≥ 0.

If we can findp+1 linearly independent solutions, then an arbitrary linear combination

will give the general solution of (7.42).

Substituting yn = rn into (7.42) and canceling rn−p, we obtain

(1 − hλb−1)r
p+1 −

p∑

j=0

(aj + hλbj)r
p−j = 0. (7.43)

This is called the characteristic equation, and the left-side is the characteristic

polynomial. The roots are called characteristic roots. Define

σ(r) = b−1r
p+1 +

p∑

j=0

bjr
p−j ,
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and recall the definition (7.31) of ρ(r). Then (7.43) becomes

ρ(r) − hλσ(r) = 0. (7.44)

Denote the characteristic roots by

r0(hλ), . . . , rp(hλ),

which can be shown to depend continuously on the value of hλ. When hλ = 0,

equation (7.44) becomes simply ρ(r) = 0, and we have rj(0) = rj , j = 0, 1, . . . , p
for the earlier roots rj of ρ(r) = 0. Since r0 = 1 is a root of ρ(r), we let r0(hλ) be

the root of (7.44) for which r0(0) = 1. The root r0(hλ) is called the principal root

for reasons that will become apparent later. If the roots rj(hλ) are all distinct, then

the general solution of (7.42) is

yn =

p∑

j=0

γj [rj(hλ)]
n , n ≥ 0. (7.45)

But if

rj(hλ) = rj+1(hλ) = · · · = rj+ν−1(hλ)

is a root of multiplicity ν > 1, then the following are ν linearly independent solutions

of (7.42):

{[rj(hλ)]n}, {n [rj(hλ)]
n}, . . . , {nν−1 [rj(hλ)]

n}.
Moreover, in the formula (7.45), the part

γj [rj(hλ)]
n

+ · · · + γj+ν−1 [rj+ν−1(hλ)]
n

needs to be replaced by

[rj(hλ)]
n (
γj + γj+1n+ · · · + γj+ν−1n

ν−1
)
. (7.46)

These can be used with the solution arising from the other roots to generate a general

solution for (7.42), comparable to (7.45).

In particular, for consistent methods it can be shown that

[r0(hλ)]
n

= eλtn + O(h) (7.47)

as h → 0. The remaining roots r1(hλ), . . . , rp(hλ) are called parasitic roots of the

numerical method. The term
p∑

j=1

γj [rj(hλ)]
n

(7.48)

is called a parasitic solution. It is a creation of the numerical method and does not

correspond to any solution of the original differential equation being solved.

Theorem 7.6 Assume the consistency conditions (7.7)–(7.8). Then the multistep

method (7.1) is stable if and only if the root condition (7.32)–(7.33) is satisfied.

The proof makes essential use of the general solution (7.45) in the case of distinct

roots {rj(hλ)}, or the variant of (7.45) modified according to (7.46) when multiple

roots are present. The reader is referred to [11, p. 398] for a partial proof and to [47,

pp. 405-417] for a more complete development.



122 GENERAL ERROR ANALYSIS FOR MULTISTEP METHODS

7.3.2 Convergence theory

The following result generalizes Theorem 7.4 from earlier in this chapter, giving

necessary and sufficient conditions for the convergence of multistep methods.

Theorem 7.7 Assume the consistency conditions (7.7)–(7.8). Then the multistep

method (7.1) is convergent if and only if the root condition (7.32)–(7.33) is satisfied.

Again, we refer the reader to [11, p. 401] for a partial proof and to [47, pp. 405–417]

for a more complete development.

The following is a well-known result, and it is a trivial consequence of Theorems

7.6 and 7.7.

Corollary 7.8 Let (7.1) be a consistent multistep method. Then it is convergent if

and only if it is stable.

Example 7.9 Return to the two-step methods of order 2, developed in Example 7.3.

The polynomial ρ(r) is given by

ρ(r) = r2 − a0r − a1, a0 + a1 = 1.

Then

ρ(r) = (r − 1) (r + 1 − a0) ,

and the roots are

r0 = 1, r1 = a0 − 1.

The root condition requires

−1 ≤ a0 − 1 < 1,
0 ≤ a0 < 2,

to ensure convergence and stability of the associated two step method in (7.16).

7.3.3 Relative stability and weak stability

Consider again the model equation (7.36) and its numerical solution (7.45). For a

convergent numerical method, it can be shown that in the general solution (7.45), we

obtain
γ0 → 1,
γj → 0, j = 1, . . . , p

as h → 0. The parasitic solution (7.48) converges to zero as h → 0, and the term

γ0 [r0(hλ)]
n

converges to Y (t) = eλt with tn = t fixed. However, for a fixed h with

increasing tn, we also would like the parasitic solution to remain small relative to the

principal part of the solution γ0[r0(hλ)]
n. This will be true if the characteristic roots

satisfy

|rj(hλ)| ≤ r0(hλ), j = 1, 2, . . . , p (7.49)
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for all sufficiently small values of h. This leads us to the definition of relative stability.

We say that the method (7.1) is relatively stable if the characteristic roots rj(hλ)
satisfy (7.49) for all sufficiently small nonzero values of |hλ|. Further, the method is

said to satisfy the strong root condition if

|rj(0)| < 1, j = 1, 2, . . . , p. (7.50)

This condition is easy to check, and it implies relative stability. Just use the continuity

of the roots rj(hλ) with respect to hλ to verify that (7.50) implies (7.49). Relative

stability does not imply the strong root condition, although they are equivalent for

most methods. If a multistep method is stable but not relatively stable, then it will be

called weakly stable.

Example 7.10

(1) For the midpoint method, we obtain

r0(hλ) = 1 + hλ+ O(h2), r1(hλ) = −1 + hλ+ O(h2). (7.51)

For λ < 0, we have

|r1(hλ)| > r0(hλ)

for all small values of h > 0, and thus (7.49) is not satisfied. The midpoint

method is not relatively stable; it is only weakly stable. We leave it as an exercise

to show experimentally that the midpoint method has undesirable stability when

λ < 0 for the model equation (7.28).

(2) The Adams–Bashforth and Adams–Moulton methods of Chapter 6 have the

same characteristic polynomial when h = 0,

ρ(r) = rp+1 − rp. (7.52)

The roots are r0 = 1, rj = 0, j = 1, 2, . . . , p; thus the strong root condition is

satisfied and the Adams methods are relatively stable.

PROBLEMS

1. Consider the two-step method

yn+1 =
1

2
(yn + yn−1) +

h

4

[
4y′n+1 − y′n + 3y′n−1

]
, n ≥ 1

with y′n ≡ f(tn,yn). Show that it has order 2, and find the leading term in the

truncation error, written as in (7.15).

2. Recall the midpoint method

yn+1 = yn−1 + 2hf(tn, yn) , n ≥ 1
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from Problem 11 in Chapter 6.

(a) Show that the midpoint method has order 2, as noted earlier following

(7.2).

(b) Show that the midpoint method is not relatively stable.

3. Write a program to solve Y ′(t) = f(t, Y (t)), Y (t0) = Y0 using the midpoint

rule of Problem 2. Use a fixed stepsize h. For the initial value y1, use the Euler

method with y0 = Y0,

y1 = y0 + hf(t0, y0).

Using the program, solve the problem

Y ′(t) = −Y (t) + 2 cos(t), Y (0) = 1.

The true solution is Y (t) = cos(t) + sin(t). Solve this problem on the interval

[0, 10], and use stepsizes of h = 0.2, 0.1, 0.05. Comment on your results.

Produce a graph of the error.

4. Show that the two-step method

yn+1 = −yn + 2yn−1 + h
[
5
2y

′
n + 1

2y
′
n−1

]
, n ≥ 1

is of order 2 and unstable. Also, show directly that it need not converge when

solving Y ′(t) = f(t, Y (t)) by considering the special problem

Y ′(t) = 0, Y (0) = 0.

For the numerical method, consider using the initial values

y0 = h, y1 = −2h.

Hint: Use the general formula (7.45), and examine the numerical solution for

tn = nh = 1.

5. Consider the general formula for all explicit two-step methods,

yn+1 = a0yn + a1yn−1 + h [b0f(tn, yn) + b1f(tn−1, yn−1)] , n ≥ 1.

(a) Consider finding all such two-step methods that are of order 2. Show that

the coefficients must satisfy the equations

a0 + a1 = 1, −a1 + b0 + b1 = 1, a1 − 2b1 = 1.

Solve for {a1, b0, b1} in terms of a0.

(b) Find a formula for the leading term in the truncation error, written as in

(7.15). It will depend on a0.

(c) What are the restrictions on a0 for this two-step method to be stable? To

be convergent?
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6. Consider the model equation (7.39) with Λ, a square matrix of orderm. Assume

Λ = P−1DP with D a diagonal matrix with entries λ1, . . . , λm. Introduce

the new unknown vector function z = Py(t). Show that (7.39) converts to

the form given in (7.40), demonstrating the reduction to the one-dimensional

model equation.

Hint: In (7.39) replace Λ with P−1DP , and then introduce the new unknowns

z = Py. Simplify to a differential equation for z.

7. For solving Y ′(t) = f(t, Y (t)), consider the numerical method

yn+1 = yn +
h

2

[
y′n + y′n+1

]
+
h2

12

[
y′′n − y′′n+1

]
, n ≥ 0.

Here y′n = f(tn, yn),

y′′n =
∂f(tn, yn)

∂t
+ f(tn, yn)

∂f(tn, y)

∂y

∣∣∣∣
z=yn

with this formula based on differentiating Y ′(t) = f(t, Y (t)).

(a) Show that this is a fourth-order method with Tn(Y ) = O(h5).
Hint: Use the Taylor approximation method used earlier in deriving the

results of Theorem 7.2, modifying this procedure as necessary for ana-

lyzing this case.

(b) Show that the region of absolute stability contains the entire negative real

axis of the complex hλ-plane.

8. Prove that (7.8) is necessary for the multistep numerical method (7.1) to be

consistent.

Hint: Apply (7.1) to the initial value problem

Y ′(t) = 1, Y (0) = 0

with exact initial conditions.

9. (a) Find all explicit fourth-order formulas of the form

yn+1 = a0yn + a1yn−1 + a2yn−2

+ h
[
b0y

′
n + b1y

′
n−1 + b2y

′
n−2

]
, n ≥ 2.

(b) Show that every such method is unstable.

10. (a) Consider methods of the form

yn+1 = yn−q + h

p∑

j=−1

bjf(xn−j , yn−j)



126 GENERAL ERROR ANALYSIS FOR MULTISTEP METHODS

with q ≥ 1. Show that such methods do not satisfy the strong root

condition. As a consequence, most such methods are only weakly stable.

(b) Find an example with q = 1 that is relatively stable.

11. For the polynomial ρ(r) = rp+1 −∑p
j=0 ajr

p−j , assume aj ≥ 0, 0 ≤ j ≤ p,

and
∑p

j=0 aj = 1. Show that the roots of ρ(r) will satisfy the root conditions

(7.32) and (7.33). This shows directly that Theorem 7.4 is a corollary of

Theorem 7.7.



CHAPTER 8

STIFF DIFFERENTIAL EQUATIONS

The numerical solution of stiff differential equations is a widely studied subject.

Such equations (including systems of differential equations) appear in a wide variety

of applications, in subjects as diverse as chemical kinetics, mechanical systems, and

the numerical solution of partial differential equations. In this section, we sketch

some of the main ideas about this subject, and we show its relation to the numerical

solution of the simple heat equation from partial differential equations.

There are several definitions of the concept of stiff differential equation. The

most important common feature of these definitions is that when such equations are

being solved with standard numerical methods (e.g., the Adams–Bashforth methods

of Chapter 6), the stepsize hmust be extremely small in order to maintain stability —

far smaller than would appear to be necessary from a consideration of the truncation

error. A numerical illustration for Euler’s method is given in Table 4.3 as a part of

Example 4.2 in Chapter 4.

Definitions and results related to the topic of stiff differential equations were in-

troduced in Chapter 4 (see (4.3)–(4.5) and (4.10)) and Chapter 6 (see the discussion

accompanying (6.19)–(6.20)). For convenience, we review those ideas here. As was

discussed preceding (4.3) in Chapter 4, the following model problem is used to test

127
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the performance of numerical methods,

Y ′ = λY, t > 0,
Y (0) = 1.

(8.1)

Following (7.36) in Chapter 7, a derivation was given to show that (8.1) is useful

in studying the stability of numerical methods for very general systems of nonlinear

differential equations; we review this in more detail in a later paragraph.

When the constant λ is real, we assume λ < 0; or more generally, when λ is

complex, we assume Real(λ) < 0. This assumption about λ is generally associated

with stable differential equation problems (see Section 1.2). The true solution of the

model problem is

Y (t) = eλ t. (8.2)

From our assumption on λ, we have

Y (t) → 0 as t→ ∞. (8.3)

The kind of stability property we would prefer for a numerical method is that when

it is applied to (8.1), the numerical solution satisfies

yh(tn) → 0 as tn → ∞ (8.4)

for any choice of the stepsize h. Such numerical methods are called absolutely stable

orA-stable. For an arbitrary numerical method, the set of values hλ for which (8.4) is

satisfied, considered as a subset of the complex plane, is called the region of absolute

stability of the numerical method. The dependence on the product hλ is based on

the general solution to the finite difference method for solving (8.1), given in (7.45)

of Chapter 7.

Example 8.1 We list here the region of absolute stability as derived in earlier chapters.

Again, we consider only λ satisfying our earlier assumption that Real (λ) < 0.

• For Euler’s method, it was shown following (4.5) that (8.4) is satisfied if and

only if

|1 + hλ| = |hλ− (−1)| < 1. (8.5)

Thus hλ is in the region of absolute stability if and only if it is within a distance

of 1 from the point −1 in the complex plane. The region of absolute stability

is a circle of unit radius with center at −1. For real λ, this requires

−2 < hλ < 0.

• For the backward Euler method of (4.9), it was shown in and following (4.10)

that (8.4) is satisfied for every value ofhλ in whichReal(λ) < 0. The backward

Euler method is A-stable.

• For the trapezoidal method of (4.22), it was left to Problem 2 in Chapter 4 to

show that (8.4) is satisfied for every value of hλ in which Real (λ) < 0. The

trapezoidal method is A-stable.
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• For the Adams–Bashforth method of order 2, namely

yn+1 = yn +
h

2
[3y′n − y′n−1], n ≥ 1 (8.6)

(see Table 6.2), it was stated in Example 6.6 that the real part of the region of

absolute stability is the interval

−1 < hλ < 0. (8.7)

Why is this of interest? If a method is absolutely stable, then there are no re-

strictions on h in order for the numerical method to be stable in the sense of (8.4).

However, consider what happens to the stepsize h if a method has a region of absolute

stability that is bounded (and say, of moderate size). Suppose that the value of λ has

a real part that is negative and of very large magnitude. Then h must be correspond-

ingly small for hλ to belong to the region of absolute stability of the method. Even if

the truncation error is small, it is necessary that hλ belong to the region of absolute

stability to ensure that the error in the approximate solution {yn} is also small.

Example 8.2 Recall Example 4.2 in Chapter 4, which illustrated the computational

effects of regions of absolute stability for the Euler, backward Euler, and trapezoidal

methods when solving the problem

Y ′(t) = λY (t) + (1 − λ) cos(t) − (1 + λ) sin(t), Y (0) = 1. (8.8)

The true solution is Y (t) = sin(t) + cos(t). We augment those earlier calculations

by giving results for the Adams–Bashforth method (8.6) when solving (8.8). For

simplicity, we use y1 = Y (t1). Numerical results for several values of λ are given in

Table 8.1. The values of h are the same as those used in Table 4.3 for Euler’s method

in Example 4.2. The stability of the error in the numerical results are consistent with

the region of absolute stability given in (8.7).

Returning to the derivation following (7.36) in Chapter 7, we looked at the lin-

earization of the system

Y′ = f(t,Y) (8.9)

of m differential equations, resulting in the approximating linear system

Y′ = ΛY + g(t). (8.10)

In this, Λ = fy(t0,Y0) is the m×m Jacobian matrix of f evaluated at (t0,Y0). As

was explored in Problem 6 of Chapter 7, many such systems can be reduced to a set

of m independent scalar equations

Y ′
i = λiYi + gi(t), i = 1, . . . ,m.
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Table 8.1 The Adams-Bashforth method (8.6) for solving (8.8)

λ t Error Error Error

h = 0.5 h = 0.1 h = 0.01

−1 1 −2.39e − 2 −7.58e − 4 −7.24e − 6
2 4.02e − 2 2.13e − 3 2.28e − 5
3 1.02e − 1 4.31e − 3 4.33e − 5
4 8.50e − 2 2.98e − 3 2.82e − 5
5 −3.50e − 3 −9.16e − 4 −1.13e − 5

−10 1 −2.39e − 2 −1.00e − 4 6.38e − 7
2 −1.10e + 0 3.75e − 4 5.25e − 6
3 −5.23e + 1 3.83e − 4 5.03e − 6
4 2.46e + 3 −8.32e − 5 1.91e − 7
5 −1.16e + 5 −5.96e − 4 −4.83e − 6

−50 1 −2.39e − 2 −1.57e + 3 2.21e − 7
2 −3.25e + 1 −3.64e + 11 1.09e − 6
3 4.41e + 4 −8.44e + 19 9.60e − 7
4 −5.98e + 7 −1.96e + 28 −5.54e − 8
5 −8.12e + 10 −4.55e + 36 −1.02e − 6

As was discussed following (7.36), this leads us back to the model equation (8.1) with

λ an eigenvalue of the Jacobian matrix fy(t0,Y0).
We say that the differential equation Y′ = f(t,Y) is stiff if some of the eigen-

values λj of Λ, or more generally of fy(t,Y), have a negative real part of very large

magnitude. The question may arise as to how large the eigenvalue should be to be

considered large? The magnitude of the eigenvalues might depend on the units of

measurement used, for example, which has no impact on the amount of computation

needed to accurately solve a particular problem. The crucial test is to consider the

eigenvalue(s) associated with the slowest rates of change, and compare them with the

eigenvalue(s) associated with the fastest rates of change. A simple test is to look at

the ratio maxi |λi| /mini |λi|. If this number is large, then the problem is stiff. For

example, in the pendulum model (3.13), the two eigenvalues in the linearization have

the same or similar magnitudes. So it is not a stiff problem. Most problems that we

have seen so far are not stiff. Yet, stiff problems are common in practice. In the next

section we see one very important example.

We study numerical methods for stiff equations by considering their effect on the

model equation (8.1). This approach has its limitations, some of which we indicate

later, but it does give us a means of rejecting unsatisfactory methods, and it suggests

some possibly satisfactory methods. Before giving some higher-order methods that

are suitable for solving stiff differential equations, we give an important practical

example.
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8.1 THE METHOD OF LINES FOR A PARABOLIC EQUATION

Consider the following parabolic partial differential equation problem:

Ut = Uxx +G(x, t), 0 < x < 1, t > 0, (8.11)

U(0, t) = d0(t), U(1, t) = d1(t), t ≥ 0, (8.12)

U(x, 0) = f(x), 0 ≤ x ≤ 1. (8.13)

The unknown functionU(x, t) depends on the time t and a spatial variablex, andUt =
∂U/∂t, Uxx = ∂2U/∂x2. The conditions (8.12) are called boundary conditions,

and (8.13) is called an initial condition. The solution U can be interpreted as the

temperature of an insulated rod of length 1 withU(x, t), the temperature at position x
and time t; thus (8.11) is often called the heat equation. The functionsG, d0, d1, and

f are assumed given and smooth. For a development of the theory of (8.11)–(8.13),

see Widder [78] or any standard introduction to partial differential equations. We

give the method of lines for solving for U , a popular numerical method for solving

numerically linear and nonlinear partial differential equations of parabolic type. This

numerical method also leads to the necessity of solving a stiff system of ordinary

differential equations.

Let m > 0 be an integer, define δ = 1/m, and define the spatial nodes

xj = jδ, j = 0, 1, . . . ,m.

We discretize (8.11) by approximating the spatial derivative Uxx in the equation.

Using a standard result in the theory of numerical diffentiation,

Uxx(xj , t) =
U(xj+1, t) − 2U(xj , t) + U(xj−1, t)

δ2
− δ2

12

∂4U(ξj , t)

∂x4
(8.14)

for j = 1, 2, . . . ,m − 1, where each ξj ≡ ξj(t) is some point between xj−1 and

xj+1. For a derivation of this formula, see [11, p. 318] or [12, p. 237]. Substituting

into (8.11), we obtain

Ut(xj , t) =
U(xj+1, t) − 2U(xj , t) + U(xj−1, t)

δ2
+G(xj , t)

− δ2

12

∂4U(ξj , t)

∂x4
, 1 ≤ j ≤ m− 1.

(8.15)

Equation (8.11) is to be approximated at each interior node point xj .

We drop the final term in (8.15), the truncation error in the numerical differentia-

tion. Forcing equality in the resulting approximate equation, we obtain

u′j(t) =
1

δ2
[uj+1(t) − 2uj(t) + uj−1(t)] +G(xj , t) (8.16)

for j = 1, 2, . . . ,m − 1. The functions uj(t) are intended as approximations of

U(xj , t), 1 ≤ j ≤ m − 1. This is the method of lines approximation to (8.11), and
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it is a system of m − 1 ordinary differential equations. Note that u0(t) and um(t),
which are needed in (8.16) for j = 1 and j = m− 1, are given using (8.12):

u0(t) = d0(t), um(t) = d1(t). (8.17)

The initial condition for (8.16) is given by (8.13):

uj(0) = f(xj), 1 ≤ j ≤ m− 1. (8.18)

The term method of lines comes from solving forU(x, t) along the lines (xj , t), t ≥ 0,

1 ≤ j ≤ m− 1 in the (x, t) plane.

Under suitable assumptions on the functions d0, d1,G, and f , it can be shown that

max
0≤j≤m

0≤t≤T

|U(xj , t) − uj(t)| ≤ CT δ
2. (8.19)

Thus to complete the solution process, we need only solve the system (8.16).

It is convenient to write (8.16) in matrix form. Introduce

u(t) = [u1(t), . . . , um−1(t)]
T
, u0 = [f(x1), . . . , f(xm−1)]

T
,

g(t) =

[
d0(t)

δ2
+G(x1, t), G(x2, t), . . . , G(xm−2, t),

d1(t)

δ2
+G(xm−1, t)

]T

,

Λ =
1

δ2




−2 1 0 · · · 0
1 −2 1 0

. . .
...

... 1 −2 1
0 · · · 0 1 −2



.

The matrix Λ is of order m − 1. In the definitions of u and g, the superscript T
indicates matrix transpose, so that u and g are column vectors of lengthm−1. Using

these matrices, equations (8.16)–(8.18) can be rewritten as

u′(t) = Λu(t) + g(t), u(0) = u0. (8.20)

If Euler’s method is applied, we have the numerical method

Vn+1 = Vn + h [ΛVn + g(tn)] , V0 = u0 (8.21)

with tn = nh and Vn ≈ u(tn). This is a well-known numerical method for the heat

equation, called the simple explicit method. We analyze the stability of (8.21) and

some other methods for solving (8.20).

Equation (8.20) is in the form of the model equation, (8.10), and therefore we need

the eigenvalues of Λ to examine the stiffness of the system. These eigenvalues are all

real and are given by

λj = − 4

δ2
sin2

(
jπ

2m

)
, 1 ≤ j ≤ m− 1. (8.22)



THE METHOD OF LINES FOR A PARABOLIC EQUATION 133

A proof (which we omit here) can be obtained by showing a relationship between

the characteristic polynomial for Λ and Chebyshev polynomials. Directly examining

(8.22), we have

λm−1 ≤ λj ≤ λ1, (8.23)

with

λm−1 =
−4

δ2
sin2

(
(m− 1)π

2m

)
≈ −4

δ2
,

λ1 =
−4

δ2
sin2

( π

2m

)
≈ −π2

with the approximations valid for larger m. As λm−1/λ1 ≈ 4/(πδ)2, it can be seen

that (8.20) is a stiff system if δ is small.

Applying (8.23) and (8.5) to the analysis of stability in (8.21), we must have

|1 + hλj | < 1, j = 1, . . . ,m− 1.

Using (8.22), this leads to the equivalent statement

0 <
4h

δ2
sin2

(
jπ

2m

)
< 2, 1 ≤ j ≤ m− 1.

This will be satisfied if 4h/δ2 ≤ 2 or

h ≤ 1
2δ

2. (8.24)

If δ is at all small, say δ = 0.01, then the timestep h must be quite small to ensure

stability.

In contrast to the restriction (8.24) with Euler’s method,the backward Euler method

has no such restriction since it is A-stable. Applying the backward Euler method, our

approximation to (8.20) is

Vn+1 = Vn + h [ΛVn+1 + g(tn+1)] , V0 = u0. (8.25)

This is called the simple implicit method for solving the heat equation. To solve this

linear problem for Vn+1, we rewrite the equation as

(I − hΛ)Vn+1 = Vn + hg(tn+1). (8.26)

Solving for Vn+1 gives

Vn+1 = (I − hΛ)−1 [Vn + hg(tn+1)] . (8.27)

Since all the eigenvalues λi of Λ are negative, the eigenvalues of (I − hΛ)−1 are

1/(1 − hλi), which are all bounded by one. Because of this, the implicit Euler

method for this problem is always stable; there is no limitation on the stepsize h,

unlike the case for the explicit Euler method. Also, the linear system to be solved
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Table 8.2 The method of lines: Euler’s method (h = 1
2
δ2)

Error Error Error

t m = 4 Ratio m = 8 Ratio m = 16

1.0 4.85e − 2 4.096 1.18e − 2 4.024 2.94e − 3

2.0 4.39e − 2 4.096 1.07e − 2 4.024 2.66e − 3

3.0 3.97e − 2 4.096 9.69e − 3 4.024 2.41e − 3

4.0 3.59e − 2 4.096 8.77e − 3 4.024 2.18e − 3

5.0 3.25e − 2 4.096 7.93e − 3 4.024 1.97e − 3

Table 8.3 The method of lines: Backward Euler method (h = 0.1)

Error Error Error

t m = 4 m = 8 m = 16

1.0 4.85e − 2 1.19e − 2 2.99e − 3

2.0 4.39e − 2 1.08e − 2 2.70e − 3

3.0 3.98e − 2 9.73e − 3 2.45e − 3

4.0 3.60e − 2 8.81e − 3 2.21e − 3

5.0 3.25e − 2 7.97e − 3 2.00e − 3

is a tridiagonal system, and there is a well-developed numerical analysis for such

linear systems (e.g. see [11, p. 527] or [12, p. 287]). It can be solved very rapidly

with approximately 5m arithmetic operations per timestep, excluding the cost of

computing the right side in (8.26). The cost of solving the Euler method (8.21) is

almost as large, and thus the solution of (8.26) is not especially time-consuming.

Example 8.3 Solve the partial differential equation problem (8.11)–(8.13) with the

functionsG, d0, d1, and f , determined from the known solution

U = e−.1t sin(πx), 0 ≤ x ≤ 1, t ≥ 0. (8.28)

Results for Euler’s method (8.21) are given in Table 8.2, and results for the backward

Euler method (8.25) are given in Table 8.3.

For Euler’s method, we take m = 4, 8, 16, and to maintain stability, we take h =
1
2δ

2 from (8.24). This leads to the respective timesteps of h
.
= 0.031, 0.0078, 0.0020.

From (8.19) and the error formula for Euler’s method, we would expect the error to

be proportional to δ2, since h = 1
2δ

2. This implies that the error should decrease by

a factor of 4 when m is doubled, and the results in Table 8.2 agree. In the table, the

column “Error” denotes the maximum error at the node points (xj,t), 0 ≤ j ≤ n, for

the given value of t.
For the solution of (8.20) by the backward Euler method, there need no longer be

any connection between the spatial stepsize δ and the timestep h. By observing the
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error formula (8.19) for the method of lines and the truncation error formula (8.33)

(use p = 1) for the backward Euler method, we see that the error in solving the

problem (8.11)–(8.13) will be proportional to h + δ2. For the unknown function U
of (8.26), there is a slow variation with t. Thus, for the truncation error associated

with the time integration, we should be able to use a relatively large timestep h as

compared to the spatial stepsize δ, for the two sources of error be relatively equal in

size. In Table 8.3, we use h = 0.1 and m = 4, 8, 16. Note that this timestep is much

larger than that used in Table 8.2 for Euler’s method, and thus the backward Euler

method is much more efficient for this example.

For more discussion of the method of lines, see Aiken [1, pp. 124–148] and

Schiesser [71].

8.1.1 MATLAB R© programs for the method of lines

We give MATLAB programs for both the Euler method (8.21) and the backward Euler

method (8.27).

Euler method code:

function [x,t,u] = MOL Euler(d0,d1,f,G,T,h,m)

%

% function [x,t,u] = MOL Euler(d0,d1,f,G,T,h,m)

%

% Use the method of lines to solve

% u t = u xx + G(x,t), 0 < x < 1, 0 < t < T

% with boundary conditions

% u(0,t) = d0(t), u(1,t) = d1(t)

% and initial condition

% u(x,0) = f(x).

% Use Euler’s method to solve the system of ODEs.

% For the discretization, use a spatial stepsize of

% delta=1/m and a timestep of h.

%

% For numerical stability, use a timestep of

% h = 1/(2*m^2) or smaller.

x = linspace(0,1,m+1)’; delta = 1/m; delta sqr = delta^2;

t = (0:h:T)’; N = length(t);

% Initialize u.

u = zeros(m+1,N);

u(:,1) = f(x);

u(1,:) = d0(t); u(m+1,:) = d1(t);
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% Solve for u using Euler’s method.

for n=1:N-1

g = G(x(2:m),t(n));

u(2:m,n+1) = u(2:m,n) + (h/delta sqr)*(u(1:(m-1),n) ...

- 2*u(2:m,n) + u(3:(m+1),n)) + h*g;

end

u = u’;

end % MOL Euler

Test of Euler method code:

function [x,t,u,error] = Test MOL Euler(index u,t max,h,m)

% Try this test program with

% [x,t,u,error] = Test MOL Euler(2,5,1/128,8);

[x,t,u] = MOL Euler(@d0,@d1,@f,@G,t max,h,m);

% Graph numerical solution

[X,T] = meshgrid(x,t);

figure; mesh(X,T,u); shading interp

xlabel(’x’); ylabel(’t’);

title([’Numerical solution u: index of u = ’,...

num2str(index u)])

disp(’Press any key to continue.’); pause

% Graph error in numerical solution

true u = true soln(X,T); error = true u - u;

disp([’Maximum error = ’,num2str(max(max(abs(error))))])

figure; mesh(X,T,error); shading interp

xlabel(’x’); ylabel(’t’);

title([’Error in numerical solution u: index of u = ’,...

num2str(index u)])

disp(’Press any key to continue.’); pause

% Produce maximum errors over x as t varies.

maxerr in x = max(abs(error’));

figure; plot(t,maxerr in x); text(1.02*t max,0,’t’)

title(’Maximum error for x in [0,1], as a function of t’)

function true u = true soln(z,s)

switch index u

case 1

true u = s.^2 + z.^4;
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case 2

true u = exp(-0.1*s).*sin(pi*z);

end

end % true u

function answer = G(z,s)

% This routine assumes s is a scalar, while z can be a vector.

switch index u

case 1

answer = 2*s - 12*z.^2;

case 2

answer = (pi^2 - 0.1)*exp(-0.1*s).*sin(pi*z);

end

end % G

function answer = d0(s)

z = zeros(size(s));

answer = true soln(z,s);

end % d0

function answer = d1(s)

z = ones(size(s));

answer = true soln(z,s);

end % d1

function answer = f(z)

s = zeros(size(z));

answer = true soln(z,s);

end % f

end % Test MOL Euler

Backward Euler method code:

function [x,t,u] = MOL BEuler(d0,d1,f,G,T,h,m)

%

% function [x,t,u] = MOL BEuler(d0,d1,f,G,T,h,m)

%

% Use the method of lines to solve

% u t = u xx + G(x,t), 0 < x < 1, 0 < t < T

% with boundary conditions

% u(0,t) = d0(t), u(1,t) = d1(t)

% and initial condition

% u(x,0) = f(x).

% Use the backward Euler’s method to solve the system of
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% ODEs. For the discretization, use a spatial stepsize of

% delta=1/m and a timestep of h.

x = linspace(0,1,m+1)’; delta = 1/m; delta sqr = delta^2;

t = (0:h:T)’; N = length(t);

% Initialize u.

u = zeros(m+1,N);

u(:,1) = f(x);

u(1,:) = d0(t); u(m+1,:) = d1(t);

% Create tridiagonal coefficient matrix.

a = -(h/delta sqr)*ones(m-1,1); c = a;

b = (1+2*h/delta sqr)*ones(m-1,1);

a(1) = 0; c(m-1) = 0; option = 0;

% Solve for u using the backward Euler’s method.

for n=2:N

g = G(x(2:m),t(n));

g(1) = g(1) + (1/delta sqr)*u(1,n);

g(m-1) = g(m-1) + (1/delta sqr)*u(m+1,n);

f = u(2:m,n-1) + h*g;

switch option

case 0 % first time: factorize matrix

[v,alpha,beta,message] = tridiag(a,b,c,f,m-1,option);

option = 1;

case 1 % other times: use available factorization

v = tridiag(alpha,beta,c,f,m-1,option);

end

u(2:m,n) = v;

end

u = u’;

end % MOL BEuler

function [x, alpha, beta, message] = tridiag(a,b,c,f,n,option)

%

% function [x, alpha, beta, message] = tridiag(a,b,c,f,n,option)

%

% Solve a tridiagonal linear system M*x=f

%

% INPUT:

% The order of the linear system is given as n.

% The subdiagonal, diagonal, and superdiagonal of M are given

% by the arrays a,b,c, respectively. More precisely,
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% M(i,i-1) = a(i), i=2,...,n

% M(i,i) = b(i), i=1,...,n

% M(i,i+1) = c(i), i=1,...,n-1

% option=0 means that the original matrix M is given as

% specified above. We factorize M.

% option=1 means that the LU factorization of M is already

% known and is stored in a,b,c. This will have been

% accomplished by a previous call to this routine. In

% that case, the vectors alpha and beta should have

% been substituted for a and b in the calling sequence.

% All input values are unchanged on exit from the routine.

%

% OUTPUT:

% Upon exit, the LU factorization of M is already known and

% is stored in alpha,beta,c. The solution x is given as well.

% message=0 means the program was completed satisfactorily.

% message=1 means that a zero pivot element was encountered

% and the solution process was abandoned. This case

% happens only when option=0.

if option == 0

alpha = a; beta = b;

alpha(1) = 0;

% Compute LU factorization of matrix M.

for j=2:n

if beta(j-1) == 0

message = 1; return

end

alpha(j) = alpha(j)/beta(j-1);

beta(j) = beta(j) - alpha(j)*c(j-1);

end

if beta(n) == 0

message = 1; return

end

end

% Compute solution x to M*x = f using LU factorization of M.

% Do forward substitution to solve lower triangular system.

if option == 1

alpha = a; beta = b;

end

x = f; message = 0;
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for j=2:n

x(j) = x(j) - alpha(j)*x(j-1);

end

% Do backward substitution to solve upper triangular system.

x(n) = x(n)/beta(n);

for j=n-1:-1:1

x(j) = (x(j) - c(j)*x(j+1))/beta(j);

end

end % tridiag

The test code for MOL BEuler is essentially the same as that for MOL Euler. In

Test MOL Euler, simply replace the phrase MOL Euler with MOL BEuler through-

out the code.

8.2 BACKWARD DIFFERENTIATION FORMULAS

The concept of a region of absolute stability is the initial tool used in studying the

stability of a numerical method for solving stiff differential equations. We seek

methods whose stability region each contains the entire negative real axis and as

much of the left half of the complex plane as possible. There are a number of ways to

develop such methods, but we discuss only one of them in this chapter — obtaining

the backward differentiation formulas (BDFs).

Let Pp(t) denote the polynomial of degree ≤ p that interpolates Y (t) at the points

tn+1, tn, . . . , tn−p+1 for some p ≥ 1,

Pp(t) =

p−1∑

j=−1

Y (tn−j)lj,n(t), (8.29)

where {lj,n(t) : j = −1, . . . , p − 1} are the Lagrange interpolation basis functions

for the nodes tn+1, . . . , tn−p+1 (see (B.4) in Appendix B). Use

P ′
p(tn+1) ≈ Y ′(tn+1) = f(tn+1, Y (tn+1)). (8.30)

Combining (8.30) with (8.29) and solving for Y (tn+1), we obtain

Y (tn+1) ≈
p−1∑

j=0

αjY (tn−j) + hβf (tn+1, Y (tn+1)) . (8.31)

The p-step BDF method is given by

yn+1 =

p−1∑

j=0

αjyn−j + hβf(tn+1, yn+1). (8.32)
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Table 8.4 Coefficients of BDF method (8.32)

p β α0 α1 α2 α3 α4 α5

1 1 1

2 2
3

4
3

− 1
3

3 6
11

18
11

− 9
11

2
11

4 12
25

48
25

− 36
25

16
25

− 3
25

5 60
137

300
137

− 300
137

200
137

− 75
137

12
137

6 60
147

360
147

− 450
147

400
147

− 225
147

72
147

− 10
147

The coefficients for the cases of p = 1, . . . , 6 are given in Table 8.4. The case p = 1
is simply the backward Euler method of (4.9) in Chapter 4. The truncation error for

(8.32) can be obtained from the error formulas for numerical differentiation (e.g. see

[11, (5.7.5)]),

Tn(Y ) = − β

p+ 1
hp+1Y (p+1)(ξn) (8.33)

for some tn−p+1 ≤ ξn ≤ tn+1.

The regions of absolute stability for the formulas of Table 8.4 are given in Figure

8.3. To create these regions, we must find all values hλ for which

|rj(hλ)| < 1, j = 0, 1, . . . , p, (8.34)

where the characteristic roots rj(hλ) are the solutions of

rp =

p−1∑

j=0

αjr
p−1−j + hλβrp. (8.35)

It can be shown that for p = 1 and p = 2, the BDF’s are A-stable, and that for

3 ≤ p ≤ 6, the region of absolute stability becomes smaller as p increases, although

containing the entire negative real axis in each case. For p ≥ 7, the regions of absolute

stability are not acceptable for the solution of stiff problems. This is discussed in

greater detail in the following section.

8.3 STABILITY REGIONS FOR MULTISTEP METHODS

Recalling (7.1), all general multistep methods, including AB, AM, and BDF (and

other) methods, can be represented as follows:

yn+1 =

p∑

j=0

aj yn−j + h

p∑

j=−1

bj f(tn−j, yn−j). (8.36)
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Figure 8.1 Stability regions for Adams–Bashforth methods. Note that AB1 is Euler’s method

For the test equation dY/dt = λY , we have f(t, Y ) = λY ; and recalling (7.42), the

characteristic polynomial for (8.36) is

0 = (1 − hλb−1) r
p+1 −

p∑

j=0

(aj + hλbj) r
p−j . (8.37)

The boundary of the stability region is where all roots of this characteristic equation

have magnitude 1 or less, and at least one root with magnitude 1. We can find all the

values of hλwhere one of the roots has magnitude 1. All roots with magnitude 1 can

be represented as r = eiθ with i =
√
−1. So we can find all hλ where (8.37) holds

with r = eiθ. Separating out hλ gives

rp+1 −
p∑

j=0

aj r
p−j = hλ

p∑

j=−1

bjr
p−j ,

hλ =



rp+1 −
p∑

j=0

aj r
p−j



÷




p∑

j=−1

bjr
p−j



 ,

where r = eiθ for 0 ≤ θ ≤ 2π gives a set that includes the boundary of the stability

region. With a little more care, we can identify which of the regions separated by this

curve form the true stability region.

Remark. From Section 7.3 of Chapter 7, the root condition (7.32)–(7.33) is nec-

essary for convergence and stability of a multistep method. This form of stability
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Figure 8.2 Stability regions for Adams–Moulton methods. Note that AM1 is the implicit

Euler method, and AM2 is the trapezoidal method. Note the different scale on the axes as

compared to Figure 8.1

is sometimes also called weak stability, as we ordinarily require additional stability

conditions for a practical numerical method. Without the root condition, the method

cannot be expected to produce numerical solutions that approach the true solution as

h → 0, regardless of the value of λ. The root condition sometimes fails for certain

consistent multistep methods, but almost no one discusses those methods because

they are useless except to explain the importance of stability! As a simple example

of such a method, recall Example 7.34 from Section 7.3.

8.4 ADDITIONAL SOURCES OF DIFFICULTY

8.4.1 A-stability and L-stability

There are still problems with the BDF methods and with other methods that are chosen

solely on the basis of their region of absolute stability. First, with the model equation

Y ′ = λY , if Real(λ) is of large magnitude and negative, then the solution Y (t)
goes to the zero very rapidly, and as Real(λ) → −∞, the convergence to zero of

Y (t) becomes more rapid. We would like the same behavior to hold for the numerical

solution of the model equation {yn}. To illustrate this idea, we show that theA-stable

trapezoidal rule does not maintain this behavior.
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Figure 8.3 Stability regions for backward difference formula methods. Note that BDF1

is again the implicit Euler method. The labels are inside the stability region for the labeled

method.

Apply the trapezoidal method (4.22) to the model equation (8.1). Doing so leads

to the numerical approximation

yn =

[
1 + 1

2hλ

1 − 1
2hλ

]n

, n ≥ 0. (8.38)

If |Real(λ)| is large, then the fraction inside the brackets is less than 1 in magnitude,

but is nearly equal to −1; and thus yn decreases to 0 quite slowly. This suggests that

the trapezoidal method may not be a completely satisfactory choice for stiff problems.

In comparison, the A-stable backward Euler method has the desired behavior.

From (4.10) in Chapter 4, the solution of the model problem is

yn =

[
1

1 − hλ

]n

, n ≥ 0.

As |λ| increases, the sequence {yn} goes to zero more rapidly. Thus the backward

Euler solution better reflects the behavior of the true solution of the model equation.

An A-stable numerical method is called L-stable if at each fixed t = tn, the numerical

solution yn at tn satisfies yn → 0 as Real (λ) → −∞. The trapezoidal rule is not

L-stable, whereas the backward Euler method is L-stable. This material was explored

earlier in Problems 14 and 15 of Chapter 4.
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8.4.2 Time-varying problems and stability

A second problem with the use of stability regions to determine methods for stiff

problems is that it is based on using constant λ and linear problems. The linearization

(8.10) is often valid, but not always. For example, consider the second-order linear

problem

y′′ + ay′ + (1 + b · cos(2πy))y = g(t), t ≥ 0, (8.39)

in which one coefficient is not constant. Convert it to the equivalent system

y′1 = y2,

y′2 = −(1 + b · cos(2πt))y1 − ay2 + g(t).
(8.40)

We assume a > 0, |b| < 1. The eigenvalues of the Jacobian matrix for this system

are

λ =
−a±

√
a2 − 4 [1 + b · cos(2πt)]

2
. (8.41)

These are either negative real numbers or complex numbers with negative real parts.

On the basis of the stability theory for the constant coefficient (or constant Λ) case,

we might be led to assume that the effect of all perturbations in the initial data for

(8.40) would die away as t → ∞. But in fact, the homogeneous part of (8.39) will

have unbounded solutions. Thus there will be perturbations of the initial values that

will lead to unbounded perturbed solutions in (8.39). This calls into question the

validity of the use of the model equation y′ = λy + g(t). Using the model equation

(8.1) suggests methods that we may want to study further; but by itself, this approach

is not sufficient to encompass the vast variety of linear and nonlinear problems. The

example (8.39) is taken from Aiken [1, p. 269].

8.5 SOLVING THE FINITE-DIFFERENCE METHOD

We illustrate the difficulty in solving the finite difference equations by considering

the backward Euler method,

yn+1 = yn + hf(tn+1, yn+1), n ≥ 0 (8.42)

first for a single equation and then for a system of equations. For a single equation,

we summarize the discussion involving (4.12)–(4.16) of Chapter 4. If the ordinary

iteration formula

y
(j+1)
n+1 = yn + hf(tn+1, y

(j)
n+1), j ≥ 0 (8.43)

is used, then

yn+1 − y
(j+1)
n+1 ≈ h

∂f(tn+1, yn+1)

∂y

[
yn+1 − y

(j)
n+1

]
.

For convergence, we would need to have
∣∣∣∣h
∂f(tn+1, yn+1)

∂y

∣∣∣∣ < 1. (8.44)
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But with stiff equations, this would again force h to be very small, which we are

trying to avoid. Thus another rootfinding method must be used to solve for yn+1 in

(8.42).

The most popular methods for solving (8.42) are based on Newton’s method and

variants of it. For a single differential equation, Newton’s method for finding yn+1 is

y
(j+1)
n+1 = y

(j)
n+1 −

[
1 − hfy(tn+1, y

(j)
n+1)

]−1

×
[
y
(j)
n+1 − yn − hf(tn+1, y

(j)
n+1)

] (8.45)

for j ≥ 0. A crude initial guess is y
(0)
n+1 = yn, although generally this can be improved

on.

With a system of m differential equations, as in (8.9), Newton’s method is

[
I − hfy(tn+1,y

(j)
n+1)

]
δ
(j)
n = y

(j)
n+1 − yn − hf(tn+1,y

(j)
n+1),

y
(j+1)
n+1 = y

(j)
n+1 − δ

(j)
n , j ≥ 0.

(8.46)

This is a system ofm linear simultaneous equations for the vector δ
(j)
n ∈ R

m, and such

a linear system must be solved repeatedly at each step tn. The matrix of coefficients

changes with each iterate y
(j)
n+1 and with each step tn. This rootfinding procedure is

usually costly to implement; consequently, we seek variants of Newton’s method that

require less computation time.

As one approach to decreasing the cost of (8.46), the matrix approximation

I − hfy(tn+1, z) ≈ I − hfy(tn+1,y
(j)
n+1), some z ≈ yn (8.47)

is used for all j and for a number of successive steps tn. Thus Newton’s method

(8.46) is approximated by

[I − hfy(tn+1, z)] δ
(j)
n = y

(j)
n+1 − yn − hf

(
tn+1,y

(j)
n+1

)
,

y
(j+1)
n+1 = y

(j)
n+1 − δ

(j)
n , j ≥ 0.

(8.48)

This amounts to solving a number of linear systems with the same coefficient matrix.

This can be done much more cheaply than when the matrix is being modified with

each iteration and each new step tn. The matrix in (8.47) will have to be updated

periodically, but the savings will still be very significant when compared to an exact

Newton method. For a further discussion of this topic, see Aiken [1, p. 7].

8.6 COMPUTER CODES

The MATLAB program ode15s is used to solve stiff ordinary differential equations.

It is based on a modification of the variable order family of BDF methods discussed

earlier in the chapter. Details of the actual methods and their implementation can
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be found in Shampine and Reichelt [73, Section 2]. The nonlinear finite difference

system (see (8.42) for the backward Euler method) at each timestep tn is solved by

a variant of the modified Newton method of (8.47)–(8.48). The program ode15s is

used in precisely the same manner as the program ode45 discussed in Chapter 5 and

the program ode113 of Chapter 6; and the entire suite of MATLAB ODE programs

is discussed at length in [73], [74].

A package of programs called Sundials [46] includes state-of-the-art programs

for solving initial value problems for ordinary differential equations, including stiff

equations, and differential algebraic equations. Included is an interface for use with

MATLAB. The Sundials package is the latest in a sequence of excellent programs

from the national energy laboratories (especially Lawrence-Livermore Laboratory

and Sandia Laboratory) in the USA, for use in solving ordinary differential equations

and developed over more than 30 years.

A general presentation of the method of lines is given in Schiesser [71]. For

some older “method of lines codes” to solve systems of nonlinear parabolic partial

differential equations in one and two space variables, see Sincovec and Madsen [75]

and Melgaard and Sincovec [63]. For use with MATLAB, the Partial Differential

Equations Toolbox solves partial differential equations, and it contains a \method of

lines codes" code to solve parabolic equations. It also makes use of the MATLAB

suite of programs for solving ordinary differential equations.

Example 8.4 We modify the programtest ode45of Section 5.5 by replacing ode45

with ode15s throughout the code. We illustrate the use of ode15s with the earlier

example (8.8), solving it on [0, 20] and using AbsTol = 10−6, RelTol = 10−4.

We choose λ to be negative, but allow it to have a large magnitude, as in Example

8.2 for the Adams–Bashforth method of order 2 (see Table 8.1). As a comparison

to ode15s, we also give the results obtained using ode45 and ode113. We give the

number of needed derivative evaluations with the three programs, and we also give

the maximum error in the computed solution over [0, 20]. This maximum error is for

the interpolated solution at the points defined in the test program test ode15s. The

results, shown in Table 8.5, indicate clearly that as the stiffness increases (or as |λ|
increases), the efficiencies of ode45 and ode113 decreases. In comparison, the code

ode15s is relatively unaffected by the increasing magnitude of |λ|.

PROBLEMS

1. Derive the BDF method of order 2.

2. Consider the BDF method of order 2. Show that its region of absolute stability

contains the negative real axis, −∞ < hλ < 0.

3. Using the BDF method of order 2, repeat the calculations in Example 8.2.

Comment on your results.

Hint: Note that the linearity of the test equation (8.8) allows the implicit BDF

equation for yn+1 to be solved explicitly; iteration is unnecessary.
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Table 8.5 Comparison of ode15s, ode45, and ode113 for the stiff equation (8.8)

ode15s ode45 ode113

λ = −1

Maximum error 5.44e − 4 1.43e − 4 3.40e − 4
Function evaluations 235 229 132

λ = −10

Maximum error 1.54e − 4 4.51e − 5 9.05e − 4
Function evaluations 273 979 337

λ = −50

Maximum error 8.43e − 5 4.24e − 5 1.41e − 3
Function evaluations 301 2797 1399

λ = −500

Maximum error 4.67e − 5 1.23e − 4 3.44e − 3
Function evaluations 309 19663 13297

4. Implement MOL Euler. Use it to experiment with various choices of δ and h
with the true solution U = e−0.1t sin(πx). Use some values of δ and h that

satisfy (8.24) and others not satisfying it. Comment on your results.

5. Implement MOL Euler and MOL BEuler. Experiment as in Example 8.3. Use

various values of h and δ. Do so for the following true solutions U (note that

the functions d0, d1, f, and G are determined from the known test case U ):

(a) U = x4 + t2.

(b) U = (1 − e−t) cos (πx).

(c) U = exp (1/ (t+ 1)) cos (πx).



CHAPTER 9

IMPLICIT RK METHODS FOR STIFF

DIFFERENTIAL EQUATIONS

Runge–Kutta methods were introduced in Chapter 5, and we now want to consider

them as a means of solving stiff differential equations. When working with multistep

methods in Chapter 8, we needed to use implicit methods in order to solve stiff

equations; the same is true with Runge–Kutta methods. Also, as with multistep

methods, we need to develop the appropriate stability theory and carefully analyze

what happens when we apply these methods to stiff equations.

9.1 FAMILIES OF IMPLICIT RUNGE–KUTTA METHODS

Runge–Kutta methods can be used for stiff differential equations. However, we need

implicit Runge–Kutta methods, which were introduced in Section 5.6 of Chapter 5.

149
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The general forms of these equations, for a method with s stages, are as follows:

zn,i = yn + h
s∑

j=1

ai,jf(tn + cjh, zn,j) , i = 1, . . . , s, (9.1)

yn+1 = yn + h
s∑

j=1

bjf(tn + cjh, zn,j) . (9.2)

Note that the equation for zn,i involves all the zn,j values. So for implicit Runge–

Kutta methods we need to solve an extended system of equations. If each yn is a real

number, then we have a system of s equations in s unknowns for each timestep. If

each yn is a vector of dimension N then we have a system of Ns equations in Ns
unknowns. As in Chapter 5, we can represent implicit Runge–Kutta methods in terms

of Butcher tableaus (see (5.26)),

c1 a1,1 a1,2 · · · a1,s−1 a1,s

c2 a2,1 a2,1 · · · a2,s−1 a2,s

c3 a3,1 a3,2 · · · a3,s−1 a3,s

...
...

...
. . .

...
...

cs as,1 as,2 · · · as,s−1 as,s

b1 b2 · · · bs−1 bs

or
c A

b
T

(9.3)

Some implicit methods we have already seen are actually implicit Runge–Kutta

methods, namely, the backward Euler method and the trapezoidal rule. Their Butcher

tableaus are shown in Tables 9.1 and 9.2.

Table 9.1 Butcher tableau - backward Euler method

1 1

1

Table 9.2 Butcher tableau - trapezoidal method

0 0 0
1 1/2 1/2

1/2 1/2

These methods are also BDF methods. However, higher-order BDF methods require

yn−1 to compute yn+1 and so they are not Runge–Kutta methods.

Higher-order Runge–Kutta methods have been developed, although the conditions

that need to be satisfied for such Runge–Kutta methods to have order p become very

complex for large p. Nevertheless, a few families of Runge–Kutta methods with

arbitrarily high-order accuracy have been created. One such family is the set of
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Gauss methods given in (5.63)–(5.64) of Chapter 5; they are closely related to Gauss–

Legendre quadrature for approximating integrals. These have the property that the ci
values are the roots of the Legendre polynomial

ds

dxs
[xs (1 − x)

s
] .

The other coefficients of these methods can be determined from the ci values by

means of the so-called simplifying assumptions of Butcher [23]:

B(p) :

s∑

i=1

bic
k−1
i =

1

k
, k = 1, 2, . . . , p, (9.4)

C(q) :
s∑

j=1

aijc
k−1
j =

cki
k
, k = 1, 2, . . . , q, i = 1, 2, . . . , s, (9.5)

D(r) :

s∑

i=1

bic
k−1
i aij =

bj
k

(
1 − ckk

)
,

k = 1, 2, . . . , r, j = 1, 2, . . . , s. (9.6)

Condition B(p) says that the quadrature formula

∫ t+h

t

f(s) ds ≈ h

s∑

i=1

bi f(t+ cjh)

is exact for all polynomials of degree < p. If this condition is satisfied, we say

that the Runge–Kutta method has quadrature order p . Condition C(q) says that the

corresponding quadrature formulas on [t, t+ cih], namely

∫ t+cih

t

f(s) ds ≈ h

s∑

j=1

aij f(t+ cjh)

are exact for all polynomials of degree < q. If this condition is satisfied, we say that

the Runge–Kutta method has stage order q . The importance of these assumptions is

demonstrated in the following theorem of Butcher [23, Thm. 7].

Theorem 9.1 If a Runge–Kutta method satisfies conditions B(p), C(q), and D(r)
with p ≤ q + r + 1 and p ≤ 2q + 2, its order of accuracy is p.

We can use this theorem to construct the Gauss methods. First we choose {ci}, the

quadrature points of the Gaussian quadrature. This can be done by looking up tables of

these numbers, and then scaling and shifting them from the interval [−1, +1] to [0, 1].
Alternatively, they can be computed as zeros of appropriate Legendre polynomials

[11, Section 5.3]. We then choose the quadrature weights bi to make B(p) true for

as large a value of p as possible. For the Gaussian quadrature points, this is p = 2s.
Note that if conditionB(p) fails, then the method cannot have order p.
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This leaves us with the s2 coefficients aij to find. These can be determined by

applying conditions C(q) and D(r) with sufficiently large q and r. Fortunately,

there are some additional relationships between these conditions. It turns out that if

B(q + r) and C(q) hold, then D(r) holds as well. Also if B(q + r) and D(r) hold,

then so does C(q) [23, Thms. 3, 4, 5 & 6].

So we just need to satisfy C(s) in addition. ThenB(2s) and C(s) together imply

D(s); setting q = r = s and p = 2s in Theorem 9.1 gives us a method of order

2s. Imposing condition C(s) gives us exactly s2 linear equations for the aij values,

which can be easily solved. Thus the order of the s-stage Gauss method is 2s.
Some Gauss methods are shown in Tables 9.3–9.5. For the derivation of these

formulas, refer back to Section 5.6 in Chapter 5.2. The two-point Gauss method was

given in (5.70)-(5.71) of Section 5.6.1.

Table 9.3 Butcher tableau for Gauss method of order 2

1/2 1/2

1

Table 9.4 Butcher tableau for Gauss method of order 4`
3 −

√
3

´
/6 1/4

`
3 − 2

√
3

´
/12`

3 +
√

3
´
/6

`
3 + 2

√
3

´
/12 1/4

1/2 1/2

Table 9.5 Butcher tableau for Gauss method of order 6`
5 −

√
15

´
/10 5/36 2/9 −

√
15/5 5/36 −

√
15/30

1/2 5/36 +
√

15/24 2/9 5/36 −
√

15/24`
5 +

√
15

´
/10 5/36 +

√
15/30 2/9 +

√
15/5 5/36

5/18 4/9 5/18

There are some issues that Gauss methods do not address, and so a number of

closely related methods have been developed. The most important of these are the

Radau methods, particularly the Radau IIA methods. For the Radau IIA methods the

ci terms are roots of the polynomial

ds−1

dxs−1

[
xs−1 (1 − x)

s]
.

In particular, we have cs = 1, as we can see in Tables 9.6 and 9.7, which show

the lower-order Radau IIA methods. The simplifying assumptions satisfied by the

Radau IIA methods areB(2s−1),C(s), andD(s−1), so that the order of a Radau IIA

method is 2s− 1. The order 1 Radau IIA method is just the implicit Euler method,

given in Table 9.1. The derivation of these formulas is similar to that for the Gauss
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formulas, only now we are using Radau quadrature rules rather than Gauss–Legendre

quadrature rules; see Section 5.6.

Table 9.6 Butcher tableau for Radau method of order 3

1/3 5/12 −1/12
1 3/4 1/4

3/4 1/4

Table 9.7 Butcher tableau for Radau method of order 5`
4 −

√
6

´
/10

`
88 − 7

√
6

´
/360

`
296 − 169

√
6

´
/1800

`
−2 + 3

√
6

´
/225`

4 +
√

6
´
/10

`
296 + 169

√
6

´
/1800

`
88 + 7

√
6

´
/360

`
−2 − 3

√
6

´
/225

1
`
16 −

√
6

´
/36

`
16 +

√
6

´
/36 1/9

`
16 −

√
6

´
/36

`
16 +

√
6

´
/36 1/9

A third family of Runge–Kutta methods worth considering are the Lobatto IIIC

methods; the cj values are the roots of the polynomial

ds−2

dxs−2

[
xs−1(1 − x)s−1

]
,

and we use the simplifying conditions B(2s − 2), C(s − 1), and D(s − 1). The

Lobatto IIIC methods have c1 = 0 and cs = 1. The order of the s-stage Lobatto IIIC

method is 2s− 2.

Other Runge–Kutta methods have been developed to handle various other issues.

For example, while general implicit Runge–Kutta methods with s stages require

the solution of a system of Ns equations in Ns unknowns, some implicit Runge–

Kutta methods require the solution of a sequence of s systems of N equations in N
unknowns. This is often simpler than solving Ns equations inNs unknowns. These

methods are known as diagonally implicit Runge–Kutta methods (DIRK methods).

For these methods we take ai,j = 0 whenever i < j. Two examples of DIRKs are

given in Table 9.8. The method of Alexander [2] is an order 3 method with three

stages. The method of Crouzeix and Raviart [31] is an order 4 method with three

stages. The constants in Alexander’s method are

α = the root of x3 − 3x2 + 3
2x− 1

6 in (1
6 ,

1
2 ),

τ2 = 1
2 (1 + α),

b1 = − 1
4 (6α2 − 16α+ 1),

b2 = 1
4 (6α2 − 20α+ 5).
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The constants in Crouzeix and Raviart’s method are given by

γ =
1√
3

cos
( π

18

)
+

1

2
,

δ =
1

6 (2γ − 1)
2 .

There are a large number of DIRK methods, and some of them can be found, for

example, in Hairer and Wanner’s text [44].

Table 9.8 Butcher tableau for DIRK methods

α α
τ2 τ2 − α α
1 b1 b2 α

b1 b2 α

(a) Method of Alexander
γ γ

1/2 1/2 − γ γ
1 − γ 2γ 1 − 4γ γ

δ 1 − 2δ δ

(b) Method of Crouzeix & Raviart

9.2 STABILITY OF RUNGE–KUTTA METHODS

Implicit Runge–Kutta methods need the same kind of stability properties as found

in multistep methods if they are to be useful in solving stiff differential equations.

Fortunately, most of the stability aspects can be derived using some straightforward

linear algebra.

Consider the model differential equation

Y ′ = λY.

Following (9.1)–(9.2), denote zT
n = [zn,1, zn,2, . . . , zn,s]. Apply (9.1)–(9.2) to this

differential equation:

zn = yn e + hλA zn,

yn+1 = yn + hλbT zn.

Here eT = [1, 1, . . . , 1] is the s-dimensional vector of all ones. Some easy algebra

gives

yn+1 =
[
1 + hλbT (I − hλA)

−1
e
]
yn = R(hλ) yn.

The stability function is

R(η) = 1 + η bT (I − ηA)
−1

e. (9.7)
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As before, the Runge–Kutta method is A-stable if |R(η)| < 1 for all complex η with

Real η < 0.

All Gauss (Tables 9.3-9.5), Radau IIA (Tables 9.1, 9.6, 9.7), and some DIRK

methods (Table 9.8) are A-stable, which makes them stable for anyλwith Realλ < 0.

However, this does not necessarily make them accurate. For more on this topic, see

the following section on order reduction.

For nonlinear problems, there is another form of stability that is very useful, called

B-stability. This is based on differential equations

Y ′ = f(t, Y ), Y (t0) = Y0,

where f(t, y) satisfies only a one-sided Lipschitz condition:

(y − z)T (f(t, y) − f(t, z)) ≤ µ ‖y − z‖2 .

If f(t, y) is Lipschitz in y with Lipschitz constant L (see (1.10) in Chapter 1), then

it automatically satisfies the one-sided Lipschitz condition with µ = L. However,

the reverse need not hold. For example, the system of differential equations (8.16)

obtained for the heat equation in Section 8.1 satisfies the one-sided Lipschitz condition

with µ = 0, no matter how fine the discretization. The ordinary Lipschitz constant,

however, is roughly proportional to m2, wherem is the number of grid points chosen

for the space discretization.

The importance of one-sided Lipschitz conditions is that they are closely related

to stability of the differential equation. In particular, if

Y ′ = f(t, Y ), Y (t0) = Y0,

Z ′ = f(t, Z), Z(t0) = Z0,

and f(t, y) satisfies the one-sided Lipschitz condition with constant µ, then

‖Y (t) − Z(t)‖ ≤ eµ(t−t0) ‖Y0 − Z0‖ .

This can be seen by differentiating

m(t) = ‖Y (t) − Z(t)‖2
= (Y (t) − Z(t))

T
(Y (t) − Z(t))

as follows:

m′(t) = 2 (Y (t) − Z(t))
T

(Y ′(t) − Z ′(t))

= 2 (Y (t) − Z(t))
T

[f(t, Y (t)) − f(t, Z(t))]

≤ 2µ ‖Y (t) − Z(t)‖2
= 2µm(t).

Hence

m(t) ≤ e2µ(t−t0)m(t0),

and taking square roots gives

‖Y (t) − Z(t)‖ ≤ eµ(t−t0) ‖Y0 − Z0‖ .
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The case where the one-sided Lipschitz constant µ is zero means that the dif-

ferential equation is contractive; that is, different solutions cannot become further

apart or separated. If we require that the numerical solution be also contractive

(‖yn+1 − zn+1‖ ≤ ‖yn − zn‖ for any two numerical solutions yk and zk) whenever

µ = 0, then the method is called B-stable [24]. This condition seems very useful, but

rather difficult to check. Fortunately, a simple and easy condition to test was found

independently in [22] and [30]: namely, if

bi ≥ 0 for all i (9.8)

and

M = [biaij + bjaji − bibj ]
s
i,j=1 is positive semidefinite (9.9)

(i.e., wTMw ≥ 0 for all vectors w), then the Runge–Kutta method is B-stable.

Testing a matrix M for being positive semidefinite is actually quite easy. One test is

to compute the eigenvalues of M if M is symmetric. If all eigenvalues are ≥ 0, then

M is positive semidefinite. For a nonsymmetric matrix M , it is positive semidefinite

if all the eigenvalues of the matrix (M +MT )/2 are nonnegative.

If a method is B-stable, then it is A-stable. To see this, for a B-stable method we

can look at the differential equation

Y ′ =

[
α +β
−β α

]
Y,

which has the one-sided Lipschitz constant µ = 0 if α ≤ 0. The eigenvalues of this

2×2 matrix are α±iβ, which are in the left half of the complex plane if α < 0. So if a

method is B-stable, then α ≤ 0 implies that the numerical solution is contractive, and

thus the stability region includes the left half-plane; that is, the method is A-stable.

This test for B-stability quickly leads to the realization that a number of important

families of implicit Runge–Kutta methods are B-stable, such as the Gauss methods,

the Radau IA, and the Radau IIA methods. The DIRK method in Table 9.8 (part

b) is, however, A-stable but not B-stable. What does this mean in practice? For

strongly nonlinear problems, A-stability may not suffice to ensure good behavior of

the numerical method, especially if we consider integration for long time periods. It

also means that Gauss or Radau IIA methods are probably better than DIRK methods

despite the extra computational cost of the Gauss and Radau methods.

9.3 ORDER REDUCTION

Stability is clearly necessary, but it is not sufficient to obtain accurate solutions to

stiff systems of ordinary differential equations. A phenomenon that is commonly

observed is that when applied to stiff problems, many implicit methods do not seem

to achieve the order of accuracy that is expected for the method. This phenomenon

is called order reduction [44, pp. 225–228].

Order reduction occurs for certain Runge–Kutta methods, but not for BDF meth-

ods.
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Figure 9.1 Error norms for the test equation (9.10)

Example 9.2 Consider, for example, the fourth-order Gauss method with s = 2 (see

Tables 9.3–9.5) . Figure 9.1 shows how the error behaves for a test equation

Y ′ = D (Y − g(t)) + g′(t), Y (0) = g(0). (9.10)

For this particular example,D is a 100×100 diagonal matrix with negative diagonals

randomly generated in the range from −2−20 to−2+20 ≈ −106. The diagonal entries

are exponentials of uniformly distributed pseudo-random values. The function g(t)
likewise involves pseudo-random numbers, but is a smooth function of t. The exact

solution is Y (t) = g(t), so we can easily compute errors in the numerical solution.

For the function g(t) we used g(t) = cos(t) z1 − exp(−t) z2 with z1, z2 randomly

generated vectors using a normal distribution.

Note that the Gauss method with s = 2 is a fourth-order method, so that we expect

the errors to be O(h4) as the stepsize becomes small. But this ignores two factors:

(1) the hidden constant in theO expression may be quite large because of the stiffness

of the differential equation, and (2) asymptotic results like this are true provided h is

“small enough”. How small is “small enough” depends on the problem, and for stiff

differential equations, this can depend on how stiff the equation is. Make the stiffness

go to infinity, and the limit for “small enough” may go to zero. If that happens, then

the standard convergence theory may be meaningless for practical stiff problems.

As can be seen from Figure 9.1, the error for larger values of h seems to behave

more like O(h2) than O(h4). Also, for smaller values of h we see O(h4) error

behavior (as we might expect), but with a large value for the hidden constant inside
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theO. For very small h and many steps, we see that roundoff error from floating-point

arithmetic limits the accuracy possible with this method. (The quantity u in the graph

denotes the unit round of the floating-point arithmetic.) If we increase the stiffness

of the problem as we reduce the size of h, we might only see the O(h2) behavior of

the error. This is the effect of order reduction.

Order reduction can be explained in terms of the following simple version of the

test differential equation (9.10),

Y ′(t) = λ (Y − g(t)) + g′(t), Y (t0) = g(t0). (9.11)

The exact solution is Y (t) = g(t) for all t. However, the numerical solution of this

is not exact, particularly if hλ is large. What we want to find out is the magnitude of

the error in terms of h independently of λh. This can be different from the order of

the error for fixed λ as h→ 0. The Runge–Kutta equations are

zn,i = yn + h

s∑

j=1

aij f(tn + cjh, zn,j), i = 1, 2, . . . , s.

From this formula, it seems that the intention is for zn,i ≈ Y (tn + cih). Consider

for a moment the even simpler test problem

dY

dt
= g′(t), Y (t0) = g(t0).

The stage order of a Runge–Kutta method comes from the order of the error in the

approximation zn,i ≈ g(tn + cih),

g(tn + cih) = g(tn) + h
s∑

j=1

aij g
′(tn + cjh) + O(hq+1)

for all i, indicating a stage order of q. The quadrature order is the order of the final

formula for this very simple test equation; the result

g(tn + h) = g(tn) + h
s∑

j=1

bj g
′(tn + cjh) + O(hp+1)

means that the quadrature order is p. Usually the stage order is of no concern for non-

stiff differential equations, and only the quadrature order matters. This is important

for explicit methods, since the first step of an explicit method is essentially a step of

the explicit Euler method; this means that the stage order for explicit methods is one.

Nevertheless, for nonstiff differential equations, we have Runge–Kutta methods of

arbitrarily high-order.



ORDER REDUCTION 159

On the other hand, stiffness means that the stage order cannot be ignored. Going

back to the test equation (9.11), write

∆n,i = g(tn + cih) − g(tn) − h

s∑

j=1

aij g
′(tn + cjh),

∆̂n = g(tn + h) − g(tn) − h

s∑

j=1

bj g
′(tn + cjh).

Then, after some calculation, we find that

yn+1 − g(tn+1) = R(hλ) [yn − g(tn)] − hλbT (I − hλA)
−1

∆n − ∆̂n.

Clearly we still need |R(hλ)| ≤ 1 for stability. But we have to be careful about ∆n

(the stage errors) as well as ∆̂n (the quadrature error). In other words, our accuracy

can be reduced by a low stage order as well as by a low quadrature order.

Many Runge–Kutta methods for stiff differential equations are stiffly accurate.

This simply means that the last row of A is bT ; that is, ais = bi for i = 1, 2, . . . , s.
An example is the trapezoidal rule:

yn+1 = yn + 1
2h [f(tn, yn) + f(tn+1, yn+1)] .

The quadrature order is 2 (∆̂n = O(h3)), which is the same order as the second stage

(∆n,2 = O(h3)). The order of the first stage is infinite: ∆n,1 = 0, since c1 = 0 and

g(tn + 0h) = g(tn) + 0. For the test equation (9.10), we have

yn+1 − g(tn+1) = R(hλ) [yn − g(tn)] − hλbT (I − hλA)
−1

∆n − ∆̂n

as before. For this method

−hλbT (I − hλA)
−1

∆n =
2hλ

hλ− 2

[
1

2
,

1

2

]



1 − 1

2
hλ 0

1

2
hλ 1



[

0
O(h3)

]

=
hλ

hλ− 2
O(h3).

So the stiff order of the trapezoidal method is 2, the same as its “normal” order. This

is a desirable trait, but it is not shared by most higher-order methods.

Consider, for example, the Gauss methods. The s-stage Gauss method has order

2s. However, its stiff order is only s. A simple example is the s = 1 Gauss method,

which is also known as the midpoint method, as shown in Table 9.3. Then

−hλbT (I − hλA)−1 ∆n = − 2hλ

2 − hλ
O(h2).

So while the quadrature order of the midpoint rule is 2, its stiff order is 1. Further

analysis for the other Gauss methods can be found in [44].
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DIRK methods of any number of stages have stage order≤ 2, and so the stiff order

(for arbitrary hλ) is ≤ 2. Radau IIA methods with s stages have order 2s− 1, but the

stiff order (for arbitrary hλ) is s+ 1. In fact, the global error for Radau IIA methods

is O(hs+1/(hλ)). If we consider only the case hλ → ∞ and h → 0, we find that,

because the Radau IIA methods are stiffly accurate, we again get O(h2s−1) global

error in the limit as hλ→ ∞. This turns out to be very useful for differential algebraic

equations, the topic discussed in Chapter 10. However, for solving problems such as

the heat equation (see Section 8.1), there are many eigenvalues λ, some small and

some large. So we cannot assume that hλ→ ∞.

On the other hand, order reduction does not occur for BDF methods. While a

complete answer is beyond the scope of this book, consider the differential equation

Y ′ = λ (Y − g(t)) + g′(t) Y (t0) = g(t0).

The exact solution is Y (t) = g(t) for all t. If we applied a BDF method to this

equation, we get

yn+1 =

p−1∑

j=0

ajyn−j + hβ [λ (yn+1 − g(tn+1)) + g′(tn+1)] .

If ek = yk − g(tk) were the error at timestep k, after some algebra we would get

(1 − hλ) en+1 −
p−1∑

j=0

ajen−j =

p−1∑

j=0

ajg(tn−j) + hβ g′(tn+1) − g(tn+1)

= O(hp+1),

since the BDF method has order p. But for hλ in the stability region, this means that

en = O(hp); if |hλ| → ∞ along the negative real axis, then en = O(hp/ |hλ|).

9.4 RUNGE–KUTTA METHODS FOR STIFF EQUATIONS IN PRACTICE

While a great many Runge–Kutta methods have been developed, for stiff differential

equations, the field narrows to a relatively small number of methods, all of which have

the desirable characteristics of stability (especially B-stability) and accuracy (when

order reduction is taken into account). The Radau IIA methods score well on just

about every characteristic, as they are B-stable, are stiffly accurate and have a high

order, even after order reduction is taken into account.

The downside is that Radau methods, like Gauss methods, are expensive to im-

plement. For stiff differential equations, we cannot expect to solve the Runge–Kutta

equations by simple iteration. Some sort of nonlinear equation solver is needed.

Newton’s method is the most common method, but simplified versions of Newton’s

method are often used in practice, as discussed in Section 8.5 in Chapter 8. For large-

scale systems of differential equations, even implementing Newton’s method can be

difficult as large linear systems need to be solved. This can be done efficiently using
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the tools of numerical linear algebra. This is an exciting and interesting area in itself,

but beyond the scope of this book.

Practical codes for a number of these methods, such as the three-stage, fifth-

order Radau IIA method, have been carefully designed, implemented, and tested. An

example is the Radau and Radau5 codes of Hairer. For more details see p. 183. These

codes are automatic methods that can adjust the stepsize to achieve a user-specified

error tolerance.

PROBLEMS

1. Show that the Gauss methods with s = 1 and s = 2 stages have stiff order s.

2. Consider the following iterative method for solving the Runge–Kutta equations

zn,i = yn + h
s∑

h=1

aij f(tn + cjh, zn,j), i = 1, 2, . . . , s.

We set

z
(k+1)
n,i = yn + h

s∑

j=1

aij f(tn + cjh, z
(k)
n,j), i = 1, 2, . . . , s,

for k = 0, 1, 2, . . .. Show that if f(t, x) is Lipschitz in x with Lipschitz

constant L, then this method is a contractive interation mapping provided

hL max
1≤i≤s

s∑

j=1

|aij | < 1.

Is this method useful for stiff problems?

3. Show that the Gauss methods with s = 1 and s = 2 are B-stable using the

algebraic condition (9.8)–(9.9).

4. Repeat Problem 4 for the Radau IIA methods for s = 1 and s = 2.

5. Show that the DIRK method in Table 9.8 is not B-stable.

6. Show that

f(t, y) =

[
α +β
−β α

]
y

satisfies a one-sided Lipschitz condition with µ ≥ α. Use this to prove that

B-stability implies A-stability.

Hint: First show that the eigenvalues of the matrix defining f are α± iβ.

7. The one-stage Gauss method is

zn,1 = yn + 1
2h f(tn + 1

2h, zn,1),

yn+1 = yn + h f(tn + 1
2h, zn,1).
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Find the Taylor series expansion of ∆̂n,1 = g(tn+c1h)−g(tn)−h a11 g
′(tn+

c1h) (c1 = a11 = 1
2 ) to show that the stage order of this method is 1 while the

quadrature order of the method is 2.

8. Derive the coefficients for the Lobatto IIIC method with three stages (s = 3,

order = 2s− 2 = 4). The quadrature points are c1 = 0, c2 = 1
2 , and c3 = 1.

Use the simplifying conditions B(2s − 2) to compute the bi values, and the

simplifying conditions C(s − 1) and one of the conditions in D(s − 1) to

compute the aij matrix entries.



CHAPTER 10

DIFFERENTIAL ALGEBRAIC

EQUATIONS

In Chapter 3 we considered the motion of a pendulum consisting of a mass m at the

end of a light rigid rod of length l; see Figure 3.1. Deriving the differential equation

for the angle θ involved computing the torque about the pivot point. In simple systems

like this, it is fairly easy to derive the differential equation from a good knowledge of

mechanics. But with more complex systems it can become difficult just to obtain the

differential equation to be solved.

Here we will consider a different way of handling this problem that makes it

much easier to derive a mathematical model, but at a computational cost. These

models contain not only differential equations but also “algebraic” equations. Here

“algebraic” does not signify that only the usual operations of arithmetic (+,−, ×, and

/) can appear; rather, it means that no derivatives or integrals of unknown quantities

can appear in the equation. Differential and algebraic equations are collectively

referred to as differential algebraic equations or by the acronym DAE. A number of

texts deal specifically with DAEs, such as Ascher and Petzold [10] and Brenan et al.

[19].

In this new framework, the position of the mass is given by coordinates (x, y)
relative to the pivot for the pendulum. There is a constraint due to the rigid rod:√
x2 + y2 = l. There are also two forces acting on the mass. One is gravitation,

163
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which acts downward with strength −mg. The other is the force that the rod exerts

on the mass to maintain the constraint. This force is in the direction of the rod; let its

magnitude be N , so that the force itself is (−Nx,−Ny)/
√
x2 + y2. This provides

a complete model for the pendulum:

m
d2x

dt2
= −N x√

x2 + y2
, (10.1)

m
d2y

dt2
= −N y√

x2 + y2
−mg, (10.2)

0 = l −
√
x2 + y2. (10.3)

This second-order system can be rewritten as a first-order system:

x′ = u, (10.4)

y′ = v, (10.5)

mu′ = −N x√
x2 + y2

, (10.6)

mv′ = −N y√
x2 + y2

−mg, (10.7)

0 = l −
√
x2 + y2. (10.8)

The unknowns are the coordinates x(t), y(t), their velocities u(t) and v(t), and the

force exerted by the rod is N(t). All in all, there are five equations and five unknown

functions. However, only four of the equations are differential equations. The last is

an “algebraic” equation. Also, there is no equation with dN/dt in it, so N is called

an algebraic variable.

For simplicity, we will write λ = N/(m
√
x2 + y2) so that du/dt = −λx and

dv/dt = −λy − g. Also, the constraint equation will be replaced by

0 = l2 − x2 − y2.

We can turn the differential algebraic equations into a pure system of differential

equations. To do that, we need to differentiate the algebraic equation until we can

obtain an expression for dλ/dt. Differentiating the constraint three times gives first

0 =
d

dt

(
l2 − x2 − y2

)
= −2xu− 2yv, (10.9)

0 =
d2

dt2
(
l2 − x2 − y2

)
= −2(u2 + v2) + 2λ(x2 + y2) + 2yg, (10.10)

and then

0 =
d3

dt3
(
l2 − x2 − y2

)
= 2

dλ

dt

(
x2 + y2

)
+ 6gv. (10.11)

The number of times that the algebraic equations of a DAE need to be differentiated

in order to obtain differential equations for all of the algebraic variables is called the
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index of the DAE. Two differentiations allow us to find λ in terms of x, y, u, and v.

But three differentiations are needed to compute dλ/dt in terms of these quantities.

So our pendulum problem is an index 3 DAE.

Solving for λ from the second derivative of the constraint gives

λ =
u2 + v2 − yg

x2 + y2
=
u2 + v2 − yg

l2
. (10.12)

Substituting this expression gives a system of ordinary differential equations:

x′ = u, (10.13)

y′ = v, (10.14)

u′ = −u
2 + v2 − yg

l2
x, (10.15)

v′ = −u
2 + v2 − yg

l2
y − g. (10.16)

If, instead of substituting for λ, we differentiate the constraint a third time, we obtain

a differential equation for λ:

x′ = u, (10.17)

y′ = v, (10.18)

u′ = −λx, (10.19)

v′ = −λy − g, (10.20)

λ′ = −3gv

l2
. (10.21)

The general scheme for a system of differential algebraic equations is

Y ′ = f(t, Y, Z), Y (t0) = Y0, (10.22)

0 = g(t, Y, Z). (10.23)

The Y variables are the differential variables, while the Z variables are the algebraic

variables.

10.1 INITIAL CONDITIONS AND DRIFT

In the general scheme, the constraints 0 = g(t, Y, Z) must hold at time t = t0, so that

g(t0, Y0, Z0) = 0, where Z0 = Z(t0). So the algebraic variables must also have the

right initial values. But the conditions do not stop there. In addition, differentiating

the constraints once at t = t0 gives

d

dt
g(t, Y, Z)|t=t0 = 0,
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and differentiating twice gives

d2

dt2
g(t, Y, Z)|t=t0 = 0,

and so on. This gives a whole sequence of extra initial conditions that must be

satisfied. Fortunately, the number of extra conditions is not infinite: the number of

differentiatons needed to obtain the needed extra conditions is one less than the index

of the problem.

Consider, for example, the pendulum problem. Initially the position of the mass is

constrained by the length of the rod: x(t0)
2 + y(t0)

2 = l2. Differentiating the length

constraint (10.8) at t = t0 gives

0 = x(t0)u(t0) + y(t0)v(t0);

that is, the initial velocity must be tangent to the circle that the pendulum sweeps out.

Finally, the initial force N(t0) (or equivalently λ(t0)) must be set correctly in order

for the solution to follow the circle x2 + y2 = l2. This gives a total of three extra

conditions to satisfy for the initial conditions, coming from the constraint function

and its first and second derivatives.

Note that the constraint and the subsequent conditions hold not only at the initial

time, but also at any instant. Thus the differential equations obtained that have the

algebraic constraint removed (such as (10.13)–(10.16) and (10.17)–(10.20)) must

satisfy these additional conditions at all times. Numerical methods do not necessarily

preserve these properties even though they are preserved in the differential equations.

This is known as drift. In theory, if a numerical method for a differential equation

or DAE is convergent, then as the stepsize h goes to zero, the amount of drift will

also go to zero on any fixed time interval. In practice, however, instabilities that may

be introduced by the DAE or ODE formulation mean that extremely small stepsizes

may be needed to keep the drift sufficiently small for meaningful answers.

Figure 10.1 shows plots of the trajectories for the pendulum problem using the

formulation (10.13)–(10.16) and the Euler and Heun methods (see (4.29)) for its

solution.

There are a number of ways of dealing with drift.

1. Project current solution back to the constraints, either at every step, or oc-

casionally. For the pendulum example, this means projecting not only the

positions (x, y) back to x2 + y2 = l2, but also the velocities. Moreover, if

λ is computed via a differential equation, it, too, must be projected onto its

constraints. Care must be taken in doing this, particularly for multistep meth-

ods where projecting just the current solution vector zn will introduce errors in

the approximate solution. Instead, all solution vectors zn−j for j = 0, 1, . . . , p
should be projected, where p is the number of previous iterates used by the mul-

tistep method. Also, if the index is high, we should project not only the solution

vector, but also the derivative and (if the index is high enough) higher-order

derivatives as well onto the appropriate manifold.
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Figure 10.1 Plots of trajectories for (10.13)–(10.16) showing drift for Euler and Heun’s

methods
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2. Modify the differential equation to make the constraint set stable, but otherwise

do not change the trajectories. This technique has been used in a number of

contexts, but it almost always has to be done separately for every new case.

An example of this technique is the method of Baumgarte [15] for equality-

constrained mechanical systems. This would replace the condition g(t, Y, Z) =
0 with a differential equation, such as (d/dt)g(t, Y, Z)+α g(t, Y, Z) = 0 with

α > 0; that is

0 = gt(t, Y, Z) + gy(t, Y, Z) f(t, Y, Z) + gz(t, Y, Z)Z ′ + α g(t, Y, Z),

which can be solved to give a differential equation forZ . (Note that gy(t, Y, Z)
is the Jacobian matrix of g(t, Y, Z) with respect to Y . See (10.3) below.)

For index 3 systems, such as those arising in mechanics, stable second-order

equations must be used such as
(
d2

dt2
+ α

d

dt
+ β

)
g(t, Y, Z) = 0

with suitable choices for α and β. These modifications need to be done with

care to ensure that they really are stable, not just for the continuous problem but

also for the numerical discretization. Since these stabilization methods have

one or more free scaling parameter(s) α (and β), these must be chosen with

care. For more information about dealing with these issues, see Ascher et al.

[5].

3. Use a numerical method that explicitly respects the constraints. These methods

treat the differential algebraic equations as differential algebraic equations. In-

stead of necessitating one or more differentiations in order to find differential or

other equations for the “algebraic” variables, they are automatically computed

by the method itself. These have been developed for general low-index DAEs.

Petzold, who developed the first such methods, produced a package DASSL

(see [19], [21], [65]) based on backward differentiation formulas (BDFs) for

solving index 1 DAEs. Many other methods have been developed, but these

tend to be limited in terms of the index that they can handle. All such meth-

ods are implicit, and so require the solution of a linear or nonlinear system of

equations at each step.

To summarize: methods 1 and 2 for handling DAEs have some problems. The

projection method can work with some ODE methods. The Baumgarte stabilization

method can also be made to work, but requires “tuning” the stabilization parameters;

this method can run into trouble for stiff equations. Method 3, designing numerical

methods that explicitly recognize the constraints, is the one that we focus on in the

remainder of the chapter.

10.2 DAES AS STIFF DIFFERENTIAL EQUATIONS

Differential algebraic equations can be treated as the limit of ordinary differential

equations. Note that g(t, Y, Z) = 0 if and only ifBg(t, Y, Z) = 0 for any nonsingular
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square matrix B. Then the DAE (10.22)–(10.23) can be treated as the limit as ǫ→ 0
of

Y ′ = f(t, Y, Z), Y (t0) = Y0, (10.24)

ǫZ ′ = B(Y )g(t, Y, Z). (10.25)

The matrix function B(Y ) should be chosen to make the differential equation in Z
(10.25) stable, so that the solution for (10.25),Z(t), converges to the solutionZ = Z∗

where g(t, Y, Z∗) = 0.

For ǫ small, these equations are stiff, so implicit methods are needed. Furthermore,

since the order obtained in practice for an implicit method can differ from the order of

the method for nonstiff problems, the order of an implicit method may deviate from

the usual order when it is applied to differential algebraic equations.

But how do we apply a numerical method for stiff ODEs to a DAE? The simplest

method to apply is the implicit Euler method. If we apply it to the stiff approximation

(10.24)–(10.25) using step size h, we get

yn+1 = yn + h f(tn+1, yn+1, yn+1), (10.26)

ǫzn+1 = ǫzn + hB(yn+1)g(tn+1, yn+1, zn+1). (10.27)

Taking the limit as ǫ→ 0 and recalling thatB(Y ) is nonsingular, we get the equations

yn+1 = yn + h f(tn+1, yn+1, zn+1), (10.28)

0 = g(tn+1, yn+1, zn+1). (10.29)

This method will work for index 1 DAEs, but not in general for higher index DAEs.

An issue regarding accuracy is the stiff order of an ODE solver: the order of a

method for solving stiff ODEs may be lower than that for solving a nonstiff ODE, as

noted in Section 9.3. Since DAEs can be considered to be an extreme form of stiff

ODEs, this can also affect DAE solvers. With some methods, some components of

the solution (e.g., positions) can be computed more accurately than other components

(e.g., forces).

10.3 NUMERICAL ISSUES: HIGHER INDEX PROBLEMS

Consider index 1 problems in standard form:

Y ′ = f(t, Y, Z), Y (t0) = Y0,

0 = g(t, Y, Z).

Here Y (t) is an n-dimensional vector and Z(t) is an m-dimensional vector. The

function

g(t, Y, Z) = [g1(t, T, Z), g2(t, Y, Z), . . . , gm(t, Y, Z)]
T
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must have values that are m-dimensional vectors. For an index 1 problem, the Jaco-

bian matrix of g(t, Y, Z) with respect to Z , specifically

gz(t, Y, Z) =




∂g1/∂z1 ∂g1/∂z2 · · · ∂g1/∂zm

∂g2/∂z1 ∂g2/∂z2 · · · ∂g2/∂zm

...
...

. . .
...

∂gm/∂z1 ∂gm/∂z2 · · · ∂gm/∂zm




∣∣∣∣∣∣∣∣∣
(t,Y,Z)

is nonsingular. So we can apply the implicit function theorem to show that whenever

g(t0, y0, z0) = 0, there is locally a smooth solution function z = ϕ(t, y), where

z0 = ϕ(t0, y0). With a numerical solution (yn, zn), n = 0, 1, 2, . . ., the error in

zn should be of the same order as the error in yn. This does not always happen,

but requires some special properties of the numerical method. As we will see for

Runge–Kutta methods, we need the method to be stiffly accurate. A method is stiffly

accurate when the last row of the A matrix in the Butcher tableau is the same as the

bottom row bT of the Butcher tableau. Stiff accuracy is important for understanding

Runge–Kutta methods for stiff differential equations, as was noted in Section 9.3.

Index 2 problems have a standard form:

Y ′ = f(t, Y, Z), Y (t0) = Y0, (10.30)

0 = g(t, Y ), (10.31)

where the product of Jacobian matrices of gy(t, Y ) fz(t, Y, Z) is nonsingular. But

now, to determine Z(t), we need dY/dt. Thus numerical methods applied to index

2 problems will need to perform some kind of “numerical differentiation” in order to

find Z(t). This may result in a reduction of the order of accuracy in the numerical

approximation Z(t), which can feed back into the equation (10.30) for Y (t).
Index 3 problems, such as our pendulum problem, require more specialized treat-

ment. These problems are discussed in Subsection 10.6.1. However, the same com-

plication arises — different components of the solution can have different orders of

convergence.

To illustrate this complication, consider the problem of the spherical pendulum.

This is just like the ordinary planar pendulum, except that the mass is not constrained

to a single vertical plane. This is sometimes called “Foucault’s pendulum”, and can

be used to demonstrate the rotation of the earth, although our model will not include

that effect. For this system, we use q = [x, y, z]T for the position of the mass m,

which is subject to the constraint that qTq = ℓ2 and a downward gravitational force

of strength mg. Using the methods of Subsection 10.6.1, we obtain the following

index 3 DAE:

mv′ = −λq −mg k,

q′ = v,

0 =
1

2
(qT q − ℓ2),
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Figure 10.2 Errors in solving the spherical pendulum problem using the three-stage Radau IIA

method with an index 1 DAE

where k is the unit vector pointing upward. Note that the state vector for the DAE is

yT = [qT ,vT , λ].
By differentiating the constraints as we did for the planar pendulum, we can obtain

lower index DAEs. If we differentiate the constraint once, we obtain

0 = vT q

to give an index 2 DAE. If we differentiate again, we obtain

0 = vT v − λ

m
qT q− kT q g

to give an index 1 DAE.

Using the Radau IIA method with three stages (which is normally fifth-order),

we can solve each of these systems. Figures 10.2–10.4 show the numerical results

for each of these DAEs with indices 1, 2 and 3. The specific parameter values used

are m = 2 and ℓ = 3
2 ; the initial time was t = 0, and the errors were computed

at t = 1. As can be clearly seen, for both index 2 and index 3 cases, the forces

are computed considerably less accurately than are the other components, and the

slope of the error line for the forces (λ) is substantially less than those for the other

components. This indicates a lower-order of convergence for the forces in the index

2 and index 3 versions of the problem. For the index 3 case, both the forces and

velocities (v) appear to have a lower-order of convergence than the positions (q).

However, the order of convergence of the positions does not seem to be affected by

the index of the DAE.
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Figure 10.3 Errors in solving the spherical pendulum problem using the three-stage Radau IIA

method with an index 2 DAE
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method with an index 3 DAE
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From these numerical results, the following question may arise: Why use high

index DAEs? As noted above, one reason is that using the high index formulation

can prevent drift in the main constraint g(q) = 0. Another reason is that the model

of the spherical pendulum is most naturally given as an index 3 DAE. The lower

index DAEs are constructed by differentiating the constraint function. While this is

often the quickest approach for simple problems, for large problems this can become

difficult to do, and might not be possible in practice for functions defined by some

(complicated) piece of code.

10.4 BACKWARD DIFFERENTIATION METHODS FOR DAES

The first ODE methods to be applied to DAEs were the backward differentiation

formula (BDF) methods. These work well for index 1 DAEs, and are the basis of the

code DASSL [19], [65]. These implicit methods were introduced in Section 8.2 and

have the form

yn+1 =

p−1∑

j=0

an−j yn−j + hβ f(tn+1, yn+1).

The coefficients aj and β are chosen so that

y′(tn+1) =
1

β h


yn+1 −

p−1∑

j=0

ajyn−j


+ O(hp),

giving a method of order p.

These methods, while not A-stable, are nevertheless very well behaved, at least for

nonoscillatory problems for p ≤ 6. If p ≥ 7, part of the negative real axis lies outside

the stability region, and the method can become unstable for λ < 0 large enough to

put hλ in the unstable region. For this reason, we restrict p ≤ 6 for BDF methods.

10.4.1 Index 1 problems

For DAEs of the form

Y ′ = f(Y, Z), Y (t0) = Y0, (10.32)

0 = g(Y, Z), (10.33)

the BDF method becomes

yn+1 =

p−1∑

j=0

ajyn−j + hβ f(yn+1, zn+1),

0 = g(yn+1, zn+1).
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For index 1 DAEs, the equation g(y, z) = 0 gives z implicitly as a function of y. If

we write z = ϕ(y) as this implicit function, the BDF method can be reduced to

yn+1 =

p∑

j=0

ajyn−j + hβ f(yn+1, ϕ(yn+1)),

which is the result of applying the BDF method to the reduced equation

Y ′ = f(y, ϕ(Y )).

Thus the BDF method gives a numerical solution with the expected rate of convergence

to the true solution.

10.4.2 Index 2 problems

BDF methods can be used for DAEs of index 2 as well as index 1, particularly for the

semi-explicit index 2 DAEs:

Y ′ = f(Y, Z), Y (t0) = y0, (10.34)

0 = g(Y ). (10.35)

Recall that g(Y ) is an m-dimensional vector for each Y , so that gy(Y ) is an m× n
matrix. On the other hand, f(Y, Z) is an n-dimensional vector, so that fz(Y, Z) is

an n×m matrix. The product gy(Y ) fz(Y, Z) is thus an m×m matrix. We assume

that gy(Y ) fz(Y, Z) is nonsingular.

The DAE (10.34)–(10.35) is index 2 if we can (locally) solve for Z(t) from Y (t)
using only one differentiation of the “algebraic” equation g(Y ) = 0. Differentiating

gives 0 = gy(Y ) dY/dt = gy(Y ) f(Y, Z). So for an index 2 DAE, the function

Z 7→ gy(Y ) f(Y, Z) needs to be invertible so that we can find a smooth implicit

function Y 7→ Z . The usual requirement needed is that the Jacobian matrix of the

map Z 7→ gy(Y ) f(Y, Z) be an invertible matrix on the exact solution. From the

usual rules of calculus, this comes down to requiring that gy(Y (t)) fz(Y (t), Z(t))
is an invertible matrix for all t on the exact solution. Note that this implies that

gy(Y ) fz(Y, Z) is invertible for any (Y, Z) sufficiently near the exact solution as

well.

Assuming that gy(Y ) fz(Y, Z) is nonsingular, we can show that the p-step BDF

method for DAEs,

yn+1 =

p−1∑

j=0

αj yn−j + hβ f(yn+1, zn+1),

0 = g(yn+1),

is convergent of order p for p ≤ 6. Recall that for p ≥ 7, the stability region for the

p-step BDF method does not include all of the negative real axis, making it unsuitable

for stiff ODEs or DAEs.
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It should be noted that these methods are implicit, and therefore require the solution

of a nonlinear system of equations. We can use Newton’s method or any number of

variants thereof [55]. The system of equations to be solved has n+m equations and

n+m unknowns.

For the p-step BDF method, we have

yn − Y (tn) = O(hp),

zn − Z(tn) = O(hp),

provided yj − Y (tj) = O(hp+1) for j = 0, 1, 2, . . . , p − 1 ([20], [40], [44], [60]).

Note that we need one order higher accuracy in the initial values; this is necessary as

our estimates for zj , j = 0, 1, . . . , p − 1, are essentially obtained by differentiating

the data for yj , j = 0, 1, . . . , p− 1.

Note that it is particularly important to solve the equationsg(yn+1) = 0 accurately.

Noise in the solution of these equations will be amplified by a factor of order 1/h to

produce errors in zn+1. This, in turn, will result in larger errors in yn over time.

10.5 RUNGE–KUTTA METHODS FOR DAES

As for stiff equations, the Runge–Kutta methods used for DAEs need to be implicit

methods. The way that a Runge–Kutta method is used for the index 1 DAE (10.32)–

(10.33),

Y ′ = f(Y, Z), Y (t0) = Y0, (10.36)

0 = g(Y, Z), (10.37)

is

yn,i = yn + h

s∑

j=1

aij f(yn,j, zn,j), (10.38)

0 =

s∑

j=1

aij g(yn,j , zn,j), (10.39)

yn+1 = yn + h

s∑

j=1

bj f(yn,j, zn,j), (10.40)

for i = 1, 2, . . . , s. Provided the matrix A is invertible, (10.39) is equivalent to

0 = g(yn,i, zn,i), i = 1, 2, . . . , s.

As for BDF methods, these are systems of nonlinear equations, and can be solved

by Newton’s method or its variants [55]. Unlike the BDF methods, the number of

equations to be solved are s(M +N) with s(M +N) unknowns where Y is a vector

with N components and Z has M unknowns.



176 DIFFERENTIAL ALGEBRAIC EQUATIONS

Also, the analysis of error in stiff problems in Section 9.3 shows that the stage

order of the Runge–Kutta method essentially determines the order of the Runge–

Kutta method for DAEs. For this to work well, we usually require that the method

be stiffly accurate (such as Radau IIA methods); that is, bT must be the bottom

row of A: bi = as,i for i = 1, 2, . . . , s. This means that yn+1 = yn,s and setting

zn+1 = zn,s so that g(yn+1, zn+1) = 0. As with stiff equations, the stability function

R(hλ) = 1 + hλbT (I − hλA)−1
e (see (9.7)) gives crucial information about the

behavior of the method. However, for DAEs, we are considering what happens as

hλ → −∞. Since R(hλ) is a rational function of hλ, the important quantity is

R(∞) = R(−∞) = 1 − bTA−1e for nonsingular A.

10.5.1 Index 1 problems

Consider index 1 problems of the form

Y ′ = f(Y, Z), Y (t0) = Y0,

0 = g(Y, Z).

Let us suppose that we have an implicit function ϕ for g, meaning that whenever

0 = g(y, z), then z = ϕ(y). If we can do this, then the problem reduces to finding

the solution of

Y ′ = f(Y, ϕ(Y )), Y (t0) = Y0.

Note that if the Jacobian matrix ∇zf(y∗, z∗) is nonsingular, then we can find a local

implicit function ϕ so that ϕ(y∗) = z∗ and ϕ is smooth nearby to y∗. Then in this

case, g(yn,i, zn,i) = 0 implies that zn,i = ϕ(yn,i), and our Runge–Kutta equations

imply that

yn,i = yn + h

s∑

j=1

aij f(yn,j, zn,j)

= yn + h

s∑

j=1

aij f(yn,j, ϕ(yn,j)).

For a stiffly accurate method, yn+1 = yn,s and zn+1 = zn,s = ϕ(yn,s) = ϕ(yn+1).
This is exactly what the Runge–Kutta method would give when applied to the ordinary

differential equation

Y ′ = f(Y, ϕ(Y )), Y (t0) = Y0.

So the order of accuracy is exactly what we would expect for smooth ordinary differ-

ential equations.

The case where the method is not stiffly accurate is a little more complex; the

argument for the accuracy of yn ≈ Y (tn) is not changed, but the accuracy of the

computed values zn ≈ Z(tn) is, and can depend on the value of R(∞). Recall

that p is the quadrature order of the method, and q is the stage order. In terms of

the simplifying conditions (9.4)–(9.6), conditions B(p) and C(q) hold. The error
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zn − Z(tn) = O(hr), where r = min(p, q + 1) if −1 ≤ R(∞) < 1 and r =
min(p−1, q) ifR(∞) = 1; but zn−z(tn) diverges exponentially in n if |R(∞)| > 1.

We show this below.

Suppose our Runge–Kutta method has stage order q and quadrature order p, so

that for a smooth function ψ(·), we obtain

ψ(tn + cih) = ψ(tn) + h

s∑

j=1

aijψ
′(tn + cjh) + O(hq+1),

i = 1, . . . , s, (10.41)

ψ(tn+1) = ψ(tn) + h

s∑

i=1

biψ
′(tn + cjh) + O(hp+1). (10.42)

The global order of this method for DAEs can be determined from the stage and

quadrature orders depending on several cases: (1) the method is stiffly accurate, (2)

−1 ≤ R(∞) < 1, (3) R(∞) = 1, or (4) |R(∞)| > 1.

If the method is stiffly accurate, then (as we have seen) the accuracy for index 1

DAEs is the same as for smooth ordinary differential equations: Y (tn)−yn = O(hp),
provided tn − t0 is bounded.

If the method is not stiffly accurate, then the stage order q becomes important. If

we write

Ψn = [ψ(tn + c1h), ψ(tn + c2h), . . . , ψ(tn + csh)]
T ,

Ψ′
n = [ψ′(tn + c1h), ψ

′(tn + c2h), . . . , ψ
′(tn + csh)]

T ,

then, from (10.41), we obtain

Ψn = ψ(tn)e + hAΨ′
n + O(hq+1),

so that for nonsingular A, we have

Ψ′
n = h−1A−1 (Ψn − eψ(tn)) + O(hq).

Substituting this into (10.42) gives

ψ(tn+1) =
(
1 − bTA−1e

)
ψ(tn) + bTA−1Ψn + O(hq+1) + O(hp+1).

But 1 − bTA−1e = R(∞). Thus

ψ(tn+1) = R(∞)ψ(tn) + bTA−1Ψn + O(hq+1) + O(hp+1).

In particular, we can take ψ(t) = Z(t) and ψ(t) = Y (t), giving

Z(tn+1) = R(∞)Z(tn) + bTA−1Zn + O(hq+1) + O(hp+1), (10.43)

Y (tn+1) = R(∞)Y (tn) + bTA−1Yn + O(hq+1) + O(hp+1),
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with

Zn = [Z(tn + c1h), . . . , Z(tn + csh)]
T ,

Yn = [Y (tn + c1h), . . . , Y (tn + csh)]
T .

Now g(yn,i, zn,i) = 0 so zn,i = ϕ(yn,i) as noted above. Let

Ŷn = [yn,1, yn,2, . . . , yn,s]
T ,

Ẑn = [zn,1, zn,2, . . . , zn,s]
T .

Then the Runge–Kutta equations can be written (as we did with ψ(t) above) as

zn+1 = R(∞) zn + bTA−1Ẑn. (10.44)

The error ∆zn+1 = Z(tn+1) − zn+1 is given by subtracting the above equations

(10.43) and (10.44), yielding

∆zn+1 = R(∞)∆zn + bTA−1
(
Zn − Ẑn

)
+ O(hq+1) + O(hp+1).

Note that zn,i = ϕ(yn,i) and Z(tn + cih) = ϕ(Y (tn + cih). The stage order is q, so

from the differential equation for Y and the Runge–Kutta method,

yn,i − Y (tn + cih)

= yn − Y (tn)

+ h

s∑

j=1

aij (f(yn,j, ϕ(yn,j)) − f(Y (tn + cjh), ϕ(Y (tn + cjh)))) + O(hq+1).

Since yn = Y (tn) + O(hp), we get

yn,i = Y (tn + cih) + O(hmin(p,q+1)).

So

zn,i − Z(tn + cih) = ϕ(yn,i) − ϕ(Y (tn + cih)) = O(hmin(p,q+1)).

Therefore

∆zn+1 = R(∞)∆zn + O(hmin(p,q+1)).

If |R(∞)| < 1, then we obtain the expected global order of zn. If R(∞) = 1 we

the errors can accumulate giving a convergence order of one less. If |R(∞)| > 1,

then zn will grow exponentially in n. If R(∞) = −1, then we need to do some

more analysis to show that the hidden constant in the “O(hmin(p,q+1))” is actually a

smooth function of t. Then successive steps will cause cancellation of the error, and

the global error for zn is O(hmin(p,q+1)).
To illustrate these theoretical results, consider again the numerical results shown

in Figure 10.2 for the index 1 version of the spherical pendulum problem using the

3-stage 5th-order Radau IIA method. All components of the solution converge with
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roughly the same order of accuracy. In fact, the slopes of the straightest parts of the

the graphs in Figure 10.2 are ≈ −5.10, −5.04, and −5.05 for the position, velocity,

and force components of the solution, respectively. This indicates that the index 1

DAE is being solved with the full order of accuracy that the three-stage Radau IIA

method can provide.

10.5.2 Index 2 problems

Here we consider index 2 problems of the form

Y ′ = f(Y, Z),

0 = g(Y ).

As in Subsection 10.4.2, we assume that gy(Y ) fz(Y, Z) is a square nonsingular

matrix on the exact solution.

Index 2 problems are considerably harder to solve numerically than corresponding

index 1 problems. In the index 1 case where the “algebraic” equations g(Y, Z) = 0
give Z as a function of Y (Z = ϕ(Y )), the result of solving this system of equations

could be substituted into dY/dt = f(Y, Z) = f(Y, ϕ(Y )) to form a smooth ordinary

differential equation. This is not possible in the index 2 case. Indeed, the task of

determining whether initial values (y0, z0) are consistent (i.e. gy(y0) f(y0, z0) = 0)

is a non-trivial task.

Runge–Kutta methods for index 2 problems have the form

yn,i = yn + h

s∑

j=1

aij f(yn,j, zn,j), for i = 1, 2, . . . , s,

zn,i = zn + h

s∑

j=1

aij ℓn,j, for i = 1, 2, . . . , s,

yn+1 = yn + h

s∑

j=1

bj f(yn,j , zn,j),

zn+1 = zn + h

s∑

j=1

bj ℓn,j,

0 = g(yn,i), for i = 1, 2, . . . , s.

Note that we have extra variables ℓn,i that are needed to solve the equations g(yn,i) =
0. If (yn, zn) is sufficiently close to being consistent, there exists (yn+1, zn+1) (as well

as the yn,j , zn,j , and ℓn,j) satisfying the Runge–Kutta equations, and (yn+1, zn+1)
is also close to being consistent.

This non-linear system of equations can be solved using, for example, Newton’s

method. Given currently computed values y
(k)
n,j, z

(k)
n,j , ℓ

(k)
n,j and yn, zn from the previous

step, we compute corrected values y
(k+1)
n,j = y

(k)
n,j + ∆yn,j , z

(k+1)
n,j = z

(k)
n,j + ∆zn,j ,



180 DIFFERENTIAL ALGEBRAIC EQUATIONS

Table 10.1 Order of accuracy for index 2 DAEs of the form (10.34)–(10.35) for

methods with s stages

Method y z

Gauss


s + 1, s odd

s, s even


s − 1, s odd

s − 2, s even

Radau IIA 2s − 1 s
Lobatto IIIC 2s − 2 s − 1

DIRK a 2 1

and ℓ
(k+1)
n,j = ℓ

(k)
n,j + ∆ℓn,j by solving the linear system

y
(k)
n,i + ∆yn,i = yn + h

s∑

j=1

aij

[
f(y

(k)
n,j, z

(k)
n,j) + fy(y

(k)
n,j, z

(k)
n,j)∆yn,j

+fz(y
(k)
n,j , z

(k)
n,j)∆zn,j

]
, for i = 1, 2, . . . , s,

z
(k)
n,i + ∆zn,i = zn + h

s∑

j=1

aij

[
ℓ
(k)
n,j + ∆ℓn,j

]
, for i = 1, 2, . . . , s,

0 = g(y
(k)
n,i ) + gy(y

(k)
n,i )∆yn,i, for i = 1, 2, . . . , s.

There are several implications of the theory of these problems for numerical meth-

ods, such as Runge–Kutta methods, for index 2 DAEs.

1. The order of accuracy for the numerical solutions zn ≈ Z(tn) and yn ≈ Y (tn)
are often different.

2. The non-linear systems are generally harder to solve for index 2 systems than

for index 1 systems. More specifically, the condition number of the linear

system for Newton’s method increases as O(1/h) as the step size h becomes

small [44, § VII.4]. By comparison, the linear systems for Newton’s method

for index 1 DAEs have bounded condition numbers as h goes to zero.

3. Additional conditions are needed to obtain convergence of the numerical meth-

ods.

Development of the theory for the order of convergenceof these methods is beyond

the scope of this book. However, we can present results for some families of Runge–

Kutta methods, which are summarized in Table 10.1 ([42]). In the table, the DIRK

method is taken from Table 9.8 (a) in Chapter 9 with s = 3.

Note that the Gauss methods suffer a strong loss of accuracy, obtaining only order

s + 1 at best for y (compared to 2s − 1 for ordinary differential equations), while

Radau IIA methods keep the same order for y as for solving ordinary differential

equations. The order for z is less for all methods listed, often quite substantially

less. One reason for the good performance of Radau IIA methods is that it is stiffly
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accurate, and has a high stage order (q) as well as having a good quadrature order (p).

The Lobatto IIIC method, which is stiffly accurate, also has a good order of accuracy.

One of the most popular methods for solving DAEs is the 5th-order, 3-stage

Radau IIA method (Table 9.7). This is the basis for some popular software for DAEs.

For more information, see p. 183. Numerical results for this method (with a fixed

stepsize) are shown in Figure 10.3 for the index 2 version of the spherical pendulum

problem. The slopes of the graphs are ≈ −5.01, −4.98, and −2.85 for the position,

velocity, and force components, respectively. In this version, the force component

plays the role of Z , while the position and velocity components play the role of Y .

These results seem roughly consistent with the expected fifth-order convergence of

yn to Y (t), and third-order convergence of zn to Z(t).
Some other Runge–Kutta-type methods have been developed for index 2 DAEs,

such as that proposed by Jay [51], which uses separate methods for the Y and Z
components of the solution.

10.6 INDEX THREE PROBLEMS FROM MECHANICS

Mechanics is a rich source of DAEs; the pendulum example of Figure 3.1 and (10.1)–

(10.3) is a common example. For general mechanical systems, we need a more

systematic way of deriving the equations of motion. There are two main ways of

doing this: Lagrangian mechanics and Hamiltonian mechanics. Although closely

related, they each have their own specific character. We will use the Lagrangian

approach here.

For more information about this area, which is often called analytical mechanics,

see Fowles [38] for a traditional introduction, and Arnold [4] or Marsden and Ratiu

[61] for more mathematical treatments. A comprehensive approach can be found

in Fasano and Marmi [37], which includes extensions to statistical mechanics and

continuum mechanics as well as more traditional topics.

In the Lagrangian approach to mechanics, the main variables are the generalized

coordinates q = [q1, q2, . . . , qn]T and the generalized velocities v = dq/dt. Note

that in this section q is not the stage order. The generalized coordinates can be any

convenient system of coordinates for representing the configuration of the system.

For example, for a pendulum in the plane, we could use either the angle to the vertical

θ, or x and y coordinates for the center of mass. In the latter case we will need to

include one (or more) constraints on the coordinates: g(q) = 0. Note that since the

generalized coordinates could include angles, the generalized velocity vector could

include angular velocities as well as ordinary velocities.

The function that defines the motion in Lagrangian mechanics is the Lagrangian

function L(q, v), a scalar function of the generalized coordinates and generalized

velocities. For a system with no constraints on the coordinates, we have

L(q, v) = T (q, v) − V (q),
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where T (q, v) is the kinetic energy of the system and V (q) is the potential energy of

the system. Usually the kinetic energy is quadratic in the velocity:

T (q, v) = 1
2v

TM(q) v.

Here M(q) is the mass matrix, although since v may contain quantities such as

angular as well as ordinary velocities, the entries in M(q) may include quantities

such as moments of inertia as well as ordinary masses. If we have constraints on the

coordinates1, g(q) = 0, then these constraints can be incorporated into the Lagrangian

function using Lagrange multipliers:

L(q, v, λ) = T (q, v) − V (q) − λT g(q).

The Lagrange multipliers can be regarded as generalized forces that ensure that the

constraints are satisfied. The equations of motion are obtained by means of the

Euler–Lagrange equations

0 =
d

dt
Lv(q, v) − Lq(q, v),

where Lv(q, v) is the gradient vector of L(q, v) with respect to v, and Lq(q, v) is the

gradient vector of L(q, v) with respect to q. If we have constraints g(q) = 0, the

Euler–Lagrange equations become

0 =
d

dt
Lv(q, v, λ) − Lq(q, v, λ), (10.45)

0 = g(q) = Lλ(q, v, λ). (10.46)

For the pendulum example, let us use q = [x, y]T as the position of the mass, and

v = dq/dt = [dx/dt, dy/dt]T is its velocity. The constraint is

g(q) =
1

2

(
x2 + y2 − ℓ2

)
= 0.

The kinetic energy is just the energy of a mass moving with velocity v:

T (q, v) =
1

2
m

[(
dx

dt

)2

+

(
dy

dt

)2
]
.

The potential energy is just the potential energy due to gravity: V (q) = mgy. The

Lagrangian is then

L(q, dq/dt, λ) =
m

2

((
dx

dt

)2

+

(
dy

dt

)2
)

−mgy − λ
1

2

(
x2 + y2 − ℓ2

)
.

1Here we have constraints on the generalized coordinates alone: g(q) = 0. These are called holonomic

constraints.
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The Euler–Lagrange equations are then

0 =
d

dt


m



dx

dt
dy

dt





+

[
0
mg

]
+ λ

[
x
y

]
,

0 =
1

2

(
x2 + y2 − ℓ2

)
.

This is essentially the pendulum DAE (10.1)–(10.3) rearranged.

Not only does this DAE have index 3, but all problems of this type have index 3 (or

higher). In general, for mechanical systems, the Euler–Lagrange equations become

M(q)
dv

dt
= k(q, v) −∇V (q) −∇g(q)Tλ, (10.47)

dq

dt
= v, (10.48)

0 = g(q), (10.49)

where

ki(q, v) =
1

2

n∑

j,k=1

(
∂mjk

∂qi
− ∂mij

∂qk
− ∂mik

∂qj

)
vj vk, i = 1, 2, . . . , n.

Differentiating g(q) = 0 gives ∇g(q) dq/dt = ∇g(q) v = 0; differentiating again

gives

0 = ∇q (∇g(q) v) dq
dt

+ ∇g(q) dv
dt

= ∇q (∇g(q) v) v + ∇g(q)M(q)−1
[
k(q, v) −∇V (q) −∇g(q)Tλ

]
,

which can be solved forλ in terms of q and v provided∇g(q)M(q)−1 ∇g(q)T is non-

singular. So, provided ∇g(q)M(q)−1 ∇g(q)T is nonsingular, the system (10.47)–

(10.49) is an index 3 DAE. SinceM(q) can usually be taken to be symmetric positive

definite, all that is really needed is for ∇g(q) to have full row rank (i.e., the rows of

∇g(q) should be linearly independent).

Note that we need initial conditions to be consistent; that is, g(q(t0)) = 0 and

(d/dt)g(q(t))|t=t0 = ∇g(q(t0)) v(t0) = 0.

Indeed, at every time t, we have g(q(t)) = 0 and ∇g(q(t)) v(t) = 0 for the

true solution. We can obtain the consistency condition for λ by differentiating

∇g(q(t)) v(t) = 0 once again.

10.6.1 Runge–Kutta methods for mechanical index 3 systems

Apart from the index reduction techniques introduced at the start of this chapter, we

can apply Runge–Kutta methods directly to the system (10.47)–(10.49). The Runge–

Kutta equations are even harder to solve than those for index 2 problems (the condition
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Table 10.2 Proven order of accuracy for index 3 problems of type s ≤ 3 for

(10.47)–(10.49)

Method q v λ

Radau IIA 2s − 1 s s − 1
Lobatto IIIC s + 1 s − 1 s − 2

number of the Jacobian matrix in Newton’s method grows like O(h−2)), but this can

be done provided the computed generalized coordinates qn and generalized velocities

vn are sufficiently close to being consistent (g(qn) ≈ 0 and ∇g(qn) vn ≈ 0), and the

newly computed values qn+1 and vn+1 are also close to being consistent.

The order of accuracy is still not known in general for the Gauss, Radau IIA, and

Lobatto IIIC families of Runge–Kutta methods. However, for no more than three

stages, this is known for the Radau IIA and Lobatto IIIC methods, and is given in

Table 10.2 ([42], [49]).

Again, the order of accuracy of the different components (coordinates, velocities,

and constraint forces) are different — and again the winner seems to be the Radau IIA

methods (at least up to three stages). Indeed, the three-stage Radau IIA method has

been implemented as a Fortran 77 code called Radau5, which is available from

http://www.unige.ch/˜hairer/software.html

Also available from this website is Radau, another Fortran 77 code for Radau IIA

methods that can switch between the methods of orders 5, 9, and 13 for DAEs and

stiff ODEs.

Numerical results for a fixed stepsize, three-stage Radau IIA method are shown

in Figure 10.4 for the index 3 version of the spherical pendulum problem. With

s = 3 we expect fifth-order convergence for positions, third-order convergence for

the velocities, and second-order convergence for the forces. Indeed, the slopes of the

graphs in Figure 10.4 are ≈ −4.66, −3.04, and −2.05 for the positions, velocities,

and forces, respectively. This slight drop in the slope from 5 to 4.66 for the posi-

tion errors is due mainly to the accuracy with which the Runge–Kutta equations are

solved, which limits the overall accuracy of the numerical solutions. Otherwise, the

theoretical expectations are confirmed by these numerical results.

Other approaches to Runge–Kutta methods for index 3 DAEs from mechanics can

be found in [50] for constrained Hamiltonian systems using a pair of Runge–Kutta

methods. Essentially one Runge–Kutta method is used for the momentum variables

and another for the generalized coordinate variables. The optimal choice of methods

for this approach is a combination of Lobatto IIIA and Lobatto IIIB methods.

10.7 HIGHER INDEX DAES

The theory and practice of DAEs become harder as the index increases. Beyond index

3, the complexity of establishing the order of convergence of a method (or if a method
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converges) becomes almost prohibitive for standard approaches such as Runge–Kutta

methods. Approaches to these problems can be developed by means of symbolic as

well as numerical computation. A survey of approaches to handling high-index DAEs

can be found in [26]. Software techniques such as Automatic Differentiation [29],

[69] can be used instead of symbolic computation (as carried out by MathematicaTM,

MapleTM, MacsymaTM, etc.). These approaches take us well outside the scope of this

book, but may be useful in handling problems of this kind.

PROBLEMS

1. Obtain the Radau or Radau5 code, and use it to solve the pendulum DAE

(10.4)–(10.8) as a DAE.

2. Repeat Problem 1 with the reduced index DAE (10.4)–(10.7) with the constraint

0 = xu+ yv. This is an index 2 DAE. In particular, check the drift, or how far

x2 + y2 − l2 is from zero.

3. Repeat Problem 1 with the ODE (10.13)–(10.16). As in Problem 3, check the

drift in both x2 + y2 − l2 and in xu+ yv from zero.

4. Repeat Problem 3 using the MATLAB R© routine ode23t instead of Radau or

Radau5.

5. Consider a system of chemical reactions

X + Y → Z,

Y + U ⇋ V.

Assuming that these are simple reactions, the reaction rate of the first is pro-

portional to the products of the concentrations of X and Y; that is, for the first

reaction, we obtain

d[X]

dt
= −k1[X] [Y],

d[Z]

dt
= +k1[X] [Y].

However, the second reaction is reversible:

d[V]

dt
= +k2[Y] [U] − k3[V],

d[U]

dt
= −k2[Y] [U] + k3[V].

Chemical species Y participates in both reactions:

d[Y]

dt
= +k3[V] − k1[X] [Y].
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Figure 10.5 Compound pendulum

Suppose that k2, k3 ≫ k1, enabling us to treat the second reaction as being

very nearly in equilibrium. (Mathematically, consider the limit as k2, k3 → ∞
but k2/k3 → c.) Write down the resulting system of differential and algebraic

equations (perhaps involving the initial concentrations [Y]0, [U]0, [V]0, etc.).

Show that they form an index 1 DAE.

6. Derive the equations of motion of a compound pendulum as shown in Fig-

ure 10.5 as an index 3 DAE in terms of the coordinates of the centers of masses

(x1, y1) and (x2, y2). This will entail the use of two constraints: x2
1 + y2

1 = l21
and (x2 − x1)

2
+ (y2 − y1)

2
= l22. Compare this with the same derivation

instead using just two generalized coordinates, θ1 and θ2. (Using θ1 and θ2
will give ugly expressions for the kinetic energy, but with fewer variables than

using x1, y1, x2, and y2.)



CHAPTER 11

TWO-POINT BOUNDARY VALUE

PROBLEMS

In Chapter 3 we saw that the initial value problem for the second-order equation

Y ′′ = f(t, Y, Y ′) (11.1)

can be reformulated as an initial value problem for a system of first-order equations,

and that numerical methods for first-order initial value problems can then be applied

to this system. In this chapter, we consider the numerical solution of another type of

problem for the second-order equation (11.1), one where conditions on the solution Y
are given at two distinct t values. Such a problem is called a two-point boundary value

problem (or sometimes for brevity, a BVP). For simplicity, we begin our discussion

with the following BVP for a second-order linear equation:

Y ′′(t) = p(t)Y ′(t) + q(t)Y (t) + r(t), a < t < b, (11.2)

Y (a) = g1, Y (b) = g2. (11.3)

The conditions Y (a) = g1 and Y (b) = g2 are called the boundary conditions.

Boundary conditions involving the derivative of the unknown function are also

common in applications, and we discuss them later in the chapter.

We assume the given functions p, q and r to be continuous on [a, b]. A standard

theoretical result states that if q(t) > 0 for t ∈ [a, b], then the boundary value problem

187
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(11.2)–(11.3) has a unique solution; see Keller [53, p. 11]. We will assume that the

problem has a unique smooth solution Y .

We begin our discussion of the numerical solution of BVPs by introducing a

finite-difference approximation to (11.2). Later we look at more general two-point

BVPs for the more general nonlinear second-order equation (11.1), generalizing finite-

difference approximations as well. We also introduce other numerical methods for

these nonlinear BVPs.

11.1 A FINITE-DIFFERENCE METHOD

The main feature of the finite-difference method is to obtain discrete equations by

replacing derivatives with appropriate finite divided differences. We derive a finite-

difference system for the BVP (11.2)–(11.3) in three steps.

In the first step, we discretize the domain of the problem: the interval [a, b]. Let

N be a positive integer, and divide the interval [a, b] into N equal parts:

[a, b] = [t0, t1] ∪ [t1, t2] ∪ · · · ∪ [tN−1, tN ],

where a = t0 < t1 < · · · < tN−1 < tN = b are the grid (or node) points. Denote

h = (b − a)/N , called the stepsize. Then the node points are given by

ti = a+ i h, 0 ≤ i ≤ N. (11.4)

A nonuniform partition of the interval is also possible, and in fact this is preferable if

the solution of the boundary value problem (11.2)–(11.3) changes much more rapidly

in some parts of [a, b] as compared to other parts of the interval. We restrict our

presentation to the case of uniform partitions for the simplicity of exposition. We

use the notation pi = p(ti), qi = q(ti), ri = r(ti), 0 ≤ i ≤ N , and denote yi,

0 ≤ i ≤ N , as numerical approximations of the true solution values Yi = Y (ti),
0 ≤ i ≤ N .

In the second step, we discretize the differential equation at the interior node points

t1, . . . , tN−1. For this purpose, let us note the following difference approximation

formulas

Y ′(ti) =
Yi+1 − Yi−1

2 h
− h2

6
Y (3)(ηi), (11.5)

Y ′′(ti) =
Yi+1 − 2 Yi + Yi−1

h2
− h2

12
Y (4)(ξi) (11.6)

for some ti−1 ≤ ξi, ηi ≤ ti+1, i = 1, . . . , N − 1. The errors can be obtained by

using Taylor polynomial approximations to Y (t). We leave this as an exercise for the

reader; or see [11, §5.7], [12, §5.4]. Using these relations, the differential equation at

t = ti becomes

Yi+1 − 2 Yi + Yi−1

h2
= pi

Yi+1 − Yi−1

2 h
+ qiYi + ri + O(h2). (11.7)
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Dropping the remainder term O(h2) and replacing Yi by yi, we obtain the difference

equations

yi+1 − 2 yi + yi−1

h2
= pi

yi+1 − yi−1

2 h
+ qiyi + ri, 1 ≤ i ≤ N − 1, (11.8)

which can be rewritten as

−
(
1 + 1

2hpi

)
yi−1 + (2 + h2qi)yi +

(
1
2hpi − 1

)
yi+1

= −h2ri, 1 ≤ i ≤ N − 1.
(11.9)

The third step is devoted to the treatment of the boundary conditions. The differ-

ence equations (11.9) consist ofN−1 equations forN+1 unknowns y0, y1, . . . , yN .

We need two more equations, and they come from discretization of the boundary

conditions. For the model problem (11.2)–(11.3), the discretization of the boundary

conditions is straightforward:

y0 = g1, yN = g2. (11.10)

Equations (11.9) and (11.10) together form a linear system. Since the values of

y0 and yN are explicitly given in (11.10), we can eliminate y0 and yN from the linear

system. With y0 = g1, we can rewrite the equation in (11.9) with i = 1 as

(2 + h2q1)y1 +
(

1
2hp1 − 1

)
y2 = −h2r1 +

(
1 + 1

2hp1

)
g1. (11.11)

Similarly, from the equation in (11.9) with i = N − 1, we obtain

−
(
1 + 1

2hpN−1

)
yN−2 + (2 + h2qN−1) yN−1

= −h2rN−1 +
(
1 − 1

2hpN−1

)
g2.

(11.12)

So finally, the finite-difference system for the unknown numerical solution vector

y = [y1, · · · , yN−1]
T is

Ay = b, (11.13)

where

A =




2 + h2q1
1
2hp1 − 1

−
(
1 + 1

2hp2

)
2 + h2q2

1
2hp2 − 1

. . .
. . .

2 + h2qN−2
1
2hpN−2 − 1

−
(
1 + 1

2hpN−1

)
2 + h2qN−1




is the coefficient matrix and

bi =






−h2r1 +
(
1 + 1

2hp1

)
g1, i = 1

−h2ri, i = 2, . . . , N − 2

−h2rN−1 +
(
1 − 1

2hpN−1

)
g2, i = N − 1.

(11.14)

The linear system (11.13) is tridiagonal, and the solution of tridiagonal linear

systems is a very well-studied problem. Examples of programs for the efficient

solution of tridiagonal linear systems can be found in LAPACK [3].
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Table 11.1 Numerical errors Y (x) − yh(x) for solving (11.19)

t h = 1/20 h = 1/40 Ratio h = 1/80 Ratio h = 1/160 Ratio

0.1 5.10e − 5 1.27e − 5 4.00 3.18e − 6 4.00 7.96e − 7 4.00
0.2 7.84e − 5 1.96e − 5 4.00 4.90e − 6 4.00 1.22e − 6 4.00
0.3 8.64e − 5 2.16e − 5 4.00 5.40e − 6 4.00 1.35e − 6 4.00
0.4 8.08e − 5 2.02e − 5 4.00 5.05e − 6 4.00 1.26e − 6 4.00
0.5 6.73e − 5 1.68e − 5 4.00 4.21e − 6 4.00 1.05e − 6 4.00
0.6 5.08e − 5 1.27e − 5 4.00 3.17e − 6 4.00 7.94e − 7 4.00
0.7 3.44e − 5 8.60e − 6 4.00 2.15e − 6 4.00 5.38e − 7 4.00
0.8 2.00e − 5 5.01e − 6 4.00 1.25e − 6 4.00 3.13e − 7 4.00
0.9 8.50e − 6 2.13e − 6 4.00 5.32e − 7 4.00 1.33e − 7 4.00

11.1.1 Convergence

It can be shown that if the true solution Y (t) is sufficiently smooth, say, with con-

tinuous derivatives up to order 4, then the difference scheme (11.13)–(11.14) is a

second-order method,

max
0≤i≤N

|Y (ti) − yi| = O(h2). (11.15)

For a detailed discussion, see Ascher et al. [9, p. 189]. Moreover, if Y (t) has six

continuous derivatives, the following asymptotic error expansion holds:

Y (ti) − yh(ti) = h2D(ti) + O(h4), 0 ≤ i ≤ N (11.16)

for some function D(t) independent of h. The Richardson extrapolation formula for

this case is

ỹh(ti) = 1
3 [4 yh(ti) − y2h(ti)] , (11.17)

and we have

Y (ti) − ỹh(ti) = O(h4). (11.18)

11.1.2 A numerical example

We illustrate the finite-difference approximation (11.12), the error result (11.15), and

the Richardson extrapolation results (11.16)–(11.18). The MATLAB R© codes that we

use for our calculations are given following the example.

Example 11.1 Consider the boundary value problem





Y ′′ = − 2 t

1 + t2
Y ′ + Y +

2

1 + t2
− log(1 + t2), 0 < t < 1,

Y (0) = 0, Y (1) = log(2).

(11.19)

The true solution is Y (t) = log(1+ t2). In Table 11.1, we report the finite-difference

solution errors Y − yh at selected node points for several values of h. In Table 11.2,
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Table 11.2 Extrapolation errors Y (ti) − eyh(ti) for solving (11.19)

t h = 1/40 h = 1/80 Ratio h = 1/160 Ratio

0.1 −9.23e − 09 −5.76e − 10 16.01 −3.60e − 11 16.00
0.2 −1.04e − 08 −6.53e − 10 15.99 −4.08e − 11 15.99
0.3 −6.60e − 09 −4.14e − 10 15.96 −2.59e − 11 15.98
0.4 −1.18e − 09 −7.57e − 11 15.64 −4.78e − 12 15.85
0.5 3.31e − 09 2.05e − 10 16.14 1.28e − 11 16.06
0.6 5.76e − 09 3.59e − 10 16.07 2.24e − 11 16.04
0.7 6.12e − 09 3.81e − 10 16.04 2.38e − 11 16.03
0.8 4.88e − 09 3.04e − 10 16.03 1.90e − 11 16.03
0.9 2.67e − 09 1.67e − 10 16.02 1.04e − 11 16.03

we report the errors of the extrapolated solutions Y − 1
3 (4 yh − y2 h) at the same

node points and the associated ratios of the errors for different stepsizes. The column

marked “Ratio” next to the column of the solution errors for a stepsize h consists of

the ratios of the solution errors for the stepsize 2h with those for the stepsize h. We

clearly observe an error reduction of a factor of approximately 4 when the stepsize is

halved, indicating a second-order convergence of the method as asserted in (11.15).

There is a dramatic improvement in the solution accuracy through extrapolation.

The extrapolated solution ỹh with h = 1/40 is much more accurate than the solution

yh with h = 1/160. Note that the cost of obtaining ỹh with h = 1/40 is substantially

smaller than that for yh with h = 1/160. Also observe that for the extrapolated solu-

tion ỹh, the error decreases by a factor of approximately 16 when h is halved. Indeed,

it can be shown that if the true solution Y (t) is 8 times continuously differentiable,

then we can improve the asymptotic error expansion (11.16) to

Y (ti) − yh(ti) = h2D1(ti) + h4D2(ti) + O(h6). (11.20)

Then (11.17) is replaced by

Y (ti) − ỹh(ti) = −4 h4D2(ti) + O(h6). (11.21)

Therefore, we can also perform an extrapolation procedure on ỹh to get an even more

accurate numerical solution through the following formula:

Y (ti) − 1
15 [16 ỹh(ti) − ỹ2h(ti)] = O(h6). (11.22)

As an example, at ti = 0.5, with h = 1/80, the doubly extrapolated solution has an

error approximately equal to −1.88×10−12.

MATLAB program. The following MATLAB code ODEBVP implements the differ-

ence method (11.13) for solving the problem (11.2)–(11.3).

function z = ODEBVP(p,q,r,a,b,ga,gb,N)

%
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% function z = ODEBVP(p,q,r,a,b,ga,gb,N)

%

% A program to solve the two point boundary

% value problem

% y"=p(t)y’+q(t)y+r(t), a<t<b
% y(a)=g1, y(b)=g2

% Input

% p, q, r: coefficient functions

% a, b: the end-points of the interval

% ga, gb: the prescribed function values

% at the end-points

% N: number of sub-intervals

% Output

% z = [ tt yy ]: tt is an (N+1) column vector

% of the node points

% yy is an (N+1) column vector of

% the solution values

% A sample call would be

% z=ODEBVP(’p’,’q’,’r’,a,b,ga,gb,100)

% The user must provide m-files to define the

% functions p, q, and r.

%

% The user must also supply a MATLAB program, called

% tridiag.m, for solving tridiagonal linear systems.

%

% Initialization

N1 = N+1;

h = (b-a)/N;

h2 = h*h;

tt = linspace(a,b,N1)’;

yy = zeros(N1,1);

yy(1) = ga;

yy(N1) = gb;

% Define the sub-diagonal avec, main diagonal bvec,

% superdiagonal cvec

pp(2:N) = feval(p,tt(2:N));

avec(2:N-1) = -1-(h/2)*pp(3:N);

bvec(1:N-1) = 2+h2*feval(q,tt(2:N));

cvec(1:N-2) = -1+(h/2)*pp(2:N-1);

% Define the right hand side vector fvec

fvec(1:N-1) = -h2*feval(r,tt(2:N));

fvec(1) = fvec(1)+(1+h*pp(2)/2)*ga;

fvec(N-1) = fvec(N-1)+(1-h*pp(N)/2)*gb;

% Solve the tridiagonal system

yy(2:N) = tridiag(avec,bvec,cvec,fvec,N-1,0);
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z = [tt’; yy’]’;

The following MATLAB code tridiag solves tridiagonal linear systems.

function [x, alpha, beta, message] = tridiag(a,b,c,f,n,option)

%

% function [x, alpha, beta, message] = tridiag(a,b,c,f,n,option)

%

% Solve a tridiagonal linear system M*x=f

%

% INPUT:

% The order of the linear system is given as n.

% The subdiagonal, diagonal, and superdiagonal of M are given

% by the arrays a,b,c, respectively. More precisely,

% M(i,i-1) = a(i), i=2,...,n

% M(i,i) = b(i), i=1,...,n

% M(i,i+1) = c(i), i=1,...,n-1

% option=0 means that the original matrix M is given as

% specified above.

% option=1 means that the LU factorization of M is already

% known and is stored in a,b,c. This will have been

% accomplished by a previous call to this routine. In

% that case, the vectors alpha and beta should have

% been substituted for a and b in the calling sequence.

% All input values are unchanged on exit from the routine.

%

% OUTPUT:

% Upon exit, the LU factorization of M is already known and

% is stored in alpha,beta,c. The solution x is given as well.

% message=0 means the program was completed satisfactorily.

% message=1 means that a zero pivot element was encountered

% and the solution process was abandoned. This case

% happens only when option=0.

if option == 0

alpha = a; beta = b;

alpha(1) = 0;

% Compute LU factorization of matrix M.

for j=2:n

if beta(j-1) == 0

message = 1; return

end

alpha(j) = alpha(j)/beta(j-1);

beta(j) = beta(j) - alpha(j)*c(j-1);

end
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if beta(n) == 0

message = 1; return

end

end

% Compute solution x to M*x = f using LU factorization of M.

% Do forward substitution to solve lower triangular system.

if option == 1

alpha = a; beta = b;

end

x = f; message = 0;

for j=2:n

x(j) = x(j) - alpha(j)*x(j-1);

end

% Do backward substitution to solve upper triangular system.

x(n) = x(n)/beta(n);

for j=n-1:-1:1

x(j) = (x(j) - c(j)*x(j+1))/beta(j);

end

end % tridiag

11.1.3 Boundary conditions involving the derivative

The treatment of boundary conditions involving the derivative of the unknown Y (t)
is somewhat involved. Assume that the boundary condition at t = b is

Y ′(b) + k Y (b) = g2. (11.23)

One obvious discretization is to approximate Y ′(b) by (YN − YN−1)/h. However,

Y ′(b) − YN − YN−1

h
= O(h), (11.24)

and the accuracy of this approximation is one order lower than the remainder term

O(h2) in (11.7). As a result, the corresponding difference solution with the following

discrete boundary condition

yN − yN−1

h
+ k yN = g2 (11.25)

will have an accuracy of O(h) only. To retain the second-order convergence of the

difference solution, we need to approximate the boundary condition (11.23) more

accurately. One such treatment is based on the formula

Y ′(b) =
3 YN − 4 YN−1 + YN−2

2 h
+ O(h2). (11.26)
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Then the boundary condition (11.23) is approximated by

3 yN − 4 yN−1 + yN−2

2 h
+ k yN = g2. (11.27)

It can be shown that the resulting difference scheme is again second-order accurate.

A similar treatment can be given for more general boundary conditions that involve

the derivatives Y ′(a) and Y ′(b). For a comprehensive introduction to this and to the

general subject of the numerical solution of two-point boundary value problems, see

Keller [53], Ascher et al [9], or Ascher and Petzold [10, Chap. 6].

11.2 NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS

Consider the two-point boundary value problem

Y ′′ = f(t, Y, Y ′), a < t < b,

A

[
Y (a)
Y ′(a)

]
+B

[
Y (b)
Y ′(b)

]
=

[
γ1

γ2

]
.

(11.28)

The terms A and B denote given square matrices of order 2 × 2, and γ1 and γ2 are

given constants. The theory for BVPs such as this one is more complex than that for

the initial value problem.

The theory for the nonlinear problem (11.28) is more complicated than that for the

linear problem (11.2). We give an introduction to that theory for the following more

limited problem:

Y ′′ = f(t, Y, Y ′), a < t < b, (11.29)

a0y(a) − a1y
′(a) = g1, b0y(b) + b1y

′(b) = g2 (11.30)

with {a0, a1, b0, b1, g1, g2} as given constants. The function f is assumed to satisfy

the following Lipschitz condition,

|f(t, u1, v) − f(t, u2, v)| ≤ K |u1 − u2| ,
|f(t, u, v1) − f(t, u, v2)| ≤ K |v1 − v2|

(11.31)

for all points (t, ui, v), (t, u, vi), i = 1, 2, in the region

R = {(t, u, v) | a ≤ t ≤ b, −∞ < u, v <∞} .
This is far stronger than needed, but it simplifies the statement of the following

theorem; and although we do not give it here, it also simplifies the error analysis of

numerical methods for (11.29)–(11.30).

Theorem 11.2 For the problem (11.29)–(11.30), assume f(x, u, v) to be continuous

on the region R and that it satisfies the Lipschitz condition (11.31). In addition,

assume that on R, f satisfies

∂f(x, u, v)

∂u
> 0,

∣∣∣∣
∂f(x, u, v)

∂v

∣∣∣∣ ≤M (11.32)
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for some constant M > 0. For the boundary conditions of (11.30), assume

a0a1 ≥ 0, b0b1 ≥ 0, (11.33)

|a0| + |a1| 6= 0, |b0| + |b1| 6= 0, |a0| + |b0| 6= 0.

Then the BVP (11.29)–(11.30) has a unique solution.

For a proof, see Keller [53, p. 9].

Although this theorem gives conditions for the BVP (11.29)–(11.30) to be uniquely

solvable, in fact nonlinear BVPs may be nonuniquely solvable with only a finite

number of solutions. This is in contrast to the situation for linear problems such

as (11.2)–(11.3) in which nonuniqueness always implies an infinity of solutions.

An example of such nonunique solvability for a nonlinear BVP is the second-order

problem
d

dt

[
I(t)

dY

dt

]
+ λ sin(Y ) = 0, 0 < t < 1,

Y ′(0) = Y ′(1) = 0, |Y (t)| < π,

(11.34)

which arises in studying the buckling of a vertical column when a vertical force

is applied. The unknown Y (t) is related to the displacement of the column in the

radial direction from its centerline. In the equation I(t) is a given function related

to physical properties of the column; and the parameter λ is proportional to the load

on the column. When λ exceeds a certain size, there is a solution to the problem

(11.34) other than the zero solution. As λ continues to increase, the BVP (11.34) has

an increasing number of nonzero solutions, only one of which is the correct physical

solution. For a detailed discussion of this problem, see Keller and Antman [54, p. 43].

As with the earlier material on initial value problems in Chapter 3, all boundary

value problems for higher-order equations can be reformulated as problems for sys-

tems of first-order equations. The general form of a two-point BVP for a system of

first-order equations is

Y′ = f(t,Y), a < t < b,

AY(a) +BY(b) = g.
(11.35)

This represents a system of m first-order equations. The quantities Y(t), f(t,Y),
and g are vectors with m components, and A and B are matrices of order m ×m.

There is a theory for such BVPs, analogous to that for the two-point problem (11.28),

but we omit it here because of space limitations.

In the remainder of this section, we describe briefly the principal numerical meth-

ods for solving the two-point BVP (11.28). These methods generalize to first-order

systems such as (11.35),but again, because of space limitations, we omit those results.

Much of our presentation follows Keller [53], and a theory for first-order systems is

given there. Unlike the situation with initial value problems, it is often advantageous

to directly treat higher-order BVPs rather than to numerically solve their reformula-

tion as a first-order system. The numerical methods for the two-point boundary value
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problem (11.28) are also less complicated to present, and therefore we have opted to

discuss the second-order problem (11.28) rather than the system (11.35).

11.2.1 Finite difference methods

We consider the two-point BVP:

Y ′′ = f(t, Y, Y ′), a < t < b,

Y (a) = g1, Y (b) = g2.
(11.36)

with the true solution denoted by Y (t). The boundary conditions are of the same

form as used with our earlier finite-difference approximation for the linear problem

(11.2)–(11.3). As before, in (11.4), introduce an equally spaced subdivision

a = t0 < t1 < · · · < tN = b

At each interior node point ti, 0 < i < N , we approximate Y ′′(ti) and Y ′(ti)
as in (11.5)–(11.6). Dropping the final error terms in (11.5)–(11.6) and using these

approximations in the differential equation, we are led to the approximating nonlinear

system:

yi+1 − 2yi + yi−1

h2
= f

(
ti, yi,

yi+1 − yi−1

2h

)
, i = 1, . . . , N − 1. (11.37)

This is a system ofN − 1 nonlinear equations in theN − 1 unknowns y1, . . . , yN−1;

compare with the system (11.8). The values y0 = g1 and yN = g2 are known from

the boundary conditions.

The analysis of the error in {yi} as compared to {Y (ti)} is too complicated to

be given here, because it requires methods for analyzing the solvability of systems

of nonlinear equations. In essence, if Y (t) is 4 times differentiable, if the problem

(11.36) is uniquely solvable for some region about the graph on [a, b] of Y (t), and

if f(t, u, v) is sufficiently differentiable, then there is a solution to (11.37), and it

satisfies

max
0≤i≤N

|Y (ti) − yi| = O(h2). (11.38)

For an analysis, see Keller [52, Sec. 3.2] or [53, Sec. 3.2]. Moreover, with additional

assumptions on f and the smoothness of Y , it can be shown that

Y (ti) − yi = D(ti)h
2 + O(h4) (11.39)

with D(t) independent of h. This can be used to justify Richardson extrapolation to

obtain results that converge more rapidly, just as earlier in (11.16)–(11.18). (There

are other methods for improving the convergence, based on correcting for the error

in the central difference approximations of (11.5)–(11.6); e.g., see [27], [77].)

The system (11.37) can be solved in a variety of ways, some of which are simple

modifications of Newton’s method for solving systems of nonlinear equations. We

describe here the application of the standard Newton method.
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In matrix form, we have

1

h2




−2 1 0 · · · 0

1 −2 1
...

...
. . .

1 −2 1
0 · · · 0 1 −2







y1
y2
...

yN−1




=




f

(
t1, y1,

1

2h
(y2 − g1)

)

f

(
t2, y2,

1

2h
(y3 − y1)

)

...

f

(
tN−1, yN−1,

1

2h
(g2 − yN−2)

)




−




g1
h2

0
...
g2
h2



,

which we denote by

1

h2
Ty = f̂(y) + g. (11.40)

The matrix T is both tridiagonal and nonsingular (see Problem 14). As was discussed

earlier for the solution of (11.13) for the linear BVP (11.2)–(11.3), tridiagonal linear

systems Tz = b are easily solvable. This can be used to show that (11.40) is solvable

for all sufficiently small values of h; moreover, the solution is unique in a region of

R
N−1 corresponding to some neighborhood of the graph of the solution Y (t) for the

original BVP (11.36). Newton’s method (see [11, §2.11]) for solving (11.40) is given

by

y(m+1) = y(m) −
[

1

h2
T − F (y(m))

]−1 [
1

h2
Ty(m) − f̂ (y(m)) − g

]
(11.41)

with F the Jacobian matrix for f̂ ,

F (y) =

[
∂f̂i

∂yj

]

i,j=1,...,N−1

This matrix simplifies considerably because of the special form of f̂ (y),

[F (y)]ij =
∂

∂yj
f

(
ti, yi,

1

2h
(yi+1 − yi−1)

)
.
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This is zero unless j = i− 1, i, or i+ 1:

[F (y)]ii = f2

(
ti, yi,

1

2h
(yi+1 − yi−1)

)
, 1 ≤ i ≤ N − 1,

[F (y)]i,i−1 =
−1

2h
f3

(
ti, yi,

1

2h
(yi+1 − yi−1)

)
, 2 ≤ i ≤ N − 1,

[F (y)]i,i+1 =
1

2h
f3

(
ti, yi,

1

2h
(yi+1 − yi−1)

)
, 1 ≤ i ≤ N − 2

with f2(t, u, v) and f3(t, u, v) denoting partial derivatives of f with respect to u and

v, respectively. Thus the matrix being inverted in (11.41) is tridiagonal. Letting

Bm =
1

h2
T − F (y(m)), (11.42)

we can rewrite (11.41) as

y(m+1) = y(m) − δ
(m),

Bmδ
(m) =

1

h2
Ty(m) − f(y(m)) − g.

(11.43)

This linear system is easily and rapidly solvable, for example, using the MATLAB

code of Subsection 11.1.2. The number of multiplications and divisions can be shown

to equal approximately 5N ,a relatively small number of operations for solving a linear

system of N − 1 equations. Additional savings can be made by not varying Bm or

by changing it only after several iterations of (11.43). For an extensive survey and

discussion of the solution of nonlinear systems that arise in connection with solving

BVPs, see Deuflhard [32].

Example 11.3 Consider the two-point BVP:

Y ′′ = −y +
2(Y ′)2

Y
, −1 < x < 1,

Y (−1) = Y (1) = (e+ e−1)−1 .
= 0.324027137.

(11.44)

The true solution is Y (t) = (et + e−t)−1. We applied the preceding finite-difference

procedure (11.37) to the solution of this BVP. The results are given in Table 11.3 for

successive doublings ofN = 2/h. The nonlinear system in (11.37) was solved using

Newton’s method, as described in (11.43). The initial guess was

y
(0)
h (xi) = (e+ e−1)−1, i = 0, 1, . . . , N,

based on connecting the boundary values by a straight line. The quantity

dh = max
0≤i≤N

∣∣∣y(m+1)
i − y

(m)
i

∣∣∣
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Table 11.3 Finite difference method for solving (11.44)

N = 2/h Eh Ratio

4 2.63e − 2

8 5.87e − 3 4.48

16 1.43e − 3 4.11

32 3.55e − 4 4.03

64 8.86e − 5 4.01

was computed for each iterate, and when the condition

dh ≤ 10−10

was satisfied, the iteration was terminated. In all cases, the number of iterates com-

puted was 5 or 6. For the error, let

Eh = max
0≤i≤N

|Y (xi) − yh(xi)|

with yh the solution of (11.37) obtained with Newton’s method. According to (11.38)

and (11.39), we should expect the valuesEh to decrease by a factor of approximately

4 when h is halved, and that is what we observe in the table.

Higher-order methods can be obtained in several ways.

1. Using higher-order approximations to the derivatives, improving (11.5)–(11.6).

2. Using Richardson extrapolation based on (11.39), as was done in Subsection

11.1.1 for the linear BVP (11.2)–(11.3). Richardson extrapolation can be used

repeatedly to obtain methods of increasingly higher-order. This was discussed

in Subsection 11.1.2, yielding the formulas (11.20)–(11.22) for extrapolating

twice.

3. The truncation errors in (11.5)–(11.6) can be approximated with higher-order

differences using the calculated values of yh. Using these values as corrections

in (11.37), we can obtain a new, more accurate approximation to the differential

equation in (11.36), leading to a more accurate solution. This is sometimes

called the method of deferred corrections; for more recent work, see [27], [77].

All of these techniques have been used, and some have been implemented as quite

sophisticated computer codes.
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11.2.2 Shooting methods

Another popular approach to solving a two-point BVP is to reduce it to a problem

in which a program for solving initial value problems can be used. We now develop

such a method for the BVP (11.29)–(11.30).

Consider the initial value problem

Y ′′ = f(t, Y, Y ′), a < t < b,

Y (a) = a1s− c1g1 Y ′(a) = a0s− c0g1,
(11.45)

depending on the parameter s, where c0 and c1 are arbitrary (user chosen) constants

satisfying

a1c0 − a0c1 = 1.

Denote the solution of (11.45) by Y (t; s). Then it is a straightforward calculation

using the initial condition in (11.45) to show that

a0Y (a; s) − a1Y
′(a; s) = g1

for all s for which Y exists. This shows that Y (t; s) satisfies the first boundary

condition in (11.30).

Since Y is a solution of (11.29), all that is needed for it to be a solution of the

BVP (11.29)–(11.30) is to have it satisfy the remaining boundary condition at b. This

means that Y (t; s) must satisfy

ϕ(s) ≡ b0Y (b; s) + b1Y
′(b; s) − g2 = 0. (11.46)

This is a nonlinear equation for s. If s∗ is a root of ϕ(s), then Y (t; s∗) will satisfy the

BVP (11.29)–(11.30). It can be shown that under suitable assumptions on f and its

boundary conditions, equation (11.46) will have a unique solution s∗; see Keller [53,

p. 9]. We can use a rootfinding method for nonlinear equations to solve for s∗. This

way of finding a solution to a BVP is called a shooting method. The name comes

from ballistics, in which one attempts to determine the needed initial conditions at

t = a in order to obtain a certain value at t = b.
Most rootfinding methods can be applied to solving ϕ(s) = 0. Each evaluation

of ϕ(s) involves the solution of the initial value problem (11.45) over [a, b], and

consequently, we want to minimize the number of such evaluations. As a specific

example of an important and rapidly convergent method,we look at Newton’s method:

sm+1 = sm − ϕ(sm)

ϕ′(sm)
, m = 0, 1, . . . . (11.47)

To calculate ϕ′(s), differentiate the definition (11.46) to obtain

ϕ′(s) = b0ξs(b) + b1ξ
′
s(b), (11.48)

where

ξs(t) =
∂Y (t; s)

∂s
. (11.49)
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To find ξs(t), differentiate the equation

Y ′′(t; s) = f(t, Y (t; s), Y ′(t; s))

with respect to s. Then ξs satisfies the initial value problem

ξ′′s (t) = f2(t, Y (t; s), Y ′(t; s))ξs(t) + f3(t, Y (t; s), Y ′(t; s))ξ′s(t), (11.50)

ξs(a) = a1, ξ′s(a) = a0.

The functions f2 and f3 denote the partial derivatives of f(t, u, v) with respect to u
and v, respectively. The initial values are obtained from those in (11.45) and from

the definition of ξs.

In practice, we convert the problems (11.45) and (11.50) to a system of four

first-order equations with the unknowns Y , Y ′, ξs, and ξ′s. This system is solved

numerically, say, with a method of order p and stepsize h. Let yh(t; s) denote the

approximation to Y (t; s) with a similar notation for the remaining unknowns. From

earlier results for solving initial value problems, it can be shown that these approximate

solutions will be in error by O(hp). With suitable assumptions on the original problem

(11.29)–(11.30), it can then be shown that the root s∗h obtained will also be in error

by O(hp) and similarly for the approximate solution yh(t; s∗h) when compared to the

solution Y (t; s∗) of the boundary value problem. For details of this analysis, see

Keller [53, pp. 47–54].

Example 11.4 We apply the preceding shooting method to the solution of the BVP

(11.45), used earlier to illustrate the finite-difference method. The initial value prob-

lem (11.35) for the shooting method is

Y ′′ = −Y +
2(Y ′)2

Y
, −1 < x ≤ 1,

Y (−1) = (e+ e−1)−1, Y ′(−1) = s.
(11.51)

The associated problem (11.50) for ξs(x) is

ξ
′′

s =

[
−1 − 2

(
Y ′

Y

)2
]
ξs + 4

Y ′

Y
ξ′s,

ξs(−1) = 0, ξ′s(−1) = 1.

(11.52)

The equation for ξ′′s uses the solution Y (x; s) of (11.51). The function ϕ(s) for

computing s∗ is given by

ϕ(s) ≡ Y (1; s) − (e+ e−1)−1.

For use in defining Newton’s method, we have

ϕ′(s) = ξs(1).
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Table 11.4 Shooting method for solving (11.44)

n = 2/h s∗ − s∗h Ratio Eh Ratio

4 4.01e − 3 2.83e − 2

8 1.52e − 3 2.64 7.30e − 3 3.88

16 4.64e − 4 3.28 1.82e − 3 4.01

32 1.27e − 4 3.64 4.54e − 4 4.01

64 3.34e − 5 3.82 1.14e − 4 4.00

From the true solution Y of (11.44) and the condition y′(−1) = s in (11.51), the

desired root s∗ of ϕ(s) is simply

s∗ = Y ′(−1) =
e− e−1

(e+ e−1)2
.
= 0.245777174.

To solve the initial value problem (11.51)–(11.52), we use a second-order Runge–

Kutta method, such as (5.21), with a stepsize of h = 2/n. The results for several

values of n are given in Table 11.4. The solution of (11.52) is denoted by yh(t; s),
and the resulting root for

ϕh(s) ≡ yh(1; s) − (e+ e−1)−1 = 0

is denoted by s∗h. For the error in yh(t; s∗h), let

Eh = max
0≤i≤n

|Y (ti) − yh(ti; s
∗
h)| ,

where {ti} are the node points used in solving the initial value problem. The columns

labeled “Ratio” give the factors by which the errors decreased whennwas doubled (or

h was halved). Theoretically these factors should approach 4 since the Runge–Kutta

method has an error of O(h2). Empirically, the factors approach 4.0, as expected.

For the Newton iteration (11.47), s0 = 0.2 was used in each case. The iteration was

terminated when the test

|sm+1 − sm| ≤ 10−10

was satisfied. With these choices, the Newton method needed six iterations in each

case, except that of n = 4 (when seven iterations were needed). However, if s0 = 0
was used, then 25 iterations were needed for the n = 4 case, showing the importance

of a good choice of the initial guess s0.

A number of problems can arise with the shooting method. First, there is no general

guess s0 for the Newton iteration, and with a poor choice, the iteration may diverge.

For this reason, a modified Newton method may be needed to force convergence. A

second problem is that the choice of yh(t; s) may be very sensitive to h, s, and other

characteristics of the boundary value problem. For example, if the linearization of
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the initial value problem (11.45) has large positive eigenvalues, then the choice of

Y (t; s) is likely to be sensitive to variations in s. For a thorough discussion of these

and other problems, see Keller [53, Chap. 2], Ascher et al. [9], or Ascher and Petzold

[10, Chap. 7]. Some of these problems are more easily examined for linear BVPs, as

is done in Keller [53, Chap. 2].

11.2.3 Collocation methods

To simplify the presentation, we again consider only the differential equation

Y ′′ = f(t, Y, Y ′), a < t < b. (11.53)

Further simplifying the BVP, we consider only the homogeneousboundary conditions

Y (a) = 0, Y (b) = 0. (11.54)

It is straightforward to modify the nonhomogeneous boundary conditions of (11.36)

to obtain a modified BVP having homogeneous boundary conditions; see Problem 16.

The collocation methods are much more general than indicated by solving (11.53)–

(11.54), but the essential ideas are more easily understood in this context.

We assume that the solution Y (t) of (11.53)–(11.54) is approximable by a linear

combination of n given functions ψ1(t), . . . , ψn(t),

Y (x) ≈ yn(x) =

n∑

j=1

cjψj(t), a ≤ x ≤ b. (11.55)

The functions ψj(t) are all assumed to satisfy the boundary conditions

ψj(a) = ψj(b) = 0, j = 1, . . . , n, (11.56)

and thus any linear combination (11.55) will also satisfy the boundary conditions. The

coefficients c1, . . . , cn are determined by requiring the differential equation (11.53)

to be satisfied exactly at n preselected points in (a, b),

y′′n(ξi) = f(ξi, yn(ξi), y
′
n(ξi)) , i = 1, . . . , n (11.57)

with given points

a < ξ1 < ξ2 < · · · < ξn < b. (11.58)

The procedure of defining yn(t) implicitly through (11.57) is known as collocation,

and the points {ξi} are called collocation points.

Substituting from (11.55) into (11.57), we obtain

n∑

j=1

cjψ
′′
j (ξi) = f


ξi,

n∑

j=1

cjψj(ξi),

n∑

j=1

cjψ
′
j(ξi)


 , (11.59)
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for i = 1, . . . , n. This is a system of n nonlinear equations in the n unknowns

c1, . . . , cn. In general, this system must be solved numerically, as is done with the

finite-difference approximation (11.37) discussed earlier in Section 11.2.1.

In choosing a collocation method, we must do the following.

1. Choose the family of approximating functions {ψ1(t), . . . , ψn(t)}, including

the requirement (11.56) for the endpoint boundary conditions.

2. Choose the collocation node points {ξi} of (11.58).

3. Choose a way to solve the nonlinear system (11.59). Included in this is choosing

an initial guess for the method of solving the nonlinear system, and this may

be difficult to find.

For a general survey of this area, see the text by Ascher et al. [9]; for collocation

software, see [6], [7].

We describe briefly a particular collocation method that has been implemented as

a high quality computer code. Let m > 0, h = (b− a) /m, and define breakpoints

{tj} by

tj = a+ jh, j = 0, 1, . . . ,m.

Consider all functions p(t) that satisfy the following conditions:

• p(t) is continuously differentiable for a ≤ t ≤ b.

• p(a) = p(b) = 0.

• On each subinterval [tj−1, tj ], p(t) is a polynomial of degree ≤ 3.

We use these functions as our approximations yn(t) in (11.57). There are a number of

ways to write yn(t) in the form of (11.55), with n = km. A good way to choose the

functions {ψj(t)} is to use the standard basis functions for cubic Hermite interpolation

on each subinterval [tj−1, tj ]; see [11, p. 162].

For the collocation points, let ρ1 = −1/
√

3, ρ2 = 1/
√

3, which are the zeros of

the Legendre polynomial of degree 2 on [−1, 1]. Using these, define

ξi,j = 1
2 (ti−1 + ti) + 1

2hρj , j = 1, 2, i = 1, . . . ,m.

This defines n = 2m points ξi,j , and these will be the collocation points used in

(11.57).

With this choice for yn(t) and {ξi,j}, and assuming sufficient differentiability and

stability in the solvability of the BVP (11.53)–(11.54), it can be shown that yn(t)
satisfies the following:

max
a≤t≤b

|Y (t) − yn(t)| = O
(
h4
)
.

An extensive discussion and generalizations of this method are given in [9].
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11.2.4 Other methods and problems

Yet another approach to solving a boundary value problem is to solve an equiva-

lent reformulation as an integral equation. There is much less development of such

numerical methods, although they can be very effective in some situations. For an

introduction to this approach, see Keller [53, Chap. 4].

There are also many other types of boundary value problems, some containing

certain types of singular behavior, that we have not discussed here. An excellent

general reference is the book by Ascher, Mattheij, and Russell [9]. In addition, see

the research papers in the proceedings of Ascher and Russell [8], Aziz [13], Childs

et al. [28], and Gladwell and Sayers [41]; see also Keller [52, Chap. 4] for singular

problems. For discussions of software, see Childs et al. [28], Gladwell and Sayers

[41], and Enright [35].

PROBLEMS

1. In general, study of existence and uniqueness of a solution for boundary value

problems is more complicated. Consider the boundary value problem

{
Y ′′(t) = 0, 0 < t < 1,
Y ′(0) = g1, Y

′(1) = g2.

Show that the problem has no solution if g1 6= g2, and infinitely many solutions

when g1 = g2.

Hint: For the case g1 6= g2, integrate the differential equation over [0, 1].

2. As another example of solution non-uniqueness, verify that for any constant c,
Y (t) = c sin(t) solves the boundary value problem

{
Y ′′(t) + Y (t) = 0, 0 < t < π,
Y (0) = Y (π) = 0.

3. Verify that any function of the form Y (t) = c1e
t + c2e

−t satisfies the equation

Y ′′(t) − Y (t) = 0.

Determine c1 and c2 for the function Y (t) to satisfy the following boundary

conditions:

(a) Y (0) = 1, Y (1) = 0.

(b) Y (0) = 1, Y ′(1) = 0.

(c) Y ′(0) = 1, Y (1) = 0.

(d) Y ′(0) = 1, Y ′(1) = 0.

4. Assume that Y is 3 times continuously differentiable. Use Taylor’s theorem to

prove the formula (11.26).
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5. Prove the formula (11.18) by using the asymptotic expansion (11.16).

6. Use the asymptotic error formula (11.16) with D(t) twice continuously differ-

entiable to show

Y ′′(ti) −
1

h2
[yh(ti+1) − 2yh(ti) + yh(ti−1)] = O

(
h2
)
, 1 ≤ i ≤ N − 1.

In other words, the second-order centered divided difference of the numerical

solution is a second-order approximation of the second derivative of the true

solution at any interior node point.

7. Verify that any function of the form Y (t) = c1
√
t+ c2t

4 satisfies the equation

t2Y ′′(t) − 7
2 tY

′(t) + 2Y (t) = 0.

Determine the solution of the equation with the boundary conditions

Y (1) = 1, Y (4) = 2.

Use the MATLAB program ODEBVP to solve the boundary value problem for

h = 0.1, 0.05, 0.025, and print the errors of the numerical solutions at t = 1.2,

1.4, 1.6, 1.8. Comment on how errors decrease when h is halved. Do the same

for the extrapolated solutions.

8. The general solution of the equation

t2Y ′′ − t (t+ 2)Y ′ + (t+ 2)Y = 0

isY (t) = c1t+c2te
t. Determine the solution of the equation with the boundary

conditions

Y (1) = e, Y (2) = 2 e2.

Use the MATLAB program ODEBVP to solve the boundary value problem for

h = 0.1, 0.05, 0.025, print the errors of the numerical solutions at t = 1.2, 1.4,

1.6 and 1.8. Comment on how errors decrease when h is halved. Do the same

for the extrapolated solutions.

9. The general solution of the equation

t Y ′′ − (2 t+ 1)Y ′ + (t+ 1)Y = 0

is Y (t) = c1e
t + c2t

2et. Find the solution of the equation with the boundary

conditions

Y ′(1) = 0, Y (2) = e2.

Write down a formula for a discrete approximation of the boundary condition

Y ′(1) = 0 similar to (11.27), which has an accuracy O(h2). Implement the

method by modifying the programODEBVP, and solve the problem withh= 0.1,

0.05, 0.025. Print the errors of the numerical solutions at t = 1, 1.2, 1.4, 1.6,
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1.8, and comment on how errors decrease when h is halved. Do the same for

the extrapolated solutions.

10. Consider the boundary value problem (11.2) with p, q, and r constant. Modify

the MATLAB program so that the command feval does not appear. Use the

modified program to solve the following boundary value problem.

(a)
Y ′′ = −Y, 0 < t < π

2 ,

Y (0) = Y
(

1
2π
)

= 1.

The true solution is Y (t) = sin t+ cos t.

(b)
Y ′′ + Y = sin t, 0 < t < π

2 ,

Y (0) = Y
(

1
2π
)

= 0.

The true solution is Y (t) = − 1
2 t cos t.

11. Give a second-order scheme for the following boundary value problem.

Y ′′ = sin (tY ′) + 1, 0 < t < 1,

Y (0) = 0, Y (1) = 1.

12. Consider modifying the material of Section 11.1 to solve the BVP

Y ′′(t) = p(t)Y ′(t) + q(t)Y (t) + r(t), a < t < b,

Y (a) = g1, Y ′(b) + k Y (b) = g2.

Do so with the first-order approximation given in (11.25). Give the analogs of

the results (11.8)–(11.14).

13. Continuing with the preceding problem, modify ODEBVP to handle this new

boundary condition. Apply it to the boundary value problem





Y ′′ = − 2 t

1 + t2
Y ′ + Y +

2

1 + t2
− log(1 + t2), 0 < t < 1,

Y (0) = 0, Y ′(1) + Y (1) = 1 + log(2).

The true solution is Y (t) = log(1+t2), just as with the earlier example (11.19).

Repeat the calculations leading to Table 11.1. Check the assertion on the order

of convergence given in Section 11.1.3 in the sentence containing (11.25).

14. Consider showing that the tridiagonal matrix T of (11.40) is nonsingular. For

simplicity, denote its order by m × m. To show that T is nonsingular, it is

sufficient to show that the only solution x ∈ R
m of the homogeneous linear

system Tx = 0 is the zero solution x = 0. Let c = max1≤j≤m |xj |. We want
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to show c = 0. Begin by assuming the contrary, namely that c > 0. Write the

individual equations in the system Tx = 0. In particular, consider an equation

corresponding to a component of x that has magnitude c (of which there must

be at least one), and denote its index by k. Assume initially that 1 < k < m.

Show from equation k that xk+1 and xk−1 must also have magnitude c. By

induction, show that all components must have magnitude c; and then show

from the first or last equation that this leads to a contradiction.

15. For each of the following BVPs for a second-order differential equation, con-

sider converting it to an equivalent BVP for a system of first-order equations,

as in (11.35). What are the matrices A and B of (11.35)?

(a) The linear BVP (11.2)–(11.3).

(b) The nonlinear BVP of (11.44).

(c) The nonlinear BVP (11.29)–(11.30).

(d) The following system of second-order equations: for 0 < t < 1,

mx′′(t) =
cx(t)

(x(t)2 + y(t)2)
3/2

, my′′(t) =
cy(t)

(x(t)2 + y(t)2)
3/2

,

with the boundary conditions

x(0) = x(1), y(0) = y(1),
x′(0) = x′(1), y′(0) = y′(1).

16. Consider converting nonzero boundary conditions to zero boundary conditions.

(a) Consider the two-point boundary value problem (11.36). To convert this

to an equivalent problem with zero boundary conditions, write Y (x) =
z(x) +w(x) with w(x) a straight line satisfying the following boundary

conditions: w(a) = γ1, w(b) = γ2. Derive a new boundary value

problem for z(x).

(b) Generalize this procedure to problem (11.29). Obtain a new problem with

zero boundary conditions. What assumptions, if any, are needed for the

coefficients a0, a1, b0, and b1?

17. Using the shooting method of Subsection 11.2.2, solve the following boundary-

value problems. Study the convergence rate as h is varied.

(a) Y ′′ = − 2

x
Y Y ′, 1 < x < 2; Y (1) = 1

2 , Y (2) = 2
3 .

True solution: Y (x) = x/(1 + x).

(b) Y ′′ = 2Y Y ′, 0 < x < 1
4π; Y (0) = 0, Y

(
1
4π
)

= 1.

True solution: Y (x) = tan(x).





CHAPTER 12

VOLTERRA INTEGRAL EQUATIONS

In earlier chapters the initial value problem

Y ′(s) = f(s, Y (s)), t0 ≤ s ≤ b,

Y (t0) = Y0

was reformulated using integration. In particular, by integrating over the interval

[t0, t], we obtain

Y (t) = Y0 +

∫ t

t0

f(s, Y (s)) ds, t0 ≤ t ≤ b.

This is an integral equation of Volterra type. Motivated in part by this reformulation,

we consider now the integral equation

Y (t) = g(t) +

∫ t

0

K(t, s, Y (s)) ds, 0 ≤ t ≤ T. (12.1)

In this equation, the functions K(t, s, u) and g(t) are given; the function Y (t) is

unknown and is to be determined on the interval 0 ≤ t ≤ T . This equation is called

211
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a Volterra integral equation of the second kind. Such integral equations occur in

a variety of physical applications, and few of them can be reformulated easily as

differential equation initial value problems. However, the numerical methods for

such equations are linked to those for the initial value problem, and we consider such

methods in this chapter.

12.1 SOLVABILITY THEORY

We begin by discussing some of the theory behind such equations, beginning with

the linear equation

Y (t) = g(t) +

∫ t

0

K(t, s)Y (s) ds, 0 ≤ t ≤ T. (12.2)

The functionK(t, s) is called the “kernel function” of the integral operator, or simply

the “kernel”. An important theoretical tool for studying this equation is the use of

“successive approximations” or “Picard iteration”.

As an initial estimate of the solution, chooseY0(t) ≡ g(t). Then define a sequence

of iterates {Yℓ(t)} by

Yℓ+1(t) = g(t) +

∫ t

0

K(t, s)Yℓ(s) ds, 0 ≤ t ≤ T

for ℓ = 0, 1, . . . To develop some intuition, we calculate Y2(t):

Y2(t) = g(t) +

∫ t

0

K(t, s)Y1(s) ds

= g(t) +

∫ t

0

K(t, s)

[
g(s) +

∫ s

0

K(s, v) g(v) dv

]
ds

= g(t) +

∫ t

0

K(t, s) g(s) ds

+

∫ t

0

K(t, s)

∫ s

0

K(s, v) g(v) dv ds. (12.3)

We then introduce a change in the order of integration,

∫ t

0

∫ s

0

K(t, s)K(s, v) g(v) dv ds

=

∫ t

0

g(v)

∫ t

v

K(t, s)K(s, v) ds dv.

(12.4)

and define

K2(t, v) =

∫ t

v

K(t, s)K(s, v) ds, 0 ≤ v ≤ t ≤ T.
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Then (12.3) becomes

Y2(t) = g(t) +

∫ t

0

K(t, s) g(s) ds+

∫ t

0

K2(t, v) g(v) dv.

This can be continued inductively to give

Yℓ(t) = g(t) +

ℓ∑

j=1

∫ t

0

Kj(t, s) g(s) ds (12.5)

for ℓ = 1, 2, . . . The kernel functions Kj are defined by

K1(t, s) = K(t, s) ,

Kj(t, s) =

∫ t

s

K(t, u)Kj−1(u, s) du, j = 2, 3, . . . . (12.6)

Much of the theory of solvability of the integral equation (12.2) can be developed by

looking at the limit of (12.5) as ℓ→ ∞. This, in turn, requires an examination of the

kernel functions {Kj(t, s)}∞j=1. Doing so yields the following theorem.

Theorem 12.1 Assume that K(t, s) is continuous for 0 ≤ s ≤ t ≤ T , and that g(t)
is continuous on [0, T ]. Then (12.2) has a unique continuous solution Y (t) on [0, T ],
and

|Y (t)| ≤ eBt max
0≤s≤t

|g(s)| , (12.7)

where B = max0≤s≤t≤T |K(t, s)|.

Some details of the proof are taken up in the problems.

A related approach can be used to prove the following theorem for the fully non-

linear equation (12.1). The Picard iteration is now

Yℓ+1(t) = g(t) +

∫ t

0

K(t, s, Yℓ(s)) ds, 0 ≤ t ≤ T

for ℓ = 0, 1, . . .

Theorem 12.2 Assume that the functionK(t, s, u) satisfies the following two condi-

tions:

(a) K(t, s, u) is continuous for 0 ≤ s ≤ t ≤ T and −∞ < u <∞.
(b) K(t, s, u) satisfies a Lipschitz condition,

|K(t, s, u1) −K(t, s, u2)| ≤ c |u1 − u2| , 0 ≤ s ≤ t ≤ T

for all −∞ < u1, u2 <∞, with some c > 0.

Assume further that g(t) is continuous on [0, T ]. Then equation (12.1) has a unique

continuous solution Y (t) on the interval [0, T ]. In addition,

|Y (t)| ≤ ect max
0≤s≤t

|g(s)| . (12.8)
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For a proof, see Linz [59, Chap. 4].

As with differential equations, it is important to examine the stability of the solution

Y (t) with respect to changes in the data of the equation, K and g. We consider only

the perturbation of the linear equation (12.2) by changing g(t) to g(t) + ε(t). Let

Y (t; ε) denote the solution of the perturbed equation,

Y (t; ε) = g(t) + ε(t) +

∫ t

0

K(t, s)Y (s; ε) ds, 0 ≤ t ≤ T. (12.9)

Subtracting (12.2), we have

Y (t; ε) − Y (t) = ε(t)

+

∫ t

0

K(t, s) [Y (s; ε) − Y (s)] ds, 0 ≤ t ≤ T.
(12.10)

Applying (12.7) from Theorem 12.1, we have

|Y (t; ε) − Y (t)| ≤ eBt max
0≤s≤t

|ε(s)| . (12.11)

This shows stability of the solution with respect to perturbations in the function g
in (12.2). This is a conservative estimate because the multiplying factor eBt increases

very rapidly with t. The analysis of stability can be improved by examining (12.10)

in greater detail, just as was done for differential equations in (1.16) of Section 1.2.

We can also generalize these results to the nonlinear equation (12.1); see [59], [64].

12.1.1 Special equations

A model equation for studying the numerical solution of (12.1) is the simple linear

equation

Y (t) = g(t) + λ

∫ t

0

Y (s) ds, t ≥ 0. (12.12)

This can be reformulated as the initial value problem

Y ′(t) = λY (t) + g′(t), t ≥ 0, (12.13)

Y (0) = g(0),

which is the model equation used in earlier chapters for studying numerical methods

for solving the initial value problem for ordinary differential equations. Using the

solution of this simple linear initial value problem leads to

Y (t) = g(t) + λ

∫ t

0

eλ(t−s)g(s) ds, t ≥ 0. (12.14)

Recall from (1.20) of Section 1.2 that, usually, (12.13) is considered stable for λ < 0
and is considered unstable for λ > 0. Thus the same is true of the Volterra equation

(12.12).
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As another model Volterra integral equation, consider

Y (t) = g(t) + λ

∫ t

0

eβ(t−s)Y (s) ds, t ≥ 0. (12.15)

This can be reduced to the form of (12.12), and this leads to the solution

Y (t) = g(t) + λ

∫ t

0

e(λ+β)(t−s)g(s) ds, t ≥ 0. (12.16)

Equations of the form

Y (t) = g(t) + λ

∫ t

0

K(t− s)Y (s) ds, t ≥ 0 (12.17)

are said to be of ‘convolution type’, and the Laplace transform can often be used to

obtain a solution. Discussion of the Laplace transform and its application in solving

differential equations can be found in most undergraduate textbooks on ordinary

differential equations; for example, see [16]. Let K̂(τ) denote the Laplace transform

of K(t), and let L(t;λ) denote the inverse Laplace transform of

K̂(τ)

1 − λK̂(τ)
.

The solution of (12.17) is given by

Y (t) = g(t) + λ

∫ t

0

L(t− s;λ) g(s) ds, t ≥ 0. (12.18)

Both (12.12) and (12.15) are special cases of (12.17).

12.2 NUMERICAL METHODS

Numerical methods for solving the Volterra integral equation

Y (t) = g(t) +

∫ t

0

K(t, s, Y (s)) ds, 0 ≤ t ≤ T (12.19)

are similar to numerical methods for the initial value problem for ordinary differential

equations. A set of grid points {ti : i = 0, 1, . . . } is chosen, and an approximation to

{Y (ti) : i = 0, 1, . . .} is computed in a step-by-step procedure. For simplicity, we

use an equally spaced grid,

ti = ih, i = 0, 1, . . . , Nh,

where hNh ≤ T and h (Nh + 1) > T . To aid in developing some intuition for

this topic, we begin with an important special case, the trapezoidal method. Later

a general scheme is given for the numerical approximation of (12.19). As with

numerical methods for ordinary differential equations, let yn denote an approximation

of Y (tn). From (12.19), take y0 = Y (0) = g(0).
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12.2.1 The trapezoidal method

For n > 0, write

Y (tn) = g(tn) +

∫ tn

0

K(tn, s, Y (s)) ds.

Using the trapezoidal numerical integration rule, we obtain

∫ tn

0

K(tn, s, Y (s)) ds ≈ h

n∑

j=0

′′

K(tn, tj , Y (tj)) . (12.20)

In this formula, the double-prime superscript indicates that the first and last terms

should be halved before being summed. Using this approximation leads to the nu-

merical formula

Y (tn) ≈ g(tn) + h

n∑

j=0

′′

K(tn, tj , Y (tj)) ,

yn = g(tn) + h

n∑

j=0

′′

K(tn, tj , yj) , n = 1, 2, . . . , Nh. (12.21)

This equation defines yn implicitly, as earlier with the trapezoidal rule (4.22) of

Section 4.2 for the initial value problem. Also, as before, when h is sufficiently small,

this can be solved for yn by simple fixed point iteration,

y
(k+1)
n = g(t) +

h

2
K(tn, t0, y0)

+h
n−1∑

j=1

K(tn, tj , yj) +
h

2
K
(
tn, tn, y

(k)
n

)
, k = 0, 1, . . .

(12.22)

with some given y
(0)
n . Newton’s method and other rootfinding methods can also be

used. A MATLAB R© program implementing (12.21)–(12.22) is given at the end of

the section.

Example 12.3 Consider solving the equation

Y (t) = cos t−
∫ t

0

Y (s) ds, t ≥ 0 (12.23)

with the true solution

Y (t) =
1

2

(
cos t− sin t+ e−t

)
, t ≥ 0.

Equation (12.23) is the model equation (12.12) with λ = −1 and g(t) = cos t.
Numerical results for the use of (12.21) are shown in Table 12.1 for varying stepsizes

h. It can be seen that the error at each value of t is of size O
(
h2
)
.
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Table 12.1 Numerical results for solving (12.23) using the trapezoidal method (12.21)

Error

t h = 0.2 Ratio h = 0.1 Ratio h = 0.05

0.8 1.85e − 4 4.03 4.66e − 5 4.01 1.17e − 5
1.6 9.22e − 4 4.03 2.31e − 4 4.01 5.77e − 5
2.4 1.74e − 3 4.03 4.36e − 4 4.01 1.09e − 4
3.2 1.95e − 3 4.03 4.88e − 4 4.01 1.22e − 4
4.0 1.25e − 3 4.04 3.11e − 4 4.01 7.76e − 5

12.2.2 Error for the trapezoidal method

To build some intuition for the behaviour of (12.21), we consider first the linear case

(12.2),

yn = g(tn) + h

n∑

j=0

′′

K(tn, tj) yj , n = 1, 2, . . . , Nh. (12.24)

Rewrite the original equation (12.2) using the trapezoidal numerical integration rule

with its error formula,

Y (tn) = g(tn) + h

n∑

j=0

′′

K(tn, tj)Y (tj) +Qh(tn) , (12.25)

for n = 1, 2, . . . , Nh. The error term can be written in various forms:

Qh(tn) = −
n∑

j=1

h3

12

∂2

∂s2
[K(tn, s)Y (s)]

∣∣∣∣
s=τn,j

(12.26)

= −h
2tn
12

∂2

∂s2
[K(tn, s)Y (s)]

∣∣∣∣
s=τn

(12.27)

≈ −h
2

12

∂

∂s
[K(tn, s)Y (s)]

∣∣∣∣
tn

s=0

. (12.28)

In (12.26), τn,j is some unknown point in [tj−1, tj ]; and in (12.27), τn is an unknown

point in [0, tn]. These are standard error formulas for the trapezoidal quadrature rule;

e.g. see [12, §5.2]. Subtract (12.24) from (12.25), obtaining

Eh(tn) = h

n∑

j=0

′′

K(tn, tj)Eh(tj) +Qh(tn) (12.29)

in which Eh(tn) = Y (tn) − yn.

Example 12.4 As a simple particular case of (12.24), choose K(t, s) ≡ λ and

Y (s) = s2. We are solving the equation (12.12) with a suitable choice of g(t).
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Using (12.27) and noting that Eh(t0) = Eh(0) = 0, (12.29) becomes

Eh(tn) =

n−1∑

j=1

hλEh(tj) +
hλ

2
Eh(tn) − h2tn

12
Y ′′(τn).

Because Y ′′(s) ≡ 2, this simplifies further to

Eh(tn) =

n−1∑

j=1

hλEh(tj) + 1
2hλEh(tn) − 1

6h
2tn, (12.30)

for n = 1, . . . , Nh. This complicated expression can be solved explicitly.

Write the same formula with n− 1 replacing n, and then subtract it from (12.30).

This yields

Eh(tn) − Eh(tn−1) = hλEh(tn−1) + 1
2hλEh(tn) − 1

2hλEh(tn−1)

− 1
6h

2 (tn − tn−1) .

Solving for Eh(tn), we obtain

Eh(tn) =

(
1 + 1

2hλ

1 − 1
2hλ

)
Eh(tn−1) −

1

1 − 1
2hλ

h3

6
, n ≥ 0.

Using induction, this has the solution

Eh(tn) =

(
1 + 1

2hλ

1 − 1
2hλ

)n

Eh(t0) −




n−1∑

j=0

(
1 + 1

2hλ

1 − 1
2hλ

)j


 1

1 − 1
2 hλ

h3

6
. (12.31)

The first term equals zero sinceEh(t0) = 0; and the second term involves a geometric

series which sums to

(
1 + 1

2hλ

1 − 1
2hλ

)n

− 1

(
1 + 1

2hλ

1 − 1
2hλ

)
− 1

=
2 − hλ

2hλ

{[
1 +

hλ

1 − 1
2hλ

]n

− 1

}
.

Using this in (12.31),

Eh(tn) = −h
2

6λ

{[
1 +

hλ

1 − 1
2 hλ

]n

− 1

}
.

For a fixed t = tn = nh, as h→ 0, this can be manipulated to obtain the asymptotic

formula

Eh(tn) ≈ −h
2

6λ

(
eλ tn − 1

)
.
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For this special case, the numerical solution of (12.12) using the trapezoidal method

has an error of size O(h2). This is of the same order in h as the discretization error for

the trapezoidal rule approximation in (12.20). Although this result has been shown

for only a special solution, it turns out to be true in general for the trapezoidal method

of (12.21). This is discussed in greater detail in Section 12.3, including a general

convergence theorem that includes the trapezoidal rule being applied to the fully

nonlinear equation (12.19).

12.2.3 General schema for numerical methods

As a general approach to the numerical solution of the integral equation (12.19),

consider replacing the integral term with an approximation based on numerical inte-

gration. Introduce the numerical integration

∫ tn

0

K(tn, s, Y (s)) ds ≈ h

n∑

j=0

wn,jK(tn, tj , Y (tj)) . (12.32)

The quadrature weights hwn,j are allowed to vary with the grid point tn, in contrast

to the trapezoidal method. Equation (12.19) is approximated by

yn = g(tn) + h

n∑

j=0

wn,jK(tn, tj , yj) , n = 1, 2, . . . , Nh. (12.33)

As with the earlier trapezoidal method, if wn,n 6= 0, then (12.33) must be solved for

yn by some rootfinding method. For example, simple iteration has the form

y
(k+1)
n = g(tn) + h

n−1∑

j=0

wn,jK(tn, tj , yj)

+hwn,nK
(
tn, tn, y

(k)
n

)
, k = 0, 1, . . .

(12.34)

for some given initial estimate y
(0)
n . Also, many such methods (12.33) require n ≥

p + 1 for some small integer p; the values y1, . . . , yp must be determined by some

other “starting method”.

There are many possible such schemes (12.33), and we investigate only one pair of

such formulas, both based on Simpson’s numerical integration formula. The simple

Simpson rule has the form

∫ α+2h

α

F (s) ds ≈ h

3
[F (α) + 4F (α+ h) + F (α+ 2h)] .

This classical quadrature formula is very popular, well-studied, and well-understood;

e.g., see [12, Sections 5.1–5.2]. In producing the approximation of (12.32), consider
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first the case where n is even. Then define

∫ tn

0

K(tn, s, Y (s)) ds =

n/2∑

j=1

∫ t2j

t2j−2

K(tn, s, Y (s)) ds

≈ h

3

n/2∑

j=1

[
K(tn, t2j−2, Y (t2j−2)) + 4K(tn, t2j−1, Y (t2j−1))

+K(tn, t2j , Y (t2j))
]

.

(12.35)

This has an error of size O
(
h4
)
.

Consider next the case thatnwhere odd andn ≥ 3. Then the interval [0, tn] cannot

be divided into a union of subintervals [t2j−2, t2j ]; and thus Simpson’s integration

rule cannot be applied in the manner of (12.35). To maintain the accuracy implicit

in using Simpson’s rule, we use Newton’s 3
8 ’s rule over one subinterval of length 3h,

∫ α+3h

α

F (s) ds ≈ 3h

8
[F (α) + 3F (α+ h) + 3F (α+ 2h) + F (a+ 3h)] .

We then use Simpson’s rule over the remaining subintervals of length 2h. The interval

[0, tn] can be subdivided in two convenient ways,

Scheme 1: [0, tn] = [0, t3] ∪ [t3, t5] ∪ · · · ∪ [tn−2, tn] ; (12.36)

Scheme 2: [0, tn] = [0, t2] ∪ · · · ∪ [tn−5, tn−3] ∪ [tn−3, tn] . (12.37)

With the first scheme, we apply Newton’s 3
8 ’s rule over [0, t3] and apply Simpson’s

rule over the subintervals [t3, t5] , . . . , [tn−2, tn]. With the second scheme, we apply

Newton’s 3
8 ’s rule over [tn−3, tn] and Simpson’s rule over the remaining subintervals

[0, t2], . . . , [tn−5, tn−3].
To be more precise, with the second scheme we begin by writing

∫ tn

0

K(tn, s, Y (s)) ds =

(n−3)/2∑

j=1

∫ t2j

t2j−2

K(tn, s, Y (s)) ds

+

∫ tn

tn−3

K(tn, s, Y (s)) ds.

Approximating the integrals as described above, we obtain

∫ tn

0

K(tn, s, Y (s)) ds ≈ 1

3
h

n/2∑

j=1

{K(tn, t2j−2, Y (t2j−2))

+4K(tn, t2j−1, Y (t2j−1)) +K(tn, t2j , Y (t2j))]

+
3

8
h {K(tn, tn−3, Y (tn−3)) + 3K(tn, tn−2, Y (tn−2))

+3K(tn, tn−1, Y (tn−1)) +K(tn, tn, Y (tn))} .

(12.38)
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Using (12.36) leads to a similar formula, but with Newton’s 3
8 ’s rule applied over

[0, t3].
We denote by “Simpson method 2” the combination of (12.35) and (12.38); and

we denote as “Simpson method 1” the combination of (12.35) and the analog of

(12.38) for the subdivision of (12.36). Both methods require that the initial value y1
be calculated by another method.

Both approximations have discretization errors of size O(h4), but method 2 turns

out to be much superior to method 1 when solving (12.19). These methods are

discussed and illustrated in Section 12.3.

MATLAB program. The following MATLAB program implements the trapezoidal

method (12.21)–(12.22).

function soln = vie trap(N h,T,fcn g,fcn k)

%

% function soln = vie trap(N h,T,fcn g,fcn k)

%

% This solves the integral equation

% t

% Y(t) = g(t) + Int k(t,s,Y(s))ds

% 0

% ==INPUT==

% N h: The number of subdivisions of [0,T].

% T: [0,T] is the interval for the solution function.

% fcn g: The handle of the driver function g(t).

% fcn k: The handle of the kernel function k(t,s,u).

% ==OUTPUT==

% soln: A structure with the following components.

% soln.t: The grid points at which the solution Y(t) is

% approximated.

% soln.y: The approximation of Y(t) at the grid points.

% The implicit trapezoidal equation is solved by simple fixed

% point iteration at each grid point in t. For simplicity,

% the program uses a crude means of controlling the iteration.

% The iteration is executed a fixed number of times, controlled

% by ’loop’.

loop = 10; % This is much more than is usually needed.

h = T/N h; t = linspace(0,T,N h+1);

g vec = fcn g(t);

g vec = zeros(size(t)); y vec(1) = g vec(1);

for n=1:N h

y vec(n+1) = y vec(n); % Initial estimate for the iteration.

k vec = fcn k(t(n+1),t(1:n+1),y vec(1:n+1));
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for j=1:loop

y vec(n+1) = g vec(n+1) + h*(sum(k vec(2:n)) ...

+ (k vec(1) + k vec(n+1))/2);

k vec(n+1) = fcn k(t(n+1),t(n+1),y vec(n+1));

end

end

soln.t = t;

soln.y = y vec;

end % vie trap

The following program is a test program for the above vie trap.

function test vie trap(lambda,N h,T,output step)

%

% function test vie trap(lambda,N h,T,output step)

%

% ==INPUT==

% lambda: Used in defining the integral equation.

% N h: The number of subdivisions of [0,T].

% T: [0,T] is the interval for the solution function.

% output step: The solution is output at the indices

% v = 1:output step:N h+1

soln = vie trap(N h,T,@g driver,@kernel);

t = soln.t; y = soln.y;

true = true soln(t);

error = true - y;

format short e

v = 1:output step:N h+1;

disp([t(v)’ y(v)’ error(v)’])

%================================================

function ans g = g driver(s)

ans g = (1-lambda)*sin(t) + (1+lambda)*cos(t) - lambda;

end % g driver

function ans true = true soln(s)

ans true = cos(s) + sin(s);

end % true soln

function ans k = kernel(tau,s,u)

% tau is a scalar, s and u vectors of the same dimension.

ans k = lambda*u;

end % kernel

%================================================

end % test vie trap
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12.3 NUMERICAL METHODS: THEORY

We begin by considering the convergence of methods

yn = g(tn) + h

n∑

j=0

wn,jK(tn, tj , yj) , n = p+ 1, . . . , Nh (12.39)

with y0 = g(0) and with y1, . . . , yp determined by another method. For example, the

trapezoidal method has p = 0, and the two Simpson methods discussed in and fol-

lowing (12.35) have p = 1. Later we discuss the error requirements when computing

such initial values y1, . . . , yp.

To analyze the error in using (12.39) to solve

Y (t) = g(t) +

∫ t

0

K(t, s, Y (s)) ds, 0 ≤ t ≤ T, (12.40)

we proceed in analogy with the error equation (12.29) for the trapezoidal method. As

in Section 12.1, we assume that K(t, s, u) is continuous for 0 ≤ s ≤ t ≤ T ; further,

we assume that K(t, s, u) satisfies the Lipschitz condition

|K(t, s, u1) −K(t, s, u2)| ≤ c |u1 − u2| , 0 ≤ s ≤ t ≤ T (12.41)

for −∞ < u1, u2 <∞. These are the assumptions used in Theorem 12.2.

Rewrite (12.40) using numerical integration and the associated error,

Y (tn) = g(tn) + h

n∑

j=0

wn,jK(tn, tj , Y (tj))

+Qh(tn) , n = p+ 1, . . . , Nh.

(12.42)

The quantityQh(tn) denotes the error in the quadrature approximation to the integral

in (12.40). As an example of the quadrature error, recall (12.25)–(12.28) for the

trapezoidal method.

Subtract (12.39) from (12.42), obtaining

Eh(tn) = h
n∑

j=0

wn,j [K(tn, tj , Y (tj)) −K(tn, tj , yj)] +Qh(tn) (12.43)

forn = p+1, . . . , Nh, withEh(tn) = Y (tn)−yn. Applying the Lipschitz condition

(12.41) to (12.43), we have

|Eh(tn)| ≤ hc

n∑

j=0

|wn,j | |Eh(tj)| +Qh(tn) , n = p+ 1, . . . , Nh. (12.44)

If we assume that h is small enough that hc |wn,n| < 1, then we can bound |Eh(tn)|
in terms of preceding errors:

|Eh(tn)| ≤ hc

1 − hc |wn,n|

n−1∑

j=0

|wn,j | |Eh(tj)| +
Qh(tn)

1 − hc |wn,n|
, (12.45)
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for n = p+ 1, . . . , Nh.
To further simplify this, we assume

max
0≤i≤n≤Nn

|wn,i| ≤ γ <∞ (12.46)

for all 0 < h ≤ h0 for some small value of h0. Without any loss of generality when

analyzing convergence as h→ 0, (12.46) permits the assumption that

hc |wn,n| ≤ 1
2 (12.47)

is true for all h and n of interest. With (12.46) and (12.47), the inequality (12.45)

becomes

|Eh(tn)| ≤ 2γch

n−1∑

j=0

|Eh(tj)| + 2Qh(tn) , n = p+ 1, . . . , Nh. (12.48)

This can be solved to give a useful convergence result.

Theorem 12.5 In the Volterra integral equation (12.40), assume that the function

K(t, s, u) is continuous for 0 ≤ s ≤ t ≤ T , −∞ < u < ∞, and further that it

satisfies the Lipschitz condition (12.41). Assume that g(t) is continuous on [0, T ]. In

the numerical approximation (12.39), assume (12.46). Introduce

η(h) ≡
p∑

j=0

|Eh(tj)| , (12.49)

δ(tn;h) ≡ max
p+1≤j≤n

|Qh(tj)| .

Then

|Eh(tn)| ≤ e2γctn [2γchη(h) + δ(tn;h)] , n = p+ 1, . . . , Nh. (12.50)

Proof. This bound is a consequence of (12.48), the following lemma, and the bound

(1 + 2γch)
n−p−1 ≤ e2γc(tn−tp+1) ≤ e2γctn, n ≥ p+ 1.

To show this bound, recall Lemma 2.3 from Section 2.2. A more complete proof is

given in [59, Section 7.3].

Lemma 12.6 Let the sequence {ε0, ε1, . . . } satisfy

|εn| ≤ α

n−1∑

j=0

|εj | + βn, n = p+ 1, . . . . (12.51)

Then

|εn| ≤ (1 + α)
n−p−1


α

p∑

j=0

|εj | + max
p+1≤j≤n

|βj |


 . (12.52)
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Proof. This can be proved using mathematical inductions, and we leave it as an

exercise for the reader.

The bound (12.50) assures us of convergenceprovidedhη (h) → 0 and δ(tn;h) →
0 as h→ 0.

Example 12.7 Recall the trapezoidal method of (12.21). Then p = 0 and η(h) =
|Y (0) − y0|. For the purpose of analyzing convergence, we take y0 = Y (0) and

η(h) = 0. Also, from (12.27), we can take

δ(tn;h) = −h
2tn
12

max
0≤s≤tn

∣∣∣∣
∂2

∂s2
[K(tn, s)Y (s)]

∣∣∣∣ . (12.53)

From (12.50), we obtain

|Eh(tn)| ≤ e2γctnδ (tn;h) ,

and this is of size O
(
h2
)

on each finite interval 0 ≤ tn ≤ T . Thus the trapezoidal

method is convergent; and we say it is of order 2.

Example 12.8 Recall Simpson method 2 from (12.35), (12.38), and the associated

Simpson method 1. Both methods require p = 1, and

η (h) = |Eh(t0)| + |Eh(t1)| .

Again, we take |Eh(t0)| = 0. The quadrature error δ(tn;h) can be shown to be of

size O(h4) on each finite interval [0, tn]. If we also have hη(h) = O(h4), then the

overall error in both Simpson methods is of size O(h4) on each finite interval [0, T ].
If we use the simple trapezoidal method to generate y1, then it can be shown that

η(h) = O
(
h3
)

for this special case of a fixed finite number of errors (in particular,

Eh(t1)); this is sufficient to yield hη(h) = O
(
h4
)
. We illustrate this using Simpson

method 2 to solve

Y (t) = cos t−
∫ t

0

Y (s) ds, t ≥ 0 (12.54)

with the true solution

Y (t) = 1
2

(
cos t− sin t+ e−t

)
, t ≥ 0, (12.55)

the same test equation as in example 12.3. The numerical results with varying values

of h are given in Table 12.2. The values in the columns labeled “Ratio” approach 16

as h decreases, and this is consistent with a convergence rate of O
(
h4
)
.

12.3.1 Numerical stability

In addition to being convergent, a numerical method must also be numerically stable.

As with numerical methods for the initial value problem for differential equations,
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Table 12.2 Numerical results for solving (12.54) using the Simpson method 2

Error

t h = 0.2 Ratio h = 0.1 Ratio h = 0.05 Ratio h = 0.025

0.8 1.24e − 6 10.2 1.23e − 7 13.4 9.15e − 9 14.8 6.16e − 10
1.6 −5.56e − 7 −71.0 7.84e − 9 6.4 1.23e − 9 13.5 3.09e − 11
2.4 −1.90e − 6 14.2 −1.34e − 7 14.3 −9.37e − 9 15.1 −6.22e − 10
3.2 −1.95e − 6 10.4 −1.87e − 7 13.6 −1.38e − 8 14.9 −9.24e − 10
4.0 −7.10e − 7 6.2 −1.15e − 7 12.9 −8.95e − 9 14.7 −6.07e − 10

various meanings are given to the concept of “numerically stable”. We begin with

stability as discussed in (12.9)-(12.11) for the linear equation (12.2). This is in analogy

with stability as discussed in Section 7.3 of Chapter 7 for multistep methods for the

initial value problem for differential equations.

In the numerical method

yn = g(tn) + h

n∑

j=0

wn,jK(tn, tj , yj) , n = p+ 1, . . . , Nh. (12.56)

consider perturbing the initial values y0, . . . , yp, say, by changing them to yj + ηh,j ,

j = 0, . . . , p. Also, perturb g(tn) to g(tn) + εh,n for n ≥ p + 1. We are inter-

ested in knowing how the perturbations {ηh,j} and {εh,n} affect the solution {yn},

particularly for small perturbations and small values of h.

Let {ỹn : 0 ≤ n ≤ Nh} denote the numerical solution in this perturbed case,

ỹn = g(tn) + εh,n + h

n∑

j=0

wn,jK(tn, tj , ỹj) , n = p+ 1, . . . , Nh,

ỹn = yn + ηh,j , j = 0, . . . , p.

(12.57)

Subtracting (12.56) from (12.57), using the Lipschitz condition (12.41) and the bound

(12.46) for the weights, we obtain

|ỹn − yn| ≤ |εh,n| + hcγ

n∑

j=0

|ỹj − yj | , p+ 1 ≤ n ≤ Nh,

ỹn − yn = ηh,j , j = 0, . . . , p.

With assumption (12.47) and Lemma 12.6, we obtain

|ỹn − yn| ≤ e2γctn


2hγc

p∑

j=0

|ηh,j | + max
p+1≤j≤n

|εh,j|


 .

This simplifies as

|ỹn − yn| ≤ Cδ, p+ 1 ≤ n ≤ Nh, 0 < h ≤ h0, (12.58)
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where C is a constant independent of h and

δ = max
0<h≤h0

{
h max

0≤j≤p
|ηh,j | , max

p+1≤j≤Nh

|εh,j |
}
.

The upper bound h0 on h is to be chosen so that for all n,

h0c |wn,n| ≤ 1
2 .

The bound (12.58) says that the numerical solution {yn : p+ 1 ≤ n ≤ Nh} varies

continuously with the initial starting values {y0, . . . , yp} and the function g(t). This

is true in a uniform sense for all sufficiently small values of h. The bound (12.58) is

the numerical analogue of the stability result (12.11) for the linear equation (12.2).

The result (12.58) says that virtually all convergent quadrature schemes lead to

numerical methods (12.56) that are numerically stable. In practice, however, a number

of such methods remain very sensitive to perturbations in the starting values. In

particular, experimental results imply that Simpson method 2 is numerically stable,

whereas Simpson method 1 has practical stability problems. What is the explanation

for this?

12.3.2 Practical numerical stability

In discussing practical stability difficulties when using numerical methods (12.39),

we follow Linz [59, §7.4]. We consider only the linear equation

Y (t) = g(t) +

∫ t

0

K(t, s)Y (s) ds, 0 ≤ t ≤ T, (12.59)

although the results generalize to the fully nonlinear equation (12.40). The type

of stability that is considered is related to the concept of “relative stability” from

Subsection 7.3.3.

Consider the numerical method (12.39) as applied to (12.59),

yn = g(tn) + h
n∑

j=0

wn,jK(tn, tj) yj , n = p+ 1, . . . , Nh (12.60)

with y0 = g(0) and with y1, . . . , yp obtained by other means. The true solution Y (t)
satisfies

Y (tn) = g(tn) + h

n∑

j=0

wn,jK(tn, tj)Y (tj) +Qh(tn) , (12.61)

for n = p+ 1, . . . , Nh. Subtracting (12.60) from (12.61), we obtain

Eh(tn) = h

n∑

j=0

wn,jK(tn, tj)Eh (tj) +Qh(tn) , (12.62)
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for n = p+ 1, . . . , Nh.
To aid in understanding the behavior of Eh(tn) as tn increases, the error is de-

composed into two parts. First, let
{
EQ

h (tn)
}

denote the solution of

EQ
h (tn) = h

n∑

j=0

wn,jK(tn, tj)E
Q
h (tj) +Qh(tn) , n = p+ 1, . . . , Nh,

EQ
h (tj) = 0, j = 0, . . . , p.

(12.63)

This error is due entirely to the quadrature errors {Qh(tn) : n ≥ p+ 1} that occur

in discretizing the integral equation (12.59); it assumes that there is no error in the

initial values y0, . . . , yp. Second, consider the errors ES
h (tn) obtained by solving

ES
h (tn) = h

n∑

j=0

wn,jK(tn, tj)E
S
h (tj) , n = p+ 1, . . . , Nh, (12.64)

ES
h (tj) = ηj , j = 0, . . . , p. (12.65)

The quantities {η0, . . . , ηp} are the errors in the starting values {y0, . . . , yp} when

using (12.60). The original error Eh(tn) is given by

Eh(tn) = EQ
h (tn) + ES

h (tn), n = 0, 1, . . . , Nh.

Returning to (12.63), assume that the quadrature error has an expansion of the

form

Qh(tn) = a(tn)hm + O
(
hm+1

)

for some integer m ≥ 1. For example, the trapezoidal method has

Qh(tn) = a(t)h2 + O
(
h3
)
,

a(t) = − 1

12

∂

∂s
[K(t, s)Y (s)]

∣∣∣∣
t

s=0

(see (12.28)). Then it can be shown that EQ
h (tn) has the asymptotic formula

EQ
h (tn) = b(tn)hm + O

(
hm+1

)
(12.66)

with the function b the solution of the integral equation

b(t) = −a(t) +

∫ t

0

K(t, s) b(s) ds, 0 ≤ t ≤ T.

For a derivation of this, see [59, Theorem 7.3]. The asymptotic formula (12.66)

applies to virtually all quadrature schemes that are likely to be used in setting up the

numerical scheme (12.56), and it forms the basis for numerical extrapolation schemes

for error estimation.
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The second error, ES
h (tn), is more subtle to understand. To begin, consider the

weights {wn,j} for the two Simpson methods.

• Simpson method 1:

n even: 1
3 ,

4
3 ,

2
3 ,

4
3 , · · · , 2

3 ,
4
3 ,

1
3 ;

n odd: 3
8 ,

9
8 ,

9
8 ,

3
8 + 1

3 ,
4
3 ,

2
3 ,

4
3 , · · · , 2

3 ,
4
3 ,

1
3 .

(12.67)

all being multiplied by h. The weights satisfy

wn+ρ,i = wn,i, i = 4, . . . , n

with ρ = 2, but not with ρ = 1. We say the weights have a repetition factor of

2.

• Simpson method 2:

n even: 1
3 ,

4
3 ,

2
3 ,

4
3 , · · · , 2

3 ,
4
3 ,

1
3 ;

n odd: 1
3 ,

4
3 ,

2
3 ,

4
3 , · · · , 2

3 ,
4
3 ,

1
3 + 3

8 ,
9
8 ,

9
8 ,

3
8 .

(12.68)

The weights satisfy

wn+1,i = wn,i, i = 0, 1, . . . , n− 4.

and again, all being multiplied by h. These weights have a repetition factor of

1.

Both of these methods have an asymptotic formula for ES
h (tn); see [59, Theorem

7.4].

In particular, for Simpson method 2 assume that the starting values {y0, y1} satisfy

Y (ti) − yi = δih
3 + O(h4). (12.69)

Then

ES
h (tn) = h4 [δ0C0(tn) + δ1C1(tn)] + O

(
h5
)

(12.70)

with Ci(t) satisfying

Ci(t) = ViK(t, ti) +

∫ t

0

K(t, s)Ci(s) ds, i = 0, 1, 2.

The constants Vi are derived as a part of the proof in [59, Theorem 7.4]. The functions

C0(t) andC1(t) can be shown to be well behaved, and consequently, the same is true

of the error in (12.70).

For Simpson method 1, there is an asymptotic formula for ES
h (tn), but it is not as

well behaved as is (12.70) for Simpson method 2. For Simpson method 1, it can be

shown that

ES
h (t2n) = hx(t2n) + O

(
h2
)
, (12.71)

ES
h (t2n+1) = hy(t2n+1) + O

(
h2
)

(12.72)
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with (x(t), y(t)) the solution of a system of two Volterra integral equations. The

functions x(t) and y(t) can be written in the form

x(t) = 1
2 (z1(t) + z2(t)) ,

y(t) = 1
2 (z1(t) − z2(t))

(12.73)

with z1(t) and z2(t) the solutions of the Volterra integral equation

zi(t) = gi(t) +

∫ t

0

K(t, s) zi(s) ds, 0 ≤ t ≤ T

for particular values of gi(t) that depend on both K(t, s) and the constants {δ0, δ1}
of (12.69).

To develop some intuition from this, consider the special case K(t, s) ≡ λ. Then

z1(t) and z2(t) have the forms

z1(t) = A1(t) +B1(t)e
λt,

z2(t) = A2(t) +B2(t)e
−λt/3.

Recalling the special formulas of (12.12)–(12.14), the case λ < 0 is associated with

stability in the Volterra integral equation and λ > 0 is associated with instability.

Considering only the case where λ < 0, the function z1(t) behaves “properly” as

t increases. In contrast, the function z2(t) is exponentially increasing as t increases.

Applying this to (12.73), we have that x(t) and y(t) will also increase exponen-

tially, although with opposite signs depending on whether the index for tn is even or

odd. Using this in (12.71)-(12.72), we find that the errors ES
h (tn) should increase

exponentially for larger values of n, and that there should be an oscillation in sign.

Example 12.9 Recall Example 12.8 in which we examined Simpson method 2 for the

linear integral equation (12.54). We solve it again, now with both Simpson methods 1

and 2, doing so on [0, 10]withh = 0.1.A plot of the error when using Simpson method

1 is given in Figure 12.1, and that for Simpson method 2 is given in Figure 12.2. The

error with Simpson method 1 is as predicted from the above discussion: it increases

rapidly with increasing t, and it is oscillatory in sign. With Simpson method 2 there is

a much more regular and better behavior in the error, in this case of sinusoidal form,

reflecting the sinusoidal form of the true solution Y (t) = 1
2 (cos t− sin t+ e−t).

There are also some oscillations, but they are more minor and are imposed on the

dominant form of the error.

A very good introduction to the topic of numerical stability for solving Volterra

integral equations is given by Linz [59, Section 7.4]. It also is a very good introduction

to the general subject of the numerical solution of Volterra integral equations. An

excellent, more recent, and more specialized treatment is given by Brunner [17].
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Figure 12.1 The error in solving (12.54) using Simpson method 1

PROBLEMS

1. For the following Volterra integral equations of the second kind, show that the

given function Y (t) is the solution of the given equation.

(a)

Y (t) = cos (t) −
∫ t

0

(t− s) cos (t− s)Y (s) ds,

Y (t) = 2
3 cos(

√
3 t) + 1

3 .

(b)

Y (t) = t+

∫ t

0

sin (t− s)Y (s) ds,

Y (t) = t+ 1
6 t

3.

(c)

Y (t) = sinh (t) −
∫ t

0

cosh(t− s)Y (s) ds,

Y (t) =
2√
5

sinh

(√
5

2
t

)
e−t/2.
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Figure 12.2 The error in solving (12.54) using Simpson method 2

2. Reduce equation (12.15) to (12.12) by introducing the new unknown function

Z(t) = e−λtY (t). Use this transformation to obtain (12.16) from (12.14).

3. Demonstrate formula (12.4).

4. Using mathematical induction, show that the kernels Kj(t, s) of (12.6) satisfy

|Kj(t, s)| ≤
(t− s)j−1

(j − 1)!
Bj , j ≥ 1.

From this, show that

∣∣∣∣
∫ t

0

Kj(t, s) g(s) ds

∣∣∣∣ ≤
(tB)

j

j!
max
0≤s≤t

|g(s)| .

5. Using the result of Problem 4, and motivated by (12.5), show that the series

g(t) +

∞∑

j=1

∫ t

0

Kj(t, s) g(s) ds

is absolutely convergent. Note that it still remains necessary to show that this

function satisfies (12.2). We refer to Linz [59, p. 30] for a proof, along with a

proof of the uniquess of the solution.
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6. Assume that it has been shown, based on (12.5), that

Y (t) = g(t) +

∞∑

j=1

∫ t

0

Kj(t, s) g(s) ds

is an absolutely convergent series. Combine this with Problem 4 to show that

Y (t) satisfies (12.7).

7. Let Y (t) be the continuous solution of (12.2).

(a) Assume thatK(t, s) is differentiable with respect to t and that∂K(t, s)/∂t
is continuous for 0 ≤ s ≤ t ≤ T . Assume further that g(t) is continously

differentiable on [0, T ]. Show that Y (t) is differentiable and that

Y ′(t) = g′(t) +K(t, t)Y (t) +

∫ t

0

∂K(t, s)

∂t
Y (t) dt.

(b) Give a corresponding result that guarantees that Y (t) is twice continu-

ously differentiable on [0, T ].

8. Using the MATLAB program vie trap, solve (12.23) on [0, 12]. Do so for

stepsizes h = 0.2, 0.1, 0.05; then graph the errors over the full interval.

9. Apply the MATLAB program vie trap to the equation

Y (t) = g(t) + λ

∫ t

0

Y (s) ds, t ≥ 0,

g(t) = (1 − λ) sin t+ (1 + λ) cos t− λ

over the interval [0, 2π]. The true solution is Y (t) = cos t + sin t. Do so for

stepsizes of h = 0.5, 0.25, 0.125 and λ = −1, 1. Observe the decrease in the

error as h is halved. Comment on any differences observed between the cases

of λ = −1 and λ = 1.

10. Using mathematical induction on n, prove Lemma 12.6.

11. In Example 12.8 it is asserted that Y (t1) − y1 = O(h3). Explain why this is

true.

12. Write MATLAB programs for both Simpson methods 1 and 2. Generate y1
using the trapezoidal method. After writing the program, use it to solve the

linear integral equation (12.54), say on [0, 10]. Use a stepsize of h = 0.2 and

graph the errors using MATLAB.

13. Using the programs of Problem 12, solve the equation given in Problem 9. Do

so with both Simpson methods. Do so with both λ = −1 and λ = 1. Use

h = 0.2, 0.1 and solve the equation on [0, 10].

14. In analogy with the formulas (12.26)–(12.28) for the quadrature error for the

trapezoidal rule, give the corresponding formulas for Simpson method 2. Note

that this includes the Newton 3
8 ’s rule.





APPENDIX A

TAYLOR’S THEOREM

For a function with a number of derivatives at a specific point, Taylor’s theorem

provides a polynomial that is close to the function in a neighborhood of the point

and an error formula for the difference between the function and the polynomial.

Taylor’s theorem is an important tool in developing numerical methods and deriving

error bounds. We start with a review of the mean value theorem.

Theorem A.1 (Mean value theorem) Assume that f(x) is continuous on [a, b] and is

differentiable on (a, b). Then there is a point c ∈ (a, b) such that

f(b) − f(a) = f ′(c) (b− a). (A.1)

The number c in (A.1) is usually unknown. There is an analogous form of the

theorem for integrals. Assume that f(x) is continuous on [a, b], w(x) is nonnegative

and integrable on [a, b]. Then there exists c ∈ (a, b) for which

∫ b

a

f(x)w(x) dx = f(c)

∫ b

a

w(x) dx. (A.2)

235
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Theorem A.2 (Taylor’s theorem for functions of one real variable) Assume that f(x)
has n+ 1 continuous derivatives for a ≤ x ≤ b, and let x0 ∈ [a, b]. Then

f(x) = pn(x) +Rn(x), a ≤ x ≤ b, (A.3)

where

pn(x) = f(x0) + (x − x0)f
′(x0)

+
(x− x0)

2

2!
f ′′(x0) + · · · + (x− x0)

n

n!
f (n)(x0)

=

n∑

j=0

(x− x0)
j

j!
f (j)(x0) (A.4)

is the Taylor polynomial of degree n for the function f(x) and the point of approx-

imation x0, and Rn(x) is the remainder in approximating f(x) by pn(x). We have

Rn(x) =
1

n!

∫ x

x0

(x− t)nf (n+1)(t) dt (A.5)

=
(x− x0)

n+1

(n+ 1)!
f (n+1)(cx) (A.6)

with cx an unknown point between x0 and x.

The Taylor polynomial is constructed by requiring

p(j)
n (x0) = f (j)(x0), j = 0, 1, . . . , n.

Thus, we expect pn(x) is close to f(x), at least for x close to x0. Two forms of the

remainder Rn(x) are given in the theorem. The form (A.6) is derived from (A.5) by

an application of the integral form of the mean value theorem, (A.2). The remainder

formula (A.5) does not involve an unknown point, and it is useful where precise error

bound is needed. In most contexts, the remainder formula (A.6) is sufficient.

Taylor’s theorem can be proved by repeated application of the formula

g(x) = g(x0) +

∫ x

x0

g′(t) dt (A.7)

for a continuously differentiable function g. Evidently, this formula corresponds to

Taylor’s theorem with n = 0. As an example, we illustrate the derivation of (A.3)

with n = 1; the derivation of (A.3) for n > 1 can be done similarly through an

inductive argument. We apply (A.7) for g = f ′:

f ′(t) = f ′(x0) +

∫ t

x0

f ′′(s) ds.
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Thus,

f(x) = f(x0) +

∫ x

x0

f ′(t) dt

= f(x0) +

∫ x

x0

[
f ′(x0) +

∫ t

x0

f ′′(s) ds

]
dt

= f(x0) + f ′(x0) (x− x0) +

∫ x

x0

∫ t

x0

f ′′(s) ds dt.

Interchanging the order of integration, we can rewrite the last term as

∫ x

x0

∫ x

s

f ′′(s) dt ds =

∫ x

x0

(x− s) f ′′(s) ds.

Changing s into t, we have thus shown Taylor’s theorem with n = 1.

In applying Taylor’s theorem, we often need to choose a value for the nonneg-

ative integer n. If we want to have a linear approximation of twice continuously

differentiable function f(x) near x = x0, then we take n = 1 and write

f(x) = f(x0) + (x− x0) f
′(x0) + 1

2 (x− x0)
2 f ′′(c)

for some c between x and x0. To show that (f(x + h) − f(x))/h (h > 0, usually

small) is a first-order approximation of f ′(x), we choose n = 1,

f(x+ h) = f(x) + h f ′(x) + 1
2h

2 f ′′(c),

and so
f(x+ h) − f(x)

h
= f ′(x) + 1

2h f
′′(c).

As a further example, let us show that (f(x + h) − f(x))/h is a second-order ap-

proximation of f ′(x+ h/2). We choose n = 2, and write (here x0 = x+ 1
2h)

f(x+ h) = f
(
x+ 1

2h
)

+ 1
2h f

′(x+ 1
2h) + 1

2

(
1
2h
)2
f ′′
(
x+ 1

2h
)

+ 1
6

(
1
2h
)3
f ′′′(c1),

f(x) = f(x+ 1
2h) − 1

2h f
′(x+ h/2) + 1

2

(
1
2h
)2
f ′′(x+ h/2)

− 1
6

(
1
2h
)3
f ′′′(c2)

for some c1 ∈ (x+ 1
2h, x+ h) and c2 ∈ (x, x + 1

2h). Thus,

f(x+ h) − f(x)

h
= f ′

(
x+ 1

2h
)

+ 1
48h

2 [f ′′′(c1) + f ′′′(c2)]

showing (f(x+ h)− f(x))/h is a second-order approximation of f ′(x+ 1
2h). This

result is usually expressed by saying that (f(x + h) − f(x− h))/(2h) is a second-

order approximation to f ′(x). Of course, in these preceding examples, we assume

the function f(x) has the required number of derivatives.
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Sample formulas resulted from Taylor’s theorem are

ex = 1 + x+
x2

2!
+ · · · + xn

n!
+

xn+1

(n+ 1)!
ec,

sin(x) = x− x3

3!
+
x5

5!
− · · · + (−1)n−1 x2n−1

(2n− 1)!
+ (−1)n x2n+1

(2n+ 1)!
cos(c),

cos(x) = 1 − x2

2!
+
x4

4!
− · · · + (−1)n x2n

(2n)!
+ (−1)n+1 x2n+2

(2n+ 2)!
cos(c),

log(1 − x) = −
(
x+

1

2
x2 + · · · + 1

n+ 1
xn+1

)
−
(

1

1 − c

)
xn+2

n+ 2
, −1 ≤ x < 1,

where c is between x0 = 0 and x. The first three formulas are valid for any −∞ <
x <∞.

Theorem A.3 (Taylor’s theorem for functions of two real variables) Assume that

f(x, y) has continuous partial derivatives up to order n + 1 for a ≤ x ≤ b and

c ≤ y ≤ d, and let x0 ∈ [a, b], y0 ∈ [c, d]. Then

f(x, y) = pn(x, y) +Rn(x, y), a ≤ x ≤ b, c ≤ y ≤ d, (A.8)

where

pn(x, y) = f(x0, y0)

+

n∑

j=1

1

j!

[
(x− x0)

∂

∂x
+ (y − y0)

∂

∂y

]j

f(x0, y0), (A.9)

Rn(x, y) =
1

(n+ 1)!

[
(x− x0)

∂

∂x
+ (y − y0)

∂

∂y

]n+1

× f(x0 + θ (x− x0), y0 + θ (y − y0)) (A.10)

with an unknown number θ ∈ (0, 1).

In (A.9) and (A.10), the expression

[
(x− x0)

∂

∂x
+ (y − y0)

∂

∂y

]j

f(x0, y0)

=

j∑

i=0

j!

i!(j − i)!
(x − x0)

i(y − y0)
j−i ∂j

∂xi∂yj−i
f(x0, y0)

is defined formally through the binomial expansion for numbers:

(a+ b)j =

j∑

i=0

j!

i!(j − i)!
aibj−i.



APPENDIX A. TAYLOR’S THEOREM 239

For example, with j = 2, we obtain

[
(x− x0)

∂

∂x
+ (y − y0)

∂

∂y

]2
f(x0, y0)

= (x − x0)
2 ∂

2

∂x2
f(x0, y0) + 2 (x− x0) (y − y0)

∂2

∂x∂y
f(x0, y0)

+ (y − y0)
2 ∂

2

∂y2
f(x0, y0).

Formula (A.8) with (A.9)–(A.10) can be proved by applying Taylor’s theorem for

one real variable as follows. Define a function of one real variable

F (t) = f(x0 + t (x− x0), y0 + t (y − y0)).

Note that F (0) = f(x0, y0), F (1) = f(x, y). Applying formula (A.3) with (A.4)

and (A.6), we obtain

F (1) = F (0) +

n∑

j=1

1

j!
F (j)(0) +

1

(n+ 1)!
F (n+1)(θ)

for some unknown number θ ∈ (0, 1). Using the chain rule, we can verify that

F (j)(0) =

[
(x − x0)

∂

∂x
+ (y − y0)

∂

∂y

]j

f(x0, y0).

This argument is also valid when the function has m (m > 2) real variables,

leading to Taylor’s theorem for functions of m real variables.





APPENDIX B

POLYNOMIAL INTERPOLATION

The problem of polynomial interpolation is the selection of a particular polynomial

p(x) from a given class of polynomials in such a way that the graph of y = p(x)
passes through a finite set of given data points. Polynomial interpolation theory has

many important uses, but in this text we are interested in it primarily as a tool for

developing numerical methods for solving ordinary differential equations.

Let x0, x1, . . . , xn be distinct real or complex numbers, and let y0, y1, . . . , yn be

associated function values. We now study the problem of finding a polynomial p(x)
that interpolates the given data:

p(xi) = yi, i = 0, 1, . . . , n. (B.1)

Does such a polynomial exist, and if so, what is its degree? Is it unique? What

formula can we use to for produce p(x) from the given data?

By writing

p(x) = a0 + a1x+ · · · + amx
m

for a general polynomial of degree m, we see that there are m + 1 independent

parameters a0, a1, . . . , am. Since (B.1) imposes n + 1 conditions on p(x), it is

reasonable to first consider the case whenm= n. Then we want to find a0, a1, . . . , an

241



242 APPENDIX B. POLYNOMIAL INTERPOLATION

such that

a0 + a1x0 + a2x
2
0 + · · · + anx

n
0 = y0,

...

a0 + a1xn + a2x
2
n + · · · + anx

n
n = yn. (B.2)

This is a system of n + 1 linear equations in n + 1 unknowns, and solving it is

completely equivalent to solving the polynomial interpolation problem. In vector–

matrix notation, the system is

Xa = y

with

X =




1 x0 x2
0 · · · xn

0

...
...

1 xn−1 x2
n−1 · · · xn

n−1

1 xn x2
n · · · xn

n



, (B.3)

a = [a0, a1, . . . , an]T , y = [y0, . . . , yn]T .

The matrix X is called a Vandermonde matrix, and its determinant is given by

det(X) =
∏

0≤j<i≤n

(xi − xj).

Theorem B.1 Given n+1 distinct points x0, . . . , xn andn+1 ordinates y0, . . . , yn,

there is a polynomial p(x) of degree ≤ n that interpolates yi at xi, i = 0, 1, . . . , n.

This polynomial p(x) is unique in the set of all polynomials of degree ≤ n.

Proof. There are a number of different proofs of this important result. We give a

constructive proof that exhibits explicitly the interpolating polynomial p(x) in a form

useful for the applications in this text.

To begin, consider the special interpolation problem in which

yi = 1, yj = 0 for j 6= i

for some i, 0 ≤ i ≤ n. We want a polynomial of degree ≤ n with the n zeros xj ,

j 6= i. Then

p(x) = c(x− x0) · · · (x− xi−1)(x− xi+1) · · · (x − xn)

for some constant c. The condition p(xi) = 1 implies

c = [(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)]−1.

This special polynomial is written as

li(x) =
∏

j 6=i

(
x− xj

xi − xj

)
, i = 0, 1, . . . , n. (B.4)
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To solve the general interpolation problem (B.1), we can write

p(x) = y0l0(x) + y1l1(x) + · · · + ynln(x).

With the special properties of the polynomials li(x), it is easy to show that p(x)
satisfies (B.1). Also, degree p(x) ≤ n since all li(x) have degree n.

To prove uniqueness, suppose that q(x) is another polynomial of degree ≤ n that

satisfies (B.1). Define

r(x) = p(x) − q(x).

Then degree r(x) ≤ n and

r(xi) = p(xi) − q(xi) = yi − yi = 0, i = 0, 1, . . . , n.

Since r(x) has n+ 1 zeros, we must have r(x) ≡ 0. This proves p(x) ≡ q(x).

The formula

pn(x) =

n∑

i=0

yili(x) (B.5)

is called Lagrange’s formula for the interpolating polynomial.

Example B.2

p1(x) =
x− x1

x0 − x1
y0 +

x− x0

x1 − x0
y1 =

(x1 − x)y0 + (x− x0)y1
x1 − x0

,

p2(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
y0 +

(x− x0)(x − x2)

(x1 − x0)(x1 − x2)
y1 +

(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
y2.

The polynomial of degree ≤ 2 that passes through the three points (0, 1), (−1, 2),
and (1, 3) is

p2(x) =
(x + 1)(x− 1)

(0 + 1)(0 − 1)
· 1 +

(x− 0)(x− 1)

(−1 − 0)(−1 − 1)
· 2 +

(x − 0)(x+ 1)

(1 − 0)(1 + 1)
· 3

= 1 + 1
2x+ 3

2x
2.

If a function f(x) is given, then we can form an approximation to it using the

interpolating polynomial

pn(x; f) ≡ pn(x) =

n∑

i=0

f(xi)li(x). (B.6)

This interpolates f(x) at x0, . . . , xn. This polynomial formula is used at several

points in this text.

The basic result used in analyzing the error of interpolation is the following theo-

rem. As a notation, H{a, b, c, . . .} denotes the smallest interval containing all of the

real numbers a, b, c, . . . .
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Theorem B.3 Let x0, x1, . . . , xn be distinct real numbers, and let f be a real valued

function with n + 1 continuous derivatives on the interval It = H{t, x0, . . . , xn}
with t some given real number.

Then there exists ξ ∈ It with

f(t) −
n∑

j=0

f(xj)lj(t) =
(t− x0) · · · (t− xn)

(n+ 1)!
f (n+1)(ξ). (B.7)

A proof of this result can be found in many numerical analysis textbooks; e.g., see

[11, p. 135]. The theory and practice of polynomial interpolation represent a very

large subject. Again, most numerical analysis textbooks contain a basic introduction,

and we refer the interested reader to them.
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Birkhäuser, Boston, MA, 1985, pp. 107–119.

36. K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. “Introduction to adaptive methods for

differential equations”, Acta Numerica 5 (1995), Cambridge University Press.

37. A. Fasano and S. Marmi. Analytical Mechanics: An Introduction. Oxford University Press,

Oxford, 2006.

38. G.R. Fowles. Analytical Mechanics, Holt, Rinehart and Winston, 1962.

39. C. W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-

Hall, Englewood Cliffs, NJ, 1971.

40. C.W. Gear, B. Leimkuhler, and G.K. Gupta. “Automatic integration of Euler–Lagrange

equations with constraints”, in Proceedings of the International Conference on Computa-

tional and Applied Mathematics (Leuven, 1984), Vol. 12/13 (1985), pp. 77–90.

41. I. Gladwell and D. Sayers. Computational Techniques for Ordinary Differential Equations,

Academic Press, New York, 1980.

42. E. Hairer, C. Lubich, and M. Roche. The Numerical Solution of Differential-Algebraic

Systems by Runge–Kutta Methods. Lecture Notes in Mathematics 1409 (1989), Springer–

Verlag, Berlin.

43. E. Hairer, C. Lubich, and G. Wanner. “Geometric numerical integration illustrated by the

Störmer-Verlet method”, Acta Numerica 12 (2003), Cambridge University Press.

44. E. Hairer and G. Wanner. Solving Ordinary Differential Equations. II. Stiff and Differential-

Algebraic Problems, 2nd ed., Springer-Verlag, Berlin, 1996.

45. P. Henrici. Discrete Variable Methods in Ordinary Differential Equations, John Wiley,

1962.

46. A. Hindmarsh, P. Brown, K. Grant, S. Lee, R. Serban, D. Shumaker, and C. Wood-

ward. SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers, ACM

Transactions on Mathematical Software 31 (2005), pp. 363–396. Also, go to the URL

https://computation.llnl.gov/casc/sundials/

47. E. Isaacson and H. Keller. Analysis of Numerical Methods, John Wiley, New York, 1966.

48. A. Iserles. A First Course in the Numerical Analysis of Differential Equations, Cambridge

University Press, Cambridge, United Kingdom, 1996.



248 REFERENCES

49. L. Jay. “Convergence of Runge-Kutta methods for differential-algebraic systems of index

3”, Applied Numerical Mathematics 17 (1995), pp. 97–118.

50. L. Jay. “Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian sys-

tems”, SIAM Journal on Numerical Analysis 33 (1996), pp. 368–387.

51. L. Jay. “Specialized Runge-Kutta methods for index 2 differential-algebraic equations”,

Mathematics of Computation 75 (2006), pp. 641–654.

52. H. Keller. Numerical Solution of Two-Point Boundary Value Problems, Regional Conf.

Series in Appl. Maths. 24, SIAM Pub., Philadelphia, PA, 1976.

53. H. Keller. Numerical Methods for Two-Point Boundary Value Problems, Dover, New York,

1992 (corrected reprint of the 1968 edition, Blaisdell, Waltham, MA).

54. H. Keller and S. Antman, eds. Bifurcation Theory and Nonlinear Eigenvalue Problems,

Benjamin, New York, 1969.

55. C.T. Kelley. Solving Nonlinear Equations with Newton’s Method, SIAM Pub., Philadel-

phia, 2003.

56. W. Kelley and A. Peterson. Difference Equations, 2nd ed., Academic Press, Burlington,

Massachusetts, 2001.

57. R. Kress. Numerical Analysis, Springer-Verlag, New York, 1998.

58. J. Lambert. Computational Methods in Ordinary Differential Equations, John Wiley, New

York, 1973.

59. P. Linz. Analytical and Numerical Methods for Volterra Equations, SIAM Pub., 1985.

60. P. Lötstedt and L. Petzold. “Numerical solution of nonlinear differential equations with

algebraic constraints. I. Convergence results for backward differentiation formulas”, Math-

ematics of Computation 46 (1986), pp. 491–516.

61. J. Marsden and T. Ratiu. Introduction to Mechanics and Symmetry, Springer-Verlag, New

York, 1999.

62. R. März. “Numerical methods for differential algebraic equations”, Acta Numerica 1992,

Cambridge University Press, 1992.

63. D. Melgaard and R. Sincovec. “Algorithm 565: PDETWO/PSETM/GEARB: Solution of

systems of two-dimensional nonlinear partial differential equations”, ACM Trans. Math.

Software 7 (1981), pp. 126–135.

64. R. Miller. Nonlinear Volterra Integral Equations, Benjamin Pub., 1971.

65. L.R. Petzold. “A description of DASSL: A differential-algebraic system solver”, in R. S.

Stepleman, editor, Scientific Computing, pp. 65–68. North-Holland, Amsterdam, 1983.

66. L. Petzold, L. Jay, and J. Yen. “Numerical solution of highly oscillatory ordinary differ-

ential equations”, Acta Numerica 6 (1997), Cambridge University Press.

67. E. Platen. “An introduction to numerical methods for stochastic differential equations”,

Acta Numerica 8 (1999), Cambridge University Press.

68. A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics, Springer-Verlag, New

York, 2000.

69. L.B. Rall and G.F. Corliss. “An introduction to automatic differentiation”, in Computa-

tional Differentiation (Santa Fe, NM, 1996), pp. 1–18. SIAM, Philadelphia, PA, 1996.



REFERENCES 249

70. J. Sanz-Serna. “Symplectic integrators for Hamiltonian problems: an overview”, Acta

Numerica 1992, Cambridge University Press, 1992.

71. W. Schiesser. The Numerical Method of Lines, Academic Press, San Diego, 1991.

72. L. Shampine. Numerical Solution of Ordinary Differential Equations, Chapman & Hall,

New York, 1994.

73. L. Shampine and M. Reichelt. “The MATLAB ODE Suite”, SIAM Journal on Scientific

Computing 18 (1997), pp. 1–22.

74. L. Shampine, I. Gladwell, and S. Thompson. Solving ODEs with MATLAB, Cambridge

University Press, 2003.

75. R. Sincovec and N. Madsen. “Software for nonlinear partial differential equations”, ACM

Trans. Math. Software 1 (1975), pp. 232–260.

76. A. Stuart. “Numerical analysis of dynamical systems”, Acta Numerica 1994, Cambridge

University Press, 1994.

77. T. Van Hecke and M. Van Daele. “High-order convergent deferred correction schemes

based on parameterized Runge-Kutta-Nyström methods for second-order boundary value

problems. Advanced numerical methods for mathematical modelling”, J. Comput. Appl.

Math. 132 (2001), pp. 107–125.

78. D. Widder. The Heat Equation, Academic Press, New York, 1975.



INDEX

A-stability, 143, 173

absolutely stable, 51, 128

Adams-Bashforth methods, 96

asymptotic error formula, 99

convergence, 99

higher order, 99

MATLAB program, 104

order three, 99

order two, 96

predictor formula, 102

region of absolute stability, 103

truncation error, 99

Adams-Moulton methods, 101

order two, 101

trapezoidal method, 56, 101

B-stability, 155, 156

backward differentiation formulas, 140, 160

characteristic equation, 141

definition, 140

stability regions, 141

backward Euler method, 49, 51, 150

definition, 52

MATLAB program, 54

Baumgarte stabilization, 168

BDF methods, 140, 168, 173

boundary conditions, 187

derivative approximations, 194

boundary value problem, 187

finite difference method

convergence, 190

boundary value problem, linear, 187

discretization, 189

existence theory, 188

finite difference method, 188

MATLAB program, 191

Richardson extrapolation, 190

boundary value problem, nonlinear, 195

collocation

Newton’s method, 204

existence theorem, 195

finite difference method, 197

asymptotic error formula, 197

convergence, 197

discretization, 197

Newton’s method, 198

shooting method, 201

Newton’s method, 201

Butcher tableau, 74, 150

Butcher’s simplifying assumptions, 151

characteristic equation, 120

250



INDEX 251

characteristic polynomial, 120

characteristic roots, 120

collocation

boundary value problems, 204

implicit Runge-Kutta methods, 87
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parasitic solution, 121
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parasitic solution, 121
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polynomial interpolation, 241
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region of absolute stability, 51, 103, 128

relative stability, 123

repetition factor, 229

Richardson extrapolation, 78

root condition, 118

rounding error, 30

Runge-Kutta methods, 70

asymptotic formula, 77

Butcher tableau, 74

classical fourth order method, 74

consistency, 76

convergence, 75

DAEs, 175

error prediction, 78

Fehlberg methods, 80

general framework, 73

implicit methods, 86

MATLAB program, 83

order 2, 70, 72

two-point Gauss method, 88

stability

initial value problem, 8

stable numerical method, 118

stage order, 151, 158, 177

stiff differential equation, 61, 127

stiff order, 159, 169

stiffly accurate, 159, 176, 177

Sundials, 147

systems of differential equations, 37

Euler’s method, 42

Taylor series methods, 68

asymptotic error formula, 70

convergence, 69

Tayor’s theorem

one variable, 236

remainder formula, 236

special cases, 238

two variables, 238

trapezoidal method, 49, 56, 159

absolute stability, 58

definition, 57

Heun’s method, 58

MATLAB program, 59

numerical integration, 56

Volterra integral equation, 216

trapezoidal rule, 150

tridiagonal system, 134, 138, 189, 193

truncation error, 21, 57, 68, 112

multistep methods, 113

Runge-Kutta method, 71

two-point boundary value problem

linear, 187

nonlinear, 195

Volterra integral equation, 211

linear solvability theory, 213

nonlinear solvability theory, 213

numerical methods

convergence theorem, 224

general framework, 219

repetition factor, 229

stability, 225

theory, 223

Simpson methods, 221

stability, 229

solvability theory, 212

special cases, 214

trapezoidal method, 216

error estimate, 217

MATLAB program, 221

weak stability, 123

well-conditioned, 9


