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NUMERICAL SOLUTION OF PARABOLIC

INTEGRO-DIFFERENTIAL EQUATIONS BY THE

DISCONTINUOUS GALERKIN METHOD

STIG LARSSON, VIDAR THOMÉE, AND LARS B. WAHLBIN

Abstract. The numerical solution of a parabolic equation with memory is
considered. The equation is first discretized in time by means of the discontin-
uous Galerkin method with piecewise constant or piecewise linear approximat-
ing functions. The analysis presented allows variable time steps which, as will
be shown, can then efficiently be selected to match singularities in the solution
induced by singularities in the kernel of the memory term or by nonsmooth
initial data. The combination with finite element discretization in space is also
studied.

1. Introduction

Let H be a separable Hilbert space and assume that A is a linear, selfadjoint,
positive definite, not necessarily bounded operator, with compact inverse, defined
in D(A) ⊂ H , and that, for 0 ≤ s < t ≤ T , B(t, s) is a linear operator in H with
D(B(t, s)) ⊃ D(A). Consider the initial value problem

ut +Au+

∫ t

0

B(t, s)u(s) ds = f, for t ∈ (0, T ], with u(0) = u0,(1.1)

where f = f(t), u = u(t), ut = du/dt. Setting ‖v‖p = ‖Ap/2v‖ = (Apv, v)1/2, where
‖ · ‖ is the norm and (·, ·) the the inner product in H , we assume throughout the
paper that the operator A dominates B(t, s) in the sense that, for some α ∈ (0, 1],

|(B(t, s)v, w)| ≤ C(t− s)α−1‖v‖p ‖w‖q, p = 0, 1, 2, p+ q = 2.(1.2)

For 0 < α < 1, (1.2) reflects a weakly singular behavior of B(t, s). When α = 1 we
shall sometimes assume that an appropriate number of derivatives of B(t, s) exist
and are also dominated by A; in this case we refer to B(t, s) as a “smooth kernel”.

In the applications that we have in mind, either A is an elliptic second order
differential operator in a bounded domain Ω ⊂ Rd with homogeneous Dirichlet
boundary conditions, and B(t, s) is a second order differential operator, or else A
and B(t, s) are discrete analogs of such operators, arising from a finite element
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discretization in the spatial variables. Our abstract framework makes it possible to
treat these cases simultaneously. In the differential operators case, (1.2) amounts
to elliptic regularity, plus a bound for the coefficients of B(t, s). The problem
considered may, e.g., be thought of as a model problem occurring in the theory of
heat conduction in materials with memory, cf. [3]. Equations with weakly singular
kernels occur in [7], [9], [10]. For other references, see, e.g., [16].

We shall consider the approximate solution of (1.1) by means of the discon-
tinuous Galerkin method (cf. [4], [5]), which we shall define below in the present
context. When A and B(t, s) are differential operators, we shall consider also the
discretization in space by finite elements, which will then define a fully discrete
method for (1.1) in this case.

For earlier work on discretization in time or space, or both, of equations such
as (1.1), see, e.g., [1], [2], [8], [11], [12], [13], [14], [15], [16], [17]. As we shall
see in Section 5, a weakly singular kernel in the memory term typically leads to a
singularity in the solution (with respect to time), as do nonsmooth initial data. It is
hence of interest that the discontinuous Galerkin method, as compared to standard
finite difference methods in time, facilitates the analysis of variable time steps and,
also, accepts lower regularity of solutions. These advantages of the discontinuous
Galerkin method are well known in the context of standard parabolic problems, cf.
[4], [5]. However, we point out that our analysis in this paper does not take into
account numerical approximation of certain integrals occurring.

To define our time stepping method, let 0 = t0 < t1 < · · · < tn < · · · ≤ T be a
partition of the interval [0, T ], and define In = (tn−1, tn), kn = tn − tn−1. Further
let VN = VNq, for tN ∈ (0, T ], denote the set of scalar functions on [0, tN ], which,
for n = 1, . . . , N , reduce to polynomials of degree less than q on In with q = 1 or 2.
We shall work with functions in WN ≡ VN ⊗D(A1/2); in the differential operator
applications these are functions of (x, t) ∈ Ω × [0, tN ], which are either piecewise
constant or piecewise linear in time, not necessarily continuous at the nodes of the
partition.

Letting A(v, w) and B(t, s; v, w) denote the natural bilinear forms on D(A1/2)
generated by (Av,w) and (B(t, s)v, w), respectively, we set, for piecewise smooth
functions V,W , with [V ]n = V +

n − V −n , V ±n = limt→tn± V (t) denoting jump terms,

GN (V,W ) =
N∑
n=1

∫
In

(
(Vt(t),W (t)) +A(V (t),W (t))

+

∫ t

0

B(t, s;V (s),W (t)) ds
)
dt+

N−1∑
n=1

([V ]n,W
+
n ) + (V +

0 ,W+
0 ).

(1.3)

For B(t, s) ≡ 0 we recognize the bilinear form used in the analysis of the discontin-
uous Galerkin method for a parabolic differential equation.

Multiplication in H of (1.1) by X and integration over (0, tN) show that the
exact solution satisfies

GN (u,X) = (u0, X
+
0 ) +

∫ tN

0

(f(t), X(t)) dt, ∀X ∈ WN .

The numerical approximation U ∈ WN is now defined by

GN (U,X) = (u0, X
+
0 ) +

∫ tN

0

(f(t), X(t)) dt, ∀X ∈ WN .(1.4)
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NUMERICAL SOLUTION OF INTEGRO-DIFFERENTIAL EQUATIONS 47

We note that this is a time stepping scheme, which determines U successively on
In for n = 1, . . . , N , when it is known on [0, tn−1), from∫

In

(
(Ut, X) +A(U,X) +

∫ t

tn−1

B(·, s;U(s), X) ds
)
dt+ (U+

n−1, X
+
n−1)

= (U−n−1, X
+
n−1) +

∫
In

(f,X) dt−
∫
In

∫ tn−1

0

B(·, s;U(s), X) ds dt, ∀X ∈ WN ,

where U−0 = u0. The uniqueness of U follows by Gronwall’s lemma provided that
k = maxn kn is small enough (which we shall assume in the sequel without specific
mention), cf. the stability estimate (3.2) in Theorem 3.1 below. The existence in
the case B(t, s) ≡ 0 follows from the uniqueness since, using the eigenspaces of A,
(1.1) can then be reduced to finite dimensional problems. For B(t, s) 6≡ 0 and k
small, the problem may be thought of as a small perturbation of the problem with
B(t, s) ≡ 0, which may be solved by the contraction mapping theorem.

We note that U − u satisfies the “orthogonality” condition

GN (U − u,X) = 0, ∀X ∈ WN .(1.5)

Our first error estimate is now as follows. Here and below we set

|g|In = sup
In

‖g(t)‖ and |g|p,In = sup
In

‖g(t)‖p.

We shall often also use the analogous notation |g|JN and |g|p,JN , where JN = (0, tN ),
and write Dt for d/dt.

Theorem 1.1. Let U and u be the solutions of (1.4) and (1.1). Then there exists
a constant C = C(T ) such that, for tN ∈ [0, T ],

|U − u|IN ≤ CkqN |Dq
tu|IN + C

N∑
n=1

kq+1
n |Dq

tu|2,In .

In particular, this error bound is of order O(kq) for a smooth solution u.
Although the error bound derived in Theorem 1.1 does point at the interplay

between the regularity of u and good choices of the time steps, it has a form which
makes an explicit choice difficult. For this reason we now present an estimate where
the l1-norm in time has been replaced by a maximum norm. Here and below, we
denote LN = (1 + log(tN/kN ))1/2, which is of moderate size compared to 1/kN ,
and we shall always assume the mesh ratio condition kn/kn+1 ≤ ω, for n ≥ 1.

Theorem 1.2. Let U and u be the solutions of (1.4) and (1.1). Then there exists
a constant C = C(T ) such that, for tN ∈ [0, T ],

‖U−N − u(tN )‖ ≤ CLN max
1≤n≤N

(
kqn|Dq

tu|In
)
.

When q = 2 it is clear that if we interpolate linearly in In between U−n−1 and U−n
we will obtain an approximation for u(t) on all of In with the same error bound as
in Theorem 1.2; for a smooth solution this thus shows a global second order error
bound. We shall next give a result for the piecewise linear case, which shows that
then (under appropriate smoothness assumptions) the error in the nodal value U−N
is of superconvergent third order in k.
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Theorem 1.3. Let q = 2 and let U and u be the solutions of (1.4) and (1.1). If
either B(t, s) is smooth and such that also Bt(t, s) is dominated by A, or if B(t, s) is
of convolution type, i.e., B(t, s) = B(t− s), then there exists a constant C = C(T )
such that, for tN ∈ [0, T ],

‖U−N − u(tN )‖ ≤ CLN max
1≤n≤N

(
k3
n|D2

tu|2,In
)
.

We remark that in the quantities such as kqn|Dq
tu|In appearing in Theorems 1.1–

1.3, the number q may be replaced by any m with 0 ≤ m ≤ q; with the proper
interpretation m may also be fractional. Note also that, in all of our results, the
variable tN is allowed to vary in the interval [0, T ]. Due to the use of Gronwall’s
lemma, the quantities C(T ) in our estimates grow rapidly as T increases, cf. [13].

The proofs of our error estimates will be carried out by energy arguments; for
Theorems 1.2 and 1.3 they will depend on the following stability result for the dual
problem to (1.4) with f = 0.

Theorem 1.4. Let tN ∈ [0, T ] and let Z ∈ WN be given by

GN (X,Z) = (X−
N , ϕ), ∀X ∈ WN ,(1.6)

where ϕ ∈ H. Then there exists a constant C = C(T ) such that

|Z|JN ≤ C‖ϕ‖,
and, with [Z]N = ϕ− Z−N ,

N∑
n=1

( ∫
In

(‖Zt‖ + ‖Z‖2
)
dt+ ‖[Z]n‖

)
≤ CLN‖ϕ‖.

Note that (1.6) is a discrete version of the backward evolution problem

−zt +Az +

∫ tN

t

B∗(s, t)z(s) ds = 0, for t ∈ (0, tN), with z(tN) = ϕ,(1.7)

where B∗(s, t) is the adjoint of B(s, t). The proof of Theorem 1.4 is carried out in
Theorem 3.1 for a related forward equation of the form (1.4) with u0 = ϕ, f = 0. It
is known that Theorem 1.4 holds in the case that B(t, s) ≡ 0, i.e., when no memory
term is present (see [4], Lemma 6.1). In our case we therefore write the solution in
the form U = V + W , where V is the solution for B(t, s) ≡ 0. It then remains to
show the estimates of Theorem 1.4 for W , which satisfies

N∑
n=1

∫
In

(
(Wt, X) +A(W,X)

)
dt+

N−1∑
n=1

([W ]n, X
+
n ) + (W+

0 , X
+
0 )

= −
∫ tN

0

∫ t

0

B(·, s;U(s), X) ds dt, ∀X ∈ WN .

The main part of the proof now consists in showing∫ tN

0

‖W‖2 dt ≤ C(T )‖ϕ‖.(1.8)

WhenB(t, s) is smooth, and also for singular kernels with α > 1
2 , this follows at once

from showing that ‖W‖2 is square integrable in time, which is proved by a simple
energy argument. For α ≤ 1

2 more technical and somewhat lengthy considerations

show that tγ‖W (t)‖2 is square integrable with γ < 1
2 , which again implies (1.8).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NUMERICAL SOLUTION OF INTEGRO-DIFFERENTIAL EQUATIONS 49

We next give some simple examples of how Theorems 1.1–1.3 apply, particularly
with reference to the regularity of the solution and the choice of the time steps. We
start with B(t, s) smooth. Then Theorem 1.1 shows a O(kq) error bound provided
‖Dq

tu(t)‖2 is bounded, whereas Theorem 1.2 gives O(LNk
q), assuming only that

‖Dq
tu(t)‖ is bounded. Conditions on u0 and f for such properties to hold are given

in [17], Theorem 2.3. In particular, for the homogeneous equation (f = 0), when
q = 1, the requirements are u0 ∈ D(A2) and u0 ∈ D(A), respectively, and when
q = 2, additionally that (A2 −B(0, 0))u0 ∈ D(A) and u0 ∈ D(A2), respectively. In
these cases there are, a priori, no pressing reasons to use variable time steps.

Consider then the limited regularity case when u0 ∈ D(A) only, still with B(t, s)
smooth and f = 0. It may then be shown, using the techniques in [14], [15], that

‖ut(t)‖ + ‖u(t)‖2 + t‖utt(t)‖ + t‖ut(t)‖2 + t2‖utt(t)‖2 ≤ C0, t ∈ (0, T ],(1.9)

so that the bounds for the higher derivatives are singular at t = 0. Then, in the
piecewise constant case, Theorem 1.1 together with (1.9) shows

|U − u|IN ≤ CC0

(
kN + k1 +

N∑
n=2

k2
n/tn−1

)
≤ CC0L

2
Nk(1.10)

(we always assume that kn is chosen so that kn ≤ tn−1, for n ≥ 2), while Theo-
rem 1.2 similarly gives the slightly smaller bound

‖U−N − u(tN )‖ ≤ CC0LN max
1≤n≤N

kn = CC0LNk.(1.11)

For piecewise linear functions Theorem 1.2 gives

‖U−N − u(tN )‖ ≤ CC0LN

(
k1 + max

2≤n≤N
(k2

n/tn−1)
)
,(1.12)

while Theorem 1.3 shows the higher order estimate

‖U−N − u(tN )‖ ≤ CC0LN

(
k1 + max

2≤n≤N
(k3

n/t
2
n−1)

)
.(1.13)

Let us now turn to the case of a weakly singular kernel, which, as already noted,
accounts for much of our technical analysis in this paper. We start with the special
case of a kernel of the form B(t, s) = (t− s)α−1B and, assume first that u0 ∈ D(A)
only (and that f = 0). As we shall see below in Section 5, the estimates of (1.9)
still hold, except the one for ‖utt‖2, and hence (1.10), (1.11), and (1.12) remain
valid. As for Theorem 1.3, if B = A and if u0 ∈ D(A2+α), then ‖utt(t)‖2 ≤ Ctα−1,
and an analysis similar to the above is easily furnished.

We shall see below that, in fact, the second derivatives deteriorate near t = 0,
no matter how smooth the initial data u0 are. If u0 ∈ D(A1+α), then ‖utt(t)‖ ≤
Ctα−1 (and ut ∈ Cα(J̄N , L2)) so that, for piecewise linear functions, we have by
Theorem 1.2 (with a fractional power of k1 on I1),

‖U−N − u(tN )‖ ≤ CC0LN

(
k1+α
1 + max

2≤n≤N
(k2

n/t
1−α
n−1)

)
.(1.14)

Estimates like (1.13) and (1.14) give guidelines on how to choose suitable mesh
refinements. For instance, with T = tM = 1, choosing the time levels by tn =

(n/M)γ , n = 0, 1, . . . ,M , we find kn ≈ γM−1t
(γ−1)/γ
n−1 . Then taking γ = 3 we find

from (1.13) that ‖U−N − u(tN )‖ ≤ CC0LNM
−3 for N ≤M , while γ = 2/(1+α), in

(1.14) gives ‖U−N − u(tN)‖ ≤ CC0LNM
−2.
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We next consider the case when A and B(t, s) are differential operators of the
form described above, and take H = L2(Ω). We shall then study a fully discrete
method combining time stepping by the discrete Galerkin method introduced above
with the use of finite elements for the approximation in the spatial variables. We
assume that we are given a family of finite dimensional spaces Sh ⊂ H1

0 (Ω) such
that there is a positive integer r, the order of accuracy of {Sh}, such that, with
Hp = Hp(Ω) the standard L2-based Sobolev spaces,

inf
χ∈Sh

(‖v − χ‖ + h‖∇(v − χ)‖) ≤ Chp‖v‖Hp , 1 ≤ p ≤ r, v ∈ Hp ∩H1
0 .(1.15)

The approximation U of the solution of (1.1) is now sought in WN,h ≡ VN ⊗ Sh
from

GN (U,X) = (u0h, X
+
0 ) +

∫ tN

0

(f,X) dt, ∀X ∈ WN,h,(1.16)

with GN (·, ·) defined as above, and where u0h ∈ Sh is a given approximation to u0.
The error equation is in this case, cf. (1.5),

GN (U − u,X) = (u0h − u0, X
+
0 ), ∀X ∈ WN,h.(1.17)

In particular, the right-hand side vanishes if u0h = Phu0, where Ph denotes the
L2-projection onto Sh.

As examples of results in this case we shall present analogs of Theorems 1.2 and
1.3 above. In both cases our proofs will involve domination for discrete analogs of
A and B(t, s). We therefore make the following assumption, which will serve to
transfer domination, i.e., (1.2) from the continuous to the discrete case: Either

B(t, s) = b(t, s)A+A0(t, s),(1.18)

where b(t, s) is a scalar function and A0(t, s) is a differential operator of at most
first order, or the finite element spaces have an inverse property

‖χ‖1 ≤ Ch−1‖χ‖, ∀χ ∈ Sh.(1.19)

Theorem 1.5. Let U and u be the solutions of (1.16) and (1.1), respectively,
and assume that (1.15) and (1.18) or (1.19) holds. Then there exists a constant
C = C(T ) such that, for tN ∈ [0, T ],

‖U−N − u(tN )‖ ≤ CLN

(
‖u0h − u0‖ + hp sup

0≤t≤tN
‖u(t)‖Hp + max

1≤n≤N
(
kqn|Dq

tu|In
))
.

Theorem 1.6. Let q = 2, let U and u be the solutions of (1.16) and (1.1), and
assume that (1.15) and (1.18) or (1.19) holds. If B(t, s) is smooth and such that
also Bt(t, s) and Btt(t, s) are dominated by A, then there exists a constant C = C(T )
such that, for tN ∈ [0, T ],

‖U−N − u(tN )‖ ≤ CLN

(
‖u0h − u0‖ + hp sup

0≤t≤tN
‖u(t)‖Hp

+ max
1≤n≤N

{
k3
n

( 2∑
l=0

|Dl
tu|2,In +

∫ tn

0

‖u‖2 ds
)})

.

The plan of the paper is as follows: In Section 2 we show the error estimates of
Theorems 1.1–1.3, assuming the stability result of Theorem 1.4, which is proved in
Section 3. The completely discrete case with finite elements in the spatial variables
is analyzed in Section 4 and some examples of the use of the error estimates are
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given. Finally, some examples of regularity results of the type used above are shown
in Section 5. Some technical lemmas are collected in Section 6.

We finally remark that on several occasions we claim existence of solutions of
our problems in specified functions spaces, as a result of the corresponding a priori
estimates. Such results can be justified using the Faedo-Galerkin method based on
eigenvector expansions associated with the operator A, cf., e.g., [2], Theorem 1, for
an example in the context of integro-differential equations.

2. Proofs of the error estimates

In this section we prove the error estimates of Theorems 1.1, 1.2, and 1.3. The
proofs of the latter two results are based on the stability estimates of Theorem 1.4.
In all of the proofs we use the linear interpolation operator Π, which maps smooth
functions of t onto VN , and which is defined, for n = 1, . . . , N , by

(Πg)−n = g(tn), if q = 1, 2, and

∫
In

(Πg)(t) dt =

∫
In

g(t) dt, if q = 2.

Then Π approximates the identity operator to order q, i.e.,

|Πg − g|In ≤ Ckmn |Dm
t g|In , for 0 ≤ m ≤ q.(2.1)

Note in particular the case m = 0, which means that Π is stable with respect to
| · |In . Writing

U − u = (U −Πu) + (Πu − u) ≡ θ + η,

we thus have access to bounds for η. For the other term θ ∈ WN we note that the
“orthogonality” relation (1.5) yields

GN (θ,X) = −GN (η,X), ∀X ∈ WN ,

where, by integration by parts in definition (1.3),

GN (V,W ) =

N∑
n=1

∫
In

(
− (V,Wt) +A(V,W ) +

∫ t

0

B(·, s;V (s),W ) ds
)
dt

−
N−1∑
n=1

(V −n , [W ]n) + (V −N ,W
−
N ).

(2.2)

Using also the defining properties of Π, we conclude that θ ∈ WN satisfies the
equation

GN (θ,X) = −
∫ tN

0

(
A(η,X) +

∫ t

0

B(·, s; η(s), X) ds
)
dt, ∀X ∈ WN .(2.3)

Proof of Theorem 1.1. By (2.1), η is bounded as desired. To estimate θ we choose
X = θ in (2.3), and after a simple calculation we obtain

1
2‖θ−N‖2 + 1

2‖θ+0 ‖2 + 1
2

N−1∑
n=1

‖[θ]n‖2 +

∫ tN

0

‖θ‖21 dt = −
∫ tN

0

A(η, θ) dt

−
∫ tN

0

∫ t

0

B(·, s; η(s), θ) ds dt−
∫ tN

0

∫ t

0

B(·, s; θ(s), θ) ds dt
≡ R1 +R2 +R3.

(2.4)
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Here, R1 ≤
∫ tN
0
‖η‖2 dt |θ|JN , and, by assumption (1.2) and a change of order of

integration,

R2 ≤ C

∫ tN

0

∫ t

0

(t− s)α−1‖η(s)‖2 ds ‖θ(t)‖ dt ≤ C

∫ tN

0

‖η‖2 dt |θ|JN .

Further, using also Schwarz’ inequality and in the last step the technical estimate of
Lemma 6.3 (with δ = 0), combined with the arithmetic-geometric mean inequality,
we have

R3 ≤ C

∫ tN

0

∫ t

0

(t− s)α−1‖θ(s)‖1 ds ‖θ(t)‖1 dt

≤ C
( ∫ tN

0

(∫ t

0

(t− s)α−1‖θ(s)‖1 ds
)2

dt
)1/2(∫ tN

0

‖θ‖21 dt
)1/2

≤ C

∫ tN

0

(tN − t)α−1

∫ t

0

‖θ(s)‖21 ds dt+ 1
2

∫ tN

0

‖θ‖21 dt.

Clearly, since q = 1, 2, we have (recall that |v|JN = supt∈(0,tN ) ‖v(t)‖)
|θ|JN ≤ max

1≤n≤N
(‖θ−n ‖ + ‖θ+n−1‖) ≤ 2 max

1≤n≤N
‖θ−n ‖ + max

1≤n≤N−1
‖[θ]n‖ + ‖θ+0 ‖,

and hence

|θ|2JN ≤ C max
1≤n≤N

(
‖θ−n ‖2 +

N−1∑
n=1

‖[θ]n‖2 + ‖θ+0 ‖2
)
.

We therefore conclude from (2.4) and the above that

|θ|2JN +

∫ tN

0

‖θ‖21 dt ≤ C
( ∫ tN

0

‖η‖2 dt
)2

+ C

∫ tN

0

(tN − t)α−1

∫ t

0

‖θ‖21 ds dt.

Denoting the left side by φN and the first term on the right by aN , we have, since
t ≤ tn for t ∈ In,

φN ≤ aN + C
N∑
n=1

∫
In

(tN − t)α−1 dt

∫ tn

0

‖θ‖21 ds

≤ aN + C

N∑
n=1

∫
In

(tN − t)α−1 dt φn.

Using a variant of Gronwall’s lemma (Lemma 6.4 below) and (2.1), we find

|θ|JN ≤ C

∫ tN

0

‖η‖2 dt ≤ C
N∑
n=1

kn|(Π− I)u|2,In ≤ C
N∑
n=1

kq+1
n |Dq

tu|2,In .

Since U − u = θ + η, this completes the proof.

Proof of Theorem 1.2. We shall estimate U−N − u(tN ) by duality. Let Z be the

solution of (1.6) with ‖ϕ‖ = 1. Since η−N = 0 we have

(U−N − u(tN), ϕ) = (θ−N , ϕ) = GN (θ, Z),

so that, in view of (2.3),

(U−N − u(tN ), ϕ) = −
∫ tN

0

(
A(η, Z) +

∫ t

0

B(·, s; η(s), Z) ds
)
dt.(2.5)
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Using assumption (1.2) and Theorem 1.4, we obtain

|(U−N − u(tN ), ϕ)| ≤ C|η|JN
∫ tN

0

‖Z‖2 dt ≤ CLN |η|JN ,

which proves the theorem.

Proof of Theorem 1.3. Again we use the error representation (2.5) and Theorem 1.4.
Switching the order of integration in the memory term in (2.5) yields

(U−N − u(tN ), ϕ) = −
∫ tN

0

(
A(η, Z) +

∫ tN

t

B(s, t; η(t), Z(s)) ds
)
dt

= −
∫ tN

0

(
Aη(t), Z(t) +

∫ tN

t

A−1B∗(s, t)Z(s) ds
)
dt = −

N∑
n=1

∫
In

(Aη,K) dt,

where

K(t) = Z(t) +

∫ tN

t

A−1B∗(s, t)Z(s) ds.

Since η is orthogonal to constants (recall that q = 2), we have∣∣∣ ∫
In

(Aη,K) dt
∣∣∣ = ∣∣∣ ∫

In

(
Aη(t), K+

n−1 +

∫ t

tn−1

Kt ds
)
dt
∣∣∣ ≤ kn|η|2,In

∫
In

‖Kt‖ ds.

Hence

|(U−N − u(tN ), ϕ)| ≤ max
1≤n≤N

(
kn|η|2,In

) N∑
n=1

∫
In

‖Kt‖ dt.

Since η = Πu − u may be estimated by (2.1), it remains to prove

N∑
n=1

∫
In

‖Kt‖ dt ≤ CLN .(2.6)

If B(t, s) is smooth, then, for t ∈ In,

Kt(t) = Zt(t)−A−1B∗(t, t)Z(t) +

∫ tN

t

A−1B∗t (s, t)Z(s) ds.

We note that (1.2) gives ‖A−1B∗(t, t)‖ ≤ C and similarly, under our present as-
sumptions, ‖A−1B∗t (s, t)‖ ≤ C, and hence (2.6) easily follows from Theorem 1.4.

If the kernel is of convolution type with B(t, s) = B(t− s), then

K(t) = Z(t) + A−1

∫ tN

t

B∗(s− t)Z(s) ds = Z(t) +A−1

∫ tN−t

0

B∗(s)Z(s+ t) ds.

It follows by a direct calculation that K is differentiable for t 6= tn, n = 0, . . . , N .
In fact, for t ∈ In, we have

Kt(t) = Zt(t) +A−1
(∫ tN

t

B∗(s− t)Zt(s) ds+

N−1∑
l=n

B∗(tl − t)[Z]l − b(tN − t)Z−N
)
,

where Zt denotes the piecewise constant function obtained by differentiation of Z,
and the sum is empty if n = N . Noting that (1.2) implies ‖A−1B∗(t)‖ ≤ Ctα−1,
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we get

N∑
n=1

∫
In

‖Kt‖ dt ≤
∫ tN

0

‖Zt‖ dt+ C

∫ tN

0

∫ tN

t

(s− t)α−1‖Zt(s)‖ ds dt

+ C
N−1∑
n=1

∫
In

N−1∑
l=n

(tl − t)α−1 dt ‖[Z]l‖ + C

∫ tN

0

(tN − t)α−1 dt ‖Z−N‖,

and after changing the order of integration and summation,

N∑
n=1

∫
In

‖Kt‖ dt ≤ C

∫ tN

0

‖Zt‖ dt+ C

N−1∑
l=1

‖[Z]l‖
l∑

n=1

∫
In

(tl − t)α−1 dt+ C‖Z−N‖

≤ C
( ∫ tN

0

‖Zt‖ dt+
N−1∑
n=1

‖[Z]n‖ + ‖Z−N‖
)
,

which proves (2.6) and thus completes the proof.

3. Stability

The object of this section is to prove our main stability result, Theorem 1.4,
for the backward evolution problem (1.6). It is convenient to carry out the proof
for a related forward problem obtained by a change of variable t → tN − t. More
precisely, setting z̃(t) = z(tN − t) in (1.7) yields

z̃t +Az̃ +

∫ t

0

B̃(t, s)z̃(s) ds = 0, t ∈ (0, tN ); z̃(0) = ϕ,

where B̃(t, s) = B∗(tN − s, tN − t). A similar consideration applies to (1.6), which
is thus equivalent to a forward problem of the form (1.4) with f = 0, u0 = ϕ,

with a different kernel, namely B̃(t, s), and a reversed mesh. By noting that B̃(t, s)
satisfies (1.2), and inverting the mesh ratio condition, we see that Theorem 1.4

follows from the following theorem, where L̃N = (1 + log(tN/k1))
1/2.

Theorem 3.1. Let tN ∈ [0, T ] and let U ∈ WN be defined by

GN (U,X) = (ϕ,X+
0 ), ∀X ∈ WN ,(3.1)

where ϕ ∈ H. Then there exists a constant C = C(T ) such that

|U |JN ≤ C‖ϕ‖,(3.2)

and, if kn+1/kn ≤ ω for n ≥ 1, a constant C = C(T, ω) such that, with [U ]0 =
U+

0 − ϕ,

N∑
n=1

(∫
In

(‖Ut‖ + ‖U‖2
)
dt+ ‖[U ]n−1‖

)
≤ CL̃N‖ϕ‖.(3.3)

We begin by proving (3.2).

Proof of (3.2). With X = U in (3.1) we have

1
2‖U−N‖2 + 1

2‖U+
0 ‖2 + 1

2

N−1∑
n=1

‖[U ]n‖2 +

∫ tN

0

‖U‖21 dt

= (ϕ,U+
0 )−

∫ tN

0

∫ t

0

B(t, s;U(s), U(t)) ds dt.

Hence, since (ϕ,U+
0 ) = 1

2

(‖ϕ‖2 + ‖U+
0 ‖2 − ‖[U ]0‖2

)
, and in view of (1.2), we get
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‖U−N‖2 +

N−1∑
n=0

‖[U ]n‖2 + 2

∫ tN

0

‖U‖21 dt

≤ ‖ϕ‖2 + C

∫ tN

0

‖U(t)‖1
∫ t

0

(t− s)α−1‖U(s)‖1 ds dt

≤ ‖ϕ‖2 +

∫ tN

0

‖U‖21 dt+ C

∫ tN

0

(∫ t

0

(t− s)α−1‖U(s)‖1 ds
)2

dt.

By application of Lemma 6.3 to the last term we obtain

‖U−N‖2 +

N−1∑
n=0

‖[U ]n‖2 +

∫ tN

0

‖U‖21 dt

≤ ‖ϕ‖2 + CTα

∫ tN

0

(tN − t)α−1

∫ t

0

‖U(s)‖21 ds dt,

and Gronwall’s lemma (Lemma 6.4) gives (as in the proof of Theorem 1.1)

‖U−N‖2 +

N−1∑
n=0

‖[U ]n‖2 +

∫ tN

0

‖U‖21 dt ≤ C(T )‖ϕ‖2.(3.4)

Hence, we have estimated the nodal values U−N in the desired way, and the proof
will be complete once we have proved∫

In

‖Ut‖ dt ≤ C(T )‖ϕ‖, for 1 ≤ n ≤ N.(3.5)

In order to show (3.5) we take X(t) = (t−tn−1)Ut(t) for t ∈ In, X(t) = 0 otherwise,
in (3.1) to obtain∫

In

(t−tn−1)‖Ut(t)‖2 dt = −
∫
In

(t− tn−1)A(U(t), Ut(t)) dt

−
∫
In

(t− tn−1)

∫ t

0

B(t, s;U(s), Ut(t)) ds dt ≡ R1 +R2.

(3.6)

Here, for R1 we have, by means of an integration by parts and (3.4),

R1 = − 1
2

∫
In

(t− tn−1)
d

dt
‖U(t)‖21 dt = − 1

2kn‖U−n ‖21 + 1
2

∫
In

‖U‖21 dt ≤ C(T )‖ϕ‖2.

For R2 we use (1.2), Schwarz’ inequality, an inverse inequality, and Young’s in-
equality (Lemma 6.1), to obtain the estimate

R2 ≤ C

∫
In

(t− tn−1)‖Ut(t)‖1
∫ t

0

(t− s)α−1‖U(s)‖1 ds dt

≤ Ck2
n

∫
In

‖Ut‖21 dt+ C

∫
In

( ∫ t

0

(t− s)α−1‖U(s)‖1 ds
)2

dt

≤ C

∫
In

‖U‖21 dt+ CT 2α

∫ tn

0

‖U‖21 dt ≤ C(T )

∫ tn

0

‖U‖21 dt ≤ C(T )‖ϕ‖2.

Since Ut is constant on In, we have(∫
In

‖Ut‖ dt
)2

= 2

∫
In

(t− tn−1)‖Ut(t)‖2 dt,(3.7)

and hence the above estimates prove (3.5).
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The remaining result (3.3) will be proved by splitting U into two parts U =
V +W , where V ∈ WN is defined by the purely parabolic discrete problem obtained
by setting B = 0, i.e., ∀X ∈ WN ,

N∑
n=1

∫
In

(
(Vt, X) +A(V,X)

)
dt+

N−1∑
n=1

([V ]n, X
+
n ) + (V +

0 , X+
0 ) = (ϕ,X+

0 ).(3.8)

For the “parabolic part” V of U we have the following result. In particular, (3.3)

holds with U replaced by V . Recall that L̃N = (1+log(tN/k1))
1/2 and kn+1/kn ≤ ω

for n ≥ 1.

Lemma 3.1. With [V ]0 = V +
0 − ϕ we have, for the solution of (3.8),

‖V −N ‖2 + 2

∫ tN

0

‖V ‖21 dt+
N∑
n=1

‖[V ]n−1‖2 = ‖ϕ‖2,

N∑
n=1

tn

( ∫
In

(‖Vt‖2 + ‖V ‖22
)
dt+ k−1

n ‖[V ]n−1‖2
)
≤ C(ω)‖ϕ‖2,

and

N∑
n=1

(∫
In

(‖Vt‖ + ‖V ‖2
)
dt+ ‖[V ]n−1‖

)
≤ C(ω)L̃N‖ϕ‖.

We refer to Lemma 6.1 of [4] for the proof of this lemma. We now turn to the
estimates for W which is the solution of

N∑
n=1

∫
In

(
(Wt, X) +A(W,X)

)
dt+

N−1∑
n=1

([W ]n, X
+
n ) + (W+

0 , X
+
0 )

= −
∫ tN

0

∫ t

0

B(t, s;U(s), X(t)) ds dt, ∀X ∈ WN .

(3.9)

Our aim is to show first that∫ tN

0

‖W‖2 dt ≤ C(T, ω)L̃N‖ϕ‖.(3.10)

In the case of a smooth kernel (α = 1 in (1.2)), and also in the case of a singular
kernel with α > 1

2 , this will follow at once from∫ tN

0

‖W‖22 dt ≤ C(T )L̃2
N‖ϕ‖2,(3.11)

which we shall derive in a simple way in Lemmas 3.2 and 3.3. Since, as follows from
the discussion in Section 5 below, ‖w‖2 = O(tα−1) where w is the continuous in
time analog of W , we do not expect (3.11) to hold for α ≤ 1

2 , and we shall therefore

show instead essentially that tγAW (t) ∈ L2(JN , H), with γ < 1
2 , which implies

(3.10). We begin with the case of a smooth kernel.

Lemma 3.2. Let W be the solution of (3.9). If B(t, s) is a smooth kernel, then∫ tN

0

‖W‖2 dt ≤ C(T )L̃N‖ϕ‖.
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Proof. We shall show (3.11) which clearly implies the desired result. With X(t) =
AW (t) in (3.9) we have, by a straightforward calculation,

1
2‖W−

N ‖21 + 1
2‖W+

0 ‖21 + 1
2

N−1∑
n=1

‖[W ]n‖21 +

∫ tN

0

‖W‖22 dt

= −
∫ tN

0

∫ t

0

B(·, s;U(s), AW ) ds dt.

Using the bound for B in (1.2) with α = 1, and Schwarz’ inequality, the term on
the right may be bounded by

C

∫ tN

0

‖W (t)‖2
∫ t

0

‖U(s)‖2 ds dt ≤ 1
2

∫ tN

0

‖W‖22 dt+ C

∫ tN

0

(∫ t

0

‖U‖2 ds
)2

dt.

Since U = V +W we hence have∫ tN

0

‖W‖22 dt ≤ CT
(∫ tN

0

‖V ‖2 dt
)2

+ CT

∫ tN

0

∫ t

0

‖W‖22 ds dt.(3.12)

In view of Lemma 3.1 the first term on the right is bounded by C(T )L̃2
N‖ϕ‖2, and

by an obvious estimate for the second term, we now have∫ tN

0

‖W‖22 dt ≤ C(T )L̃2
N‖ϕ‖2 + C(T )

N∑
n=1

(
kn

∫ tn

0

‖W‖22 dt
)
.

The desired result now follows by the standard discrete Gronwall lemma.

Lemma 3.3. The conclusion of Lemma 3.2 remains valid if B(t, s) is weakly sin-
gular with α > 1

2 .

Proof. In this case we obtain instead of (3.12)∫ tN

0

‖W‖22 dt ≤ C

∫ tN

0

( ∫ t

0

(t− s)α−1‖V (s)‖2 ds
)2

dt

+ C

∫ tN

0

( ∫ t

0

(t− s)α−1‖W (s)‖2 ds
)2

dt.

Here, Young’s inequality (Lemma 6.1) and Lemma 3.1 show that the first term is
bounded by

C

∫ tN

0

t2α−2 dt
( ∫ tN

0

‖V ‖2 dt
)2

≤ CT 2α−1L̃2
N‖ϕ‖2.

For the second term we use Schwarz’ inequality to obtain the bound

CT 2α−1
N∑
n=1

kn

∫ tn

0

‖W‖22 ds.

The proof is again concluded by the standard Gronwall lemma.

The case of 0 < α ≤ 1
2 is more involved and requires some preparations. In

addition to the technical lemmas of Section 6, we shall need the following simple
identity, where we use the piecewise constant function t 7→ t̂ defined by

t̂ = tn, for t ∈ (tn−1, tn].(3.13)
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Lemma 3.4. If δ ∈ R, X ∈ WN , and Y (t) = t̂δX(t), with t̂ defined in (3.13),
then

N∑
n=1

∫
In

(Xt(t), Y (t)) dt +

N−1∑
n=1

([X ]n, Y
+
n ) + (X+

0 , Y
+
0 )

= 1
2 t
δ
N‖X−

N‖2 + 1
2 t
δ
1‖X+

0 ‖2 + 1
2

N−1∑
n=1

tδn+1‖[X ]n‖2 − 1
2

N−1∑
n=1

(
tδn+1 − tδn

)
‖X−

n ‖2.

Proof. This follows by a straightforward calculation using Y +
n = tδn+1X

+
n .

Lemma 3.5. Let W be the solution of (3.9). If B(t, s) is weakly singular with
0 < α ≤ 1, then we have∫ tN

0

t̂−2α‖W (t)‖21 dt ≤ C(T )‖ϕ‖2.

Proof. With X(t) = t̂−2αW (t) in (3.9) we have, in view of Lemma 3.4, the bound
for B in (1.2), and Schwarz’ inequality,

1
2 t
−2α
N ‖W−

N ‖2 + 1
2 t
−2α
1 ‖W+

0 ‖2 + 1
2

N−1∑
n=1

t−2α
n+1‖[W ]n‖2

− 1
2

N−1∑
n=1

(
t−2α
n+1 − t−2α

n

)
‖W−

n ‖2 +

∫ tN

0

t̂−2α‖W (t)‖21 dt

= −
∫ tN

0

t̂−2α

∫ t

0

B(t, s;U(s),W (t)) ds dt

≤ C

∫ tN

0

t̂−2α‖W (t)‖1
∫ t

0

(t− s)α−1‖U(s)‖1 ds dt

≤ 1
2

∫ tN

0

t̂−2α‖W (t)‖21 dt+ C

∫ tN

0

(
t̂−α

∫ t

0

(t− s)α−1‖U(s)‖1 ds
)2

dt.

After deleting nonnegative terms on the left side we hence have∫ tN

0

t̂−2α‖W (t)‖21 dt ≤ C

∫ tN

0

(
t̂−α

∫ t

0

(t− s)α−1‖U(s)‖1 ds
)2

dt.

Recalling that U = V +W and t ≤ t̂, we have by Lemmas 6.2 (β = 1
2 ) and 3.1,∫ tN

0

(
t̂−α

∫ t

0

(t− s)α−1‖V (s)‖1 ds
)2

dt ≤ C

∫ tN

0

‖V ‖21 dt ≤ C‖ϕ‖2.

Similarly, since ŝ ≤ t̂, Lemma 6.3 (with δ = 0) shows∫ tN

0

(
t̂−α

∫ t

0

(t− s)α−1‖W (s)‖1 ds
)2

dt

≤
∫ tN

0

(∫ t

0

(t− s)α−1
(
ŝ−α‖W (s)‖1

)
ds
)2

dt

≤ CTα

∫ tN

0

(tN − t)α−1

∫ t

0

ŝ−2α‖W (s)‖21 ds dt.
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Replacing t by t̂ in the upper limit of the inner integral, we hence have∫ tN

0

t̂−2α‖W (t)‖21 dt ≤ C‖ϕ‖2 + C

N∑
n=1

(∫
In

(tN − t)α−1 dt

∫ tn

0

ŝ−2α‖W (s)‖21 ds
)
,

and the proof may be completed by Lemma 6.4.

Lemma 3.6. The conclusion of Lemma 3.2 remains valid also if B(t, s) is weakly
singular with 0 < α ≤ 1

2 .

Proof. Recall the assumption kn+1/kn ≤ ω for n ≥ 1. This time we shall show∫ tN

0

t̂2γ‖W (t)‖22 dt ≤ C(T, ω)L̃2
N‖ϕ‖2,(3.14)

for 1
2−α < γ < 1

2 , from which the result obviously follows since 2γ < 1. Throughout
this proof we use the abbreviation C = C(T, ω).

With X(t) = t̂2γAW (t) in (3.9) we now have by Lemma 3.4

1
2 t

2γ
N ‖W−

N ‖21 + 1
2 t

2γ
1 ‖W+

0 ‖21 + 1
2

N−1∑
n=1

t2γn+1‖[W ]n‖21 +

∫ tN

0

t̂2γ‖W (t)‖22 dt

= 1
2

N−1∑
n=1

(
t2γn+1 − t2γn

)
‖W−

n ‖21 −
∫ tN

0

t̂2γ
∫ t

0

B(t, s;U(s), AW (t)) ds dt.

Using the bound for B in (1.2), and Schwarz’ inequality, the last term on the right
may be estimated by

C

∫ tN

0

t̂2γ‖W (t)‖2
∫ t

0

(t− s)α−1‖U(s)‖2 ds dt

≤ 1
2

∫ tN

0

t̂2γ‖W (t)‖22 dt+ C

∫ tN

0

(
t̂γ
∫ t

0

(t− s)α−1‖U(s)‖2 ds
)2

dt.

Hence, we have∫ tN

0

t̂2γ‖W (t)‖22 dt ≤
N−1∑
n=1

(
t2γn+1 − t2γn

)
‖W−

n ‖21

+ C

∫ tN

0

(
t̂γ
∫ t

0

(t− s)α−1‖V (s)‖2 ds
)2

dt

+ C

∫ tN

0

(
t̂γ
∫ t

0

(t− s)α−1‖W (s)‖2 ds
)2

dt ≡ R1 +R2 +R3.

Here, by the inequality (1+x)2γ−1 ≤ x for x ≥ 0, and the assumption kn+1/kn ≤ ω,

t2γn+1 − t2γn = t2γn

(
(1 + kn+1/tn)2γ − 1

)
≤ kn+1t

−1+2γ
n ≤ ωknt

−1+2γ
n ,

so that, by the inverse estimate kn|W |21,In ≤ C
∫
In
‖W‖21 dt, and Lemma 3.5,

R1 ≤ ω

N−1∑
n=1

knt
−1+2γ
n |W |21,In ≤ CT 2α+2γ−1

∫ tN

0

t̂−2α‖W (t)‖21 dt ≤ C‖ϕ‖2.

We now turn to R2, and note that

t̂γ ≤ C
(
(t− s)γ + ŝ1/2sγ−1/2

)
, for 0 < s < t.(3.15)
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This inequality clearly holds for s, t ∈ I1 because s ≤ ŝ = t̂ then. For t ≥ t1 the
inequality is obtained by combination of t̂ ≤ (1+ω)t, for t ≥ t1, with the elementary
inequality tγ ≤ (t− s)γ + sγ , for 0 < s < t. In view of (3.15), we thus have

R2 ≤ C

∫ tN

0

( ∫ t

0

(t− s)α+γ−1‖V (s)‖2 ds
)2

dt

+ CT 2α+2γ−1

∫ tN

0

(
t1/2−α−γ

∫ t

0

(t− s)α−1sγ−1/2
(
ŝ1/2‖V (s)‖2

)
ds
)2

dt.

Using first Young’s inequality (Lemma 6.1) on the first term and Lemma 6.2 (with
β = γ) on the second one, and then Lemma 3.1, we get

R2 ≤ CT 2α+2γ−1

((∫ tN

0

‖V ‖2 dt
)2

+

∫ tN

0

t̂‖V (t)‖22 dt
)
≤ CL̃2

N‖ϕ‖2.

For R3 we use the inequality t̂γ ≤ C
(
(t− s)γs−γ ŝγ + ŝγ

)
, for 0 < s < t, which is

proved in the same way as (3.15). Hence, by Lemma 6.3 (with δ = γ and δ = 0),

R3 ≤ C

∫ tN

0

( ∫ t

0

(t− s)α+γ−1s−γ
(
ŝγ‖W (s)‖2

)
ds
)2

dt

+ C

∫ tN

0

( ∫ t

0

(t− s)α−1
(
ŝγ‖W (s)‖2

)
ds
)2

dt

≤ CTα

∫ tN

0

(tN − t)α−1

∫ t

0

ŝ2γ‖W (s)‖22 ds dt.

Replacing t by t̂ in the upper limit of the inner integral, and recalling the estimates
of R1 and R2, we now have, with C = C(T, ω),∫ tN

0

t̂2γ‖W (t)‖22 dt ≤ CL̃2
N‖ϕ‖2 + C

N∑
n=1

∫
In

(tN − t)α−1

∫ tn

0

ŝ2γ‖W (s)‖22 ds dt,

and the proof is completed by Lemma 6.4.

Altogether, from Lemmas 3.1, 3.2, 3.3, and 3.6, we infer that∫ tN

0

‖U‖2 dt ≤ C(T, ω)L̃N‖ϕ‖.(3.16)

To complete the proof of Theorem 3.1 it remains to show the following.

Lemma 3.7. Let U and ϕ satisfy (3.1). Then

N∑
n=1

(∫
In

‖Ut‖ dt+ ‖[U ]n−1‖
)
≤ C(T, ω)L̃N‖ϕ‖.

Proof. First, (3.6) and (1.2) imply∫
In

(t−tn−1)‖Ut(t)‖2 dt

≤ kn|Ut|In
( ∫

In

‖U‖2 dt+ C

∫
In

∫ t

0

(t− s)α−1‖U(s)‖2 ds dt
)
.
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In view of (3.7), and kn|Ut|In ≤ C
∫
In
‖Ut‖ dt, we obtain∫

In

‖Ut‖ dt ≤ C
(∫

In

‖U‖2 dt+

∫
In

∫ t

0

(t− s)α−1‖U(s)‖2 ds dt
)
,(3.17)

and the estimate of Ut follows from (3.16) by a change of order of integration.
Finally, taking X(t) = [U ]n−1 for t ∈ In, X(t) = 0 otherwise, in (3.1), we get

‖[U ]n−1‖2 = −
∫
In

(Ut(t) +AU(t), [U ]n−1) dt−
∫
In

∫ t

0

B(t, s;U(s), [U ]n−1) ds dt

≤ ‖[U ]n−1‖
(∫

In

(‖Ut‖ + ‖U‖2
)
dt+ C

∫
In

∫ t

0

(t− s)α−1‖U(s)‖2 ds dt
)
,

and the estimate of [U ]n−1 follows from (3.16) and (3.17).

4. The completely discrete method

In this section we consider the completely discrete method for solving (1.1) using
the discontinuous Galerkin method for the discretization in time, combined with
finite element approximation in space, and prove Theorems 1.5 and 1.6. Thus we
now assume H = L2(Ω), and that A and B(t, s) are partial differential operators
of the form described in Section 1, and that Sh ⊂ H1

0 (Ω) satisfies (1.15). The
completely discrete solution is now defined by (1.16).

We begin by introducing discrete analogs Ah, Bh(t, s) : Sh → Sh of A,B(t, s) by

(Ahψ, χ) = A(ψ, χ), (Bh(t, s)ψ, χ) = B(t, s;ψ, χ), ∀ψ, χ ∈ Sh,(4.1)

and recall the following analog of (1.2).

Lemma 4.1. Assume that (1.2) holds and that either (1.18) or (1.19) is satisfied.
Then, for Ah and Bh(t, s) defined in (4.1), for p = 0, 1, 2, p+ q = 2,

|(Bh(t, s)ψ, χ)| ≤ C(t− s)α−1‖Ap/2
h ψ‖‖Aq/2

h χ‖, ∀ψ, χ ∈ Sh.
Proof. This is a trivial modification of the proof in [17], pp. 142–143, where the
case of a smooth kernel B(t, s) was treated.

In our analysis of the completely discrete method for (1.1) we introduce for the
approximation in the spatial variable the Ritz-Volterra projection defined as the
operator Vh : C([0, T ], H1) → C([0, T ], Sh), given by

A((Vhu− u)(t), χ) +

∫ t

0

B(t, s; (Vhu− u)(s), χ) ds = 0, ∀χ ∈ Sh.(4.2)

We note that for t = 0 (and for all t ∈ [0, T ] if B(t, s) ≡ 0), Vhu reduces to the
standard Ritz projection defined by

A(Rhu− u, χ) = 0, ∀χ ∈ Sh.
Lemma 4.2. With Vhu defined by (4.2) we have, for t ∈ [0, T ],

‖(Vhu)(t)− u(t)‖ ≤ Chp
(
‖u(t)‖Hp +

∫ t

0

(t− s)α−1‖u(s)‖Hp ds
)
, for 1 ≤ p ≤ r.

Proof. This is a minor modification of the proof given in [11], Proposition 2.2.
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Proof of Theorem 1.5. As in the proof of Theorem 1.2 we shall use duality. Let
‖ϕ‖ = 1, and let Z now be the solution of the spatially discrete analog of (1.6)
(with WN replaced by WN,h). Further, let W = ΠVhu, where Π is the interpolation
operator defined in Section 2. Then we have

(U−N − u(tN ), ϕ) = (U−N −W−
N , ϕ) + (W−

N − u(tN ), ϕ) ≡ R + S.

Here, using (1.6) and the error equation (1.17),

R = GN (U −W,Z) = (u0h − u0, Z
+
0 ) +GN (u −W,Z) ≡ R1 +R2,

and hence by (2.2), [Z]N = ϕ−Z−N , and the definition of the Ritz-Volterra projec-
tion,

R2 + S =
N∑
n=1

∫
In

(
− (u−W,Zt) +A(u −W,Z)

+

∫ t

0

B(·, s; (u−W )(s), Z) ds
)
dt−

N∑
n=1

((u−W )−n , [Z]n)

=

N∑
n=1

∫
In

(
− (u−W,Zt) +A(Vhu−W,Z)

+

∫ t

0

B(·, s; (Vhu−W )(s), Z) ds
)
dt−

N∑
n=1

((u −W )−n , [Z]n).

Application of Lemma 4.1 and Theorem 1.4 (with H = Sh, A replaced by Ah, and
‖ · ‖2 replaced by ‖Ah · ‖) now shows

|R2 + S| ≤ |u−W |JN
N∑
n=1

( ∫
In

‖Zt‖ dt+ ‖[Z]n‖
)

+ C|Vhu−W |JN
∫ tN

0

‖AhZ‖ dt
≤ CLN

(|u−W |JN + |Vhu−W |JN
)
.

Here, in view of the stability of Π (see (2.1) with m = 0), we have

|u−W |JN + |Vhu−W |JN ≤ C(|(Π − I)u|JN + |Vhu− u|JN ).

Using also the obvious bound for R1 together with (2.1) and Lemma 4.2, this
completes the proof of the theorem.

For the proof of Theorem 1.6 we shall also need the following estimate for the
Ritz-Volterra projection, where ‖ · ‖2 = ‖A · ‖ as before.

Lemma 4.3. Let B(t, s) be smooth with B(t, s), Bt(t, s), and Btt(t, s) dominated
by A, and assume that either (1.18) or (1.19) hold. Then

‖Dp
tAh(Vhu)(t)‖ ≤ C

( p∑
l=0

‖Dl
tu(t)‖2 +

∫ t

0

‖u‖2 ds
)
, for p = 0, 1, 2.

Proof. For p = 0 we have by (4.2), for χ ∈ Sh,

(Ah(Vhu)(t), χ) = (Au(t), χ) +

∫ t

0

B(t, s; (Vhu− u)(s), χ) ds.(4.3)
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Taking χ = Ah(Vhu)(t) and using Lemma 4.1 we get

‖Ah(Vhu)(t)‖ ≤ ‖u(t)‖2 + C

∫ t

0

‖AhVhu‖ ds+ C

∫ t

0

‖u‖2 ds.
Gronwall’s lemma then gives

‖Ah(Vhu)(t)‖ ≤ C
(
‖u(t)‖2 +

∫ t

0

‖u‖2 ds
)
,

which is the desired result when p = 0.
For p = 1 we have, by differentiating (4.3),

(DtAh(Vhu)(t), χ) = (DtAu(t), χ) +B(t, t; (Vhu− u)(t), χ)

+

∫ t

0

Bt(t, s; (Vhu− u)(s), χ) ds,

and the result clearly follows using the domination assumption for Bt(t, s) and its
consequences for Bh,t(t, s) by Lemma 4.1.

The case p = 2 obtains by further differentiation and similar arguments.

Proof of Theorem 1.6. We consider again the representation for R2+S in the proof
of Theorem 1.5. Now we have, since Z(t) = Z+

n−1 + (t − tn−1)Zt, and Vhu −W is
orthogonal to the constants, cf. the proof of Theorem 1.3,∣∣∣ ∫ tN

0

A(Vhu−W,Z) dt
∣∣∣ = ∣∣∣ N∑

n=1

∫
In

(Ah(Vhu−W )(t), (t− tn−1)Zt) dt
∣∣∣

≤ CLN max
1≤n≤N

(
kn|(Π− I)AhVhu|In

)
.

We also have, again in the same way as in the proof of Theorem 1.3,∣∣∣ ∫ tN

0

∫ t

0

B(t, s; (Vhu−W )(s), Z(t)) dt
∣∣∣ ≤ CLN max

1≤n≤N
(
kn|(Π− I)AhVhu|In

)
.

The right-hand sides of the latter inequalities are now estimated using Lemma 4.3.
Also, using the properties of Π,∣∣∣ N∑

n=1

(∫
In

(u−W,Zt) dt+ ((u−W )−n , [Z]n)
)∣∣∣

=
∣∣∣ N∑
n=1

(∫
In

(u − Vhu, Zt) dt+ ((u − Vhu)
−
n , [Z]n)

)∣∣∣
≤ CLN |Vhu− u|JN ≤ CLNh

r sup
0≤t≤tN

‖u(t)‖Hr ,

and the proof is concluded as in Theorem 1.5.

Corresponding to the examples given in the introduction we shall now give a few
examples in the fully discrete context. We observe first that in the case of a smooth
kernel B(t, s) and a smooth solution of (1.1), and with an appropriate choice of
u0h, Theorems 1.5 and 1.6 show, for piecewise linear functions (q = 2), nodal error
bounds of orders O(hr + k2) and O(hr + k3), respectively.

We consider now the case of the homogeneous equation (f = 0) and initial data
u0 “smooth” but not “higher order compatible” in the sense that u0 = 0 on ∂Ω
but Au0 6= 0 on ∂Ω. Let thus γ be an arbitrary number with γ < 1

4 . Then Aγ

does not require boundary conditions, and therefore u0 ∈ D(Aγ+1). It then also
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follows from elliptic regularity that AγB(t, s)A−γ−1 is a bounded operator. By
Corollary 5.1 below (trivially modified to the case of a smooth kernel), applied to
the general differential equation case, we then have

‖u(t)‖H2γ+2 ≤ C.(4.4)

Further, in the smooth kernel case, one may show that then ‖utt(t)‖ ≤ Ctγ−1 (and
ut ∈ Cγ(J̄N , L2)). Thus, from Theorem 1.5, in the smooth kernel case, for r > 2,
q = 2, with u0h appropriately chosen (recall the remark following Theorem 1.3),

‖U−N − u(tN )‖ ≤ CLN

(
h2γ+2 + k1+γ

1 + max
2≤n≤N

(k2
n/t

1−γ
n−1)

)
.

Similarly, one may show that ‖Autt(t)‖ ≤ Ctγ−2, so that, from Theorem 1.6, for
r > 2, q = 2,

‖U−N − u(tN )‖ ≤ CLN

(
h2γ+2 + k1+γ

1 + max
2≤n≤N

(k3
n/t

2−γ
n−1)

)
.

In the case of a weakly singular kernel and u0 ∈ D(A1+γ), γ < 1
4 , the blow-up

of utt as tα−1 for small t may interfere with the above result. We still have (4.4)
and also, with u = v + w, cf. Section 5, ‖wt(t)‖ ≤ Ctα, and ‖wtt(t)‖ ≤ Ctα−1.
It is easily seen that then wt ∈ Cα(J̄N , L2). Furthermore, vt ∈ Cγ(J̄N , L2) and
‖vtt(t)‖ ≤ Ctγ−1 so that ut ∈ Cβ(J̄N , L2), where β = min(α, γ) and ‖utt(t)‖ ≤
Ctβ−1. We therefore obtain from Theorem 1.5, in the case r > 2, q = 2,

‖U−N − u(tN )‖ ≤ CLN

(
h2γ+2 + k1+β

1 + max
2≤n≤N

(k2
n/t

1−β
n−1)

)
.

5. Some regularity estimates in the weakly singular case

The purpose of this section is to elucidate the regularity properties in the weakly
singular case by studying the example of a singular kernel of convolution type,
B(t, s) = (t− s)α−1B, where B is time independent, in the case of a homogeneous
equation, i.e., f = 0. Information of the type we are presenting about the behavior
of the solution for t near 0 was used in the introduction and Section 4 in discussing
the application of our error estimates.

For motivation, we consider first the problem

ut +Au+

∫ t

0

(t− s)α−1Au(s) ds = 0, t > 0; u(0) = u0,(5.1)

i.e., the caseB = A. The analysis may then be carried out by eigenvector expansion,
and is reduced to the study of the scalar equation

y′ + λy + λ

∫ t

0

(t− s)α−1y(s) ds = 0, t ∈ (0, 1); y(0) = 1,(5.2)

where λ is an eigenvalue of A. It may be seen that y(t) is bounded independently
of λ and continuous as t→ 0+ and hence |y′(t)| ≤ Cλ. Differentiating, we find that

y′′ + λy′ + λtα−1y(0) + λ

∫ t

0

sα−1y′(t− s) ds = 0,

and it follows that

y′′(t) ∼ λtα−1 +O(λ2), as t→ 0 + .(5.3)

Interpreted in terms of (5.1), this means that if u0 ∈ D(A2), then ‖utt‖ = O(tα−1)
as t→ 0, and that more regularity of u0 does not remove this singularity at t = 0.
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For the purely parabolic problem, i.e., when B = 0, the solution is u(t) = E(t)u0,
where E(t) = exp (−tA) is the analytic semigroup generated by −A, and

‖Dk
tE(t)u0‖2j ≤ Ct−(k+j−l)‖u0‖2l, if u0 ∈ D(Al), 0 ≤ l ≤ k + j,(5.4)

where l may also take on fractional values. (This estimate is also easy to prove
by eigenvector expansion.) In particular, in the differential operator application,
the solution has an arbitrary number of derivatives in both x and t for x ∈ Ω and
t > 0. Note that the condition that u0 ∈ D(Al) incorporates various compatibility
conditions of u0 on ∂Ω.

In the case of a weakly singular kernel of the form B(t, s) = (t − s)α−1B, the
solution u(t) may be written as u(t) = v(t)+w(t), where v(t) = E(t)u0, and where
w(t) solves

wt +Aw = −
∫ t

0

(t− s)α−1Bu(s) ds, t > 0; w(0) = 0.(5.5)

Our aim is now to prove estimates for low order derivatives of w in the case that
u0 ∈ D(A). Combined with (5.4) these yield estimates for u. More precisely, we
shall show the following result which means, in particular, that our present case is
no worse, with respect to singular behavior, than the case above when B = A.

Theorem 5.1. If u0 ∈ D(A), then we have

‖Dk
t w(t)‖2j ≤ Ctα+1−k−j‖u0‖2, for j = 0, 1, 0 < k + j ≤ 2.(5.6)

We begin with two lemmas.

Lemma 5.1. Let g(t) be a function with values in H satisfying

‖g(t)‖ ≤ C0t
α−1 and ‖g′(t)‖ ≤ C0t

α−2.(5.7)

Then, with E(t) the semigroup generated by −A, we have

‖F (t)‖2 = ‖AF (t)‖ ≤ CC0t
α−1, where F (t) =

∫ t

0

E(t− s)g(s) ds.

Proof. We have, since AE(σ) = −E′(σ),

AF (t) =

∫ t/2

0

AE(t− s)g(s) ds+

∫ t

t/2

(DsE(t− s))g(s) ds ≡ R1 +R2.

Here, by (5.4) and (5.7)

‖R1‖ ≤ CC0

∫ t/2

0

(t− s)−1sα−1 ds ≤ CC0t
α−1.

Integrating by parts,

R2 = g(t)− E(t/2)g(t/2)−
∫ t

t/2

E(t− s)g′(s) ds,

and the desired result follows.

Lemma 5.2. Let g(t) be a function with values in H. Then∥∥∥ ∫ t

0

E(t− s)

∫ s

0

(s− σ)α−1g(σ) dσ ds
∥∥∥

2
≤ C

∫ t

0

(t− σ)α−1‖g(σ)‖ dσ.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



66 STIG LARSSON, VIDAR THOMÉE, AND LARS B. WAHLBIN

Proof. By a switch of order of integration and a change of variables we have∫ t

0

E(t− s)

∫ s

0

(s− σ)α−1g(σ) dσ ds =

∫ t

0

(∫ t−σ

0

E(t− σ − τ)τα−1 dτ

)
g(σ) dσ.

Application of Lemma 5.1 to the inner integral immediately proves the lemma.

Proof of Theorem 5.1. We begin with the case k = 0, j = 1. Letting u = v + w on
the right in (5.5) and using Duhamel’s principle,

w(t) = −
∫ t

0

E(t− s)

∫ s

0

(s− σ)α−1Bv(σ) dσ ds

−
∫ t

0

E(t− s)

∫ s

0

(s− σ)α−1Bw(σ) dσ ds ≡ R1 +R2.

(5.8)

Writing B = (BA−1)A, we have from Lemma 5.2 and (1.2) (the assumption that
A dominates B) that

‖R2‖2 ≤ C

∫ t

0

(t− σ)α−1‖w(σ)‖2dσ.

Further, by the boundedness of E(t) we have, again using Lemma 5.2,

‖R1‖2 =
∥∥∥ ∫ t

0

AE(t− s)

∫ s

0

(s− σ)α−1(BA−1)E(σ)Au0 dσ ds
∥∥∥

≤ C

∫ t

0

(t− σ)α−1‖E(σ)Au0‖ dσ ≤ Ctα‖u0‖2.

Thus

‖w(t)‖2 ≤ Ctα‖u0‖2 + C

∫ t

0

(t− σ)α−1‖w(σ)‖2 dσ,

from which the result follows by Gronwall’s lemma, cf. Lemma 1 in [2] and (6.1)
below.

We shall next show (5.6) in the case k = j = 1. Differentiating (5.5) we have

wtt +Awt = −tα−1Bu0 −
∫ t

0

sα−1But(t− s) ds.(5.9)

Setting u = v + w and noting that Aw(0) = 0 by the already proven case of (5.6)
and hence wt(0) = 0 by (5.5), we have, by Duhamel’s principle,

wt(t) = −
∫ t

0

E(t− s)sα−1Bu0 ds

−
∫ t

0

E(t− s)

∫ s

0

(s− σ)α−1BEt(σ)u0 dσ ds

−
∫ t

0

E(t− s)

∫ s

0

(s− σ)α−1Bwt(σ) dσ ds ≡ R1 +R2 +R3.

(5.10)

By Lemma 5.1 and (1.2), we find

‖R1‖2 ≤ Ctα−1‖u0‖2.
Further, for R2 we have

‖R2‖2 =
∥∥∥ ∫ t

0

AE(t− s)BA−1g(s) ds
∥∥∥,
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where, using that E′(σ)u0 = −E(σ)Au0,

g(t) =

∫ t

0

(t− s)α−1AE(s)Au0 ds =

∫ t

0

sα−1AE(t− s)Au0 ds.

We shall apply Lemma 5.1. By that lemma, ‖g(t)‖ ≤ Ctα−1‖u0‖2. For the estimate
required for g′(t) we write

g(t) =
(∫ t/2

0

+

∫ t

t/2

)
sα−1AE(t− s)Au0 ds = g1(t) + g2(t).

Here

g′1(t) = (t/2)α−1AE(t/2)Au0 −
∫ t/2

0

sα−1A2E(t− s)Au0 ds,

and clearly, using (5.4), ‖g′1(t)‖ ≤ Ctα−2‖u0‖2. Further, by integration by parts
and a change of variables, we have

g2(t) =

∫ t

t/2

sα−1DsE(t− s)Au0 ds

= tα−1Au0 − (t/2)α−1E(t/2)Au0 − (α− 1)

∫ t/2

0

(t− s)α−2E(s)Au0 ds.

Differentiating this expression with respect to time, and proceeding as for g′1, gives
the same bound for g′2 as for g′1, namely, ‖g′2(t)‖ ≤ Ctα−2‖u0‖2. We may then
apply Lemma 5.1 to obtain

‖R2‖2 ≤ Ctα−1‖u0‖2.
Finally, from Lemma 5.2 and (1.2) we find

‖R3‖2 ≤ C

∫ t

0

(t− σ)α−1‖wt(σ)‖2 dσ.

Thus (5.10) gives

‖wt(t)‖2 ≤ Ctα−1‖u0‖2 + C

∫ t

0

(t− σ)α−1‖wt(σ)‖2 dσ,

and a variant of Gronwall’s lemma, cf. Lemma 1 in [2], yields the desired estimate.
We may now also easily treat the case j = 0, k = 2, i.e., estimate wtt by use of

(5.9), splitting the last term on the right there as∫ t

0

sα−1Bwt(t− s) ds+

∫ t/2

0

sα−1BE(t− s)Au0 ds+

∫ t

t/2

sα−1BEt(t− s)u0 ds.

We then apply the result already derived for j = k = 1 to estimate the first term
and use integration by parts in the last.

The case k = 1, j = 0 is treated in a similar fashion using (5.5).

In our discussion at the end of Section 4 we also used the following:

Corollary 5.1. Let γ < 1
4 . If u0 ∈ D(A1+γ) and ‖A1+γBA−1−γ‖ ≤ C, then

‖u(t)‖2+2γ ≤ C‖u0‖2+2γ .(5.11)

Proof. This follows by applying A1+γ to (5.8), noting that (5.11) holds with u(t)
replaced by v(t), and proceeding as before with the appropriate modifications.
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Finally, we present a fact used in the discussion of Theorem 1.3 in the introduc-
tion.

Corollary 5.2. If B = A and u0 ∈ D(A2+α), then

‖utt(t)‖2 ≤ Ctα−1‖u0‖4+2α.

Proof. By the discussion in the beginning of this section it suffices to show that for
the solution of (5.2),

λ|y′′(t)| ≤ Cλ2+αtα−1.

Writing y = v + w = e−λt + w we have by Theorem 5.1 (with H = R,B = A =
multiplication by λ) that |w′′(t)| ≤ λtα−1. The appropriate bound for v follows
from (5.4).

6. Some technical lemmas

In this section we state and prove three inequalities and a variant of Gronwall’s
lemma, that we have used several times above.

We begin with the following variant of Young’s inequality, which follows at once
by the standard Young’s inequality for convolutions on R by extending the functions
by 0 outside the interval [0, T ].

Lemma 6.1. If f ∈ L1([0, T ]) and g ∈ L2([0, T ]), then(∫ T

0

( ∫ t

0

f(t− s)g(s) ds
)2

dt
)1/2

≤
∫ T

0

|f(t)| dt
( ∫ T

0

g2(t) dt
)1/2

.

We continue with a special case of an inequality of Hardy, Littlewood and Pólya,
adapted from Theorem (6.20), p. 187, in [6].

Lemma 6.2. If α, β > 0, κ =
( ∫ 1

0
(1 − t)α−1tβ−1 dt

)2
, and f ∈ L2([0, T ]), then∫ T

0

(
t1/2−α−β

∫ t

0

(t− s)α−1sβ−1/2f(s) ds
)2

dt ≤ κ

∫ T

0

f2(t) dt.

Proof. With σ = s/t we have

t1/2−α−β
∫ t

0

(t− s)α−1sβ−1/2f(s) ds =

∫ 1

0

(1− σ)α−1σβ−1/2f(tσ) dσ,

and, by Minkowski’s inequality for integrals (see [6], p. 186),( ∫ T

0

(∫ 1

0

(1− σ)α−1σβ−1/2f(tσ) dσ
)2

dt
)1/2

≤
∫ 1

0

( ∫ T

0

(
(1− σ)α−1σβ−1/2f(tσ)

)2
dt
)1/2

dσ

=

∫ 1

0

(1 − σ)α−1σβ−1/2
(∫ T

0

f2(tσ) dt
)1/2

dσ.

Since
∫ T
0
f2(tσ) dt ≤ σ−1

∫ T
0
f2(t) dt for 0 < σ < 1, this proves the desired inequal-

ity.

The following is a generalization of Lemma 2 in [2].
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Lemma 6.3. If α > 0, 0 ≤ δ < 1
2 , µ =

∫ 1

0
(1 − t)α+δ−1t−2δ dt, and f ∈ L2([0, T ]),

then∫ T

0

( ∫ t

0

(t− s)α+δ−1s−δf(s) ds
)2

dt ≤ µTα

∫ T

0

(T − t)α−1

∫ t

0

f2(s) ds dt.

Proof. By Schwarz’ inequality we have(∫ t

0

(t− s)α+δ−1s−δf(s) ds
)2

≤
∫ t

0

(t− s)α+δ−1s−2δ ds

∫ t

0

(t− s)α+δ−1f2(s) ds,

where, for 0 ≤ s < t ≤ T ,∫ t

0

(t− τ)α+δ−1τ−2δ dτ = µtα−δ ≤ µTα(t− s)−δ.

Hence∫ T

0

(∫ t

0

(t− s)α+δ−1s−δf(s) ds
)2

dt ≤ µTα

∫ T

0

∫ t

0

(t− s)α−1f2(s) ds dt.

The integral on the right side is equal to∫ T

0

∫ t

0

sα−1f2(t− s) ds dt =

∫ T

0

sα−1

∫ T

s

f2(t− s) dt ds

=

∫ T

0

sα−1

∫ T−s

0

f2(τ) dτ ds =

∫ T

0

(T − t)α−1

∫ t

0

f2(τ) dτ dt,

which yields the desired result.

A well known version of Gronwall’s lemma states that if φ and a are nonnegative
functions with a increasing, then

φ(t) ≤ a(t) +K

∫ t

0

(t− s)α−1φ(s) ds, for t ∈ [0, T ],

implies φ(t) ≤ C(K,α, T )a(t), for t ∈ [0, T ],

(6.1)

cf. Lemma 1 in [2]. The following is a discrete version of this, that we have used
repeatedly in our treatment of the case of a weakly singular kernel. We remind the
reader that k = maxn kn.

Lemma 6.4. Assume that 0 < α ≤ 1, K ≥ 0, φN , aN ≥ 0, aN ≤ aN+1 for N ≥ 1,
and δ = Kkα/α < 1. If, for tN ∈ (0, T ],

φN ≤ aN +K

N∑
n=1

ω
(α)
N,nφn, where ω

(α)
N,n =

∫
In

(tN − t)α−1 dt,(6.2)

then

φN ≤ C(δ,K, α, T )aN , for tN ∈ (0, T ].

Proof. We begin by showing that, for 0 < α ≤ 1, β > 0, we have

N∑
n=j+1

ω
(β)
N,nω

(α)
n,j ≤ Cω

(β+α)
N,j , j ≤ N − 1,(6.3)
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where C =
∫ 1

0
(1− t)β−1tα−1 dt. This follows from the following calculation, where

we employ the inequalities (tn − s)α−1 ≤ (t− s)α−1 and s ≤ tj :

N∑
n=j+1

ω
(β)
N,nω

(α)
n,j ≤

N∑
n=j+1

∫
Ij

∫
In

(tN − t)β−1(t− s)α−1 dt ds

=

∫
Ij

(∫ tN

tj

(tN − t)β−1(t− s)α−1 dt
)
ds

≤
∫
Ij

(∫ tN

s

(tN − t)β−1(t− s)α−1 dt
)
ds

= C

∫
Ij

(tN − s)β+α−1 ds = Cω
(β+α)
N,j .

Next we note that, in view of the given inequality (6.2),

φN ≤ aN +K

N−1∑
n=1

ω
(α)
N,nφn +Kω

(α)
N,NφN , N ≥ 1.

Since Kω
(α)
N,N = KkαN/α ≤ δ, we get

φN ≤ (1− δ)−1
(
aN +K

N−1∑
n=1

ω
(α)
N,nφn

)
, N ≥ 1.(6.4)

Then we prove, by induction, that, for l = 1, 2, . . . ,

φN ≤ C(δ,K, l, α, T )
(
aN +

N−1∑
n=1

ω
(lα)
N,nφn

)
, tN ∈ (0, T ].(6.5)

This is clearly true for l = 1. For the induction step we use (6.4) to get

N−1∑
n=1

ω
((l−1)α)
N,n φn ≤ C(δ,K, l, α, T )

(N−1∑
n=1

ω
((l−1)α)
N,n an +

N−1∑
n=1

ω
((l−1)α)
N,n

n−1∑
j=1

ω
(α)
n,jφj

)
,

where, to estimate the first term, we note that

N−1∑
n=1

ω
((l−1)α)
N,n an ≤

(N−1∑
n=1

ω
((l−1)α)
N,n

)
aN = C(l, α, T )aN ,

and, by switching the order of summation and using (6.3),

N−1∑
n=1

ω
((l−1)α)
N,n

n−1∑
j=1

ω
(α)
n,jφj =

N−2∑
j=1

( N−1∑
n=j+1

ω
((l−1)α)
N,n ω

(α)
n,j

)
φj ≤ C(l, α)

N−1∑
j=1

ω
(lα)
N,j φj .

This proves (6.5).

Finally, we choose l such that lα − 1 ≥ 0. Then ω
(lα)
N,n =

∫
In

(tN − t)lα−1 dt ≤
T lα−1kn, so that (6.5) implies

φN ≤ C(δ,K, α, T )
(
aN +

N−1∑
n=1

knφn

)
, tN ∈ (0, T ].

The result now immediately follows by the standard discrete Gronwall lemma.
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