G. D. SMITH
Brunel University

Numerical solution of partial differential equations

FINITE DIFFERENCE METHODS

THIRD EDITION

Contents

NOTATION

1. INTRODUCTION AND FINITE-DIFFERENCE FORMULAExiii
Descriptive treatment of elliptic equations 1
Descriptive treatment of parabolic and hyperbolic equations 4
Finite-difference approximations to derivatives 6
Notation for functions of several variables 8
2. PARABOLIC EQUATIONS: FINITE
DIFFERENCE METHODS, CONVERGENCE, AND STABILITY
Transformation to non-dimensional form 11
An explicit finite-difference approximation to $\partial U / \partial t=\partial^{2} U / \partial x^{2}$ 12
A worked example covering three cases and including com- parison tables 13
Crank-Nicolson implicit method 19
Worked example including a comparison table 21
Solution of the implicit equations by Gauss's elimination method 24
The stability of the elimination method 27
A weighted average approximation 28
Derivative boundary conditions 29
Worked examples including comparison tables:
(i) Explicit formula and central-differenced boundary con- dition 31
(ii) Explicit formula and forward-differenced boundary condition 33
(iii) Implicit formula and central-differenced boundary con- dition 36
The local truncation error and a worked example 38
Consistency and a worked example illustrating both consis- tency and inconsistency 40
Convergence, descriptive treatment and the analysis of an explicit approximation 43
Stability, descriptive treatment 47
Vector and matrix norms, subordinate matrix norms, $\rho(\mathbf{A}) \leqslant$ $\|\mathbf{A}\|$ 49
A necessary and sufficient condition for stability, $\|\mathbf{A}\| \leqslant 1$, and two worked examples 51
Matrix method of analysis, fixed mesh size. 57
A note on the eigenvalues of $f(\mathbf{A})$ and $\left[f_{1}(\mathbf{A})\right]^{-1} f_{2}(\mathbf{A})$ 58
The eigenvalues of a common tridiagonal matrix 59
Theorems on bounds for eigenvalues and an application. (Gerschgorin's theorems) 60
Gerschgorin's circle theorem and the norm of matrix \mathbf{A} 62
Stability criteria for derivative boundary conditions using (i) the circle theorem (ii) $\|\mathbf{A}\|_{\infty} \leqslant 1$ 63
Stability condition allowing exponential growth 66
Stability, von Neumann's method, and three worked examples 67
The global rounding error 71
Lax's equivalence theorem (statement only) and a detailed analysis of a simple case 72
Finite-difference approximations to $\partial U / \partial t=\nabla^{2} U$ in cylindrical and spherical polar co-ordinates 75
A worked example involving $\lim _{x \rightarrow 0}(\partial U / \partial x) / x$ 77
Exercises and solutions 79
3. PARABOLIC EQUATIONS: ALTERNATIVE DERIVATION OF DIFFERENCE EQUATIONS AND MISCELLANEOUS TOPICS
Reduction to a system of ordinary differential equations 111
A note on the solution of $\mathrm{d} \mathbf{V} / \mathrm{d} t=\mathbf{A V}+\mathbf{b}$ 113
Finite-difference approximations via the ordinary differential equations 115
The Padé approximants to $\exp \theta$ 116
Standard finite-difference equations via the Padé approximants 117
A_{0}-stability, L_{0}-stability and the symbol of the method 119
A necessary constraint on the time step for the Crank- Nicolson method 122
The local truncation errors associated with the Padé approxim- ants 124
Stiff equations 126
An extrapolation method for improving accuracy in t 126
The symbol for the extrapolation method 128
The arithmetic of the extrapolation method 129
The local truncation errors and symbols of extrapolation schemes 132
The eigenvalue-eigenvector solution of a system of ordinarydifferential equations
(i) Preliminary results 132
(ii) The eigenvalue-eigenvector solution of $\mathrm{d} \mathbf{V} / \mathrm{d} t=\mathbf{A V}$ 134
(iii) An application giving an approximate solution for large t 135
Miscellaneous methods for improving accuracy:
(i) Reduction of the local truncation error-the Douglas equations 137
(ii) Use of three time-level difference equations 138
(iii) Deferred correction method 139
(iv) Richardson's deferred approach to the limit 141
Solution of non-linear parabolic equations:
(i) Newton's linearization method and a worked example 142
(ii) Richtmyer's linearization method 144
(iii) Lee's three time-level method 146
A comparison of results for methods (i), (ii), and (iii) for a particular problem 147
The stability of three or more time-level difference equations:
(i) A useful theorem on eigenvalues 148
(ii) Matrices with common eigenvector systems 150
(iii) A worked example 150
Introduction to the analytical solution of homogeneous differ- ence equations: 153
(i) The eigenvalues and vectors of a common tridiagonal matrix 154
(ii) The analytical solution of the classical explicit approxi- mation to $\partial U / \partial t=\partial^{2} U / \partial x^{2}$ 156
Exercises and solutions 158
4. HYPERBOLIC EQUATIONS AND
CHARACTERISTICS
Analytical solution of first-order quasi-linear equations 175
A worked example and discussion 176
Numerical integration along a characteristic 178
A worked example 179Finite-difference methods on a rectangular mesh for first-order equations:
(i) Lax-Wendroff explicit method and a worked example with a comparison table 181
(ii) Lax-Wendroff method for a set of simultaneous equa- tions 183
(iii) The Courant-Friedrichs-Lewy condition 186
(iv) Wendroff's implicit approximation 187
Propagation of discontinuities, first-order equations: 188
(ii) Discontinuous initial derivatives 189
Discontinuities and finite-difference approximations. An ex- ample using Wendroff's implicit approximation 190
Reduction of a first-order equation to a system of ordinary differential equations 193
The (1,0) Padé difference approximation 195
A comment on the non-stiffness of the equations 196
The $(1,1)$ Padé or Crank-Nicolson difference equations 196
An improved approximation to $\partial U / \partial x$ and the $(1,0)$ Padé difference equations 197
A word of caution on the central-difference approximation to $\partial U / \partial x$ 200
Second-order quasi-linear hyperbolic equations. Characteristic curves, and the differential relationship along them 202
Numerical solution by the method of characteristics 204
A worked example 207
A characteristic as an initial curve 209
Propagation of discontinuities, second-order equations 210
Finite-difference methods on a rectangular mesh for second- order equations: 213
(i) Explicit methods and the Courant-Friedrichs-Lewy condition 213
(ii) Implicit methods with particular reference to the wave- equation 216
Simultaneous first-order equations and stability 217
Exercises and solutions 220
5. ELLIPTIC EQUATIONS AND SYSTEMATIC ITERATIVE METHODS
Introduction 239
Worked examples: (i) A torsion problem. (ii) A heat- conduction problem with derivative boundary conditions 240
Finite-differences in polar co-ordinates 245
Formulae for derivatives near a curved boundary
Improvement of the accuracy of solutions: (i) Finer mesh. (ii)Deferred approach to the limit. (iii) Deferred correctionmethod. (iv) More accurate finite-difference formulae in-cluding the nine-point formula248
Analysis of the discretization error of the five-point approxi- mation to Poisson's equation over a rectangle. Quoted 252
result for irregular boundaries 254
Comments on the solution of difference equations, covering Gauss elimination, $\mathbf{L U}$ decomposition, rounding errors, ill- conditioning, iterative refinement, iterative methods 257
Systematic iterative methods for large linear systems 260
Jacobi, Gauss-Seidel, and SOR methods 261
A worked example covering each method 263
Jacobi, Gauss-Seidel, and SOR methods in matrix form 266
A necessary and sufficient condition for convergence of itera- tive methods 268
A sufficient condition for convergence 269
Asymptotic and average rates of convergence 270
Methods for accelerating convergence. (i) Lyusternik's method. (ii) Aitken's method. An illustrative example 272
Eigenvalues of the Jacobi and SOR iteration matrices and two worked examples 275
The optimum acceleration parameter for the SOR method. A necessary theorem 277
Proof of $(\lambda+\omega-1)^{2}=\lambda \omega^{2} \mu^{2}$ for block tridiagonal coefficient matrices 279
Non-zero eigenvalues of the Jacobi iteration matrix 280
Theoretical determination of the optimum relaxation parame- ter ω_{b} 282
Calculation of ω_{b} for a rectangle and other solution domains 285
The Gauss-Seidel iteration matrix \mathbf{H} (1) 285
Re-ordering of equations and unknowns 286
Point iterative methods and re-orderings 287
Introduction to 2 -cyclic matrices and consistent ordering 288
2-cyclic matrices 289
Ordering vectors for 2 -cyclic matrices 290
Consistent ordering of a 2 -cyclic matrix 292
The ordering vector for a block tridiagonal matrix 294
An example of a consistently ordered 2-cyclic matrix that is not block tridiagonal 297
Additional comments on consistent ordering and the SOR method 297
Consistent orderings associated with the five-point approxima- tion to Poisson's equation 298
Stone's strongly implicit iterative method 302
A recent direct method 309
Exercises and solutions 311
INDEX 334
