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A new algorithm is given for computing the solution of any second-order linear difference equation
which is applicable when simple recurrence procedures cannot be used because of instability. Com-
pared with the well-known Miller algorithm the new method has the advantages of (i) automatically
determining the correct number of recurrence steps. (i) applying to inhomogeneous difference equa-
tions, (i) enabling more powerful error analyses 1o he constructed.

The method is illustrated by numerical computations, including error analyses. of Anger-Weber,
Struve. and Bessel functions. and the solution of a differential equation in Chebyvshev series.

Key Words: Chebyshey series. difference equations. error analysis, Miller algorithm, recurrence
methods, special functions,

1. Introduction

A powerful computational algorithm for evaluating the most rapidly decreasing solution of a
second-order homogeneous linear difference equation was published in 1952 by J. C. P. Miller
([1]." page xvii) in connection with the tabulation of modified Bessel functions. Since then. various
writers have applied the algorithm to other special functions. and similar computational processes
have been used by Clenshaw 2] for the numerical solution of ordinary differential equations in
series of Chebyshev polynomials. Error analyses of the algorithm have been supplied by the present
writer [3] and Oliver [12] and quite recently Gautschi [4] has examined the relation of the algorithm
to classical results in the theory of continued fractions.

The present investigation stems from the observation that Miller's algorithm can be regarded
as a procedure for solving a tridiagonal set of simultaneous linear algebraic equations. Adopting
this more general standpoint, we shall show how to recast the algorithm into a new form which
enables the correct number of recurrence steps to be determined automatically without appeal to
an asymptotic or other analytical formula. In this respect it resembles an algorithm proposed
recently by Shintani [5].

The new formulation has the further advantages of (i) being applicable to inhomogeneous dif-
ference equations, (ii) lending itself readily to powerful error analyses. There seems to be no
alternative method of comparable power available at present for computing solutions of inhomo-
geneous equations in the case when forward recurrence and backward recurrence are bhoth un-
stable.

2. Statement of the Problem
Let the given difference equation be denoted by
Qryr—1— br‘}'r+ Cr¥Vr+1 = dy, (2.01)

Figures in brackets indicate the literature references at the end of this paper.
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where a,. by, ¢,, and d, are given functions of the nonnegative integer variable r. We assume that
the general solution of (2.01) has the form

yr=Afr+ Bg+ hr, (2.02)

in which A4 and B are arbitrary constants, and the complementary functions f;.. g, and the particular
solution A, have the properties fy # 0, g, #0 for all sufficiently large r, and

Sfrlgr—0, helgr— 0, (r— ). (2.03)

(It may be noted that we do not require either f, or A, to tend to zero as r— =.)
The first problem we investigate is the computation of the solution of (2.01) which has the
property

yrlgr— 0 (r— =), (2.04)
and satisfies the normalizing condition
yo=k (2.05)

for an arbitrarily assigned value of the constant k. Later (secs. 9-11) we allow for a more general
form of normalizing condition and also drop the restriction f, # 0.

The given conditions ensure that y, exists and is unique. For, from (2.03) and (2.04) the B of
(2.02) is seen to be zero, and from (2.05) we derive A= (k— hy)[fo. Therefore

)‘i‘_ ’. 0~
¥r= "___I_)jr + hy. (2.06)
0

It is well known that direct use of (2.01) as a recurrence relation for generating y». y3, . . .
from given values of y, and y; (if available) is an unstable procedure. Essentially, each computa-
tional rounding error introduces into the numerical solution a small multiple of f, and a small
multiple of g., and in consequence of (2.04) the latter ultimately grows faster than the wanted
solution.

It may also happen ? in the inhomogeneous case that f, grows more rapidly than y; in the direc-
tion of decreasing r. In this event recurrence by use of (2.01) is unstable in this direction too.

3. Approach

Analogous work in the numerical solution of linear differential equations? suggests that a
stable way of solving the present problem is to treat it directly as a boundary-value problem rather
than use initial-value techniques. We are already given the value of yy. Suppose that for some large
integer N, the value of yy can be obtained from an asymptotic formula or by other means. Then
eqs (2.01) with r=1, 2, . . .. N—1 comprise a set of simultaneous linear algebraic equations for
the unknowns yi. .. . . .. ¥v_i. which are solvable by standard matrix computational processes.

This possibility has already been noted by Gautschi ([4]. Introduction) following a suggestion
by M. E. Rose, but Gautschi did not pursue the idea because of the difficulty of obtaining the value
of yv, in general. Following Miller's approach in the homogeneous case [1], we solve the algebraic
equations with the value of yy arbitrarily set equal to zero. It transpires that for large N the great
majority of the y, produced in this way are generally excellent approximations to the true values;
only in the neighborhood of = N can substantial errors occur.

We first establish the convergence of the process.

2 See Example L of section 6.
1See, for example, [6).
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THEOREM 1. With the conditions of section 2, suppose that for all sufficiently large N the sys-
tem of equations

ay ) —byMtedD=ds =1.2,; . ;; N—1), (3.01)

and

vV =k, Y =0, (3.02)
has a solution y¥, ", . . ., Y. Then if 1 is fixed and N— o, y\¥ = y,.

To establish this result, we observe that since y,. is a particular solution of (2.01), we can
express

WV = Axfr+ Bygr+ yr,

where Ay and By are independent of r. Setting r=0, N in turn and using (2.05) and (3.02), we
derive

= oYy Bo— fn}’.\'
fa== 1 A T
f:u‘-f N — &o f N f 08N — &i uf\'

the denominator fogy— gofv being nonvanishing for all sufficiently large N in consequence of the
assumed conditions. In fact, from (2.03) we have

Jogy— gofy ~ fogy (N— =),

Hence from (2.04) it follows that Ay — 0 and By — 0. This completes the proof.

Thus for any given value of r, or for any finite range of values, y, can be calculated to pre-
scribed accuracy by solving the system of equations (3.01) and (3.02) with a sufficiently high value
of N. Naturally, we now enquire what exactly constitutes a “sufficiently high™ value? Or, to put
the question another way, given N, to what accuracy does /¥ approximate v, for r < N?

A simple practical way of providing an answer is to solve eqgs (3.01) and (3.02) for increasing
values of N until the results are in satisfactory numerical agreement. This procedure has two
drawbacks. First, it is wasteful of computing time if the originally guessed values of N are either
too low or much too high. Second, there is no absolute guarantee that values of y, computed with
two (or more) different values of N must be correct when they agree.

The optimum value of N, that is, the minimum value necessary to achieve specified accuracy
in y, for a given range of values of r, can be determined automatically when a suitable method is
used to solve the algebraic equations. Accordingly, we consider this process next.

4. Solution of the Algebraic Equations

We shall solve the tridiagonal system of equations

— bV + e =d, —ak.
asA" — by + ea Y =ds,
azy — b + ey =ds, (4.01)
ay-o YWy — b.\'—z}‘.\"\j:: ok "-.-\‘—‘-’}'{.\'}'\jl = x=2,
ax— YWy — by W, = dy_ .
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by simple elimination followed by back-substitution. To begin with we suppose that none of the
¢, vanish.
Let the first of (4.01) be rewritten in the form

P2y — p1 = e, (4.02)
where

_ by ak—d, :
Pi== 18 o=t R e e |4.03]

Cy )

The result of eliminating ¥{¥ from (4.02) and the second of (4.01) can be expressed as
Py — p2yV = e,
where

- bzp-z — s

ase; — dapy
PB= €= _P__
Ca Ca

Continuing the elimination, we obtain
Prioad¥V —py¥ =e, (r=1,2: . . «; N=—1); (4.04)
where

brpr— arp Qrér-1 —drpr
Doy =—Br Gl SeCeot G, (4.05)
o &

Thus p, is the solution of the homogeneous form of the difference eq (2.01), with the initial condi-
tions po=0 and p,= 1. We also observe that the second of (4.05) holds for r=1 if we define

e=k.

The final equation of the form (4.04) is used to begin the back-substitution. On substituting
the second of (3.02), we derive

WY, =ev—i/py; (4.06)
thence ¥W.,. WY.. . . .. ¥¥ may be computed by use of (4.04) with descending values of r. The
process fails if, and only if, one of the numbers p., ps, . . ., py vanishes. In this event the set of
eqs (3.01) and (3.02) has either no solution or an infinity of solutions, and the algorithm breaks
down.

When one or more of the coefficients ¢, vanishes the set of eqs (4.01) becomes uncoupled.
A simple modification takes care of the situation. Suppose, for example, that ¢;=0 but all other
cr are nonzero. Then the first s equations of (4.01) determine Y™, ¥V, . . .. AY completely: they
can be solved by application of the recurrence relations (4.05) for r=1,2, . . ., s—1 and use of
the back-substitution relation (4.04), beginning with

_ g€y — dspx

N
% byps — agps—

(4.07)
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The remaining N —s—1 equations are solvable for 3, ¥ . . . ., y¥ by the method already
described: eq (4.07) takes the place of the first of (3.02).

To ease the presentation we shall suppose in the remainder of the paper that none of the ¢,
vanish.

Applying ourselves to the problem of determining the optimum value of N, we observe that
the effect of replacing N by N+ 1 is to prolong the elimination process by one step, beginning the
back-substitution with ¥{%1"= 0 instead of ¥{=0. Thus we have

Priayde tV—pyWil=e.  (r=1,2,.. ., N). (4.08)
Subtraction of (4.04) from (4.08) gives

Yl =yl= pp—] =) (r=N=1), (4.09)
and repeated application of this result leads to

. - Pr Pra Py-1 5 v
N+1) — adN) = 220, e (A N+1) — AN
¥ =, o T

that is,

préex

_.‘_,5_.\' 41} — }4] N} =
PPy

(r=1, 2| .« - . N (4.10)

By use of this formula we can predict the effect of changing N into N+ 1 before any back-substi-
tution is carried out.

Suppose, for example, that we wish to compute y, to D decimal places for given values of the
integers L and D. Then the recurrence relations (4.05) are applied from r=1 past r=17 until a
value of r is reached for which

prer
PrPrs

1 < 3x10-- (4.11)

If this value of r is taken as N, then we can be sure that the approximation y{¥ yielded by the
back-substitution agrees to ) decimal places with the value ¥/¥*" that would be obtained from
the next higher approximation, (Whether this value of N is adequate is considered in the next
section.) _

If, as is more usual, accurate values of y, are required for a whole range of values of r, then
the criterion (4.11) is used with |[p,| denoting the greatest value of |p,| in the given range. We
might, for example, desire the computation to D) decimal places of all values of y, that exceed
Y2 X 10-? in absolute value —it being assumed, of course, in this case that y,— 0 as r— . Then
N is determined by the condition that

|£’,\'.I'rP_\'+1I{~ X 10-2, (4.12)
provided that |py|=|p,| when r< N.
5. Expansions for the Solution and the Truncation Error

The method suggested in the last section for determining N is based on the criterion that the
values of ¥¥ and yA¥*" must agree to within the prescribed tolerance for y,. This does not guar-
antee, however, that their common value is y,. To resolve this doubt we consider higher approxi-
mations.
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Replacing N by N+ 1 in (4.10), and adding the result to (4.10) itself, we obtain

ry o en ex+1
r.uz} = r,\-} = -+ ) .
)A yl Py (P.\-‘P,\'vl Py+1PN+2

Continuation of this process yields

JINHJ_‘,{_N]:‘”,_( éx L €N+ = _|_—._.___e""”‘—' )‘
! - PypPx+1 Px+1DN+2 PN+s—1PN+5

where s is an arbitrary positive integer. Letting s — % and using Theorem 1, we derive the following
expression for the truncation error

E(;_'\-'} — yl_ = y(gw — E.‘.ph (5_01)

where Ey is the sum of the (necessarily convergent) series

Ey=3 —2—. (5.02)

y=N ,Dx[i.\-+ 1

Thus the precise criterion for determining N is that |Eyp,| must not exceed the specified tolerance
in y, for each wanted value of r.

Once the value of N has been decided, the actual value of the truncation error can be found
by continuing the computation of p, and e, ; beyond r=N and using (5.01) and (5.02). Later [7],
we shall show how to use these expansions to determine strict bounds for ¥ directly from the
properties of the coefficients a,. b,, ¢,, and d,.

As a special case of (5.01) we have the expansion

o

| Jo—— e# - DY
Yr=Dpr Z i (5.03)
Subtraction of (5.01) from (5.03) yields
403 G <N 04
¥ =p: 2 oo (r<n), (5.04)

a result which is obtainable more directly by repeated use of the back-substitution relation (4.04).
Thus the whole of our computing scheme is equivalent to approximating the convergent infinite
series (5.03) by the partial sum (5.04).

6. Examples

EXAMPLE 1. Anger-Weber functions.
For integer values of r the function E,(x) satisfies eq (2.01) with

2r _2{1—(=1)1}

ar=c-=1, b=—, dy=
X X

We restrict ourselves here to positive values of the argument x. The principal properties of E,(x)
are established in [8], chapter 10. In particular, we have

2x 2 2 o Dr—Te—1|

E. (x) = =17 Y ai(r)a®,  Exyu(x)= GrtDm ;} Sr—1

as{r)xgse
=0

(6.01)
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where ay(r) =1, and

%(r) =GR —3%) (ar =57 .]. ar— (i Y (6.02)
Using the insquality
as(r) | _ 1
a1 (r)|  [4r—1J
we deduce that if x is fixed and r— =, then
En(s) ~ g Baril®) ~ o (6.03)

The corresponding homogeneous form of (2.01) has the Bessel functions J,.(x) and ¥,(x) as
solutions. For fixed x and large r, we have

1 ex\" 2\ 12 (2r\T
Jr(x) ~ @)k (z—r) ; Yr(x) ~— (w—r) (a) g (6.04)

Thus ultimately /,(x) decays more rapidly than E,(x), and |Y,(x)| grows rapidly. In consequence,
both simple forward recurrence and simple backward recurrence are unstable methods for gen-
erating E,.(x) from (2.01) when r > x.

With

fr=Jr(x), =Y. (x), hy=E.(x),

the conditions of section 2 are satisfied, provided that Jo(x) # 0. Let us apply the method of section
4 to a specific example, say the computation of E,(x) for x=1, r=1(1)10, correct to within 2 units
of the eighth decimal place. We suppose that we are given Ey(1) =—0.56865 6627, this value hav-
ing been extracted from [9] and confirmed by evaluation of the first of (6.01).

Beginning with po=0, p;=1, and e;=E(1), values of p, and e, were generated by use of
(4.05). They are recorded in the upper part of table 1, correct to 9 significant figures. After passing
the last of the given values of r, namely 10, the “test function™ pyoer/(prpri1) was computed. This
falls below the value 2 X 10-8 for the first time when r=14. In accordance with the criterion of
section 4 this is the value * to be assigned to N. The column of values ¥''¥ was then generated by
backward use of (4.04), beginning with y4{'=0. For r=1(1)10 these are the wanted approximations
to E(1).

To test the accuracy of the results, the computations were repeated for N=32 and N= 34,
using a time-sharing automatic computer and working to 36 floating binary figures, with an ex-
ponent of 12 binary figures. As further checks the values for r=1(1)5 were compared with the
10-decimal values given in [9], and the values for r=10 and 11 computed from the expansions
(6.01). The full results of these computations are not included here, but the digits in ¥ which
differ from those in the more accurate values of E,(1) are printed in italic type, and the difference
€1 bhetween the two values is recorded, in units of the 9th decimal place, in the penultimate
column of the upper part of table 1. As expected, this error does not exceed 2 X 10-% in absolute
value within the wanted range r= 1(1)10.

4The more precise criterion of section 5 requires that the sum of paed/ (i) and all subsequent values in this column be less than 2% 105 Inspection of
duced our error tol in yr from 2 10-* 1o 1 X 10-%,

table 1 indicates that this also is satisfied for N = 14. This would not be the case, however, if we r
-
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TABLE 1.

Anger-Weber function E(1)

& 14) S 14)

- o < e o 10! 10°E 1,
0 0 —0.56865 6627

1 | 0.70458 2918 0.43816 2436

2 2 0.70458 2918 A7174 1955

3 7 9.61725 973 .24880 5382

4 40 9.61725 973 04785 0795

3 313 4.08141 237 x 102 13400 0978

6 3090 4.08141 237 x 10* .01891 9443

7 36767 4.72213 396 x 10# .09303 2343

8 5 11648 4.72213 396 X 10# .01029 3811

9 81 49601 1.04236 156 x 107 07166 8637 1 1
10 1461 81170 1.04236 156 x 107 3.6%10-3 00650 2117 12 12
11 2.91547 380 x 10¥ 3.72252 015X 10° 2.9x10-3 .05837 3706 240 240
12 6.39942 424 X 10 3.72252 015 x 109 5.5 % 10-% 00447 9865 5279 5279
13 1.53294 634 X 1012 1.95553 (42 x 1012 4.7 x10-% 04914 3054 12 6445 12 6444
14, | 3.97926 106 x 103 1.95553 042 X 1012 6.5 x 10-* 00000 0000

15 1.11266 015 % 10's 1.41863 843 X 101 5.6 X 10-*

16 3.33400 119 x 10

€r

J e £ Pritria

14 | 3.97926 106 x 10 1.95553 042 x 102 | 4.41672 x 10-7 E\=8.24845 x 10-V7

15 1.11266 015 x 10 1.41863 843 x 10 3.82422 X 10~

16 3.33400 119 <10 1.41863 843 x 10% | 0.00399 x 10-17

17 1.06576 772 X 108 1.35839 625 x 10 L0352 x 1017

18 | 3.62027 625 x 10 1.35839 625 x 1(® 00000 x 10-17

19 1.30223 368 X 102!

It is of interest to apply the expansions of section 5 to this example. The necessary computa-
tions for evaluating the expansion (5.02) are given in the lower part of table 1, and the values of
10°K4p, appear in the final column of the upper part of the same table. They agree with 10%!!¥
to within a unit.

EXAMPLE 2. Struve functions.
The function H,(x) satisfies eq (2.01) with

2r (327

ar=c,=1, br=—,
x

For fixed x and large r we have ([8], sec. 10.4)

(6.05)

Since the complementary functions of the difference equation are again the Bessel functions
Jr(x) and Y,.(x), the conditions of section 2 are satisfied, provided that J,(x) # 0.
Let us evaluate H,(0.1) to 8 significant figures for all positive integer values of r such that

|H,(0.1)| exceeds Y2 X 10-30,

The computations are shown in table 2. The value

eo=H,(0.1) =0.06359 12700
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TaBLE 2. Struve function H (0.1)

& = 1 (9gt15)

r Pr dy er PrPros Y }_,t'l':l_
0 0 0.63661 9772 0.06359 12700

I 1 2.12206 591 % 10-2 L04237 06109 2.12065 160 % 10-3 0
2 20 4.24413 182 % 10~ .03388 23473 4.24211 125 % 10-3 0
3 799 6.06304 546 % 10-5 02903 79740 6.06080 029 % 10-7 =]
4 47920 6.73671 T18x 10-8 02580 97391 6.73467 605 X 10-* 0
5 38 32801 6.12428 835 x 10-10 02346 24212 6.12271 820 % 10-1 2
6| 3832 32180 4.71099 104 % 10-12 .02165 70178 4.70994 424 x 10-13 4
7| 4.30810 288 1010 | 3.14066 069 X 10-14 02021 28155 3.14004 492 x 10-15 4
8| 6.43738 080 x 1012 | 1.84744 746 x 10-16 01902 35432 1.84712 338 X 10-17 =
9 1.02993 494 x 101 | 9.72340 768 x 10-19 01802 20955 0.72186 442 x 10-20 0
10| 1.85381 852 100 | 4.63019 413X 10-21 01716 37415 4.62952 313 X 10-2 1
11| 3.70753 405 101 | 2.01312 788 x 10-2 01641 73675 2.01285 948 x 102 4
12| 8.15638 953 % 1021 | 8.05251 152 10-2 01576 05733 B.05151 746 % 10-27 2
13| 195749 641 % 1034 | 2,98241 167 x 10-28 01517 67673 | 1.5 10-5 | 2,98206 890 X 10-2 -1
14| 5.08040 910 1026 [ 1.02841 782 X 10~ 01465 33634 | 2.0 < 10-5 1.02820 540 % 10-0 [ 1 1520
15| 1.42501 497 102 |  3.31747 684 x 10-% 01418 06180 | 2.3 % 10-8 0

16| 4.27499 402 x 10

was extracted from [9], and confirmed by evaluation of the expansion
. - (=)' (3x)%
H,(x) = (3x)™1 Y, : ) (6.06)

: 3
O (s+§) F (s+r+§)

The largest of the wanted values of r was determined by the criterion
ler/pret|>3 X103 and |eri1/prya|=< 1 X 103
compare (5.03). This gave r=13. Next, we have from (5.01), (5.02), and (5.03),

E{l:\-} = IJ,-!J;-.g ey s
Ve T €r  PaPN+

From table 2 we see that the right of this relation is an increasing function of r, hence N is the
least value for which

ev
S s (% X 10-%)
PNPN+1 Pisfha

€13

FFrom the entries in the column headed e,/(pyp,.1) we see immediately that this gives N=15.

The values of Y19, computed from (4.04), appear in the penultimate column of the table. For
r= 13 they are the required approximations to H.(0.1). Again, more accurate values were obtained
by automatic computation with a higher value of N(26). and also by evaluation, of the expansion
(6.06) for r=1(1)15. In the final column the relative error €3/y4!% is given in units of the 9th deci-
mal place. As expected, it lies within the stipulated limit %2 X 10~# in the required range.

7. Propagation of Rounding Errors

In addition to the truncation error € which has been analyzed in sections 4 and 5, the other
possible sources of error in the final solution are the rounding errors introduced during the calcu-
lations. Since the computing process is essentially the solution of a finite system of linear algebraic
equations, the nature of the transmission of these errors is available from general theory [10]
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chapter 4; [6], chapter 9. However, because of special features of the present problem, including
the fact that in our form of elimination the absolute values of the multipliers are not bounded by

unity, some comments on the effects of rounding errors may be helpful.
Consider first the computation of the sequence p,. From the conditions py=20, p,= 1, we see

that in terms of the fundamental solutions f; and g, of section 2
pr= (fogr—&ufr) | (fogr —&df1)., (7.01)

the denominator here necessarily being nonzero since f. and g, are independent solutions of the
difference equation. By hypothesis, fy # 0; therefore p, always contains a multiple of g,. And since
frlgr— 0 as r— =, p, ultimately becomes proportional to g, when a fixed number of significant
figures is maintained in the computations.

Each rounding error in the formation of the p, can be regarded as introducing unwanted small
multiples of f. and g,. Ultimately, the former dies out in comparison with the latter: the error is
then propagated at the same rate as p, itself. Before this stage is attained, however, some loss of
accuracy is possible. If the value of |fy| is unduly small compared with |g.fi/gi|, then from (7.01)
we see that initially p, behaves like a multiple of f,. But the rounding errors are still propagated
in proportion to g, and this generally causes a steady loss of significant figures. The loss ceases
when the term fyg, in (7.01) overtakes gof, in magnitude, at which stage the computation becomes

completely stable.
It should be realized that this loss of accuracy is not attributable to the method of computation,

but to the fact that, as a rule, the whole problem is ill-posed when |f;| is small compared with
|gofr/gr| for at least one value of r. For from (2.06) we see that

oyr
Yr

2,0k
So¥r

_|fak

Jiye ' e

>

where 8y, is the change in y, consequent upon an arbitrary change 8/ in the value of k. Since
lg-lgo| is generally large compared with |y.| (see (2.04)), the relative error in y, is very sensitive
to rounding errors in the given value of k.

Examples 1 and 2 of section 6 would be ill-posed in this way if the chosen value of x were
close to a zero of Jo(x), say x=5.52. This would become apparent at the beginning of the compu-
tations: the early p, would diminish in size, in contrast to the behavior they exhibit in tables 1
and 2.

The difficulty could be overcome in these and other examples by carrying out the computa-
tion of £ and p, to higher precision, and making the necessary prolongation of the recurrences until
the criteria of sections 4 and 5 for terminating them are met.

If the value of y, can be found, however, a preferable alternative is to apply the algorithm of
sections 3 and 4 with the given y; as normalizing value, instead of y,=4/. In effect, this means
that the recurrences (4.05) are begun with p;=0. p.=1, and e,=y,. Subsequently the value of
vy can be computed from y; and y by a single backward application of (2.01).

The other part of the elimination process is the computation of the right-hand sides e,. From
(4.05) we see that in the inhomogeneous case instability could arise from this source if there were
persistent heavy cancellation between a,e,—, and d,p,. No naturally occurring examples of this
phenomenon have been encountered so far, however.

Lastly, we see from (4.04) that a rounding error introduced in y{¥) during the back-substitution
is multiplied by the factor p,/ps when it is transmitted to y'¥ (r < s). Except when the problem is
ill-posed, this factor decays with diminishing r at a faster rate than y!") itself, because p, contains
a substantial multiple of g,, and y; contains no multiple of this function.

Summarizing this section, we have shown that unstable transmission of rounding errors can
occur only when the original problem is ill-posed or when heavy cancellation takes place during
the calculation of e, from the second of (4.05).
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8. Comparison With the Algorithms of Miller and Shintani

In section 4 we solved the set of eqgs (3.01) and (3.02) by eliminating the variables in the order
PV LAY, we may call this forward elimination. Suppose now that these variables
are eliminated in the reverse order: backward elimination. The resulting set of pivotal equations
can be expressed in the form

UN PN — f0yfM) =k (p=N—-2, N—3,. . .,0), (8.01)

where the quantities «!» and !V are defined by

uM =1, M, =by_i/ay-, W, =dy_1/ay-1. (8.02)
and
btk — ¢,k M A d W }
wy, = fl ¥, = ;f (r=N=—1). (8.03)

(It should be observed that u'¥ and /Y depend on N as well as r, unlike the p, and e, of section 4.)
The last of eqs (8.01) is used to begin the back-substitution. It yields

_}.-(I.'\'F e {“ll.'\"]’z- = I_ﬂ“.\'l }f”‘“'“ f

where £ is again the given value of yj. Then ¥,V ¥V, . . .. ¥, may be computed by successive
application of (8.01) with r=1.2,. . ., N—2.

Thus the elimination process consists of constructing a sequence u!» which satisfies the
homogeneous form of the given difference equation (2.01) and the conditions ¢ =0. = 1.
This is exactly the first stage of Miller's algorithm [1], [3]: the u{" are the so-called trial values.
And in the homogeneous case, given by d, =0, all the quantities /¥ vanish, causing the formulas
(8.01) for back-substitution to reduce to

(N oy Y, um

‘[l.
m=2r_ m L N = AN,

e i s - v oule Yo .
Yr L TR (v 0 (N 1
W=y UWpZy Wy 2 ”u

This is the second stage of the Miller algorithm: £/ is the normalizing factor.

Accordingly, in the homogeneous case the Miller recurrence algorithm can be regarded as the
solution of the set of equations (3.01) and (3.02), with d,= 0, by backward elimination. In the inho-
mogeneous case the solution by backward elimination, described above, can be regarded as a
generalization of the Miller algorithm.,

Compared with the forward elimination process of section 4, the Miller algorithm suffers from
the disadvantages that it does not determine automatically the correct value of N, and if a second
value of N is used as a check on the adequacy of the original value. then the computations must
begin afresh. The advantage of the Miller algorithm is that the process of back-substitution is less
laborious: this advantage is restricted to the homogeneous case, however, and is offset if more than
one trial value of N has to be used.

The method Shintani [5]° has developed for solving second-order linear difference equations
in the homogeneous case consists of the use of the Miller algorithm preceded by two forward recur-
rence processes to determine the optimum value of N. In the present notation, Shintani takes
ar=1 and d,=0. His formulas for forward recurrence are given by ([5]. Theorem 1)

*See also [4), section 4.
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Pr+l{v}=brler(p)_Cr'Pr—l(V)- (804)
where v=0 or 1, and
P_,(0)=0, Po(0)=1;: Py(1)=0, Pi(1)=1. (8.05)

It is easily verified, for example, that the quantities P{0) appear when the forward elimination
procedure is applied to eqs (4.01) with d,=0 and the multipliers chosen in such a way that the
constant value —k is preserved on the right-hand sides. The resulting pivotal equations are in fact

—P.(0)y\M+c Prq (0)y¥, = —k  (r=1,2, ... N—1). (8.06)

In our notation
[)r([}]:‘:‘lc? o oo CrPlria. (807)

From the computational standpoint, the evaluation of Shintani's sequence P,(0) may be com-
pared with the evaluation of our sequence p,, the evaluation of his P,(1) with our e, and the appli-
cation of the Miller algorithm with our process of back-substitution. In the first stage the com-
puting effort is identical, but in the second and third stages our method requires considerably
less effort.

9. More General Form of Normalizing Condition

Let us consider now the solution of the difference eq (2.01) when (2.05) is replaced by the more
general normalizing condition

moyo+myr+myat. . .=k, (9.01)

in which mg, my, . . ., and k are given constants. We again suppose that the general solution of
(2.01) has the form (2.02), but instead of the conditions imposed on f;, g., and Ak, in section 2, we
assume that

N
2 Mgy

r=0

— as N>, (9.02)

and
S mfp=F. 3 mh=H, (9.03)

r=i r=0

where F and H are finite, and F # 0. Then (2.01) has a unique solution fulfilling (9.01). It is given by

k—H
Yr:T_;(r'_Fhr; (9.04)

compare (2.06).
The obvious extension of the approach of section 3 is to solve the system of linear algebraic
equations given by

ur)"r;‘_'}] = f);-}"r'\-] 5 Cr){;?] =d, (r=1,2,...,N=1), (9.05)
N
2 myy¥\V=k, (9.06)
and g
»w'=0. (9.07)
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THEOREM 2. In addition to the other conditions of this section, assume that for all sufficiently
large N the system of equations (9.05), (9.06), and (9.07) has a solution, that gy # 0, and that

N

N
fn Y mg—0, L Y mg—0, (N-o ) (9.08)
BN EN

N =0 r=0

Then if r is fixed and N—> oo, yN — y,.
This result may be established by expressing ¥ in the form
_Y(,lv' :A\fr'i‘ B.\'gr"l" hr. (9.09)

Using (9.06) and (9.07), we find that

N N N N
hy Y megr— gy ( > mrhr—k) Sy ( b mrhr—k)—h_m > mafr
r=0

Av= N ﬁ: »  By= rzt‘)\l N =
8N 2 mrfr_‘f.-\' z megr N 2 m’.-'fr"'fh’ E Mmesy
r=0 r=0 r=0 r=0

In consequence of the assumed conditions, the denominators are asymptotic to Fgy as N — =,
Hence Ay— (k— H)/F. Next, the assumed conditions imply that fy/gy and hy/gy both tend to zero.
Hence By— 0. Comparison of (9.04) and (9.09) completes the proof.

When the forward elimination process of section 4 is applied to eqs (9.05), (9.06), and (9.07),
the following pivotal equations are obtained:

N-1
Pre1yM—py) + g ( 2 m_qyi’v’)= er (r=0,1,. . ..,N—1), (9.10)

s=r+1
(compare (4.04)), where

@ . . .G

QnZI. i W S ———————— (I‘B]), [9]]]
CiCs . . + Cp
po=20, P =my, eo=k, (9.12)
and, if r=1, _
e PR, L e =Dy 9.13)
Cr Cr

In consequence of (9.07), the final equation of the form (9.10) reduces to
py W =en-. (9.14)

This yields the value of Y4",: thence y,,y® . . . ., %" may be computed from (9.10) by back-
substitution.

The value of N may be determined in a similar way to that suggested in section 4. Suppose,
for example, that all nonvanishing values of y. are needed to a fixed number of decimal places,
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D, say—a common form of requirement with the present type of normalizing condition. Then N
is determined by the condition

Ie_\'fp.v+|| <1X10-% (9.15)
provided that |p,| < |py|when r <N, and also
|prlgr—1] > |me|y Imraa]y . . oy [mal. (9.16)
EXAMPLE 3. Bessel functions.
Let us evaluate J, (x), Ji(x),. . ., for x=5 to 5 decimal places, by use of the relations
Jr—l{x)_ (zr;x) jr(x)+jr+l{x)=0, (9.17)
and
J(!(I)+2J2(x)+2.h(1)+- . =1L (9-18JI
In the present notation, we have
ar=c,=1, b.=2r(x, d,=0,
my=1, m=mg=.. .=0, ma:=my= =2, k=1
Accordingly, eqs (9.11) through (9.13) yield
qr=1, e=1;, po=0,  p=1;
and
Pr+1 :brpr‘_pr—| +mr’- (9.19)

Table 3 gives the values of p, correct to 6 significant figures. The criterion (9.15) suggests that
N be taken as the least value of r for which |p, .| > 2 X 105, This gives ¢ N=14. The column of
values of y{1¥ is then generated upwards by use of (9.10), starting with y{{#=0. These are the
required approximations to J.(5): their differences, €', from the true values are recorded in the
final column in units of the 5th decimal place. The agreement is satisfactory.

TABLE 3. Bessel fungtion ) (5)

13
ro| ol my i Y Z meye | 105€09)
0 0.0 1 0 —0.17758 —2
1 0.4 0 1 —.32758| 1.17758 0
2 0.8 2 0.4 04655 1.17758 2
3 1.2 0 1.32 .36482 1.08448 1
4 1.6 2 1.184 39123 | 1.08448 0
5 2.0 0 25744 26114  0.30202 0
6 24 2 3.9648 13105 .30202 0
7 2.8 0 8.94112 05338 03992 0
8 3.2 2 21.0703 101841 03992 0
9 3.6 0 60.4838 .00552 .00310 0
10 4.0 2 196.671 00147 .00310 0
11 4.4 0 728.200 {00035 .00016 0
12 4.8 2 2007.41 .00008 00016 0
13 5.2 0| 13709.4 00001 00000 1
14 5.6 2 | 68281.5 .00000 .00000 0
15 368669,
* When the condition (9.16) i violated — as it is in this example near the beginning of the range —it would be safer in practice to take A slightly higher than the

value predicted by (9.15).
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It may be noted that estimates of the optimum value of N for generating Bessel functions from |
(9.17) and (9.18) by Miller's algorithm have been computed by Makinouchi [11] for x=0.01(.01)
0.1.1)1(1)10(10)100 and precisions of 9, 10, 18, 20, and 30 significant figures. These values were
obtained by use of the asymptotic approximations (6.04) above. In constructing a program for
generating the /.(x) for arbitrary x and arbitrary precision, however, it would be simpler to deter-
mine the optimum N by use of (9.15) (or (4.11)). The resulting gain would tend to offset the extra
effort needed in applying the back-substitution relation (9.10) compared with the normalizing of
the trial values in the Miller algorithm.

10. Bounds for the Truncation Error

In order to obtain strict bounds for the truncation error associated with the algorithm of section
9, we proceed as in section 5. Write, temporarily,

M=y =l (10.01)
Then from (9.10) we obtain
Prear=PeMear— qe(meameai+. o mamy) (r<N). (10.02)
Therefore
[nel < pr(mesea| + Mrsel +. 0 o |]) (r<N), (10.03)

where p, is the greater of

Pr— qr My

Pr+l

sup | mpeis.

2=gcx

and |

(10.04)

Equations (9.07), (9.14), and (10.01) yield my=-ey/py;i. From this result and (10.03) we may
verify that

[nv-1| = pyilex/pyaal s (10.05)

and thence by induction that
] < pr(1+prs1) (A +pri2) . . . (L4 py—1) len/pyer]l  (r=N—2). (10.06)
The left-hand side of the last relation is [y/¥*V — V| Replacing N by N+1, N+2,. . ., in turn

and summing, and applying Theorem 2, we find that

G(“| = Py 1+P:+:)(1‘+’Pr+z) e s (I+P,\'—|}E,\-' (f‘-{H-N“‘z}s (10.07)
where
€N =y, —y®), (10.08)
and
=+ (1400|228 (1) (1) | 222 4 (10.09)
V41 N+3
provided that the last series converges. Similarly
|| < py—iBx,  |yv| < En. (10.10)

125



The results (10.07) and (10.10) are strict bounds for the truncation error, in contrast to the
expansion of section 5 which is exact (for the algorithm of sections 3 and 4). Often the bound (10.07)
is a considerable overestimate.” Thus in Example 3, the right-hand side of (10.07) or (10.10) has the
following values for N= 14, in units of the 5th decimal place:

568, 237,29.12.3. 1,1, then zero for r=7,8,.. . .. 14.

In consequence, if N is determined by the criterion that for each required value of r the right-hand
sides of (10.07) and (10.10) must not exceed the specified tolerance in y;, then the resulting value
is perfectly safe but often unnecessarily high. Applied to Example 3, this criterion yields N=18,
compared with the value 14 which we used and found to be quite adequate.

In the next section we give an alternative formulation of the algorithm of section 9. Although
perhaps less elegant, it generally yields a sharper assessment of the truncation error than that
of this section.

11. Alternative Method for the General Normalizing Condition

The algorithm of sections 3 and 4 can be applied to the problem of section 9 in the following
way. First, we construet a solution f, of the homogeneous form of the given equation (2.01). The
choice of this solution is arbitrary, provided that the first of (2.03) is satisfied. Then by means of
an additional back-substitution we construct an arbitrary solution A, of (2.01) itself. The required
solution 3 may then be computed from (9.04), in which £ is defined by (9.01), and F', H by (9.03).
In the case when the given difference eq (2.01) is itself homogeneous, only the solution f; need be
computed, and (9.04) reduces to

yr=(k/F) fr. (11.01)
The simplest choice of the normalizing conditions needed for constructing f, and h, is given by
Jom L ho=0. (11.02)

The first of these may be an inconvenient or even impossible condition, however; in this event we
may follow the suggestion given in section 7 and use instead

fi=1, h,=0. (11.03)

To assess the truncation error in the final solution y,, let ¢{*) and 6!¥) be the truncation errors
in the approximations %) and A"’ to f; and h,; thus

fr=fE4 e, he=h)+ 6. (11.04)

Bounds for ¢'¥ and €'Y are computable from the expansions of section 5. From (9.04) we have

f"-:fi-—"—_"—"'-i(_,ft,:N"+¢',.-\";+ht,:\"+ ey (r=0,1... ..N), (11.05)

Yr— =
it Fy+ox

where Fy. Hy are the computed quantities

N—=1 N-1
Fy="% m i, Hy="7% mAhM, (11.06)

r=10 r=10

T This can be traced 1o the fact that over most of the range the second of the two quantities (10.04) is usually very mueh smaller than the first,
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and oy, Ty assessable errors ®

N k2
o= E m N + 2 mefi; (11.07)
r=0 r=N+1
N =
i z m 0N + E mhy. (11.08)
r=0 r=N+1

If Fyv# 0, then to the first order of small quantities the truncation error in the formula

Y= ‘!";H X AN 4 (V) (11.09)
N
is composed of three parts:
k=Hy (k—Hy) 1Y) .
Foew e ERE e esm (1110

In the homogeneous case they reduce to two:

ko kox ox .
e, AW, (r=N), (11.11)
. N

The first of (11.11) is the normalized multiple of the truncation error in the formula f, = fW): the
second of (11.11) is a fixed relative error arising from the approximate representation of the nor-
malizing factor k/F by k/F .

The equivalence of the method of this section to the algorithm of section 9 can be seen from
the fact that the function on the right of (11.09) is exactly the solution of the set of eqs (9.05),

(9.06). and (9.07).
ExAMPLE 4.9

Let us compute to 5 decimal places the solution of the homogeneous equation

2r— D)yr—v— L2ryr+Q2r+1)yr21=0, (11.12)
satisfying the condition
lyotyntytyt+. . .=l (11.13)

In the notation of sections 2 and 9 we have
a,=2r—1, b,=12r, cr=2r+1, d,=0, me=1%, my=1 (r=0), k=1.
The computations are shown in table 4. Values of p, were generated from po=0, p;=1, and (11.12)

when r > 1, correct to 6 significant figures. With ey=1 (compare the first of (11.02)), we find from
the second of (4.05) that e =1/(2r+1). The least value of r for which e./[p,.; <1 X10-%is 7; in

* See also |7].

#|3], section 5.

¥ An al ive way of estimating V in this particular example is to observe that, except for small r, the wanted solution of (11.12) behaves roughly like 44",
where A is a constant and A*—6A+1=0, givingA=3+ VE=58. Assuming that A4 is of order unity, as is reasonable in view of the condition (11.13), we find that
N5 5/logie A= T. This method of estimation is somewhat less certain than the one we have used, and it is not universally applicable.
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accordance with (4.12) this is the value '° to ascribe to N. The back-substitution process for the
determination of 17 is given by f17=0, and

Praa fO=pr fO, +er (r=6,5,. ..,0):

compare (4.04). Division of /17 by F;=0.599069, computed from the first of (11.06), yields the
wanted approximations Y7 to y;.

TABLE 4

r Pr €r fi wo

0 0 1.000000 1.000000 1.66926
1 1 0.333333 0.086107 0.14373
2 4 .200000 011094 .01852
3 18.6 142857 001587 00265
4 92.8 11111 .000238 00040
5 480.467 090909 000037 00006
6 2544.80 076923 000006 00001
7 13687.7 066667 000000 00000
8 T4445.6

The example is now complete, but it is of interest to illustrate the error analysis of this section.
Accordingly, the whole calculation was repeated twice, keeping four extra significant figures
throughout. In the first repetition the same value N =7 was used. In the second repetition a new
N was determined by the condition |ex/py+i| < 2 X 107 this gave N=12.

The results appear in table 5. The column headed 10%() gives the difference of 10°%? from
the more accurate values 10*y{!?). The next columns give 10%{"/F; and — 10%f7/F2; the value
of ¢{") was obtained by subtracting /" from ({2} and o7 computed from (11.07), using the values
of f1? for f. when r = 8. As expected, the values of 10%{7 are in good agreement with the sum of
the entries on the same row in the following two columns.

TABLE 5

= fir Wiz i 347 107 |(]:r£ == IU”UL".{}:

]‘1 !",’
0 1.00000 00000 1.66925 3684 1.00000° 00000 1.66925 7339 — 3655 0 — 3655
1 0.08610 68379 0.14373 4156 0.08610 68378 0.14373 4471 —315 0 —315
2 01109 40183 .01851 8731 01109 40180 01851 8771 —40 1 —41
3 00158 71852 {00264 9415 00158 71839 00264 9418 =3 2 =
4 {00023 83677 00039 7896 00023 83614 00039 7887 S 11 =1
5 .00003 68169 A00006 1457 00003 67845 00006 1403 54 54 0
6 00000 57914 J00000 9667 00000 56199 00000 9381 286 286 0
7 00000 09228 00000 1540 .00000 00000 00000 0000 1540 1540 0
8 00000 01485 00000 0248
9 00000 00241 A00000 0040
10 00000 00039 00000 0007 F:=10.59906 88055 o;=0.00000 13118
11 L0000 00006 .00000 0001 Fi2=10.59907 01173
12 00000 00000 00000 0000

12. Summary

In this paper we have described a new algorithm for computing the solution y, of any second-
order linear difference equation, homogeneous or inhomogeneous, which is applicable when simple
forward recurrence (and possibly also backward recurrence) cannot be used because of instability.
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In the first part (secs. 2-8) we considered the case in which the wanted solution y, has a
specified value at the beginning of the range r=0, and an appropriate convergence condition as
r—> oo, In this case the algorithm is based on the solution of a finite number, N, of simultaneous
linear algebraic equations of tridiagonal form by forward elimination. As N— = the solution
%Y of these equations converges to y; (sec. 3). In sections 4 and 5 it was shown that during the
process of computing ¥!¥ the minimum value of N necessary to achieve specified tolerance in
lyr— Y| emerges automatically. Analyses of the truncation error and of the propagation of
rounding errors were made in sections 5 and 7. The former leads to a convergent series expansion
for y,; the latter shows that the method of computation is quite stable, unless the problem itself
is ill-posed. Numerical examples (sec. 6) illustrated the algorithm and confirmed the error analyses.

In section 8 it was shown that the well-known algorithm of J. C. P. Miller for the homogeneous
case can be regarded as the computation of y4¥ by backward elimination, taking a guessed value
of N. It was also shown that the recent extension of Miller’s algorithm by Shintani is related to the
process of forward elimination.

In the second part of the paper (secs. 9-11) a more general form of normalizing condition for
¥+ was considered. An extended form of the algorithm was developed in section 9 and applied to a
numerical example in the same section. In section 10 bounds for the truncation error were given
and discussed. In the concluding section (sec. 11) it was shown that the more general problem can
also be solved by application of the original algorithm of sections 3 and 4.

It is hoped that the results of this paper will prove to be of considerable usefulness in the
computation of special functions from recurrence relations, in the solution of ordinary differential
equations in Chebyshev series by Clenshaw’s method, and in the solution of the discretized form
of boundary-value problems in ordinary differential equations when one boundary is at infinity.
In the last two connections, it may be possible to extend the present approach to difference equa-
tions of order higher than the second.

The writer thanks C. W. Clenshaw, G. F. Miller, and D. L. Yarmush for valuable comments
on this work, and also his wife, Mrs. G. E. Olver, for carrying out the desk and automatic computa-
tions of the numerical examples, only a few of which are included in the paper. The automatic
computation was supported by National Institutes of Health Grant No. NB05613.01.
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