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1. Introduction 

A pow e rful co mputational a lgorithm for eva luatin g th e most ra pidl y dec reas ing so luti on of a 

second-order homogeneous linear difference equation was published in 1952 by J. C. P. Miller 

([11 ,1 page xvii) in conn ec tion with the tabulation of mod ified Besse l function s . Since th en, variou 

writers have app li ed the a lgo rith m to ut he r s pec ial fu nc tion s, and s i milar co m putat iona l processes 

have bee n used by C le ns haw [21 for th e nume rica l so luti on of ordinary differentia l equat ions in 

series of Chebyshev polynomials. Error analyses of the algorithm have been supplied by the present 

writer [3] and Oliver [12] and quite recently Gautschi [4] has examined the relation of the algorithm 

to classical results in the theory of continued fraction s. 

The present inves tigation ste ms from the obse rvati on that Mi ll er 's a lgo rithm can be regarded 

as a procedure for solvin g a tridiagonal se t of simultaneous linear algebraic eq uat'i ons. Adopting 

this more general s tandpoint , we shall show how to recast the algorithm into a new form which 

e nables the correct number of recurrence steps to be determined automatically without appeal to 

an asymptotic or other analytical formula. In this respect it resembles an algorithm proposed 

recently by Shintani [5]. 

The new formulation has the further advantages of (i) being applicable to inhomogeneous dif

ference equations, (ii) lending itself readily to powerful error analyses. There seems to be no 

alternative method of comparable power available at present for computing solutions of inhomo

geneous eq uations in the case when forward recurrence and backward recurre nce are both un

s table. 

2. Statement of the Problem 

Let the given difference equation be denoted by 

arYr- 1 - brYr + CrYr+ 1 = dr, (2.01) 

'F'iJ,:ures in brack.e ts indica te the lit e ra ture refe re nces at the l'nd of thi s puper. 
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where a .. , h .. , c .. , and d .. are given functions of the nonnegative integer variable r. We assume that 

the general solution of (2.01) has the form 

y .. = Af,. + Bg .. + hr, (2.02) 

in which A and B are arbitrary constants , and the complementary functionsf,. , gr, and the particular 

solution hr have the properties 10 ~ 0 , g .. ~ O for all sufficiently large r, and 

hrlgr ---;. 0, (r---;.OO). (2.03) 

(It may be noted that we do not require either I .. or hr to tend to zero as r---;' 00.) 

The firs t problem we investigate is the computation of the solution of (2.01) which has the 

property 

y .. 1 gr ---;. 0 (r---;'OO) , (2.04) 

and satisfies the normalizing condition 

Yo = k (2.05) 

for an arbitrarily assigned value of the constant k. Later (secs. 9-11) we allow for a more general 

form of normalizing condition and also drop the restriction 10 ~ O. 

The given conditions ensure that y .. exists and is unique. For, from (2.03) and (2.04) the B of 

(2.02) is seen to be zero, and from (2.05) we derive A = (k - ho) 110. Therefore 

(2.06) 

It is well known that direct use of (2.01) as a recurrence relation for generating Y2, Y3, ... 

from given values of Yo and Yl (if available) is an unstable procedure. Essentially, each computa

tional rounding error introduces into the numerical solution a small multiple of Ir and a small 

multiple of gr, and in consequence of (2.04) the latter ultimately grows faster than the wanted 

solution. 

It may also happen 2 in the inhomogeneous case thatlr grows more rapidly than Yr in the direc

tion of decreasing r. In this event recurrence by use of (2.01) is unstable in this direction too. 

3. Approach 

Analogous work in the numerical solution of linear differential equations 3 suggests that a 

stable way of solving the present problem is to treat it directly as a boundary-value problem rather 

than use initial-value techniques. Weare already given the value of Yo. Suppose that for some large 

integer N, the value of ys can be obtained from an asymptotic formula or by other means. Then 

eqs (2.01) with r = 1, 2, . . ., N - 1 comprise a set of simultaneous linear algebraic equations for 

the unknowns y!, Y2, ... , YS - I, which are solvable by standard matrix computational processes. 

This possibility has already been noted by Gautschi ([4] , Introduction) following a suggestion 

by M. E. Rose, but Gautschi did not pursue the idea because of the difficulty of obtaining the value 

of Yv, in general. Following Miller's approach in the homogeneous case [1] , we solve the algebraic 

equations with the value of YI' arbitrarily set equal to zero. It transpires that for large N the great 

majority of the y .. produced in this way are generally excellent approximations to the true values; 

only in the neighborhood of r = N can substantial errors occur. 

We firs t es tablish the convergence of the process . 

2 See Example l of sf;!c tion 6. 

3 See. for example .l6}. 
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THEOREM 1. With the conditions of section 2, suppose that for aLL sufficiently large N the sys

tem of equations 

(3.01) 

and 

(3.02) 

has a solution yt), YIN), ... , Yrf). Then ifr is fixed and N ~ 00, yrN) ~ Yr. 

To es tablish this result, we observe that since y,. is a particular solution of (2.01), we can 

express 

where A.v and B.v are inde pendent of r. Setting r= 0, N in turn and using (2.05) and (3.02), we 

derive 

B - _ foyv 
,v - JOgN - go];,,' 

the denominator fogN - go!v being non vanishing for all sufficie ntly large N in consequence of the 

assumed conditions. In fact, from (2.03) we have 

Hence from (2.04) it follows that A.v ~ 0 and B.v ~ O. This completes the proof. 

Thus for any given value of r, or for any finite range of values, Yr can be calculated to pre

scribed accuracy by solving the sys tem of equations (3.01) and (3 .02) with a suffi cie ntly high value 

of N. Naturally, we now enquire what exac tly cons titutes a "sufficiently high" value? Or, to pm 

the question another way, given N, to what accuracy does Y,N) approximate y,. for r < N? 

A simple practical way of providing an answer is to solve eqs (3.01) and (3 .02) for inc reasing 

values of N until the results are in satisfactory numerical agreement. Thi s procedure has two 

drawbacks. First, it is wasteful of computing time if the originally guessed values of N are either 

too low or much too high. Second, there is no absolute guarantee that values of y,. computed with 

two (or more) diffe rent values of N must be correc t when they agree. 

The optimum value of N, that is, the minimum value necessary to achieve specified accuracy 

in y,. for a given range of values of r, can be determined automatically when a suitable method is 

used to solve the algebraic equations. Accordingly, we consider this process next. 

4. Solution of the Algebraic Equations 

We shall solve the tridiagonal system of equations 

-bdIN) + cd>t) 

ad)N) - b2#) + cdt) 

ad>t) - b;\y:!V) + cdt> 
(4.01) 
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by simple elimination follow ed by back-substitution. To begin with we suppose that none of the 

c,. vanish. 

Let the first of (4.01) be rewritten in the form 

where 

C I 

The result of eliminating y\N) from (4.02) and the second of (4.01) can be expressed as 

where 

Continuing the elimination, we obtain 

where 

P"+I= 
b,p,.-a,p,.- , 

C,. 

(r= 1,2, ... , N-1), 

a,.e,.- I - d,.p,. 
e,.= 

Cr 

(4.02) 

(4.03) 

(4.04) 

(4.05) 

Thus PI' is the solution of the homogeneous form of the difference eq (2.01), with the initial condi

tions po = 0 and PI = 1. We also observe that the second of (4.05) holds for r = 1 if we define 

eo=k. 

The final equation of the form (4.04) is used to begin the back-substitution. On substituting 

the second of (3.02), we derive 

(4.06) . 

thence Y\'2~, )'\''2;), ... , yt) may be computed by use of (4.04) with descending values of r. The 

process fails if, and only if, one of the numbers P2, P3, . .. , PN vanishes. In this event the set of 

eqs (3.01) and (3.02) has either no solution or an infinity of solutions, and the algorithm breaks 

down. 

When one or more of the coefficients Cr vanishes the set of eqs (4.01) becomes uncoupled. 

A si mple modification takes care of the situation. Suppose, for example, that Cs = 0 but all other 

c,. are nonzero. Then the first s equations of (4.01) determine fIN), f2N),. . ., ft) completely: they 

can be solved by application of the recurrence relations (4.05) for r= 1, 2, ... , s -} and use of 

the bac k-substitution relation (4.04) , beginning with 

~N) = ases- I - dsPs. 

s bsPs - asPS-I 
(4.07) 

114 



The remaining N - s - 1 equations are solvable for :Is:1 , i:d, . . ., yJf-ll by the method already 

described: eq (4.07) takes the place of the first of (3.02). 

To ease the presentation we shall suppose in the remainder of the paper that none of the c,. 

vanish. 

Applying ourselves to the proble m of determining the optimum value of N, we observe that 

the effect of replac ing N by N + 1 is to prolong the elimination process by one step, beginning the 

back·substitution with Y1";.~1)= 0 in stead of Y~) = O. Thus we have 

P Y(N+l)_ P y(N+l)= e 
1' + 1 r .,. r+1 .,. (r = 1,2, ... , N). (4.08) 

Subtraction of (4.04) from (4.08) gives 

(r ~N -l ), (4.09) 

and repeated application of this result leads to 

. i N + J) _.iN)=~ Pr + 1 ... PN- I (.iN+J)_.iN) 

.J l' .J "- .Y N .J N , 
P,'+ I P1'+2 PN 

that is, 

.iN+i) _ .iN) = preN 

.Jj. )'j. 

PNPN+I 
(r = 1,2, , , " N). (4,10) 

By use of this formula we can predict the effect of changing N into N + 1 before any back·substi· 

tution is carried out. 

Suppose, for example, that we wish to compute Yt to D decimal places for given values of the 

integers Land D. The n the recurrence relations (4.05) are applied from r = 1 pas t r= L until a 

value of r is reached for which' 

j PLer I < t X 10- D• 

PrPr+1 
(4.11) 

If this value of r is take n as N, then we can be sure that the approximation 'YS:')yielded by the 

back·substitution agrees to D decimal places with the value 'YS:'+i) that would be obtained from 

the next higher approximation, (Whether this value of N is adequate is considered in the next 

section.) . 

If, as is more usual, accurate values of Yr are required for a whole range of values of r, then 

the criterion (4.11) is used with Ipl.1 denoting the greatest value of IPrl in the given range. We 

might, for example, desire the computation to D decimal places of all values of Yr that exceed 

112 X 10- D in absolute value - it being assumed, of course, in this case that Yl' ~ 0 as r ~ 00, Then 

N is determined by the condition that 

(4.12) 

provided that IPNI ~ l p/'1 when r < N. 

5. Expansions for the Solutioh and the Truncation Error 

The method suggested in the last section for determining N is based on the criterion that the 

values of y,N) and y,N+l) must a(?;ree to within the prescribed tolerance for Y'" This does not guar

antee, however, that their common value is Y'" To resolve this doubt we consider higher approxi

mations. 
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Replacing N by N + 1 in (4.10), and adding the result to (4.10) itself, we obtain 

Continuation of this process yields 

It+S)-y,!,)=p,.(~+ eN+ 1 + + eNH- 1 ) 
\PNPN+I PN+ IPN+2 ... PN+S- IPN+S' 

where s is an arbitrary positive integer. Letting s ~ 00 and using Theorem 1, we derive the following 

expression for the truncation error 

(5.01) 

where EN is the sum of the (necessarily convergent) series 

(5.02) 

Thus the precise criterion for determining N is that I Evp,. I must not exceed the specified tolerance 

in y,. for each wanted value of r. 

Once the value of N has been decided, the actual value of the truncation error can be found 

by continuing the computation of p,. and er- I beyond r= N and using (5.01) and (5 .02). Later [7], 

we shall show how to use these expansions to determine strict bounds for E\,v) directly from the 

properties of the coefficients ar, br, Cr, and dr. 

As a special case of (5.01) we have the expansion 

Subtraction of (5.01) from (5.03) yields 

~ es 
Yr= Pr ,L, ---. 

s= ,. PsPS+ 1 

N-J e 
f,,v)=Pr ~ __ s_ 

s=r PsPS+1 
(r < N), 

(5.03) 

(5.04) 

a result which is obtainable more directly by repeated use of the back-substitution relation (4.04). 

Thus the whole of our computing scheme is equivalent to approximating the convergent infinite 

series (5.03) by the partial sum (5.04). 

6. Examples 

EXAMPLE 1. Anger-Weber functions. 

For integer values of r the function E r(x) satisfies eq (2.01) with 

a r = cr = 1, b =2r 
r , 

X 

2{l-(-'1)r} 
dr = - . 

7TX 

We restrict ourselves here to positive values of the argument x. The principal properties of Er(x) 

are established in [8] , chapter 10. In particular, we have 

2 " 2r-2s-1 
E 2 r+1 (x) = (2r + 1)7T ~ 2r-1 O's(r)x2s

, 

(6.01) 
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where ao(r) = 1, and 

1 
as(r) = (4r - 32 ) (4r-52 ) • •• {4r- (2s + I F } 

Using the inequality 

we deduce that if x is fixed and r~ 00, then 

2 
E 2r+ 1 (x) - (2/"+ 1)7T 

(s > 0) . (6.02) 

(6.03) 

The corresponding homogeneous form of (2.01) has the Bessel functions }r(X) and Yr(X) as 

solutions. For fixed x and large r , we have 

1 (ex)" 
}r (X) - (27Tr)1 /2 2r ' 

( 2) 1/2 (2r)r 
Yr(X) - - 7Tr ex ' (6.04) 

Thus ultimately }r (x) decays more rapidly than E,.(x), and IYr(x) I grows rapidly. In consequence, 

both simple forward recurrence and simple backward recurrence are unstable methods for gen

erating E ,.(x) from (2.01) when r > x. 

With 

jr = },' (x) , hr = E r (x), 

the conditions of section 2 are satisfied , provided that} o(x) 0/= O. Let us apply the method of section 

4 to a specific example, say the computation of E,.(x) for x = 1, r = 1(1)10, correc t to within 2 units 

of the eighth decimal place. We suppose that we are given Eo(l ) =- 0.568656627, this value hav

ing been extracted from [9] and confirmed by evaluation of the first of (6.01). 

Beginning with Po = 0, PI = 1, and eo = Eo(l), values of pr and e,· were generated by use of 

(4.05). They are recorded in the upper part of table 1, correct to 9 significant figures. After passing 

the last of the given values of r, namely 10, the "test function" PlOer / (PrPr+ I) was computed. This 

falls below the value 2 X 10- 8 for the first time when r = 14. In accordance with the criterion of 

section 4 this is the value 4 to be assigned to N. The column of values :Pi) was then generated by 

backward use of (4.04), beginning with ~~4)=0. For r = 1(1)10 these are the wanted approximations 

to E,{l). 

To test the accuracy of the results, the computations were repeated for N = 32 and N = 34, 

using a time·sharing automatic computer and working to 36 floating binary figures, with an ex

ponent of 12 binary figures. As further checks the values for r = 1(1)5 were compared with the 

10-decimaL ~ y alu es given in [9] , and the values for r= 10 and 11 computed from the expansions 

(6.01). The full results of these computations are not included here, but the digits in y/4) which 

differ from those in the more accurate values of Er(l) are printed in italic type, and the difference 

t:</ 4) between the two ' values is recorded, in units of the 9th decimal place, in the penultimate 

column of the upper part of table 1. As expected, this error does not exceed 2 X 10- 8 in absolute 

value within the wanted range r = 1(1)10. 

4 The more precise c rit erion of sec tion 5 req uires that the sum of PlO e r l ( p ,pr ~ l ) and all subsequent values in this column be less than 2 x 10- 8, Inspect ion of 

table 1 indicat es that this also is sat isfied for N= 14. This wou ld not be the case, however, if we reduced our error tolerance in y, from 2 X 10- 8 to I X 10- ", 
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TABLE 1. Ang~r·Weber function E,(l) 

r p, e, 
PlOer yV') 109.,<,") 109E'4P, 

prpr+1 

0 0 - 0.56865 6627 
1 ] 0.70458 2918 0.43816 2436 
2 2 0.70458 2918 .17174 ]955 

3 7 9.61725 973 .24880 5382 
4 40 9.61725 973 .04785 0795 
5 313 4.08141 237 X 102 .13400 0978 
6 3090 4.08141 237 X 102 .01891 9443 
7 36767 4.72213396x lO' .09303 2343 
8 5 ]]648 4.72213 396 X 104 .01029 3811 
9 81 4960] 1.04236 ]56 X 107 .07166 8637 1 1 

iO 1461 8]]70 1. 04236 156 X 107 3.6 X 10- 3 .00650 2117 12 12 
11 2.91547 380 X 10· 3.72252 015 X 109 2.9 X 10- 3 .05837 3706 240 240 
12 6.39942 424 X 10'0 3.72252 015 X 109 5.5 X 10- 6 .00447 9865 5279 5279 
13 ] .53294 634 X 10'2 1. 95553 042 X 10'2 4.7 X 10- 6 .04914 3054 12 6445 12 6444 
14. 3.97926106x1 0'3 1.95553 042 X 10'2 6.5 X 10-· .00000 0000 
15 1.11266 015 X 1015 1.41863 843 X 1015 5.6 X 10- 9 

16 3.33400 119 X 10'· 

e, 
r p,. e, --

PrPr+ J 

14 3.97926 106 X 10'3 1. 95553 042 X 10'2 4.41672 X ]0- 17 E14 = 8 .24845 X 10-'7 
15 1. J 1266 015 X 10'5 1.41863 843 X 10'5 3.82422 X 10- 17 

16 3.33400 ]]9 X 10'6 1.41863 843 X 10'5 0.00399 X 10- '7 
17 1.06576 772 X 10 'S 1.35839 625 X 10 '8 .00352 X 10- '7 

18 3.62027 625 X 10' · 1.35839 625 X 10 ' 8 .00000 X 10- 17 

19 1. 30223 368 X 10" 

It is of interest to apply the expansions of section 5 to this example. The necessary computa· 

tions for evaluating the expansion (5.02) are given in the lower part of table 1, and the values of 

109E14P,. appear in the final column of the upper part of the ,same table. They agree with 109~r ) 

to within a unit. 

EXAMPLE 2. Struve functions. 

The function HI' (x) satisfies eq (2 .01) with 

a,.=cr= 1, b =2r 
r , 

X 

For fixed x and large r we have ([8], sec. 10.4) 

Hr(x) - - _ - - . x (ex)r 

V27fr 2r 
(6.05) 

Since the complementary functions of the difference equation are again the Bessel functions 

}r(X) and Yr(x), the conditions of section 2 are satisfied, provided that }o(x) # O. 

Let us evaluate H,.(O.l) to 8 significant figures for all positive integer values of r such that 

IH r(O.l) I exceeds 1/2 X 10- 30 . 

The computations are shown in table 2. The value 

eo=Ho(O.l) =0.0635912700 
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TAB LE 2. St ruve f unction H .. (O.I ) 

,. p .. d,. e,· 
_e_r _ j l5) 10"E"." ) 

p rpr + J 
,. j,.15) 

0 0 0.63661 9772 0.06359 12700 
I 1 2. 12206 591 X ] 0- ' .04237 06 109 2. 12065 160 X 10- :1 0 

2 20 4.244]3 182 X 10- 4 .03388 23473 4 .242 11 125 X 10- 5 0 

3 799 6.06304 546 X 10- 6 .02903 79740 6.06080 029 X 10- 7 - 1 

4 47920 6.73671 718 x 10- 8 .02580 97391 6.73467 605 X 10-" 0 

5 38 32801 6. 12428 835 X 10- 10 .02346 24212 6 .1 227 1 820 x 10- 11 :2 

6 3832 32180 4.71099 104 X ]0- 12 .02165 70178 4 .70994 424 X 10- 1:1 4 

7 4. 59840 288 X ]010 3.14066 069 X 10- 14 .02021 28 155 3 . 14004 492 X 10- '" 4 

8 6.43738 080 X ]012 L. 84744 746 X ]0- 16 .01902 35432 L. 847 12 338 X 10- 17 - I 

9 1.02993 494 X J Ol 5 9.72340 768 X 10- 1" .01802 20955 9.72 ]86 442 X 10- ' 0 0 

10 1.8538] 852 X 1017 4.63019 413 X ]0- 21 .01716 374 15 4.62952 313 X 10- " 4 

11 3.70753 405 X 1019 2.01312 788 X ]0- '3 .01641 73675 2.01285 948 X 10-" 4 

12 8. 15638 953 X 1021 8.05251 152 X 10- ' 6 .01576 05733 8.0515 1 746 X 10- " 2 

13 1.95749 64 ] X 10" 2.98241 J67 X IO- ' " .0 15 17 67673 1.5 X 10- 5:1 2. 98206 890 X 10- ' " - ] 

J4 5.08940 910 X 1026 1.0284 1 782 X 10- 30 .0 1465 33634 2.0 x 10- 58 1.02829 540 X 10- :11 1 1520 
15 1.4250 I 497 x l 0'" 3.3 1747 684 X 10- "3 .0 14 18 06 180 2.3 X 10- 63 0 
16 4.:27499 4·02 X ] 031 

was extracted from .[9], and confirmed by evaluation of the expansion 

00 ( - ) S ( h )28 
H ,.(x) = (h) r+ ) ~ 3 3 . 

8=0 r (s + 2) r (s + r + 2) 
(6.06) 

The largest of the wanted values of r was determined by the criterion 

co mpare (5 .03). This gave r = 13. Next , we have fro m (5 .01), (5. 02) , a nd (5.03), 

_ l2d!.!:±! ~ . 

Yr e,. P.vp.v+) 

From table 2 we see that the right of thi s rela tion is an increas ing func tion of r, he nce N is the 

least value for whic h 

From the entries in the column headed c,.1 (PrP,.+) we see immediately that thi s gives N = 15 . 

The values of / ,.) 5), computed from (4.04), appear in the penultimate column of the table . For 

r ~ 13 they are the required approximations to H,.(O.I). Again , more accurate values we re ob ta in ed 

by automa tic computa tion with a higher value of N(26), and also by evaluation. of the expansion 

(6.06) for r = 1(1)15. In the fin al column the relative error e,.'5)1/ ,.' 5) is give n in units of the 9th dec i

mal place. As expected , it lies within the stipulated limit 112 X 10- 8 in th e r equired range. 

7. Propagation of Rounding Errors 

In addition to the truncation error e,N) which has been analyzed in sec tions 4 and 5, the other 

possible sources of error in the fin al solution are the rounding errors introduced during the calcu

lations. Since the computing process is e ssentially the solution of a finite system of linear algebraic 

equations, the nature of the transmission of these errors is available from general theory [10] 
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chapter 4; [6], chapter 9. However, because of spedal features of the present problem, including 

the fact that in our form of elimination the absolute values of the multipliers are not bounded by 

unity, some comments on the effects of rounding errors may be helpful. 

Consider first the computation of the sequence PI" From the conditions Po = 0, PI = 1, we see 

that in terms of the fundamental solutions f' and gl' of section 2 

PI' = (fogr - gof,,) / (fog, - gqf;) , (7.01) 

the denominator here necessarily being nonzero since f ' and g,. are independent solutions of the 

difference equation. By hypothesis, /0 ~ 0; therefore PI' always contains a multiple of gr. And since 

f,/gr ~ 0 as r ~ 00, p,. ultimately becomes proportional to gl' when a fixed number of s ig'nificant 

figures is maintained in the computations. 

Each rounding error in the formation of the p,. can be regarded as introducing unwanted small 

multiples of f ' and gr. Ultimately, the former dies out in comparison with the latter ; the error is 

then propagated at the same rate as P,' itself. Before thi s stage is attained, however, some loss of 

accuracy is possible. If the value of ltol is unduly small compared with Igoj;/gll, then from (7.01) 

we see that initially PI' behaves like a multiple of f,. But the rounding errors are still propagated 

in proportion to gr, and this generally causes a steady loss of significant figures. The loss ceases 

when the term fogr in (7.01) overtakes g<Jr in magnitude, at which stage the computation becomes 

completely stable. ' 

It should be realized that this loss of accuracy is not attributable to the method of computarion, 

but to the fact that , as a rule, the whole problem is ill·posed when ltol is small compared with 

Igo/r/grl for at least one value of r. For from (2.06) we see that 

I By,. 1= Ij;,Ok l ~ I g,1Jkl, 
y,. juY,. r goY,. 

(7.02) 

where By" is the change in Yr consequent upon an arbitrary change Bk in the value of k. Since 

Ig,./gol is generally large compared with IYr l (see (2.04)), the relative error in Yr is very s'ensitive 

to rounding errors in the given value of k. 

Examples 1 and 2 of section 6 would be ill-posed in this way if the c hosen value of x were 

close to a zero of Jo(x), say x = 5.52_ This would become apparent at the beginning of the compu

tations : the early PI' would diminish in size, in contrast to the behavior they exhibit in !ables 1 

and 2, 

The difficulty could be overcome in these and other examples by carrying out the computa

tion of k and PI' to higher precision , and making the necessary prolongation of the recurrences until 

the criteria of sections 4 and 5 for terminating them are met. ' 

If the value of Yl can be found, however, a preferable alternative is to apply the algorithm of 

sections 3 and 4 with the given YI as normalizing value, instead of yo = k. In effect, this means 

that the recurrences (4.05) are begun with PI = 0, P2 = 1, and e l = YI, Subsequently the value of 

Yo can be computed from YI and Y2 by a single backward application of (2_01). 

The other part of the elimination process is the computation of the right-hand sides e,.. From 

(4.05) we see that in the inhomogeneous case instability could arise from this source if there were 

persistent heavy cancellation between a,.e"- I and d,p,., No naturally occurring examples of this 

phenomenon have be en encountered so far, however. 

Lastly, we see from (4.04) that a rounding error introduced in y~N ) during the back-substitution 

is multiplied by the factor Pr/Ps when it is transmitted to y\:,,) (r < s)_ Except when the problem is 

ill-posed, this factor decays with diminishing r at a faster rate than y\:,,) itself, because PI' contains 

a substantial multiple of gr, and y,. contains no multiple of this function. 

S ummarizing thi s section , we have shown that unstable transmission of rounding errors can 

occur only when the original proble m is ill-posed or when heavy cancellation takes place during 

the calculation of er from the second of (4.05), 
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8. Comparison With the Algorithms of Miller and Shintani 

In section 4 we solved the set of eqs (3 .01) and (3.02) by eliminating the variables in the order 

'11M , '1/) , . . ., y$" 2 ~ : we may call this fo rward elimination. Suppose now that these variables 

are eliminated in the reverse order: backward eLimination. The resulting set of pivotal equations 

can be e~ pr esse d ·in the form 

(8.01) 

where the quantities U\N) and V\N) are de fined by 

(8.02) 

and 

b U(M-c U(N) 
(N) = ,.,. I' ,. + 1 

U,._ I 
a,. 

IN)+ d (N) 

J M = c,. I' ,.U,. 
'" - I , a,. 

(r <N-l). (8.03) 

(It should be observed that u(j') and J,M depend on N as well as r , unlike the PI' a nd e,. of section 4.) 

The las t of eqs (8 .01) is used to begin the bac k·substitution. It yields 

where k is again the given value of Yo. The n '1/), 'It), . . . , YVV!.. I may be compu ted by s uccess ive 

application of (8.01) with r = 1,2, . .. , N-2. 

Thus the elimina tion process consists of constructing a sequence u\N) which sati s fi es the 

homogeneous form of the given difference equ ation (2 .01) and the conditions u ~ \ i'/) = 0 , U<$"21= 1. 

This is exactly the first stage of Miller 's algorithm [1], [3]: the uW) are the so-called trial values. 

And in the homogeneous case, given by d,. = 0, all the quantities J,':J) vani sh , causing the formulas 

(8.01) for bac k-subs titution to reduce to 

u(N) k 
_1_ .1N) =_. _ (N) 

• (N) Yo (N) U,. . 
Uo Uo 

This is the second s tage of the Miller algorithm: k/ ulf) is the normalizing factor. 

Accordingly, in the homogeneous case the Miller recurrence algorithm can be regarded as the 

solution of the set of equations (3 .01 ) and (3 .02), with dr = 0, by backward elimination. In the inho

mogeneous case the solution by backward elimination, described above, can be regarded as a 

ge neralization of the Miller algorithm. 

Compared with the forward elimination process of section 4, the Miller algorithm suffers from 

the di sadvantages that it does not determine automatically the correct value of N, and if a second 

value of N is used as a c hec k on the adequacy of the original value, then the computations must 

begin afresh. The advantage of the Miller algorithm is that the process of back-substitution is less 

laborious; thi s advantage is res tric ted to the homogeneous case, however , and is offset if more than 

one trial value of N has to be used. 

The method Shintani [5] 5 has developed for solving second-order linear difference equations 

in the homogeneous case consists of the use of the Miller algorithm preceded by two forward recur

re nce processes to determine the optimum value of N. In the present notation , Shintani takes 

a,. = 1 and d,. = O. His formulas for forward recurrence are given by ([5], Theorem 1) 

5 See also 14]. section 4. 
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(8.04) 

where lJ = 0 or 1, and 

P_1 (0) =0, PoCO) = 1; Po(l) =0, (8.05) 

It is easily verified, for example, that the quantities p,.(O) appear when the forward elimination 

procedure is applied to eqs (4.01) with d,. = 0 and the multipliers chosen in such a way that the 

constant value - k is preserved on the right-hand sides. The resulting pivotal equations are in fact 

(r=I,2, ... , N-1). (8.06) 

In our notation 

(8.07) 

From the computational standpoint, the evaluation of Shintani's sequence Pr(O) may be com

pared with the evaluation of our sequence Pr, the evaluation of his P,.(1) with our er, and the appli

cation of the Miller algorithm with our process of back-substitution. In the first stage the com

puting effort is identical, but in the second and third stages our method requires considerably 

less effort. 

9. More General Form of Normalizing Condition 

Let us consider now the solution of the difference eq (2.01) when (2.05) is replaced by the more 

general normalizing condition 

(9.01) 

in which mo, mJ, .. . , and k are given constants. We again suppose that the general solution of 

(2.01) has the form (2.02), but instead of the conditions imposed on Jr, gr, and hr in section 2, we 

assume that 

I ~o m,·gr I ~ 00 as N~ 00, (9.02) 

and 

f m,fr=F , f m,.h,.= H, (9.03) 
1'= 0 ,'= 0 

where F and H are finite, and F"# O. Then (2.01) has a unique solution fulfilling (9.01). It is given by 

compare (2.06). 

k-H 
Yr=---y;- f,.+ h,. ; (9.04) 

The obvious extension of the approach of section 3 is to solve the system of linear algebraic 

equations given by 

.J.N) - b .J.N) + .J.N) - d 
arYr_l r.rr crYr+l- r (r=1, 2, .. . , N-1), (9.05) 

(9.06) 

and 

(9.07) 
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THEOREM 2. In addition to the other conditions of this section, assume that for all sufficiently 

LarKe N the system of equations (9.05), (9.06), and (9.07) has a solution, that gN c;6 0, and that 

(N ~ 00). (9.08) 

Then if r is fixed and N ~ 00, y~N) ~ Yr' 

This result may be established by expressing y:) in the form 

(9.09) 

Using (9.06) and (9.07), we find that 

In consequence of the assumed conditions, the denominators are asymptotic to FgN as N ~ 00. 

Hence AN ~ (k - H)/F. Next, the assumed conditions imply that fN /gN and hN/gN both tend to zero. 

Hence BN~ O. Comparison of (9.04) and (9.09) completes the proof. 

When the forward elimination process of section 4 is applied to eqs (9.05), (9.06), and (9.07), 

the following pivotal equations are obtained: 

( 
N- I ) 

N)_ N) N) -
Pr+ IYr P"Yr+ 1 + q,. L msYs - e,. 

s= r + l 

(compare (4.04)), where 

qo= 1, 
ala2· . a,. 

qr= 
CIC2 • • Cr 

Po=O, PI=mO, eo=k, 

and, if r ~ 1, I 

b,P,. -a,.pr- I 
pr+1 = + qrm,., 

Cr 

(r=O, 1, ... , N-1) , 

(r ~ 1) , 

arer- I - d,P,. 

c,. 

In consequence of (9.07), the final equation of the form (9.10) reduces to 

. • 1..\') _ 
p ,\ nV-1 -eN-I· 

(9.10) 

(9.11) 

(9.12) 

(9.13) 

(9.14) 

This yields the valu e of yjv'2 l ; thence YW~2' YW~3" .. , to\) may be computed from (9.10) by back· 

substitution. 

The value of N may be determined in a similar way to that suggested in section 4. Suppose, 

for example, that all non vanishing values of Yr are needed to a fixed number of decimal places, 
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D, say - a common form of requirement with the present type of normalizing condition. Then N 

is determined by the condition 

!e.,!px+11 < ~ X lO- D, (9.15) 

provided that IPrl :s:; Ips I when r :s:; N, and also 

(9.16) 

EXAMPLE 3. Bessel functions. 

Let us evaluate Jo (x), JI (x), . . . , for x = 5 to 5 decimal places, by use of the relations 

J r- I (x) - (2r/x) J r(X) + Jr+1 (x) =0, (9.17) 

and 

(9.18) 

In the present notation, we have 

ar=cr=l, br = 2r/x, dr=O, 

mo=l, ml =m3 = ... =0, m2=m~= . .. =2, k= 1. 

Accordingly, eqs (9.11) through (9.13) yield 

qr=l, e,·= 1, Po=O, PI=I, 

and 
pr+1 = brPr - pr- I + mI" (9.19) 

Table 3 gives the valUes of PI' correct to 6 significant figures. The criterion (9.15) suggests that 

N be taken as the least value of r for which IPr + 1 I > 2 X 105 • This gives 6 N = 14. The column of 

values of :0,.14) is then generated upwards by use of (9.10), starting with yW) = 0. These are the 

required approximations to J,l5): their differences, E ~14), from the true values are recorded in the 

final column in units of the 5th decimal place. The agreement is satisfactory. 

TABLE 3. Bessel fun~tion 1,(5) 

13 

r br mr PI' Yr14) Lm.~14) 105£~") 

0 0.0 1 0 -0.17758 -2 

1 0.4 0 1 - .32758 1.17758 0 
2 0.8 2 0.4 .04655 1.17758 2 
3 1.2 0 1.32 .36482 1.08448 1 
4 1.6 2 1.184 .39123 1.08448 0 
5 2.0 0 2.5744 .26114 0.30202 0 
6 2.4 2 3.9648 .13105 .30202 0 
7 2.8 0 8.94112 .05338 .03992 0 
8 3.2 2 21.0703 .01841 .03992 0 
9 3.6 0 60.4838 .00552 .00310 0 

10 4.0 2 196.671 .00147 .00310 0 
11 4.4 0 728.200 .00035 .00016 0 
12 4.8 2 2007.41 .00008 .00016 0 
13 5.2 0 13709.4 .00001 .00000 1 

14 5.6 2 68281.5 .00000 .00000 0 
15 368669. 

8 When the condition (9. 16) is violated - as it is in this example near the beginning of the range- it would be safer in prac tice to take N slightly higher than the 
value pred;c1ed by (9. 15). 
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It may be noted that estimates of the optimum value of N for generating Bessel functions from I 

(9.17) and (9.18) by Miller's algorithm have been computed by Makinouchi [11] for x = 0.01(.01) 

0.1(.1)1(1)10(10)100 and precisions of 9, 10, 18, 20, and 30 significant figures. These values were 

obtained by use of the asymptotic approximations (6.04) above. In cons tru cting a program for 

generating the }r(X) for arbitrary x and arbitrary precision , however , it wo uld be simpler to deter

mine the optimum N by use of (9.15) (or (4.11». The resulting gain would tend to offse t the extra 

effort needed in applying the bac k-subs titution relation (9.10) compared with the normalizing of 

thp. trial values in the Miller algorithm. 

10. Bounds for the Truncation Error 

In order to obtain stri ct bounds for the truncation error associated with the algorithm of section 

9, we proceed as in sec tion 5. Write, temporarily, 

Then from (9.10) we obtain 

Therefore 

where PI' is the greater of 

'Yl . • = .iN+Il _ .iN) 
'" )'" .Y 'I' • 

( r < N). 

(r < N), 

IP,.- q,. mr+ 11 I ~ I 
and ' sup ImrHI· 

P" + I IPr+1 2 ,;;",;; ", 

(10.01) 

(10.02) 

(10.03) 

(10.04) 

Equations (9.07), (9.14), and (l0.01) yield YJ .v = eN/PN+ I' From thi s result and (10.03) we may 

verify that 

(10.05) 

and thence by induc tion that 

( r ~N-2) . (10.06) 

The left-hand side of the las t relation is It,N+Il- t ,:"lj. Replacing N by N+ 1, N+2,. . , in turn 

and summing, and applying Theorem 2, we find that 

(r~N-2), (10.07) 

where 

(10.08) 

and 

E ;v = I ~ I + (l + PN)le.v+11 + (l + p N) (l + PN+I) I eN+2
1 + . 

P.V+ I P.V+2 PN+3 
(10.09) 

provided that the las t series converges. Similarly 

(10.10) 
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The results (10.07) and (10.10) are strict bounds for the truncation error, in contrast to the 

expansion of section 5 which is exact (for the algorithm of sections 3 and 4). Often the bound (l0.07) 

is a considerable overestimate. 7 Thus in Example 3, the right-hand side of (10.07) or (10.10) has the 

following values for N = 14, in units of the 5th decimal place: 

568, 237, 29, 12,3,1, 1, then zero for r= 7,8, ... , 14. 

In consequence, if N is determined by the criterion that for each required value of r the right-hand 

sides of (10.07) and (10.10) must not exceed the specified tolerance in Yr, then the resulting value 

is perfectly safe but often unnecessarily high. Applied to Example 3, this criterion yields N = 18, 

compared with the value 14 which we used and found to be quite adequate. 

In the next section we give an alternative formulation of the algorithm of section 9. Although 

perhaps less elegant, it generally yields a sharper assessment of the truncation error than that 

of this section. 

11. Alternative Method for the General Normalizing Condition 

The algorithm of sections 3 and 4 can be applied to the problem of section 9 in the following 

way. First, we construct a solution ir of the homogeneous form of the given equation (2.01). The 

choice of this solution is arbitrary , provided that the first of (2.03) is satisfied. Then by means of 

an additional back-substitution we construct an arbitrary solution hr of (2.01) itself. The required 

solution Yr may then be computed from (9.04), in which k is defined by (9.01), and F, H by (9.03). 

In the case when the given difference eq (2.01) is itself homogeneous, only the solution/r need be 

computed, and (9.04) reduces to 

Yr=(k/F)fr. (11.01) 

The simplest choice of the normalizing conditions needed for constructing/r and hr is given by 

/0= 1, ho=O. (11.02) 

The first of these may be an inconvenient or even impossible condition; however; in this event we 

may follow the suggestion given in section 7 and use instead 

hl=O. (11.03) 

To assess the truncation error in the final solution Yr, let cpW) and 8~N) be the truncation errors 

in the approximations /VV) and h~N) to Ir and hr; thus 

(11.04) 

Bounds for cp\N) and 8\N) are computable from the expansions of section 5. From (9.04) we have 

(r = O, 1, ... , N), (11.05) 

where F.v, H.v are the computed quantities 

N-I N-I 

F, = L m,!\N), H.\' = L m,h\N), (11.06) 
1' = 0 r = () 

7 This can be traced 10 the fact that uve r mos t of the ra nge the second of the two quantities (10.04) is us ually very muc h s maller than the first. 
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and fT .v, T.\' assessable errors 8 

N 00 

fT .v= L In ,.cp\N) + L Inr!,. , 
r = 0 'r = :V + I 

N 

f T.v= L 1n,.8\N) + In,.h ,.. 
,. = 0 r = N + I 

If F.I· OP 0, then to the firs t order of s mall quantities the truncation error in the formula 

.~ k- H .v j"< N) + h( N) 
y, . F v ,. ,. 

is co mposed of three parts: 

k- H.v (N) 

F cp,. , 
N 

{ 
fT v (k - H .v )} j~.N) 

- T .V+ F -F ' 
.v N 

8(N) ,. , 

In the homogeneous case they reduce to two: 

k 
_,,,( N) 
F T' ,. , 

.1' 

_ kfT ."j(N) 
F2 ,. , 

.v 
(r ~ N). 

(r ~ N). 

(11.07) 

(1 1.08) 

(11.09) 

(lLlO) 

(lLll) 

Th e first of (11.11) is the norm alized multiple of the truncation error in the formula I r ~ I ~N ); the 

second of (11.11) is a fi xed rela ti ve error ari sing from the a pproxim ate re presentati on of the nor· 

malizing fac tor kiF by k/F;v. 

The equivalence of the me thod of thi s section to th e algorithm of sec tion 9 can be seen from 

the fac t that the fun ction on the right of (1 1.09) is exac tl y the so lution of the se t of eqs (9.05), 

(9.06), and (9.07). 

E X AMPLE 4.9 

Let us co mpute to 5 dec imal places the solution of the homogeneous equa tion 

(2 r - l )y,. _ 1-12 ry,.+ (2 r + l )y,. + 1= 0, (11.12) 

s ati sfying the condition 

(11.13) 

In the notation of sections 2 and 9 we have 

a r =2r - l , br = 12r, Cr = 2r + 1, dr = O, In r = 1 (r > 0), k = 1. 

The computations are shown in table 4. Values of Pr were generated from Po = 0 , PI = 1, and (11.12) 

when r > 1, correct to 6 significant figures. With eo = 1 (compare the first of (11.02)), we find from 

the second of (4.05) that er = 1/( 2r + 1). The least value of r for which er /Pr+l < t X 10- 5 is 7; in 

'See also 17J. 
11 13], sec tion 5. 

10 A. akemetiYe way of estimating N in this pa.Tticuiar exa mple is to observe that, excep t for smaU r, the wanted solution of (11.1 2) behaves roughly like Aft. - r, 

where A i. a conatanl and ,,' - 6-'. + I = 0, giving -" ~ 3 + Vs= 5.8. Assuming that A is of order unit y, as is reasonable in view of the condition (1 1.13), we find that 

N=';S/iolio '\~7 , Thil method of estimation is somewhat less certain than the one we have used , and it is not universally app licable. 
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accordance with (4.12) this is the value 10 to ascribe to N. The back-substitution process for the 

determination of 1;.7) is given by f/ ) = 0, and 

t1(7) - t1(7) + 
Pr+ 1 } r - P,. } r+ 1 er (r=6, 5, ... , 0) ; 

compare (4.04). Division of 1;.7) by F7 = 0. 599069, computed from the first of (11.06), yields the 

wanted approximations t r7) to Yr . 

T ABLE 4 

r p, e, .1).7) r!;) 

0 0 1.000000 1.000000 1.66926 
1 1 0.333333 0.086107 0.14373 
2 4 .200000 .011094 .01852 
3 18.6 .142857 .001587 .00265 
4 92.8 .11 1111 .000238 .00040 
5 480.467 .090909 .000037 .00006 
6 2544.80 .076923 .000006 .00001 

7 13687.7 .066667 .000000 .00000 
8 74445.6 

The example is now complete, but it is of interest to illustrate the error analysis of this section. 

Accordingly, the whole calculation was repeated twice , keeping four extra significant figures 

throughout. In the first repetition the same value N = 7 was used. in the second repetition a new 

N was determined by the condition ieN/PN+ l t < ~ X 10- 9 ; this gave N = 12. 

The results appear in table 5. The column headed 109Er> gives the difference of l09y)?) from 

the more accurate values 109y }12). The next columns give 109cp}7)/F7 and -109(hIP)/Fi; the value 

of cpF) was obtained by subtracting IF) from IV 2 ), and (T7 computed from (11.07), using the values 

of IV 2 ) for Ir when r ::;:': 8. As expected, the values of 109EF) are in good agreement with the sum of 

the entries on the same row in the following two columns. 

TABLE 5 

r f/;J2) YJ' 2) fl') yF) lO'e<,') 
109 4>\.7) .1\,) 

- 10 9~ 
F, F¥ 

0 I. 00000 00000 1.66925 3684 I. 00000 00000 1.66925 7339 -3655 0 -3655 
1 0.08610 68379 0.14373 4156 0.08610 68378 0.14373 4471 -315 0 -315 
2 .01109 40183 .01851 8731 .01109 40180 .01851 8771 -40 1 -41 

3 .00158 71852 .00264 9415 .00158 71839 .00264 9418 -3 2 - 6 
4 .00023 83677 .00039 7896 .00023 83614 .00039 7887 9 11 - 1 

5 .00003 68169 .00006 1457 :00003 67845 .00006 1403 54 54 0 
6 .00000 57914 .00000 9667 .00000 56199 .00000 9381 286 286 0 
7 .00000 09228 .00000 1540 .00000 00000 .00000 0000 1540 1540 0 
8 .00000 01485 .00000 0248 
9 .00000 00241 .00000 0040 

10 .00000 00039 .00000 0007 F, = 0.59906 88055 (T, = 0.00000 13118 
11 .00000 00006 .00000 0001 F'2 = 0.59907 01173 
12 .00000 00000 .00000 0000 

12. Summary 

In this paper we have described a new algorithm for computing the solution Yr of any second

order linear difference equation, homogeneous or inhomogeneous, which is applicable when simple 

forward recurrence (and possibly also backward recurrence) cannot be used because of instability. 
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In the first part (secs. 2-8) we considered the case in which the wanted solution y,. has a 

specified value at the beginning of the range r= 0, and an appropriate convergence condition as 

r~ ro. In this case the algorithm is based on the solution of a finite number, N, of simultaneous 

linear algebraic equations of tridiagonal form by forward elimination. As N ~ ro the solution 

y).N) of these equations converges to Yr (sec. 3). In sections 4 and 5 it was shown that during the 

process of computing y\.N) the minimum value of N necessary to achieve specified toleran ce in 

IYr - y<,.N) I emerges automatically. Analyses of the truncation error and of the propagation of 

rounding errors were made in sections 5 and 7. The former leads to a convergent series expansion 

for Yr; the latter shows that the method of computation is quite stable, unless the problem itself 

is ill-posed: Numerical examples (sec. 6) illustrated the algorithm and confirmed the error analyses. 

In section 8 it was shown that the well-known algorithm of 1- C. P. Miller for the homogeneous 

case can be regarded as the computation of Yriv) by backward elimination, taking a guessed value 

of N. It was also shown that the recent extension of Miller's algorithm by Shintani is related to the 

process of forward elimination. 

In the second part of the paper (secs. 9- 11) a more general form of normalizing condition for 

Yr was considered. An extended form of the algorithm was developed in section 9 and applied to a 

numerical example in the same section. In section 10 bounds for the truncation error were given 

and discussed. In the concluding section (sec. 11) it was shown that the more general problem can 

also be solved by application of the original algorithm of sections 3 and 4. 

It is hoped that the results of this paper will prove to be of considerable usefulness in the 

computation of special functions from recurrence relations, in the solution of ordinary differential 

equations in Che byshev series by Clenshaw's method, and in the solution of the discretized form 

of boundary-value problems in ordinary differential equations when one boundary is at infinity. 

In the last two connections, it may be possible to extend the present approach to difference equa

tions of order higher than the second. 

The writer thanks C. W_ Clenshaw, G. F. Miller, and D. L. Yarmush for valuable comments 

on this work, and also his wife, Mrs. G. K Olver, for carrying out the desk and automatic computa

tions of the numerical examples, only a few of which are included in the paper. The automatic 

computation was supported by National Institutes of Health Grant No. NB05613.01. 
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