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Abstract

A novel enthalpy formulation is applied to Stefan problems in annuli and is

compared with the heat balance integral method (HBIM). Both methods are

applied to inward and outward solidification in cylindrical geometry, and the

results are combined to give numerical solutions in annuli. It is found that the

enthalpy method gives comparable accuracy with the HBIM except for small

Stefan number, and is more efficient and flexible.

1 Introduction

Change of phase occurs naturally in many physical and industrial processes. The

classical phase change problem is that of melting or solidification via the

conduction of heat, which is referred to in the literature as the Stefan problem.

The main difficulty in solving this problem is the presence of a moving phase

boundary. Hill [1] gives an account of analytical solutions to the Stefan

problem. Due to difficulties in obtaining such analytical solutions, numerical

techniques are more widely used. A useful account of these is given by Crank

[2].
Of the two main approaches in the solution of Stefan problems, one is

the front-tracking method. Here the position of the phase boundary is

continuously tracked. An example is the heat balance integral method (HBIM)

which explicitly tracks the motion of isotherms (the phase boundary being one

of them). One can also employ finite difference schemes and let the grids

deform as the phase boundary moves. These provide a means for tracking the

phase front explicitly. In past work Caldwell and Chiu [3,4] have used the

HBIM to solve one-dimensional solidification problems.
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A second approach is the fixed-domain formulation, where the

computational domain is fixed via a change of variable. An example is the

enthalpy formulation, which uses an enthalpy function together with the

temperature as dependent variables. In this formulation the flux condition on the

phase boundary is automatically satisfied and the phase boundary appears as a

jump discontinuity of the enthalpy. One disadvantage of the enthalpy method is

that the phase front cannot be determined accurately.

Date [5] introduces a new enthalpy formulation which provides a

simple and efficient means of tracking the phase boundary. In this paper, the

method is generalized to cylindrical geometry, in particular to annuli, and is

compared to the HBIM. Using various numerical experiments, it is found that

the new method gives comparable accuracy to the HBIM while being more

efficient and flexible.

2 Problem formulation

Consider a freezing vessel in the shape of an annulus, which contains liquid

initially at its freezing temperature Tf. The configuration is shown in Figure 1.

The two surfaces of the annulus are maintained at a temperature T§, which is

lower than the freezing temperature for t>0. If the density change from liquid to

solid is neglected, the system is governed by the equations

ar
r,<r<R,(t),
' '

(1)

of

where k is the thermal diffusivity, R,(t) and R](t) are positions of phase

boundaries, where Rj(0)=rj. The initial and boundary conditions are

f = 0

Figure 1: Freezing vessel in the shape of an annulus.
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and at the solid-liquid interface

= Lp——, / = 1,2 (2)

V((/) '̂

where we have assumed that the physical properties of the material remain

constant throughout the process. The constants K, p and L represent thermal

conductivity, density and latent heat of freezing, respectively.

To simplify the formulation we introduce non-dimensional variables

* r, L
r - — ,a =

f\ c\* f ~ *

Then the equations in (1) become

1 5
l<z<Z,(r),

(3)

and for the initial and boundary conditions, we have

U = 1, T = 0

0, T>0.

Finally the flux condition (2) becomes

(4)

where a is the Stefan number which is a dimensionless latent heat parameter.

3 Heat balance integral method (HBIM)

For problems in cylindrical geometry, there are no exact solutions when the

temperature on the boundary is a prescribed constant value. The HBIM,

originally proposed by Goodman [6] and later modified by Bell [7], explicitly

tracks the motion of isotherms (the phase boundary being one of them).

Consider the non-dimensional equations in (3), For simplicity we

consider the outward solidification first, since the problem can be separated into

two independent parts, namely, inward solidification and outward solidification.

First, we divide the range [0,1] into n equal parts, that is

/

n
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and denote the corresponding position of the isotherm by Zj, Assuming a linear

profile within each subdivision [Zj, Z;+,], then

£/, =-+ ,*"*'> for Z, <z<Z,,,.

Multiplying the heat equation (1) by z and integrating over [Zj,Zj+i] gives

at/, s ( at/,
«• L — <7— £

'>• at/, . '?
z-—-dz =

J AT J
Z, Z, \ /

and taking the derivative outside the integral gives

d_

~dx
zU, dz ——•+—-—- = z - z-

' " " ' 9z L &

Replacing Ui by the linear profile and ensuring that expressions

representing change in flux are approximated by the discontinuous change in

adjacent profile gradients, we obtain a system of ODE's for the penetration

depth Zj, namely,

(2Z,+1)Z,=— ,̂
7—7 7-7Zy Ẑ  Ẑ  ^

6Z, 6Z,+; (5)
,Z 1,Z, J,. ..., 77 Z,,

[2(1 4- -i / n—i 77
^ >r^n-\

where Zo=l for outward solidification. The above system can be solved by

standard ODE solvers. In this paper, a fourth order Runge-Kutta method with

adaptive step size control is used.

It is easily seen that the system of equations (5) is singular when i=0,

since the positions of isotherms coincide. This is unavoidable, since at T=0 the

phase front will move out with infinite velocity. The velocity becomes finite

only for i>0. Hence a small time starting solution is needed. The appropriate

starting solution is given by Foots [8] and the initial motion of each isotherm Z,

is given by a power series in T'̂ , namely,

(6)
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The coefficients u^ can be found by substituting (6) into the heat balance

integral equations (5) to obtain a system of non-linear algebraic equations,

which can be effectively solved by Broy den's method. In this paper we retain

terms up to r^, and use i=0.01 to obtain the initial positions of the isotherms.

It can be seen that the problem of inward solidification is completely

analogous to that of outward solidification. The only change in the heat balance

equations (5) is that now Zo=r , and that an appropriate starting solution is

Z,(r) = r'-̂ T̂ -rj,.r-̂ r̂ -... (7)

Throughout this work we use the HBIM with 8 subdivisions. On checking we

find that doubling the number of subdivisions does not significantly improve the

results.

4 Enthalpy formulation

The enthalpy formulation is one of the most popular fixed-domain methods for

solving Stefan problems. The major advantage is that the method does not

require explicit treatment of the moving boundary. To introduce the formulation,

we define an enthalpy function h as a function of temperature T:

y;

where// is the local liquid fraction given by

[1 if T>T,

[0 // T<T,.

Writing in non-dimensional form (letting H=h/[pc(Tf-TJ]), gives

H = U + uf,(U). (8)

Hence H is identical to the temperature except when phase change occurs, when

H has a jump of a. Thus a change of phase is realized as a jump discontinuity in

H. Substituting H into the heat equation gives

z

It can be proved that a weak solution of equation (9) is a solution of the Stefan

problem. Discretization of equation (9) will result in a set of nonlinear

equations. There are a number of ways of implementing the numerical scheme

and some of them are summarized by Voller [9]. One approach is to use a

source based method which isolates the nonlinear part as a source term (see

Voller and Swaminathan [10]).

Date [5] introduces a simple method which at the same time provides

an effective means of tracking the phase boundary. From equation (8) we can

write U=H+H' where H'=-q//(U). However, we can express H in terms of H as

follows:

                                                                 Advanced Computational Methods in Heat Transfer VI, C.A. Brebbia  & B. Sunden (Editors) 

                                                                 © 2000 WIT Press, www.witpress.com, ISBN 1-85312-818-X 



220 Advanced Computational Methods in Heat Transfer VI

H =

-a

-H

0

if

if

H>a

0 < H < a.

H<0

(10)

Also we note that -H/a is the local liquid fraction while 1+ H/a is the local

solid fraction. This provides a means of determining the phase boundary as we

shall see later.

To solve the phase change problem in annuli with constant temperature

at the boundary, we first construct uniform grids placed between z=l and z=r* as

shown in Figure 2. To obtain unconditional stability, we use an implicit

discretization of (9). To advance from time level j to j+1, we have

1-
1

22,
U.

for i=l,2,3,...,N, where h and k are the space and time steps respectively, and Zj

denotes the position of the i-th grid, which is given by Zi=l+ih. Note that

UO=UN-H=O. Now, using the relation U=H+ H with H defined by (10), we have

J_

2z,
r

2z.

1-
2z. 2z,

\H

(12)

where y-k/h~. This results in a set of nonlinear equations. To solve this system

we employ an iterative scheme, where terms involving H are set to lag behind

terms involving H for 1 iteration. Using the value of H from the previous time

step as initial guess, the values of H are calculated from (10). The new values of

H are then obtained from the system (12). This process is continued until the

maximum fractional change in H between successive iterations is less than 10"̂ .

Then we proceed to the next time step. Note that each iteration involves solving

a tri-diagonal system and can be done effectively by the Thomas algorithm.

Since H =-q/y, the solid fraction f% in the i-th control volume is given by

1+ Hj7 a. This provides a simple way to calculate the position of the phase

front. For instance, suppose we want to find R,. Consider the integral I which

represents the volume of solid in the range 1< z <R),

U - 0 U =0

i=N

Figure 2: Arrangement of uniform grids between z=l and z=r
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, ,=1

where m^ is the first integer such that 1+ H /a is zero, and the last term is due to

the fact that the temperature at the boundary is zero. Hence we

have 7?, = J — h/.The value of R2 can be found similarly. This method

assumes there is a node m for which the whole control volume is in the liquid

state. Such a node might exist when the phase fronts come close together, and

from then on tracking of individual phase fronts is impossible. One remedy is to

decrease h so that we can track the front longer. However, if we are interested in

the complete solidification time only, as is often the case, there is a simple way

to do it. Consider the integral J which represents the total volume of solid in the

annulus. Then we have

Hence ̂ -^f =/ -1-2J.

On the other hand J can be approximated by

Therefore the difference of positions of the phase fronts can be calculated easily.

The instance at which R]"- R^=0 gives the complete solidification time. For the

cases of inward and outward solidification of a cylinder, the phase front can be

tracked similarly.

5 Numerical results

5.1 Inward and outward solidification

As mentioned before, one-phase solidification in a cylinder can be split up into

two independent problems of inward and outward solidification. Therefore we

present results for inward and outward solidification here, and combine them to

give results for an annulus in the next subsection.

In Figure 3 the position of the phase front is plotted versus non-

dimensional time i/a for a=l. Computational results using the HBIM and the

enthalpy method are compared. Also plotted are the results from Voller and

Cross [1 1], who also use an enthalpy formulation. They used a "latent heat at

node" approach to determine the time for the phase front to pass through a grid

point. Clearly the present results agree with those of Voller and Cross for

h=0.025. The advantage of the present method is that it provides a continuous

tracking of the phase front. For h=0.1 the motion of the phase front shows a
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non-physical oscillation, which is a common weakness of the enthalpy method.

This can be reduced by decreasing h.

A comparison with the HBIM shows that the results agree closely

except at the centre. Near the centre the HBIM predicts a much faster motion of

the phase front and thus a shorter solidification time. This effect is more

prominent when the Stefan number a is large. It is well known that for very

small a (e.g. a=0.1) the enthalpy method is unable to give the correct solution

(see, for example, Shamsundar and Rooz [12]). This is verified by the results in

Figure 4. The enthalpy method predicts a much earlier solidification time.

Numerical results for the motion of the phase front for outward

solidification for the cases a=0.1, 1 and 10 show that the situation is similar.

Again the enthalpy method and the HBIM agree closely except for a=0.1.

5.2 Solidification in annulus

The results are similar to those mentioned above, namely, that the enthalpy

method is good except when a is very small. Since, in the case of annulus

solidification, the phase front will not hit the centre, the problem associated with

the HBIM near the centre will disappear.

We take r*=2 in all cases. The main focus is on the positions of phase

fronts and prediction of complete solidification time. Figure 5 shows the

position of the phase front for cc=l. It is clear that the enthalpy method and the

HBIM agree closely. The waviness of the motion of the phase front for the case

h=0.1 persists. For the enthalpy method we cannot track the position of the

phase front down to the moment of complete solidification. In Figure 6 1^- RI^

is plotted versus non-dimensional time. The solidification time is the point

where R2~- Rj"=0. Again results from the enthalpy method and the HBIM agree

closely. Further results show that for large a (e.g. a=10) there is excellent

agreement in the position of the phase front. However, for small a (e.g. a=0.1)

the enthalpy method fails.

6 Conclusions

In this paper we have extended the enthalpy method proposed by Date [5] to

cylindrical geometry. It is shown that the enthalpy method gives comparable

accuracy to the HBIM, except for very small Stefan number a.

One of the advantages of the enthalpy method over the HBIM is that it

is more flexible. Although it is possible to solve 2-phase problems (i.e. the

liquid is not at its freezing temperature initially), the formulation becomes more

complicated. However, the enthalpy method needs no modification. Also the

enthalpy method can be easily adapted to other geometries, whereas applying

the HBIM to more complicated domains will result in extremely tedious

algebraic work.

The weakness of the enthalpy method is that it does not give

satisfactory results for small Stefan number. Also the waviness in the position of

the phase front is non-physical. Date [5] proposed a method which successfully
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Figure 3: Position of phase front versus non-dimensional time T/a for a=l,

inward solidification.
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Figure 4: Position of phase front versus non-dimensional time T/a for a=0.1,

inward solidification.
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Figure 5: Position of phase front versus non-dimensional time T/a for a=l,

solidification in annulus.
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Figure 6: R^- R/ versus non-dimensional time T/a for ot=l.
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eliminates the waviness, and at the same time obtained good results for small

Stefan number. Date's method is applied to plane geometry, and the possibilities

of extension to other geometries are worth investigation.
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