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Abstract. This paper concerns the application of Ortiz' recursive formulation of the Tau
method to the construction of piecewise polynomial approximations to the solution of linear
and nonlinear boundary value problems for ordinary differential equations. A practical error
estimation technique, related to the concept of correction in Zadunaisky's sense, is considered
and used in the design of an adaptive approach to the Tau method. It proves efficient in the
numerical treatment of problems with rapid functional variations, stiff and singularly per-
turbed problems. A technique of increased accuracy at matching points of segmented Tau
approximants is also discussed and successfully applied to several problems. Numerical
examples show that, for a given degree of approximation, our segmented Tau approximant
gives an accuracy comparable to that of the best segmented approximation of the exact
solution by means of algebraic polynomials.

1. Introduction. We discuss the use of Ortiz' recursive formulation of the Tau
method [23]-[25] in the numerical solution of boundary value problems for linear
and nonlinear differential equations defined over an interval a < x < b. We con-
sider global approximations over [a, b], with a single polynomial expression, and
segmented forms based on a step-by-step formulation of the Tau method considered
by Ortiz in [26].

The Tau approximate solution of a differential problem defined by a differential
operator D is represented in terms of the elements of a sequence Q of canonical
polynomials. Such a sequence is uniquely determined by D, it is independent of the
specific boundary conditions of the problem, and of the particular interval [a, b] in
which the solution is required. These properties make possible the use of segmenta-
tion within the framework and with the software [32] designed for the recursive
formulation of the Tau method. The concept of correction, in Zadunaisky's sense
[37] (see also Stetter [36]), is discussed in the context of the Tau method and related
to a practical error estimation technique. This technique, based on 7a« estimators
introduced here, is systematically applied to all examples, linear or nonlinear. It is
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190 P. ONUMANYI AND E. L. ORTIZ

also used in the control of the segmentation process: an adaptive form of the Tau
method, based on this, is considered.

A technique of increased accuracy at matching points of segmented Tau ap-
proximations, introduced by Ortiz in [27] for initial value problems, is successfully
used in linear and nonlinear boundary value problems. Numerical comparisons with
other standard methods and, in particular, with an accurate technique of collocation
with splines followed by a finite difference correction (see [18]) is definitely favora-
ble to our approach. We find that, for a given degree of approximation, our
segmented Tau approximants are close to the best segmented approximations by
algebraic polynomials. This optimal result has been reported for the global case by
Freilich and Ortiz in a recent paper [6].

Convergence results and error bounds for Tau approximations of the solution of
differential equations are discussed by Luke [13], Lanczos [10]-[12], and Ortiz and
Pham [30]—[31]. Systems of differential equations have been discussed by Freilich
and Ortiz [6] and Crisci and Russo [3]. The effect of approximating the coefficients
of a differential equation on the accuracy of the Tau approximant is discussed by
Namasivayam and Ortiz in [17]. An interesting feature of the Tau method is the fact
that no trial solutions, approximate quadratures or large matrix inversions are
required. A summary of the results of this paper was presented to the Dundee
Conference of Numerical Analysis, June 1981.

2. Recursive Formulation of the Tau Method: Some Basic Definitions and Nota-
tion. Let Pj be the class of polynomials of degree less than or equal to j. We shall
consider the equation defined by the differential operator D:

(1)    Dy(x):= pp(x)y^(x)+ ■ ■ ■ + px(x)y^(x) + p0(x)y^(x) = f(x),

where either p¡(x) e P , i = 0(l)p, and f(x) e PF, or they are close polynomial
approximations of given functions. The symbol yU)(x) stands for the ith derivative
of y(x), and y(0)(x) = y(x). The solution y(x) of (1) satisfies boundary conditions
of the general form

(2)        n«/w+^w]-^  '-i«,,
( = 0

where some of the coefficients ari, bri may be equal to zero. We shall follow Ortiz'
algebraic theory of the Tau method, of which we will give here some basic
definitions and results. Further details and proofs can be found in [23]-[25], and
[14].

A useful number associated with any differential operator D of the class 3),
characterized by (1), is its height h,

h :=   max (a, - i).

Each differential operator De^.is uniquely associated with a sequence Q of
canonical polynomials Q„(x) defined for all indices n e N — S. The set
N := {0,1,2,3,...}; S is finite, usually very small, and the number í of its elements
is bounded by v + h. The polynomials Q„(x) satisfy the functional equation

(3) DQ„(x) = x" + rn(x),       n e N - S,
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STIFF AND SINGULARLY PERTURBED BOUNDARY VALUE PROBLEMS 191

where rn(x) e Rs = span,eS{x'} is called the residual of Q„(x). If all powers of x
can be obtained as images of polynomials under the differential operator D, then S
will be empty. If D is applied to the monomial xm, we obtain the generating
polynomials

n
(A) Dxm = £ a,x',       m e N,

¿-0

from which a recursive relation, involving at most v + h (assuming p0(x) * 0)
canonical polynomials, can immediately be deduced if an # 0 (see Ortiz' Theorem
3.3 in [24]). Otherwise, (4) is used to find the minimal set 5 of indices of undefined
canonical polynomials and Ker(D), the algebraic kernel of D, which contains all the
exact polynomial solutions of (1). The recursive relation for the Qn(x)'s is self
starting and the polynomials themselves depend neither on the supplementary
conditions ((2) in our case) imposed on y(x), nor on the interval in which the
solution is required. These properties will be used in the design of a segmented
formulation of the Tau method of [26] for boundary value problems.

Let v = {Vj(x)} = Vx be a polynomial basis defined by a lower triangular matrix
V - ((»„)), i, j e N, acting on x = (1, x, x2,...)'. Clearly Q = {Qn(x)}, n e N -
S, is such that DQ„(x) = v„(x) + fn(x), fn(x) € Rs, if

(5) Ô„(*)= LvnJQj(x),   withy É S.
y-o

Definition 1. A polynomial g(;e) is called a 7an approximant of order « of j(.x) if it
satisfies exactly the differential equation (1) with a polynomial perturbation term
H„(x) e P„, and if it satisfies exactly boundary conditions (2).

ClearrygO)eP„_A.Let
m

(6) #„(*) = Z>i°V,(*) s P„
/=o

be the perturbation term, expressed in the basis v, and let T,(n), i = 0(l)m, be free
parameters. Let us assume further that

/(*)- LfM*),
1 = 0

and that n is chosen sufficiently large for F «s «. Then,

m F

(7) ?.(*):- E^O.-iOO+I/iO/OO.   with i í 5,
i-O i=0

satisfies the equation Dyn(x) = H„(x) + f(x) if s parameters t/"' are chosen in such
a way that the residuals of Dy„(x) match the components of Hn(x) + f(x) belonging
to Rs. If v further parameters T,<n) are fixed fory„(x) to satisfy exactly the boundary
conditions (2), then y„(x) is a Tau approximant of order n of y(x). If there exist /
exact polynomial solutions of (1), then m = s + v — t — 1.
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192 P. ONUMANYI AND E. L. ORTIZ

Finally, if (1) is given in an integrated form, through an integral operator /, a
sequence Q = {Qn(x)}, »6N-S„ such that IQn(x) = x" + rn(x), rn(x) e RS;
can be constructed immediately in terms of the sequence Q associated with D:

(8) Qn(x)= ,   "' vtg.-,(s),   mthSr={neN:n<p,n-v<=S}.
(n — v)\

A variety of choices of basis v is possible in the Tau method. If v is {x"}, n e N, the
Tau method realizes the power series expansion method, where a high accuracy is to
be expected near the point of expansion. Lanczos [11]—[12] suggested the choice of
Chebyshev and Legendre polynomials to obtain a better distribution of errors in the
equation over the interval in which the approximate solution is required. The error
in the equation, namely Hn(x), is related to the error of approximation

e„(x) = y„(x) -y(x)

through the inverse operator of D: D'lHn(x) = en(x), on account of the linearity of
D. The choice of Hn(x) close to a best uniform approximation of the function
identically equal to zero in [a, b] by means of algebraic polynomials is an attempt to
take advantage of the relation between Hn(x) and en(x). However, that relation
requires a careful analysis if quantitative results are required. The behavior of e„(x)
relative to the perturbation term Hn(x) is discussed by Namasivayam and Ortiz [16].

Remark 1. If the solution y(x) of (l)-(2) is a polynomial of degree k, any Tau
approximate solution of degree > k will detect it exactly. In this sense we say that
the Tau method is exact of degree k.

3. Correction of Tau Approximants. We now consider the correction technique of
Zadunaisky [37] and Stetter [36] in the context of the Tau method.

Theorem 1. Correction of a Tau approximant leads to a Tau approximant of a
higher order.

Proof. Let us consider the error function en(x). From (1) it follows that en(x) e
C(p)[a, b] and that it satisfies the differential equation Den(x) = Hn(x), where all
T-parameters in Hn(x) are fixed. It also satisfies boundary conditions (2) with
Ar = Q, forr= \(\)v.

Let [e„(x)]m be an wth order (m > n) Tau approximant of the error function.
Then the polynomial [e„(x)]m satisfies the differential equation

(9) D[e„(x))m = Hn(x) + Hjx)=f(x) + Hn(x) ~[f(x) - Hm(x)\,

with homogeneous boundary conditions (2). Let ym(x) be the wth order Tau
approximant of y(x). Then, e„(x) - em(x) = y„(x) - ym(x). From the uniqueness
of the Tau approximant for a given order m (see Ortiz [24]) and (9), it follows that
[e„(x)]m = en(x) - em(x). Thus, y,,(x) plus the correction term [e„(x)]m equals
ym(x)-

Definition 2. {en(x)]m defined by (9) is called the Tau estimator of order n, m.
Examples of Tau approximants corrected with the Tau estimator, for m > n + 1, are
given in the last section of this paper.
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4. Implicit Matching of Tau Approximants. Let

II = [x0 = a < xx < x2 < ■ ■ ■ < xp^x < xp = b)

be a partition of the interval [a, b] into subintervals [x_,, xXj = 1(1)/?,
Definition 3. The vector

(!o) y„(*) - [ynAx),yn2(x),...,ynp(xj\,

with >>■(*) defined for Xj_x < x < Xj,j = 1(1)/?, is a piecewise Tau approximant of
order n of the solution y(x) of the boundary value problem (l)-(2) if each of the
ynj(x),j = 1(1)/?, satisfies (1) with a polynomial perturbation term HJn(x) defined
tor Xj_x < x < Xj, and

c-l

(11-a) £ \arty$(a) + brly$(bj\ = Ar   for r = 1(1),,
¡-0

(11-b) y¡?-i(xj-i) = y$(xj-i)   KV = 2(1)/», / = 0(1), - 1.

Remark 2. Condition (11-a) imposes on yn(x) the v boundary conditions given by
(2), while (11-b) is a continuity requirement for ynj(x) and its v - 1 derivatives at
the p - 1 interior partition points of IL If S =t 0, matching coefficients of terms
belonging to Rs in the right-hand side of the differential equation with the residuals
of Dynj(x) provides us with s conditions in each of the/? subintervals defined by the
partition. Thus, a total of p(s + v) conditions.

Theorem 2. The construction of an nth order piecewise Tau approximation y„(x) of
the solution y(x) of boundary value problem (l)-(2) depends on only one matrix V and
one canonical sequence Q.

Proof. Let us consider the family of mappings^,;' = 1(1)p (see Ortiz [26]) acting
on_y„(jc) of (7) and such that

^jyn(x) = ynj(x),    xj_x < x < xj,

and let us call T¿n) the free parameters corresponding to ynJ(x). Without loss of
generality, let us assume that a = 0, and let Ej = \/(x] - Xj_x), j = 1(1)/?. The
mappings y¡ admit a trivial realization: replacing vnJ by v^ = vni(EX we find that
((v^)) defines the basis vJ corresponding to the interval Xj_x < x < x,, fory = 1(1)/?.
Taking into account (7) the result is proved.

We now discuss the computational implications of Theorem 2. Let t^"' = (t,*/0)',
i = 0(1)j + v - 1, be a vector, the elements of which are the Tau parameters of the
componentynj(x) of y„(x), for; = l(l)/>, and let r(n) = (t1(")'). .. ,Tp(n)')' be a vector
with p(s + v) components. Let a = x _x, b = x¡. Then (7) gives us ynj(x) for
j = 1(1)/?. The piecewise polynomial Tau approximant y„(x) of y(x) will be de-
termined if T(n) is found •

From Remark 2 it follows that t(m) is implicitly defined by a system of linear
algebraic equations of the form

(n) zyn) = w„.
Let us split y„j(x) (see (7), with a = Xj_v b = xß into two parts: one dependent on
the Tau parameters, and then related to Z„, and the other independent of them, thus
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194 P. ONUMANYI AND E. L. ORTIZ

related to W„. We shall write </>ny(x)T/(") for the vector with v rows, containing as
elements that first part oiyn](x) and its v — 1 derivatives. Let inj(x) be a vector
containing in each of its rows the second part of ynj(x) and its v — 1 derivatives.
The residual Dynj(x) of ynj(x) belongs to Rs, which is a subspace generated by s
linearly independent basis elements. We will split the residual of ynJ(x) in the same
way as before, placing the s components in Rs of the first part, dependent on the
Tau terms, in successive rows of a vector P„M"^ and the rest of it in the successive
rows of a vector w   .

With the help of matrices <pnj and p ., of orders v x (s + v) and s X (s + v),
respectively, we can discuss the structure of matrix Z„ of (12). Zn is made up of
blocks a(jn), each one of them related to one component of y„, for y = 1(1)/?. These
blocks have the form

<*<"> =
4y,-(*/-i)

Pnj

- <Pnj(Xj)

fory = 2(l)/?-l;

in apn) the third subblock is missing, and a[n) has the same second and third
subblocks, but a different first subblock y„x. Let

j/=((0)>   @={{bri)),       r = l(l),,/ = 0(l),-l,andA = (A,...,^J',
where ar¡, br¡, and Aj are the coefficients of the boundary conditions (11-a); then ynX
is such that

Matrix Z„ is constructed by linking the blocks a]"1 in such a way that the third
subblock of ajn) faces the first subblock of oj"\ for j = 1(1)/? - 1. The first v
components of W„ have the following form:

k-^inM)-mnp{b)\
with this choice the boundary conditions (11-a) are incorporated into (12). The
remaining elements of W„ follow if £ and ijny- are assembled following the same
rules as for the corresponding Tau-dependent elements in Z„. The rows of Z„ with
<í>'s realize the continuity conditions (11-b), while the rows with p's make sure that
the sum of residuals of each component y„¡ match the terms in Rs on the right-hand
side of the Tau problem for each Xj_x < x < xJtj = 1(1)/?. We have assumed that
/ = 0, if this is not the case, only s + v - t Tau parameters are required, as / free
parameters are provided by the exact polynomial solutions of Dy(x) = 0.

Remark 3. The following observation enables us to introduce a considerable
simplification in the computational procedure. Let us assume for simplicity that
\Xj_x - xa = \b - a\/p = constant for y = 1(1)/?; otherwise a scaling factor Ej will
be required. Let us single out one of the subintervals defined by the partition II, say
the first one [xQ, xx]. On account of Theorem 2, all componentsynj(x) of y„(x) can
be determined as shifts of a Tau master element (see [26]) y„x(x) if we only replace
x _j by xx in the left-hand side of (11-b), and Xj_x by x0 in its right-hand side. Then,
the only basis required will be v, defined for x0 < x < xv and the same sequence of
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STIFF AND SINGULARLY PERTURBED BOUNDARY VALUE PROBLEMS 195

canonical polynomials (see (5)) will be sufficient to construct all components of the
piecewise Tau approximant y„(x). The procedure for the construction of ynX(x)
could be regarded as an integration formula based on the Tau method of [25] and
specifically designed for each differential equation (l)-(2). The graphs of successive
segmented Tau approximants ynj(x), j = 1(1)/?, will all be in the interval [x0, xx].
The ordinate at the endpoint of the graph of ynj(x) will be the same as that of
y„j+i(x0). Sliding these graphs in the direction of x0x   we obtain the graph of
y„(x).

If Remark 3 is taken into account the structure of Zn is greatly simplified: except
for the subblock representing the boundary conditions, all blocks a^ are similar.

As early as 1956 Lanczos observed a significant increase in accuracy at the
endpoint of the approximation range of a Tau approximant when Chebyshev
polynomials are replaced by Legendre polynomials (see Lanczos [11], [12] and Luke
[13]). Ortiz [26] used this property in the design of a segmented formulation of the
Tau method for initial value problems, with increased accuracy at matching points.
Examples given in Section 7 of this paper show that the accuracy of segmented Tau
approximants for linear and nonlinear boundary value problems improves by the use
of the technique of increased accuracy at matching points. Theoretical results in this
direction have been recently reported by Freilich and Ortiz [7] and by Namasivayam
and Ortiz [16]. As collocation is a special realization of the Tau method, where the
collocation nodes are the zeros of Hn(x), it is clear that Lanczos' observation, the
results reported in this paper, and those of [24] and [26] apply to the collocation
method.

6. Nonlinear Boundary Value Problems and the Tau Method. The numerical
solution of nonlinear boundary value problems with the recursive formulation of the
Tau method [24] is based on the approximation of the solution of the nonlinear
problem by a sequence of Tau approximants ynk(x) of linear boundary value
problems with variable coefficients. Each of theyn k(x) is used, in an iterative cycle,
to represent the nonlinear terms of the given differential equation, and gives a new
yn k+x(x). The fixed point of such a sequence is, under convergence conditions
depending on the linearization scheme used, the functiony(x), solution of the initial
problem. Details of this procedure can be found in Ortiz [28]. In practice such a
process is only repeated a small number, TV, of times and stopped when the
maximum difference between the coefficients of two successive approximations is
smaller than a given tolerance parameter T, specified beforehand. A test is also made
on the size of the perturbation term corresponding to that approximation. If the
sequence of approximants does not reach the tolerance parameter T after N cycles,
either the degree of the Tau approximants is increased, the initial approximation
redefined or the interval segmented by using the technique sketched in Section 5.
The initial approximation is usually chosen to be a polynomial satisfying (2). In
some special cases the differential equation allows for the immediate determination
of an algebraic curve with a contact of order v - 1 with the solution y(x) which is
equally effective. For instance, a tangent to y(x) in the case of a second order
differential equation. The technique of increased convergence at matching points
improves the accuracy of numerical results, as will be shown in Section 7.
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Remark A. In the case of nonlinear boundary value problems the piecewise Tau
approximants ynj k(x), at stage k of the process, satisfy different differential
equations in each subinterval [xj_x, Xj],j = 1(1)p.

7. Numerical Examples.
(1) Dirichlet and Neumann Linear Boundary Value Problems. Let us consider the

problem (see de Boor and Swartz [4]):

(14)
Dy(x):= y"(x) - Ay(x) = 4coshl,
y(0)=y(l) = 0,       0<x<l,

for which results obtained by using finite difference residual correction of a
collocation solution constructed with four cubic splines centered at the points 0,
1/3, 2/3, and 1, have been reported recently by Oliveira [18]. In Table 1 we are only
concerned with global Tau approximants defined for 0 < jc < 1. For both the
differential form (14) and the corresponding integrated form we compare the first
Tau correction, defined by [en(x)]n+x for n = 3(2)9, with the exact error. We wish to
remark that the integrated form is never constructed, its Tau approximant is
computed by using the result of (8).

Table 1
Global Tau approximants and their corrections

Degree

DIFFERENTIAL FORM
First Tau Correction Exact Error

INTEGRATED FORM
First Tau Correction Exact Error

7.369 X 10"
4.576 X 10"
1.275 X 10
3.378 X 10"

4.589 X 10"4
1.278 X 10"6
3.384 X 10"9

9.866 X 10"3
7.358 X 10"5
3.172 x 10"7
9.048 X 10"10

9.940 X 10 "3
7.390 X 10""5
3.181 x 10"7
9.064 X 10"11

In Table 2 we present the same information when segmentation is used: four Tau
approximants are constructed over subintervals of [0,1] of equal length. We remark
that for n ^ 4 the approximation of the differential form is more accurate than that
of the integrated form.

Table 2
Four piecewise Tau approximants over the equally

segmented interval 0 < x < 1 and their corrections

Degree

DIFFERENTIAL FORM
First Tau Correction Exact Error

INTEGRATED FORM
First Tau Correction Exact Error

2.072 X 10 "3
1.141 X 10"5
5.448 X 10"7
2.115 x 10~9
1.192 X 10"10
3.766 x 10 13

2.073 X HT3
1.196 X HT5
5.470 X 10 "7
2.235 X HT9
1.196 X 10"10
3.908 X 10"I3

2.016 X 10 "3
1.405 X 10"5
2.373 X 10"6
1.163 X 10"8
1.181 X 10"9
4.440 X 10" n

2.032 X 10"3
1.644 X 10"5
2.386 X 10"6
1.282 X 10"8
1.186 X 10"9
4.750 X 10_1
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STIFF AND SINGULARLY PERTURBED BOUNDARY VALUE PROBLEMS 197

In Table 3 we attempt a ranking of our global and segmented approximations
before and after correction with the Tau estimator [en(x)]„+x. After correction, a
global Tau approximant of the solution of (14) is more accurate than the piecewise
polynomial approximation obtained by Oliveira [18] by using collocation with four
cubic splines and a finite difference correction.

If four cubic Tau approximants are corrected with the Tau estimator, the accuracy
over Oliveira's approximation increases by a factor of 3.169 X 10"3. By using the
technique of increased accuracy at matching points, which accounts for a switch
from Chebyshev to Legendre polynomials in the basis v, that factor, now 1.619 x
10"4, would show an even higher accuracy.

Table 3
A hierarchy of global and segmented approximants

of the boundary value problem (14)

Numerical technique Maximum Abs. Error Type of Approximant

Corrected piecewise cubic differen-
tial Tau with the use of the tech-
nique of increased accuracy at
matching points

Corrected piecewise cubic differen-
tial Tau

Corrected piecewise cubic integra-
ted Tau

Corrected cubic global integrated
Tau

Piecewise cubic differential Tau
with the use of the technique of
increased accuracy at matching
points

Corrected cubic global differential
Tau

Finite differences corrected collo-
cation with four cubic splines [18]

Piecewise cubic differential Tau

Cubic global integrated Tau

Collocation with cubic splines [18]

Cubic global differential Tau

5.8 X 10"7

1.1 X 10"5

1.4 X 10"5

7.4 X 10"5

1.6 X 10~4

4.6 X 10"4

3.6 X 10"3

4.0 X 10"3

1.0 X 10"2

1.5 X 10"2

7.4 X 10"2

Segmented

Segmented

Segmented

Non-segmented

Segmented

Non-segmented

Segmented

Segmented

Non-segmented

Segmented

Non-segmented

Remark A. The accuracy obtained with the Tau approximant at the top of Table 3
(5.827 X 10"7) is almost identical to the upper bound for the best uniform seg-
mented approximation of the exact solution y(x) by means of four algebraic
polynomials of degree four, which is the degree of the corrected Tau pieces. The
upper bound was estimated on the basis of Lagrange's error formula (see Meinardus
[15]). Therefore, it seems possible to use segmented Tau approximants as an initial
guess for the construction of segmented best approximations.
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A similar linear boundary value problem, now with Neumann conditions, and
over a longer interval is:

Dy(x):= y"(x)-y(x) = l,
y(0) = 0,   /(20) = 1,       0^x^20,

considered in detail by Scott [35] with finite difference techniques.
Table 4 displays the maximum of the value of the first Tau estimator and of the

exact absolute error for some of the Tau approximants considered before. They have
been constructed either over [0,20], or over four equal and consecutive subintervals
of [0,20]. In this, as in many other Neumann problems, the differential form gives
consistently better results than the integrated one, even for small values of n (see
Onumanyi [20]).

Table 4
Tau approximation of a Neumann problem over a large interval

Approximant

Global integral Tau

Global differential Tau

Piecewise integral Tau

Piecewise differential
Tau

n«7
Exact error

2.1 X 10"1

1.1 X 10"1

8.8 X 10"4

1.4 X 10"4

Tau estimator

2.1 X 10" '

1.3 X 10"1

8.7 X 10"4

1.3 X 10"4

Exact error

5.4 X 10"2

2.1 X 10"2

1.5 X 10"4

2.4 X 10"5

Tau estimator

5.3 X 10"2

2.3 x 10"2

1.4 X 10"4

2.4 X 10"5

(2) A Stiff Boundary Value Problem With Nonpolynomial Coefficients. If coeffi-
cients or the right-hand side of a differential equation are not polynomials, the Tau
method can be used to find polynomial approximations of them. The same applies
to transcendental nonlinear terms (see for example Ortiz and Samara [33]).

Let us consider the singular perturbation boundary value problem

(15)
Dy(x):= y"(x) - Py(x) = cosx,
y(0) = y(m/2) = 1,       0 < x < it/2

(see Guderley [8]). The nonpolynomial term will be replaced by a polynomial
approximation of degree 14 which, in this case, we generate with the present Tau
method technique.

The graph of the solution y(x) of the singularly perturbed boundary value
problem (15) is, for large P, close ioy = 0 inside the interval (0, tt/2), and jumps to
y = 1 when x approaches either x = 0 or x = tt/2 (see Figure 1).

We have computed Tau approximations of y(x) for P = 1000 and for P = 10000.
They are global Tau approximations of a moderately large degree (n = 27) and
segmented Tau approximants of a lower degree (n = 14). The ability of these
approximations to follow the rapid variation of y(x) near the endpoints of the
interval [0,7r/2] is reported in Table 5 for both Chebyshev and Legendre perturba-
tion terms. The graphs of the two segmented Tau approximants for P = 1000 and
P = 10000 are reproduced in Figure 1.
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Table 5
Tau approximation of a stiff boundary value problem

with a nonpolynomial term (15)

Stiffness
Degree of

approximant
Perturbation
term used

Nr. of equal
subintervals Max. Abs. Error

103
103
103

27
14
14

Chebyshev
Chebyshev
Legendre

1, no segm. 1.0 x 10"7
2.0 x 10"10
1.1 X10"10

104
10"
10"

28
14
14

Chebyshev
Chebyshev
Legendre

1, no segm.
12
12

1.0 X 10"2
7.8 X 10~7
4.4 X 10"7

p  = 10 000

1
v/z

->x

Figure 1
Graphs of the exact solution of the singularly perturbed boundary value
problem (15), for P = 10000, and of a segmented Tau approximant of
degree 14, in the construction of which the technique of increased accuracy
at matching points has been used. The maximum deviation between the
two curves, seen as one in the graph, is 4.4 X 10~7 (see Table 5).

(3) Control of the Segmentation Process With [e„(x)]m in an Adaptive Formulation
of the Tau Method. We now consider the singular perturbation boundary value
problem with a boundary layer at x = 1 defined by the differential equation

Dy(x):= -y"(x) + £[P(1 - cx)y(x)) = 0,
^(0) = 1,   /(l)-0,       0«x<l,

where c = 0.98 and P = 1000. The graph of the solution is a spike, symmetric about
x = 1, extending in the j-axis direction from 1 up to about 50 when x is in [0,2].
Problem (16) has been discussed numerically in a recent paper by Barrett and
Morton [1], with a quasi-symmetrization technique based on Galerkin's method with
a piecewise linear trial space; further references can be found in that paper.

We have constructed for this problem global Tau approximants of degrees 27 and
28, then a segmented piecewise Tau approximant of degree 7 defined over four equal

(16)
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subintervals of [0,1]. The Tau estimator [en(x)]m, with m = n + 1, was used to
detect the region of rapid variation of the last segmented approximant, and then a
new nonuniform segmentation was introduced, with nodes in x = 0.0; 0.7; 0.8; 0.9
and 1.0. A segmented Tau piecewise approximant, of degree 7 over each subinterval,
was constructed. In Table 6 we reproduce our numerical results; we have also
included the values of the exact solution up to 2D. Agreement to 2D is provided by
the Tau approximant.

Table 6
Use of the Tau estimator [en(x)]m for the generation of a
nonuniform segmentation strategy, better adapted to the singular
nature of the solution of the boundary layer problem (16);
m = n +1.

Type of approximant Nr. of pieces x = 0.7 x = 0.Í 0.9 x = 1.0

Global Tau, n - 27

Global Tau, n = 28

Segmented piecewise Tau,
uniform segmentation, n = 1

Segmented piecewise Tau,
adapted-nonuniform segmen-
tation, controlled by the
Tau estimator [en(x)]m, n = 1

3.10

3.21

3.22

3.21

4.73

4.73

4.48

4.73

9.32

9.32

8.40

9.31

49.99

49.94

48.21

49.95

EXACT RESULTS 3.21 4.73 9.31 49.95

Results reported in [1] with quasi-symmetrization lead to large errors: + 0.14 and
-0.52, near x = 1 (x = 0.8 and 0.9 respectively). A comparison between the
upwinding technique of [2] and Tau method approximants is also favorable to the
recursive formulation of the Tau method (see Ortiz [29]).

(4) Tau Approximate Solution and Error Estimation of a Nonlinear Boundary Value
Problem With Global and Segmented Approximants. The numerical solution of
nonlinear differential equations with the recursive formulation of the Tau method is
reduced to the approximate solution of a sequence of linear problems, as indicated
in Section 6, that is, to problems of the type considered before. However, we shall
discuss explicitly a nonlinear problem with a singularity of the first kind proposed
by Russell and Shampine [34], for which results with the finite difference techniques
of de Hoog and Weiss [5] are available,

(17)
d_

dx
h(x)
-Ji(*).

ä(1)
ä(0)

0   o
0    2

775
0

yAx)
yz(x)

+ yi{*)
y?(x)

0 < je < 1,

which we treat as the second order boundary value problem

(18)
(Dy(x):= y"(x) +(2/x)y'(x) + y5(x) = 0,

\/(0) = 0,   >-(!) = VTL75,       0<x<l.
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A direct approximation of systems of differential equations with the recursive
formulation of the Tau method is also possible if vector canonical polynomials are
used; see [6] for details on this approach. The exact solution of (17)—(18) is known to
bey(x) = (1 + x2/3)~l/2, which makes it possible to compare the error of our Tau
approximations of y(x) with the estimation of that error provided by the Tau
estimator [e„(x)]m.

We fix the tolerance parameter T (see Section 3) equal to 10 "6 and the maximum
permissible number of cycles N equal to 5 which turns out to be sufficiently lar£e.
Table 7 displays the errors of approximation of a global and a segmented Tau
approximant, the latter over the subintervals [0,0.5] and [0.5,1].

Table 7
Maximum absolute error of approximation for the nonlinear
boundary value problem (18) when approximated with global
and segmented Tau approximants.

Degree of the
Tau approximant

Global Approximation

Max. Abs. Error Nr. of cycles
required

Segmented approximation

Max. Abs. Error Nr. of cycles
required

8.7 X 10"4
6.0 X 10"5
6.6 X 10"6

7.8 X 10"5
1.6 X 10"6
1.0 X 10"6

3.3
3.3
3.3

The Tau error estimator [en(x)]m, applied to both global and segmented ap-
proximants, leads to remarkably accurate estimations of the exact error. Table 8
reproduces results for n = A, m = n + 1 and n + 2, with global and segmented Tau
approximants. For m = n + 1 the order of the error is correctly estimated in both
cases.

Table 8
Error estimation of global and segmented Tau approximants of
the nonlinear singular boundary value problem (18), given by the
Tau estimator [e„(x)]mfor n = 4.

Global Tau approximant Segmented Tau approximants

Difference between the
exact and estimated errors

m, m Difference between the
exact and estimated errors

n + 1
n + 2

6.01 X 10"5
6.50 X 10"6

n + 1, n + 1
« + 2, n + 2

1.57 x 10"6
1.05 X 10"6

The nonlinear system of differential equations

^[.Pii*)] yM [ji(-l)l     [0.96
^U(*)J    [<\/*)bKx)-x2\y2{x)\     [ yÁO) J   10.001

-1 < x < 0, is a nonlinear model of a singularly perturbed differential equation
where the leading coefficient of the reduced equation has turning points, the location
of which depends on the unknown function. It is a stiff problem with a multiplicity
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of solutions which has been treated by Kedem [9] by collocation (e = 15), and by
Ortiz [29] with the Tau method (global approximant); further references can be
found in these papers. High-order boundary value problems for differential equa-
tions are considered in [21] (global approximant). Further numerical results on a
large variety of problems where the technique discussed in this paper has been
successfully applied are reported in Onumanyi [19]-[20].
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