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Numerical Solution of Stone Column–Improved Soft Soil
Considering Arching, Clogging, and Smear Effects

Buddhima Indraratna, F.ASCE1; Sudip Basack2; and Cholachat Rujikiatkamjorn3

Abstract: Improvement of soft clay deposits by the installation of stone columns is one of the most popular techniques followed worldwide. The

stone columns not only act as reinforcing material increasing the overall strength and stiffness of the compressible soft soil, but they also promote

consolidation through effective drainage. The analytical and numerical solutions available for ascertaining the response of column-reinforced soil

have been developed on the basis of the equal strain hypothesis. For typical surcharge (embankment) loading, the free strain analysis appears to

give more realistic results comparable to field data. The paper presents a novel numerical model (finite-difference method) to analyze the response

of stone column–reinforced soft soil under embankment loading, adopting the free strain approach and considering both arching and clogging

effects. Apart from predicting the dissipation of excess pore water pressure and the resulting consolidation settlement with time, the load transfer

mechanismand the extent of ground improvement are someof the salient features capturedby theproposedmodel. Theproposedmodel is validated

by comparing with existingmodels and field data, which indicate the suitability and accuracy of the solutions. The proposed model is also applied

successfully to selected case studies. DOI: 10.1061/(ASCE)GT.1943-5606.0000789. © 2013 American Society of Civil Engineers.

CEDatabase subject headings: Finite difference method; Foundation settlement; Numerical models; Soft soils; Soil permeability; Stone

columns; Arches.

Author keywords: Finite-difference method; Foundation settlement; Numerical models; Soft soils; Soil permeability; Stone columns.

Introduction

Reducing long-term settlement of infrastructure and providing cost-

effective foundations with sufficient load-bearing capacities are na-

tional priorities for infrastructure development in most countries. Soft

soil foundations can cause excessive settlement, initiating undrained

failure of the infrastructure if proper ground improvement is not

carried out (Indraratna et al. 1992). Therefore, it is imperative to apply

adequate ground improvement techniques to the existing soft soils

before construction to prevent unacceptable excessive and differential

settlement and increase the bearing capacity of the foundations.
Among various methods of soft soil improvement, reinforc-

ing the ground by installing stone columns is one of the well-

established and effective techniques practiced worldwide (Wang
2009). As reported by Guetif et al. (2007), the stone columns not
only act as reinforcement, possessing greater strength and stiffness
in comparison with the surrounding soil, but they also speed up the
time-dependent dissipation of excess pore water pressure caused
by surcharge loading due to shortening the drainage path.

Various analytical and numerical solutions have already been
developed for understanding the load transfer mechanism of soft
soil reinforced with stone columns. Among the most significant
contributions, the studies by Alamgir et al. (1996), Wang (2009),
Han and Ye (2000, 2002), Malarvizhi and Ilamparuthi (2008), Lo
et al. (2010), andMurugesan andRajagopal (2010) are noteworthy.
All of these solutions are based on the unit cell analysis assuming
the equal strain hypothesis. Alamgir et al. (1996) carried out a free
strain analysis, but the time-dependent consolidation of soil was
not considered. However, the equal strain assumption is strictly
valid only when the surcharge load applied on the ground surface is
of a rigid nature. Understandably, this will result in an unequal
distribution of stress induced on the soil surface. In the case of
embankment loading, the flexible nature of the applied surcharge is
most likely to induce an equal distribution of surface load resulting
in uneven surface settlement or free strain, as described by Barron
(1948). However, the true nature of embankment surcharge loading
is neither fully flexible nor purely rigid, but at an intermediate state
between the free strain and equal strain conditions. Terzaghi (1943)
showed that the flexibility of the granular platform depends on both
its density and thickness. In the field, it is suggested that the overall
shear stiffness of the platform is to be measured for classifying the
loading distribution pattern. The equal strain condition occurs
when the platform layer thickness and the soil density increase.

In the field, in the proximity of the embankment centerline, the
condition of negligible lateral displacement can be justified by the
use of the unit cell approach. In the past, Lorenzo and Bergado
(2003) and Murugesan and Rajagopal (2010) successfully dem-
onstrated the use of unit cell analysis to capture the behavior of soil
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improved by stone columns at the centerline of the embankment.
However, the authors agree that the unit cell analysis may not suc-
cessfully predict theoverall behavior in a largeprojectwherehundreds
of columns are installed, and it is recognized that the analysis would
only be accurate at the proximity to the embankment centerline.
Elsewhere, i.e., toward the embankment toe, the single column
analysis deviates from accuracy because of the nonuniform surcharge
load distribution, large strain conditions, increased lateral yield,
effects of changing embankment geometry, and heave at the toe.

For a typical fill embankment, the behavior of the soil-stone
column system is time dependent. Initially, most of the imposed
total stress is taken by the increased (excess) pore water pressure.
Because of the dissipation of excess pore pressure, progressive
settlement of the soft clay and arching occurs, where the weight of
the fill is expected to arch over to the stone columns, resulting in an
uneven distribution of vertical stress on the ground surface. This
phenomenon is duly supported by numerous other studies (Low
et al. 1994; Abusharar et al. 2009; Deb 2010).

Because of the migration of clay particles from soil into the pores
of the column, a clogged zone may be formed within the column in
the vicinity of the soil-column interface (Adalier and Elgamal 2004).
Also, as a result of installation, a smear zone is developed in the soil
adjacent to this interface (Han and Ye 2002).

Numerical Analysis

The numerical model is formulated considering a steady and uni-
form load intensity imposed on the ground surface caused by the
self-weight of the embankment, apart from the instantaneous sur-
charge load applied at the top of the embankment. The average load
intensity on the ground surface may therefore be written as

q ¼ qs þ geHe ð1Þ

where qs5 uniform surcharge load intensity on the embankment
fill, and ge and He 5 unit weight and maximum height of the
embankment, respectively.

Statement of the Problem

The idealized problem is depicted in Figs. 1(a and b). The soft clay
layer of thickness H has been assumed to overlay on an impervious
rigid boundary and is improved by a group of stone columns having
a radius of rc each, extended to the bottom of the clay layer. The unit
cell approach that adequately represents the true response of re-
inforced ground (Balaam et al. 1977) is considered in the current
analysis. As described byWang (2009), the radius of the influence of
the unit cell is calculated by

re ¼ sgs ð2Þ

where s 5 center-to-center distance between the adjacent columns,
and sg 5 geometric constant that depends on the pattern of stone
column installation.

The cross section of the entire zone of the unit cell is divided into
four distinct zones [Fig. 1(c)], viz., the unclogged column zone, the
clogged column zone, the smear zone adjacent to the column, and the
outer undisturbed soil zone. As shown in Fig. 2, the soil mass within
the unit cell was divided both radially and vertically into (m2 1) and
(n2 1) number of equal divisions, respectively;m and n are positive
integers greater than unity, such that each of these divisions may
be expressed, respectively, as dr5 ðre2 rcÞ=ðm2 1Þ and dz5H=
ðn2 1Þ. The total time interval of computation tt is divided into
(p2 1) number of equal divisions, i.e., dt5 tt=ðp2 1Þ. The primary

objective of the analysis is to compute the excess pore water
pressures and the effective stresses developed at each separator at the
corresponding time and thereby compute the other time-dependent
variables such as the degree of consolidation. In this paper, these
separators are denoted as nodes. The soil elements are under-
standably ring-shaped.

The specific time tt is the desired time of computation to be chosen
arbitrarily, and it is not the total time required to achieve the desired
degree of consolidation. The parameters for soil consolidation and
settlement are computed at the end of this time interval tt. If necessary,
further computation can be carried out using these values as the initial
input parameters and choosing a new time interval tt.

Han and Ye (2002) stated that for a typical stone column, rs=rc
varies from 1 to 1.2 and kh=ks is usually in the order of 10, where, rs is
the radius of smear zone, and kh and ks are the horizontal permeability
of soil in the undisturbed and smear zones, respectively. In the analysis
ofWang (2009), the valueof rs=rcwas assumed in the rangeof 1–2 and
ks=kh as 0.1. As reported by Walker and Indraratna (2006), the ratio
of rs=rc usually varies between 2 and 3, and the permeability of soil in
the smear zone decreases in a parabolic pattern with radial distance.

The phenomenon of clogging is separately discussed in the
section, Effect of Clogging.

Assumptions

The analysis was carried out based on the following assumptions:
1. All the compressive strains within the soil mass and the stone

column occur only in the vertical direction;
2. The elastic settlements of the ground and the column are

insignificant compared with the consolidation settlement;
3. The soil is fully saturated and the water is incompressible;
4. Darcy’s law is valid, and the flow of water through the soil is

purely horizontal (radial toward the column). No flow of water
takes place through the cylindrical boundary and the imper-
vious base of the unit cell; and

5. The coefficients of permeability and compressibility of the soil
remain constant during the process of consolidation.

Arching Effect

Soil arching is a common phenomenon for stone column–reinforced
soft soil beneath embankments. Arching initiates a reduction of the
vertical stress acting on the relatively soft soil while increasing in the
vertical stress on the stiffer columns (Deb 2010). As pointed out by
Low et al. (1994), the arching effect induces a nonuniform distri-
bution of vertical stress on the ground surface [Fig. 3(a)].

Load Transfer at the Interface between Soil and Column

As discussed by Han and Ye (2002), one of the major differences
between stone columns and drain wells is that stone columns have
a higher stiffness ratio of the columns to the soil, resulting in a much
greater stress transfer from the soil to the columns. Immediately after
the embankment load is applied on the reinforced ground surface,
both the column and the surrounding soil undergo undrained elastic
settlements. With the assumptions that the deformations take place
only along the vertical direction and there is no differential settle-
ment at the interface between the column and the surrounding soil,
the ratio of vertical stresses induced at the interface between
the column and the soil has been found proportional to the modular
ratio of the reinforced soft ground (Han and Ye 2000; Castro and
Sagaseta 2009). Denoting the ratio of the stress on the stone column
to that on the surrounding soil as ns, the steady stress concentration
ratio, the following equation was obtained:
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qc=q1 ¼ ns ð3aÞ

where qc and q1 5 average vertical stresses on the column and the

soil at the ground surface, respectively, at the interface, and ns 5

steady stress concentration ratio.
With the progressive bulging of the column in the vicinity of the

ground surface and the development of plastic strain, the stress

concentration ratio changes with time. In this analysis, however,

the bulging of column was not considered; thus, the computed

settlements remain constant at the interface. Following the analysis

of Han and Ye (2000) regarding the coefficient of compressibility

of an elastic body, the following correlation between ns and the

elastic moduli of the column and the soil was introduced:

ns ¼ x
Ec

Es
ð3bÞ

whereEc and Es 5 elastic moduli of the column and the surrounding
soil, respectively, and x5 function of the Poisson’s ratios of the soil
and the column.

As mentioned by Castro and Sagaseta (2009), the constrained
modular ratio between the column and soil varies in the range of 10–
50, although the lateral expansion of the column (bulging) reduces
the stress concentration ratio ns significantly. They also mentioned
that the plastic strains developed in the column can further reduce the
value of ns to a value as low as 5. On the basis of the theoretical and
experimental investigations conducted by Barksdale and Bachus

Fig. 1. (a) Typical stone column–reinforced soft clay deposit supporting an embankment; (b) unit cell idealization; (c) cross section of the unit cell
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Fig. 2. Discretization of soil into elements within the unit cell

Fig. 3. (a) Vertical stress distribution on the ground surface; (b) arching effect in the embankment
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(1983), the range of ns was reported as 3–10, whereas Mitchell
(1981) reported this range to be 2–6 based onfield studies. As further
suggested by Han and Ye (2002), the typical value of ns ranges
between 2–5.

Vertical Stress Distribution on Soil

Following the analysis of Low et al. (1994), the compatibility
equation for the element within the embankment material shown in
Fig. 3(b) can be written as

dsR

dR
þ

sR2su

R
þ ge ¼ 0 ð4Þ

where sR and su 5 stresses in the soil element along the direc-
tions of the global coordinates R and u, respectively.

For limit analysis, su 5KpsR, where Kp is the coefficient of
passive earth pressure of the embankment material. Therefore,
Eq. (4) can be written as

dsR

dR
þ

sR

�

12Kp

�

R
þ ge ¼ 0 ð5Þ

Considering the value of radial stress sR along the midway between
the consecutive columns at R5 re as the boundary condition,
i.e., sR 5 geðHe 2 reÞ1 qs at R5 re, the solution to the differential
equation [Eq. (5)] can be expressed by

sR ¼
�

geðHe 2 reÞ þ qs2 gere=
�

2Kp2 2
��

�ðR=reÞ
ð2Kp21Þ þ geR=

�

2Kp2 2
�

ð6Þ

Following the analysis of Abusharar et al. (2009), the imposed load
intensity on the ground surface at r5 re may be written as

q2 ¼ gercðN2 1Þ
�

Kp2 1
�

=
�

Kp2 2
�

þ
�

qs þ geHe2
�

Kp2 1
�

=
�

Kp2 2
��

ð12 1=NÞðKp21Þ

ð7Þ

where N5 re=rc.
The stone columns possess higher stiffness in comparison with

the surrounding softer soil. Because of this significant column to soil
stiffness ratio and the flexible nature of the embankment, the fill
weight would arch over the stone columns (Lo et al. 2010) and
impose an uneven load distribution on the surface [as represented by
Eq. (8d)]. When the external load is applied on the unit cell, the
column deforms under the loading, and the surrounding soil offers
passive resistance against the outward lateral strains of the column.

Therefore, the passive state is enforced only at the soil column
interface and not anywhere else in the soft soil within the unit cell
where theK0 state is valid. During the process of consolidation, the
soil in the unit cell remains at the K0 state, although differential
settlement occurs at the soil surface following the free strain hy-
pothesis (described in the subsection Consolidation of Soft Clay)
that results in the development of vertical shear stress. Considering
a passive state to occur in thefill in the region above the stone column
(Fig. 3), the value of q2 is justified.

The imposed load intensity on the soil surface at a radial distance
r is hereby denoted as qðrÞ, whichwas quantified using the following
boundary conditions:
1. The imposed load intensity on the ground surface over the

boundary of the unit cell is q2, i.e.,

qðreÞ ¼ q2 ð8aÞ

2. Because of the axi-symmetry of the unit cell, the value of
½∂qðrÞ�=ð∂rÞdiminishes at the boundary of the unit cell; hence

dqðreÞ

dr
¼ 0 ð8bÞ

3. The total vertical load imposed on the surface of the unit cell is
equal to the sum of the loads imposed on the soil and that
carried by the column; thus

2p

ð

re

rc

rqðrÞdr þ qcpr
2
c ¼ ðqs þ geHeÞpr

2
e ð8cÞ

These conditions are fulfilled when the load distribution function
is expressed in the following form:

qðrÞ ¼ q2 þ ðN2 r=rcÞ
2 ðqs þ geHeÞN

2
2 q2

�

N2 þ ns2 1
�

ðN þ 3ÞðN2 1Þ3=6 þ nsðN2 1Þ2

ð8dÞ

The average vertical stress on the soil surface of the unit cell is given by

qav ¼
qpr2e 2 qcpr

2
c

pðr2e 2 r2c Þ
¼

qN2
2 qc

N22 1
ð8eÞ

Consolidation of Soft Clay

Dissipation of Excess Pore Pressure

Considering a ring element of soil mass at a radial distance r, depth z,
and time t (Fig. 4), the volumetric strain ɛv induced in the soil element
is given by (detailed derivation is presented in the Appendix)

∂ɛv

∂t
¼ 1

V

dV

dt
¼ 2ðkh=gwÞ

�

1

r

∂u

∂r
þ ∂

2u

∂r2

�

ð9Þ

where ɛv 5 volumetric strain in the element; V 5 volume of the
element; u 5 excess pore water pressure; and mv 5 coefficient of
volume compressibility of the soil. It may be noted that as per
Assumption 3, u is a function of the radial distance r and the time t,
but not of the depth z. The excess pore pressure at any ith radial node
and kth time instant is hereby denoted as uði, kÞ.

On the basis of Assumption 1, the rate of excess pore pressure
dissipation ð∂uÞ=ð∂tÞ can then be expressed as

∂u

∂t
¼ cvr

�

1

r

∂u

∂r
þ ∂

2u

∂r2

�

ð10Þ

where cvr 5 coefficient of radial consolidation of the soil 5 kh=
ðmvgwÞ.

Expressing Eq. (10) in a finite-difference form, the following
matrix equation can be obtained:

½A�fug ¼ fbg ð11Þ

where ½A� 5 coefficient matrix of order mp3mp, fug5 unknown
vector of order mp3 1 for excess pore water pressure, and fbg5
augment vector of order mp3 1.
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The matrices in Eq. (11) are defined in the Appendix.
In formulating ½A� in Eq. (11), the following boundary conditions

were considered:
1. At t5 0, uði, kÞ5 u0ðiÞ for i5 1,2,3, . . . ,m;
2. Because the columnmaterial is assumed as freely draining, no

excess pore water pressure is developed at the interface at
t. 0. Mathematically, uð1, kÞ5 0 for k5 2,3,4, . . . ,m; and

3. At r5 re, ∂u=∂r5 0.
Solving Eq. (11), the unknown vector fug can be evaluated.
The average excess pore water pressure ðutÞ in the soil elements

can be expressed by

ut ¼
1

pðr2e 2 r2c Þ

ð

re

rc

2pru dr

¼ 2

r2e 2 r2c

(

rcuð1, kÞ þ reuðn, kÞ þ
P

m21

i¼2

½rc þ ði2 1Þdr�uði, kÞ

)

ð12Þ

The average excess pore water pressure at any given time t is
computed as the weighted average of the nodal pore pressures uik
within the soil of the unit cell. The average degree of consolidation is
now given by

Ut ¼
�

12 ut=u0
�

� 100% ð13Þ

Settlement of Soft Clay

The displacement of a point (r, z) within the soil mass of the unit cell
at time t is given by (more details in the Appendix)

r ¼ 2

ð

t

0

ð

H

z

mv
∂uðr, zÞ

∂t
dz dt ð14Þ

Expressed in numerical notation, Eq. (14) can be rewritten as

rði, j, kÞ ¼ mvi½H2 ð j2 1Þdz�½uði, 1Þ2 uði, kÞ� ð15aÞ

where mvi is the coefficient of volume compressibility of soil at
the ith nodal point.

The average settlement at the ground surface was computed as
the weighted average and is expressed by

rðkÞ ¼
1

pðr2e 2 r2c Þ

ð

re

rc

2prr dr

¼ 2

r2e 2 r2c

(

rcrð1, 1, kÞ þ rerðn, 1, kÞ

þ
P

m21

i¼2

½rc þ ði2 1Þdr�rði, 1, kÞ

)

ð15bÞ

Both the permeability and compressibility parameters change non-
uniformly with the radial distance within and just outside the smear
zone, as elaborated by Indraratna and Redana (1997, 1998), sup-
ported by large-scale consolidation test data. However, to simplify
the mathematical formulation of already complex equations, a re-
duced lateral permeability was assumed as an equivalent average
(constant) across the smear zone annulus, and accordingly, the
lateral coefficient of consolidation (cvr) is also changed pro-
portionately. With this consideration, the coefficient matrix ½A� in
Eq. (11) was formulated. This assumption may lead to a slight
overestimation of the settlement, but it facilitated a useful solution to
otherwise complex equations.

Effective Stress in the Soil

The effective stress developed in the soil mass at any point (r, z, t) in
the space-time coordinate may be expressed by (Khan et al. 2010)

s0ðr, z, tÞ ¼ g0z þ qðrÞ2 uðr, tÞ ð16aÞ

where g 0 is the effective unit weight of the soil mass.

Fig. 4. Typical soil element in the unit cell
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Expressing in numerical notation leads to

s0ði, j, kÞ ¼ g0ðj2 1Þdz þ qðiÞ2 uði, kÞ ð16bÞ

Effect of Clogging

The performance of stone columns in dissipating excess pore
pressure can be adversely affected by clogging. Because of the
high hydraulic gradient at the soil-column interface, migration of
clay particles into the pores of the granular column inevitably
occurs, resulting in a significant decrease in the column perme-
ability (Adalier and Elgamalal 2004). This initiates a reduction in
the effective radius of the column in terms of drainage, as well as
reducing the permeability in the clogged zone. The effective radius
of the column with clogging may be expressed by

r0c ¼ a rc ð17Þ

where a 5 nondimensional factor in the range 0,a# 1: fresh or
ideal stone columns with no clogging are characterized by a5 1,
whereas total clogging is represented by a5 0.

Also, the coefficient of horizontal permeability in the clogged
zone may be written as

kcl ¼ akks ð18Þ

whereak 5 ratio of horizontal permeability of the clogged column
zone to that of the smear zone. Limited information (Mays 2010)
available about the range of this parameter suggests that 0,
ak # 1.

Along the radial direction, the entire region including the soil
and the clogged zone is discretized into (m2 1) number of ele-
ments such that dr 5 ðre 2 r0cÞ=ðm2 1Þ. In terms of drainage, the
permeability of the clogged zone is taken into consideration, and
Boundary Condition 2 in section Consolidation of Soft Clay is
altered accordingly. The remaining analysis is similar to the case
without clogging. The effect of clogging has been studied in terms
of the nondimensional parameters a and ak, the values of which
may be reasonably estimated by conducting rigorous experiments
(Reddi et al. 2000; Hajra et al. 2002).

Improvement of Soft Clay

During consolidation, the undrained strength and stiffness of the soil
increase progressively. Umezaki et al. (1993) developed an ana-
lytical model to predict such an increase in undrained shear strength
of soft clay as a function of the degree of consolidation. Following
this analysis of the correspondence between the effective stress, void
ratio, and undrained shear strength of soft clay, the undrained co-
hesion at any point (i, j, k) in the space-time coordinate system may
be written as

cuði, j, kÞ ¼
cu0 þ zcð j2 1Þdz

12
e02 eði, j, kÞ

mvið1 þ e0Þs0ði, j, kÞ

ð19Þ

where cu0 5 initial undrained cohesion of the soil at the ground
surface; zc 5 rate of increase of undrained cohesion with respect
to depth, assuming the same to be linearly increasing; e0 5 initial
void ratio of the soil; eði, j, kÞ5 reduced void ratio of the soil at
point (i, j, k), which may be reasonably estimated from the
e-s0 curve. The basis of derivation of Eq. (19) is given in the
Appendix.

The undrained shear strength of clay is an important parameter
for stability analysis of the embankment. The ground improvement
factor v of the reinforced soil at any kth time instant has been
defined as the minimum value of the ratio of the instantaneous to
the initial values of the undrained cohesion in the soft soil within
the unit cell. Thus

v ¼ min½cuði, j, kÞ=cu0� ð20Þ

Similarly, the increase in stiffness of the soft soil may be expressed as
a settlement factor j that is defined herein as the ratio of the average
ground settlements of the reinforced to unreinforced soils at 90%
consolidation. Similarly, the increase in stiffness of the soft soil caused
by reinforcement was expressed as a settlement factor j defined as

j ¼
r90
ru90

ð21Þ

where r90 and ru90 5 average settlements at the ground surface
of the reinforced and the unreinforced soil at 90% consolidation,
respectively. The settlement of unreinforced soil has been computed
using Terzaghi’s one-dimensional consolidation theory. The settle-
ment values at 90% consolidation are considered practical from
a design aspect. Theoretically, the degree of consolidation increases
exponentially with time, and it is difficult to compute the final
settlement of the reinforced soil at the ground surface at 100%
consolidation using the present numerical model.

Computational Algorithm

Toexecute the analysis, a computer programwaswritten in FORTRAN
90, using the following computational algorithms:
1. Using the input data for soil and column properties, clogging

parameters, stress distribution coefficients, embankment char-
acteristics, and time, the vertical stress distributions on the soil
surface and the column were calculated by Eq. (8d).

2. The nodal excess pore water pressures in the soil were com-
puted using Eq. (11).

3. The average degree of consolidation, nodal and average ground
settlements, and nodal effective stresses in the soil are calcu-
lated using Eqs. (12)–(16).

4. The improvement and settlement factors are computed.

Validation of the Model

To verify the accuracy of the model developed, some comparisons
are made with the available models and field test results. First, the
comparison of the average degree of consolidation by radial drain-
age was only made with the existing models of Han and Ye (2000,
2002) and Wang (2009). The computational parameters adopted
are the same as those used by Han and Ye (2002), i.e., N5 2,
kh=ks 5 10, rs=rc 5 1:1, H=rc 5 20, ns 5 3, and a5ak 5 1. The
variations of the average degree of consolidation with the time factor
are presented in Fig. 5. The results obtained using the present model
are in agreement with the other solutions acceptably close to that of
Han and Ye (2002).

Oh et al. (2007) carried out field tests in soft estuarine clays in
Queensland, Australia, with a trial embankment incorporating three
separate sections: two sections with stone columns of 2- and 3-m
spacing (square pattern) and a reference section without any stone
columns. A comparison of computed ground settlements using the
present methodology with the field results is presented in Fig. 6. The
computational parameters used here are adopted from Oh et al.
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(2007) and are presented in Table 1. The computed settlements,

although slightly overpredicted, are in reasonable agreement with

the field data. When the clogging effect is incorporated (a5 0:5,
ak 5 1), the predicted settlements are observed to attain values even

closer to the field measurements.

Parametric Studies

The numerical model developed was used for understanding the

response of a prototype stone column–reinforced soil under step

loading. The same field data of Oh et al. (2007) as described in

the section Validation of the Model is used for the parametric

study, except for the column parameters, which are rc 5 0:5 m and

re 5 1:5 m. The clogging effect is considered in the analysis.

Analysis is carried out with the number of separators m5 n5 31

with 900 ½5ðn2 1Þ2� soil elements and 961ð5n2Þ nodes.
The time variation of the average degree of consolidation with

and without clogging is shown in Fig. 7(a). For a given value of Tr,

the degree of consolidation decreases with increasing values of a.

Furthermore, for a given value of a, the degree of consolidation

decreases with the reduction of ak . These observations reasonably

justify the effect of clogging within the stone column, reflecting

the resistance to drainage and thereby retarding the overall

consolidation.
The time variation of average excess pore water pressure in the

soil with and without clogging is depicted in Fig. 7(b). The average

Fig. 5. Comparison of computed rates of consolidation using different methods

Fig. 6. Comparison of computed settlement with field test results of Oh et al. (2007)
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excess pore pressurewas normalized by the applied vertical stress on

the ground surface. Excess pore pressure asymptotically decreases
with time. The resistance to excess pore pressure dissipation caused

by clogging is observed as well.
The normalized ground settlement with and without clogging is

presented in Fig. 7(c). The average ground settlement asymptot-

ically increases with time. The effect of clogging is found to in-

fluence the pattern of settlement at an initial stage of consolidation

(0, Tr , 0:04) as a increases from 0.5 to 1.0. However, because

the stress distribution remains unaltered, the ultimate values of
settlement seem to be the same, and the effect of clogging only

retards the rate of consolidation.
The vertical stress distributions on the ground surface for

the values of ns as 5, 10, and 15 are presented in Fig. 8(a), whereas

the typical settlement profiles in the unit cell at time 100, 250,

and 400 days with and without clogging are shown in Figs. 8(b

and c), respectively. All the ground settlement profiles are
observed to be parabolic in shape, with the slope gradually di-

minishing with radial distance to zero at the unit cell boundary.

When clogging is ignored, the ground settlement at the interface

remains steady. The clogging effect initiates progressive increase

of the ground settlement at the interface with time. This is un-

derstandable because the excess pore water pressure always

remains zero at the interface for t. 0 as per the boundary con-

dition adopted for the unclogged stone column, whereas the ex-

cess pore pressure gradually diminishes with time when clogging

is considered.
The stone columns with higher strength and stiffness carry a

greater vertical stress on the top with respect to the surrounding soil.

The pattern of variation between the stresses on the stone column

and the soil and the corresponding stress concentration ratio ns was

studied. Figs. 9(a and b) show the plots between the average vertical

stresses on the top of the column (qc) and the soil surface of the unit

cell (qav), respectively, normalized by the overall vertical stress

(5qs 1 geHe) and the stress concentration ratio ns. With an increase

in the normalized vertical stress on the column within the range 2.3–

6.3, the resulting stress concentration ratio ns has been observed to

increase sharply from 2 to 14 following a hyperbolic pattern with

increasing slope [Fig. 9(a)]. The rate of stress increment is signif-

icantly high in the range of 2, ns , 8 and stabilizes thereafter. On
the contrary,with the increase in the average stress on the soil surface

from 0.1 to 0.5, the parameter ns is observed to decreases almost

exponentially [Fig. 9(b)].
Apart from the strength and stiffness of the soft clay and the

stone columnmaterial, the radius and spacing of the stone columns

are the important design parameters for a reinforced soil-stone

column system. With this in mind, the effect of the parameter N

and H=rc on the settlement and consolidation parameters is ex-
amined. The ranges of values of these two parameters were chosen

as 2–5, and 25–40, respectively, which are close to the field values.

Within the selected range ofN andH=rc in the present analysis, the
settlement factor j is observed to vary from 0.70 to 0.92 [Fig.

10(a)]. With an increase in N, the value of j is observed to increase

in a curvilinear manner, with a stable trend for N. 3:5. Conversely,
j decreases with H=rc, as shown Fig. 10(b), but the rate of such

decrease is marginal when H=rc $ 30.
In the semiempirical method suggested by Priebe (1995), the

linear elastic theory was adopted to predict the settlement of the

columnar-reinforced soft soil. Ellouze et al. (2010) pointed out

several inconsistencies of the assumptions made in the method. The

present model computes the settlement of the soft ground and

considers the volumetric compressibilities of the soil and that of the

column using the radial consolidation theory. Conversely, the set-

tlement of the unreinforced soft soil is calculated from Terzaghi’s

one-dimensional consolidation theory. Hence, the computed settle-

ments are essentially time dependent. Kempfert (2003) and Raithel

et al. (2005) suggested that the settlement factor j varies in the range

of 0.4–20. However, because of a different column to soil stiffness

ratio, the average settlement of the reinforced soil at a specified

degree of consolidation should be lower compared with that of the

untreated soft ground, which essentially implies that j, 1. In the

current analysis, the computed range of 0.70–0.92 of the settlement

factor j is in agreement with the available literature and is therefore

logical.
The variation of the time required for a specified degree of

consolidation with N is studied [Fig. 10(c)]. A modified time factor

Table 1. Input Parameters for the Case Studies

Material Parameter

Value

Oh et al. (2007) Indraratna (2009)

Soft clay Coefficient of horizontal permeability (kh) 1:63 1029m=s 13 1029m=s

Coefficient of volume compressibility (mv) 23 1026m2=N 33 1026m2=N

Normalized horizontal permeability of smear

zone (ks=kh)

0.1a 0.333b

Normalized radius of smear zone (rs=rc) 1.15a 2.5b

Depth of soft clay (H) 16 m 20 m

Embankment Height (He) 4 m 4.3 m

Unit weight (ge) 20 kN/m3 20 kN/m3

Imposed load intensity on the embankment (qs) 0 0

Passive earth pressure coefficient (Kp) 3c 3c

Stone column/PVD Radius of stone column/PVD (rc) 0.5 m 0.017 m

Radius of unit cell (re) 1.13 m (spacing: 2 m);

1.695 m (spacing: 3 m)

0.565 m

Stress concentration ratio (ns) 7 1

Radius factor of clogging (a) As given in Fig. 12 1

Permeability factor for clogging (ak) 1
aAssumed for the present analysis after Han and Ye (2002).
bAssumed for the present analysis after Walker and Indraratna (2006).
cAssumed for the present analysis.

JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING © ASCE / MARCH 2013 / 385

J. Geotech. Geoenviron. Eng. 2013.139:377-394.

D
o

w
n

lo
ad

ed
 f

ro
m

 a
sc

el
ib

ra
ry

.o
rg

 b
y

 U
N

IV
E

R
S

IT
Y

 O
F

 W
O

L
L

O
N

G
O

N
G

 o
n

 0
4

/1
5

/1
3

. 
C

o
p

y
ri

g
h

t 
A

S
C

E
. 

F
o

r 
p

er
so

n
al

 u
se

 o
n

ly
; 

al
l 

ri
g

h
ts

 r
es

er
v

ed
.



Tr
0ð5cvrt=H

2Þ, which eliminates the effect of variation of rc, was
used to normalize the time. For achieving an average degree of
consolidation of 90%, the normalized time increases with N fol-
lowing a curvilinear pattern, with the slope of the curves initially
decreasing with increasing values of N in the range 2,N, 3 and
thereafter slowly increasing for N. 3.

The variation of the improvement factor v [see Eq. (20)] with
time and imposed load intensity are examined in Fig. 11.On the basis
of the stability analysis of the embankment, the imposed load needs
to be less than 200 kPa to prevent failure. It is observed in Fig. 11(a)
that v increases sharply with time for t, 10 months (Tr , 0:23),

after which the value of v stabilizes asymptotically. With the in-
crease in load intensity, v increases fairly linearly as shown in
Fig. 11(b). It is well known that the undrained shear strength of the
surrounding soil depends on the amount of surcharge pressure and
corresponding consolidation. At higher loading intensity, the sur-
rounding soil will be subjected to a greater consolidation and hence
attain higher undrained shear strength. In other words, at higher
loads than the present loading conditions, a higher improvement
factor will be attained. For the selected range of imposed load in-
tensity on the ground surface, the improvement factor was observed
to vary in the range of 2.94–8.5.

Fig. 7. Time variation of (a) average degree of consolidation; (b) average excess pore pressure; (c) normalized average ground settlement
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Special Case: Application of the Model to
Prefabricated Vertical Drains

Apart from stone columns, the installation of prefabricated
vertical drains (PVD) is one of the most popular techniques used
worldwide for the improvement of soft clay (Indraratna 2009).
In the case of PVDs, the distribution of the vertical stress on the
ground surface is uniform (5the applied load intensity) as shown

in Fig. 3(a), due to both the absence of stress concentration
and insignificant arching. Also, clogging of PVDs is usually
rare. Therefore, the proposed model can be applied to PVDs by
ignoring the arching and clogging, taking ns 5 1, and modifying
the stress distribution function as given by Eq. (8d) in the following
form:

qðrÞ ¼ qs þ geHe ð22Þ

Fig. 8. Settlement analysis in the unit cell: (a) vertical stress distribution on the ground surface; (b) ground settlement profile considering no clogging;

(c) ground settlement profile considering clogging
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Comparison of the present solution is made, as shown in Fig. 12(a),
with the analytical solutions of Barron (1948) and Hansbo (1981)
using the same computational parameters (N5 2, kh=ks 5 10,
rs=rc 5 1:1, H=rc 5 20) except for ns 5 1. It is observed that the
results obtained using the present model are quite close to those of
Barron (1948) and Hansbo (1981).

A comparative analysis with the field test results of the Ballina
Bypass (Indraratna 2009) was carried out. The Pacific Highway
linking Sydney and Brisbane was constructed to reduce the high
traffic congestion in Ballina. This bypass route must cross a flood-
plain consisting of highly compressible and saturated marine clay
deposits. A system of surcharge load with PVDs was adopted to
improve the geotechnical properties of the clay layers (Indraratna
2009). A soft silty layer of clay approximately 10 m thick was
underlain by a moderately stiff, silty layer of clay located 10–30 m
deep, which was in turn underlain by firm clay. The groundwater
level almost coincided with the ground surface. The computational
parameters used are in accordance with Indraratna (2009) and are
given in Table 1. The construction stages of the embankment are
shown in Fig. 12 (c). A coupled analysis was adopted, where the

dissipation of excess pore pressure was assumed to occur during
embankment construction. Each of the two ramp loadings was di-
vided into 10 equal step loadings [Fig. 12(c)], and consolidation was
allowed at each step. The time-settlement curve is shown in Fig.
12(b). It is observed that in the case of PVDs, the computed time-
settlement curve is in good agreement with the field data, with an
average deviation of only about 5%. For t, 100 days (Tr , 0:23),
the computed settlement slightly underpredicts the field measure-
ments. For t. 100 days, the field data plot below the predicted
settlement.

Model Limitations

Although the proposed finite-difference model can predict the time-
dependent response of stone column–reinforced soil to an accept-
able accuracy, it has the following inherent limitations:
1. Although radial consolidation of soft ground with stone col-

umns or PVDs is always accompanied by vertical flow (Han
and Ye 2000), the latter was ignored in the present analysis.

Fig. 9. Plot of ns versus the average vertical stress on (a) column and (b) soil surface
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The role of vertical flow becomes more significant when the
columns become shorter.

2. When a soft clay deposit overlies a sand bed, Assumption 4 in
section Assumptions is no longer valid. The model should not
be used under these circumstances.

3. When considering the clogging effect, the value of the pa-
rameter a was assumed to remain constant throughout the

process of consolidation, whereas in reality, a may decrease
progressively from unity for freshly installed columns to
a lower value with time.

4. Although the model can analyze the consolidation of soft clay
under conventional step loading (i.e., at a rest period), it is
unable to accommodate the time-dependent ramp or cyclic
loadings.

Fig. 10. Variation of (a) j with N; (b) j with H=rc; and (c) Tr
0 with N
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Conclusions

A finite-difference solution for predicting the stress distribution
and consolidation response of stone column–reinforced soft ground
based on the unit cell concept was developed based on the free
strain hypothesis, considering arching, smear, and clogging effects.
The comparison of the numerical results with the available field
data and past theoretical studies justifies the validity of the pro-
posed model.

The study indicates that the clogging in the stone column
retards the overall consolidation process. The average ground
settlement increases with time, the rate of which stabilizes in an
asymptotic manner. The effect of clogging was found to influence
the pattern of settlement at the initial stage of consolidation
(0, Tr , 0:04) as a increases from 0.5 to 1.0. Because the stress
distribution remains unaltered, the ultimate values of settlement
remain the same, and the effect of clogging only retards the rate of
settlement consolidation. The typical settlement profile is ob-
served to be parabolic, with the slope gradually diminishing with
the radial distance to zero at the unit cell boundary. When

clogging is ignored, the ground settlement at the interface does
not vary with time. Conversely, incorporation of clogging leads
to progressive increase of the ground settlement at the interface
with time.

The vertical stress distribution acting on the column and the
soil surface of the unit cell are significantly affected by the rel-
ative stiffness of the column and the soil. With an increase in the
normalized vertical stress on the column within the range 2.3–6.3,
the resulting stress concentration ratio is observed to increase
sharply in the range of 2# ns # 14 following a hyperbolic pattern
with increasing slope. The rate of stress increment is significantly
high in the range of 2, ns , 8 and stabilizes thereafter. On the
contrary, with the increase in the average stress on the soil surface
from 0.1 to 0.5, the parameter ns is observed to decrease almost
exponentially.

The magnitude of ground settlement is influenced by the varia-
tion of the radius and spacing of stone columns. When the param-
eters N and H=rc varied from 2 to 5 and 25 to 40, respectively, the
settlement factor j varied from 0.70 to 0.92. The value of j increases
with N and stabilizes asymptotically when N. 3:5. Conversely,

Fig. 11. Variation of improvement factor v with (a) time and (b) imposed load intensity
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j decreases withH=rc, but the rate of this decrease is marginal when
H=rc $ 30. The time required to achieve a specified average degree
of consolidation increases in a curvilinear manner with N. For
90% consolidation, the slope of the curves is observed to decrease
with increasing N in the range 2,N, 3 and thereafter increases
slowly.

The improvement factorv introduced in this study represents the
ratio of the minimum value of the instantaneous to initial undrained
shear strength of the soil at ground level. When Tr , 0:23, the value
of v increases quite sharply with time but stabilizes asymptotically

thereafter. With an increase in the load intensity, the value of v
increases fairly linearly.

The proposed model could also be used to predict the per-
formance of ground improved with PVDs by ignoring the arching
and the clogging and taking ns 5 1. The results obtained using
the present model were quite close to those of Barron (1948)
and Hansbo (1981). A comparative study carried out with the
field test results of the Ballina Bypass (Indraratna 2009) in-
dicated good agreement, with an average deviation of within
about 5%.

Fig. 12. Application of the proposed model with PVD: (a) comparison with existing models of Barron (1948) and Hansbo (1981); (b) actual and

simulated construction stages; (c) comparison of average ground surface settlement with field data of Indraratna (2009)
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Appendix. Mathematical Derivations

Considering the ring element shown in Fig. 4, the volume of water

out of the soil mass through the inner vertical surface at time interval

dt is given as

Vo ¼ ðkh=gwÞ
∂u

∂r
2pr dz dt ð23Þ

where gw 5 unit weight of water.
Similarly, the flow of water into the soil mass through the outer
vertical surface is given by

Vi ¼ ðkh=gwÞ
∂

∂r

�

u þ ∂u

∂r
dr
	

2pðr þ drÞ dz dt ð24Þ

Therefore, the net reduction in the volume of the soil element

at time interval dt is given (neglecting the higher order term)

by

dV ¼ Vo2Vi ¼ ðkh=gwÞ

�

1

r

∂u

∂r
þ ∂

2u

∂r2

�

2pr dr dz dt

¼ 2ðkh=gwÞ

�

1

r

∂u

∂r
þ ∂

2u

∂r2

�

Vdt ð25Þ

where V 5 volume of the soil mass at time t5 2pr dr dz.
The matrices in Eq. (11) are described:




u
�

¼



u11; u12; u13; . . . ; u1p; u21; u22; u23; . . . ; u2p; u31; u32; u33; . . . ; u3p; . . . . . . , um1; um2; um3; . . . ; ump
�T




b
�

¼ fu0ð1Þ,0,0, . . . ,0, u0ð2Þ,0,0, . . . ,0, u0ð3Þ,0,0, . . . ,0; . . . . . . . . . , u0ðmÞ,0,0, . . . ,0g
T

½A� ¼

2

6

6

6

6

6

6

6

4

a11 a12 a13 .:::::: a1,mp

a21 a22 a23 .:::::: a2,mp

a31 a32 a33 .::::: a3,mp

2

2

amp,1

2

2

amp,2

2

2

amp,3

2

2

.:::::

2

2

amp,mp

3

7

7

7

7

7

7

7

5

. . . . . .

ð26Þ

The coefficients aij of the matrix [A] are obtained from Eq. (10) and
by applying the boundary conditions given in section Consolidation
of Soft Clay.

The compression of the soil element (Fig. 4) in the time interval dt is
given [using Eq. (10)] by

dr ¼
dV

2prdr
¼ ðkh=gwÞ

�

1

r

∂u

∂r
þ

∂
2u

∂r2

�

dz dt ¼ 2mv
∂u

∂t
dz dt

ð27Þ

The preceding expression can be integrated to compute the dis-
placement of a point (r, z) within the soil mass of the unit cell at time
instant t, and accordingly, Eq. (14) is obtained.
From the e-s0 relationship of the soft clay

e02 eði, j, kÞ

s0ði, j, kÞ2s0
0

¼ mvið1 þ e0Þ ð28Þ

where s0
0 is the initial effective stress in the soil at the nodal point

under consideration. Eq. (28) can be rewritten as

s0ði, j, kÞ

s0
0

¼
1

12
e02 eði, j, kÞ

mvið1 þ e0Þs0ði, j, kÞ

ð29Þ

Following the analysis of Umezaki et al. (1993) regarding the
constant value of the undrained shear strength ratio of the soil
irrespective of the consolidation time, Eq. (19) was derived using
Eq. (29).
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Notation

The following symbols are used in this paper:

½A� 5 coefficient matrix;

aij 5 elements of the finite difference coefficient

matrix;

fbg 5 augment vector;

cu 5 undrained cohesion;

cu0 5 initial undrained cohesion at ground level;

cvr 5 coefficient of radial consolidation of the

soil;

Ec,Es 5 elastic moduli of the column and the

surrounding soil;

e 5 void ratio;

e0 5 initial void ratio;

H 5 thickness of the soft clay deposit;

He 5 height of embankment;

i 5 radial coordinate indicator;

j 5 depth coordinate indicator;

Kp 5 passive earth pressure coefficient of the

embankment;

k 5 time coordinate indicator;

kcl 5 horizontal permeability of clogged zone;

kh 5 horizontal soil permeability;

ks 5 horizontal permeability of smear zone;

k0 5 in situ earth pressure coefficient at rest;

mv 5 soil volume compressibility;

mvc 5 volumetric compressibility of the column;

mvi 5 soil volume compressibility at the ith node;

392 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING © ASCE / MARCH 2013

J. Geotech. Geoenviron. Eng. 2013.139:377-394.

D
o

w
n

lo
ad

ed
 f

ro
m

 a
sc

el
ib

ra
ry

.o
rg

 b
y

 U
N

IV
E

R
S

IT
Y

 O
F

 W
O

L
L

O
N

G
O

N
G

 o
n

 0
4

/1
5

/1
3

. 
C

o
p

y
ri

g
h

t 
A

S
C

E
. 

F
o

r 
p

er
so

n
al

 u
se

 o
n

ly
; 

al
l 

ri
g

h
ts

 r
es

er
v

ed
.



m, n, p 5 number of divisions;

N 5 re=rc;
ns 5 ratio of the volumetric compressibility of the soil

to that of the column;

q 5 average vertical stress on unit cell upper

boundary;

qav 5 average vertical stress on the soil surface of the

unit cell;

qc 5 average vertical stress on top of column;

qs 5 surcharge load intensity on embankment surface;

q1 5 vertical stress on ground surface on soil at

interface;

q2 5 vertical stress on ground surface on soil at unit

cell boundary;

qðrÞ 5 vertical stress on ground surface at radial

distance r;

R 5 global radial coordinate;

r 5 radial coordinate of unit cell;

rc 5 radius of stone column;

rc
0
5 radius of stone column excluding the clogged

zone;

re 5 radius of influence of one stone column;

rs 5 radius of smear zone;

Tr 5 time factor 5 cvrt=ð4re2Þ;
Tr

0
5 modified time factor 5 cvrt=H

2;

t 5 time coordinate;

tt 5 total time of consolidation;

U 5 degree of consolidation;

Ut 5 average degree of consolidation;

u 5 excess pore water pressure;

fug 5 excess pore water pressure vector;

ut 5 average excess pore water pressure at any time t;

V 5 volume of soil mass;

z 5 depth coordinate;

a 5 radius factor for clogging;

ak 5 permeability factor for clogging;

g 0
5 effective unit weight of soil;

ge 5 unit weight of fill;

gw 5 unit weight of water;

dt 5 length of an element on time axis;

dr 5 length of an element on radial axis;

dz 5 length of an element on depth axis;

ɛ 5 vertical compressive strain in soil;

ɛv 5 volumetric strain in soil;

zc 5 rate of increase in undrained cohesion of

soil;

u 5 global coordinate;

j 5 settlement factor;

r 5 vertical displacement of soil;

ru90 5 average settlement at ground surface of the

unreinforced soil at 90% consolidation;

r90 5 average settlement at ground surface of the

reinforced soil at 90% consolidation;

s0
5 effective stress in soil;

sR 5 normal stress in soil element along

R-direction;

su 5 normal stress in soil element along

u-direction;

x 5 a Poisson’s ratio function for the soil and the

column; and

v 5 improvement factor.

References

Abusharar, S. W., Zheng, J. J., Chen, B. B., and Yin, J. H. (2009). “A

simplified method for analysis of a piled embankment reinforced with

geosynthetics.” Geotextiles Geomembranes, 27(1), 39–52.
Adalier, K., and Elgamal, A. (2004). “Mitigation of liquefaction and as-

sociated ground deformations by stone columns.” Eng. Geol., 72(3–4),

275–291.
Alamgir, M., Miura, N., Poorooshasb, H. B., and Madhav, M. R. (1996).

“Deformational analysis of soft ground reinforced by columnar inclu-

sions.” Comput. Geotech., 18(4), 267–290.
Balaam, N. P., Poulos, H. G., and Brown, P. T. (1977). “Settlement analysis

of soft clays reinforced with granular piles.” Proc., 5th Southeast Asian

Conf. on Soil Engineering, Sponsor Southeast Asian Geotechnical

Society, Bangkok, Thailand, 81–92.
Barksdale, R. D., and Bachus, R. C. (1983). “Design and construction of

stone columns.” Rep. FHWA/RD-83/026, National Technical Informa-

tion Service, Springfield, VA.
Barron, B. A. (1948). “Consolidation of fine grained soil by drain wells.”

Trans. Am. Soc. Civ. Eng., 113(2346), 712–748.
Castro, J., and Sagaseta, C. (2009). “Consolidation around stone columns:

Influence of column deformation.” Int. J. Numer. Anal. Methods Geo-

mech., 33(7), 851–877.
Deb, K. (2010). “A mathematical model to study the soil arching effect in

stone column-supported embankment resting on soft foundation soil.”

Appl. Math. Model., 34(12), 3871–3883.
Ellouze, S., Bouassida, M., Hazzar, L., and Mroueh, H. (2010). “On set-

tlement of stone column foundation by Priebe’s method.” Ground

Improv., 163(GI2), 101–107.
Guetif, T., Bouassida, M., and Debats, J. M. (2007). “Improved soft clay

characteristics due to stone column installation.” Comput. Geotech.,

34(2), 104–111.
Hajra, M. G., Reddi, L. N., Glasgow, L. A., Xiao, M., and Lee, I. M. (2002).

“Effects of ionic strength on fine particle clogging of soil filters.” J.

Geotech. Geoenviron. Eng., 128(8), 631–639.
Han, J., and Ye, S. L. (2000). “Simplified method for consolidation rate of

stone column reinforced foundations.” J. Geotech. Geoenviron. Eng.,

127(7), 597–603.
Han, J., and Ye, S. L. (2002). “A theoretical solution for consolidation rates

for stone column reinforced foundations accounting for smear and well

resistance effects.” Int. J. Geomech., 2(2), 135–151.
Hansbo, S. (1981). “Consolidation by vertical drains.”Geotechnique, 31(1),

45–66.
Indraratna, B. (2009). “Recent advances in the application of vertical drains

and vacuum preloading in soft clay stabilization.” Austral. Geomechan.

J., 45(2), 1–44.
Indraratna, B., Balasubramaniam, A., and Balachandran, S. (1992). “Per-

formance of test embankment constructed to failure on soft clay.”

J. Geotech. Eng., 118(1), 12–33.
Indraratna, B., and Redana, I. W. (1997). “Plane strain modelling of smear

effects associatedwith vertical drains.” J.Geotech. Eng., 123(5), 474–478.
Indraratna, B., and Redana, I. W. (1998). “Laboratory determination of smear

zone due to vertical drain installation.” J. Geotech. Eng., 125(1), 96–99.
Kempfert, H. G. (2003). “Ground improvement methods with special

emphasis on column-type techniques.” Int. Workshop on Geotechnics of

Soft Soils–Theory and Practice, Taylor & Francis Group, New York,

101–112.
Khan, A. P., Madhav, M. R., and Reddy, E. S. (2010). “Consolidation of thick

clay layer by radialflow—Nonlinear theory.”Geotech.Eng., 2(2), 157–160.
Lo, S. R., Zhang, R., and Mak, J. (2010). “Geosynthetic-encased stone

columns in soft clay: A numerical study.” Geotextiles Geomembranes,

28(3), 292–302.
Lorenzo, G. A., and Bergado, D. T. (2003). “New consolidation equation for

soil-cement pile improved ground.” Can. Geotech. J., 40(2), 265–275.
Low, B. K., Tang, S. K., and Choa, V. (1994). “Arching in piled

embankments.” J. Geotech. Eng., 120(11), 1917–1938.
Malarvizhi, S. N., and Ilamparuthi, K. (2008). “Numerical analysis of encap-

sulated stone columns.” Proc., 12th Int. Conf. of IACMAG, Centre for

Infrastructure Engineering and Safety, Sydney, Australia, 3719–3726.

JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING © ASCE / MARCH 2013 / 393

J. Geotech. Geoenviron. Eng. 2013.139:377-394.

D
o

w
n

lo
ad

ed
 f

ro
m

 a
sc

el
ib

ra
ry

.o
rg

 b
y

 U
N

IV
E

R
S

IT
Y

 O
F

 W
O

L
L

O
N

G
O

N
G

 o
n

 0
4

/1
5

/1
3

. 
C

o
p

y
ri

g
h

t 
A

S
C

E
. 

F
o

r 
p

er
so

n
al

 u
se

 o
n

ly
; 

al
l 

ri
g

h
ts

 r
es

er
v

ed
.



Mays, D. C. (2010). “Contrasting clogging in granular media filters, soils,
and dead-end membranes.” J. Environ. Eng., 136(5), 475–480.

Mitchell, J. K. (1981). “Soil improvement—State of the art report.”
Proc., 10th ICSMFE, Vol. 4, Balkema, Rotterdam, Netherlands,
509–565.

Murugesan, S., and Rajagopal, K. (2010). “Studies on the behavior of single
and group of geosynthetic encased stone columns.” J. Geotech. Geo-

environ. Eng., 36(1), 129–139.
Oh, E. Y. N., et al. (2007). “Behaviour of a highway embankment on stone

column improved estuarine clay.” Proc., 16th Southeast Asian Geo-

technical Conf., Vol. 1, Southeast Asian Geotechnical Society,
Bangkok, Thailand, 567–572.

Priebe, H. J. (1995). “The design of vibro replacement.” Ground Eng.,
28(10), 31–37.

Raithel, M., Kirchner, A., Schade, C., and Leusink, E. (2005). “Foun-
dation of constructions on very soft soils with geotextile encased

columns: State of the art,” Geo-Frontiers 2005, Vol. 130–142, ASCE,
Reston, VA, 1867–1877.

Reddi, L. N., Ming, X., Hajra, M. G., and Lee, I. M. (2000). “Permeability
reduction of soil filters due to physical clogging.” J. Geotech. Geo-

environ. Eng., 126(3), 236–246.
Terzaghi, K. (1943). Theoretical soil mechanics, Wiley, New York.
Umezaki, T., Ochiai, H., and Hayashi, S. (1993). “Undrained shear strength

of clay during consolidation.” Proc., 11th Southeast Asian Geotechnical
Conf., Southeast Asian Geotechnical Society, Bangkok, Thailand, 269–
274.

Walker, R., and Indraratna, B. (2006). “Vertical drain consolidation with
parabolic distribution of permeability in smear zone.” J. Geotech.

Geoenviron. Eng., 132(7), 937–941.
Wang,G. (2009). “Consolidation of soft soil foundations reinforced by stone

columns under time dependent loading.” J. Geotech. Geoenviron. Eng.,
135(12), 1922–1931.

394 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING © ASCE / MARCH 2013

J. Geotech. Geoenviron. Eng. 2013.139:377-394.

D
o

w
n

lo
ad

ed
 f

ro
m

 a
sc

el
ib

ra
ry

.o
rg

 b
y

 U
N

IV
E

R
S

IT
Y

 O
F

 W
O

L
L

O
N

G
O

N
G

 o
n

 0
4

/1
5

/1
3

. 
C

o
p

y
ri

g
h

t 
A

S
C

E
. 

F
o

r 
p

er
so

n
al

 u
se

 o
n

ly
; 

al
l 

ri
g

h
ts

 r
es

er
v

ed
.


	Numerical solution of stone column improved soft soil considering arching, clogging and smear effects
	Recommended Citation

	Numerical solution of stone column improved soft soil considering arching, clogging and smear effects
	Abstract
	Keywords
	Disciplines
	Publication Details

	Numerical Solution of Stone Column–Improved Soft Soil Considering Arching, Clogging, and Smear Effects

