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The solution of a non-linear boundary value problem arising due to the steady flow of an incompressible second-order 
fluid (flowing with a small mass rate of symmetrical radial outflow m, taken negative for a net radial inflow) under finite 
rotating disc (enclosed within a co-axial cylindrical casing) has been obtained numerically using finite difference method. 
The resulting equations are converted into a set of difference equations. Starting from the known values of flow functions 
for small values of the Reynolds number, the solution is extended for larger Reynolds number by making use of Newton-
Raphson iterative method and Gauss elimination method. Effects of second order forces in the flow on the velocity field 
have been investigated in detail in the regions of recirculation and no-recirculation for the cases of radial outflow and inflow 
and illustrated graphically. Such flows are useful in mechanical and chemical industries. 

The problem arising out of the flow of a liquid over 
an enclosed rotating disc (enclosed in a cylindrical 
casing) or a shrouded disc has important engineering 
applications as its generalization could be of help in 
studies concerning air cooling of turbine discs and 
pedestal bearing with central feeding of lubricant, 
windage losses and leakage flow in centrifugal pump 
or compressor. The problem of the flow over an 
enclosed rotating disc was first studied by Soo1 for a 
Newtonian fluid. Sharma2 has given an improved 
formulation for the velocity profile assumed by Soo. 
Sharma and Gupta3 and Sharma and Sharma4 
extended the study for elastico-viscous and second-
order fluids respectively. Sharma and Gupta5 and 
Sharma and Singh6 have considered the flows of 
second-order fluid under an enclosed rotating disc 
without and with heat transfer respectively. In all 
these investigations approximate methods of solution 
have been used. Sharma and Biradar7,8 have studied 
numerically the flow of a second-order fluid over an 
enclosed rotating disc without and with uniform 
suction and injection respectively. 
 The purpose of the present paper is to investigate 
numerically, the steady flow of a second-order fluid 
under a rotating disc enclosed within a co-axial 
cylindrical casing considered by Sharma and Gupta5. 
The symmetrical radial steady outflow has a small 
mass rate ‘m’ of radial outflow (‘-m’ for radial 

inflow). The inlet condition is taken as a simple radial 
source flow of strength ‘m’ along the axis of rotation. 
The presence of the shroud induces circulation about 
the axis of rotation starting from radius r0. The base of 
the casing could be considered as a stationary disc 
(called stator) placed parallel to and at a distance 
equal to gap-length from the rotating disc (called 
rotator). The equations of motion have been solved by 
approximate method as well as finite difference 
technique for small as well as larger values of 
Reynolds numbers. The second-order effects on the 
velocity components have been investigated in detail 
in the regions of recirculation† and no-recirculation 
for the cases of radial outflow and inflow.  
 The results obtained by approximate and numerical 
methods have been compared to show that the 
numerical method provides values nearer to those 
obtained by approximate methods. Moreover results 
obtained by numerical methods are valid not only for 
small Reynolds numbers but for higher Reynolds 
numbers also. 
 
Theoretical 
Mathematics Modelling of the Problem 
 In a three-dimensional cylindrical set of co-
ordinates ( , , )r zθ , the system consists of a disc of 
radius sr  (coinciding with plane 0z z= ), rotating at a 
constant angular velocity Ω about the axis of rotation 
( 0)r =  and situated at a distance 0 s( )z z r= <<  from 
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a stationary disc (coinciding with the plane 0z = ) 
forming part of a co-axial cylindrical casing (Fig. 1). 
We call the rotating disc as ‘rotor’ and stationary disc 
as ‘stator’. An incompressible second-order fluid fills 
the space between the discs. The symmetrical radial 
steady outflow has a small mass rate m ( 0m <  for 
radial inflow). The inlet condition is taken as a simple 
radial source flow along the z-axis starting from 
radius r0. The radius of the disc sr  is sufficiently large 
as compared to the gap-length so that edge effects 
may be negligible. 
 Following Sharma and Sharma4, the governing 
equations, boundary conditions and velocity field are 
as follows: 
 The constitutive equation9: 
 

ij i j 1 i j 2 i j 3 i j2 2 4T p d e C= − δ + μ + μ + μ  ,  … (1) 
 

where i j i,j j,i
1 ( )
2

d u u= +  , 

m
i j i , j j,i , m, j

1 ( 2
2 ie a a u u= + + . 

and m
ij i mjC d d=  . 

 
Momentum equation for no extraneous forces: 
 

m mi
i ,m i ,m

u u u t
t

∂⎡ ⎤ρ + =⎢ ⎥∂⎣ ⎦
. … (2) 

 
Equation of continuity for steady flow:  
 

i , 0iu = .  … (3) 
 
Velocity field for the axi-symmetric flow compatible 
with continuity criterion and the pressure: 
 

0

( )( )
2
mMu r H

r z
′ ζ′= − Ω ζ +

π ρ
 , 

0

( )( )
2

Nv r G
r z

ζ
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02 ( )w z H= Ω ζ , 
2

0 1 2( ) ( ) ( ) logP P P P= ζ + ξ ζ + ζ ξ .  … (4) 
 
Boundary conditions: 
 

0 : 0 , 0 , 0 ,z u v w= = = =  

0 : 0, , 0z z u v r w= = = Ω = ,  … (5) 
 
where i j i i, ,T u a  are the stress tensor, velocity and 
acceleration vectors, P is the hydrostatic pressure, ρ is 
the density of the fluid and 1 2 3, ,μ μ μ  are the 
material constants known as coefficients of 
Newtonian-viscosity, elastico-viscosity and cross-
viscosity respectively and comma (,) represents the 
covariant differentiation. (u, v, w) are the velocity 
components and ( ), ( ) , ( ) and ( )H M G Nζ ζ ζ ζ  are 
non-dimensional flow functions of the dimensionless 
variable 0( / )z zζ = and ‘m’ the small mass rate of 
radial outflow, is represented by 
 

0

0
2 . ,zm ru dz= πρ∫   … (6) 

 
m being positive for net radial outflow and negative 
for net radial inflow. l  is a constant associated with 
induced circulatory flow, assumed to be of order m. 
 The unknown perameters involved in the velocity 
field are to be determined from the following set of 
equations: 
 

IV
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 … (8) 
 

z 1 z

2 z

2 ( ) 2 ( )
2 ( ),

G R HG H G T R H G HG
T R H G H G
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Fig.1—Co-ordinates system of an enclosed rotating disc showing 
velocity profile at radius r at the condition of no net radial flow 
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z 1 z
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)M G H L H L H L HL′ ′′ ′′ ′ ′ ′′ ′′′ ′′′+ + + + + , … (10) 
 
where primes denote differentiation with respect to 

2 2
0 1 2 0 2 3 0( / ): ( / ) , ( / )z z T z T zζ = = υ =υ  are the dimen-

sionless parameters representing ratio of the second-
order and the inertial effects and denoting elastico-
viscous and cross-viscous effects and 2

0 1( / )zR z= Ω υ  
is the Reynolds number based on the gap-length 
and m( ) ( / ) ( ) ;L R R Nζ = ζl  0 1( / )R z= πρ υl l  and 

m 0 1( / )R m z= πρ υ  being Reynolds numbers based on 
induced circulatory flow and radial outflow 
respectively.  
 
Solution of the Problem 
 
Approximate solution 
 Approximate solution of the Eqs (7)-(10) can be 
obtained for small values of Reynolds number zR and 
correct to the squares of zR  and first power of 

m z( / )R R as obtained by Sharma and Gupta5 by 
expanding the flow functions in powers of zR . Using 
expression (4), the dimensionless velocity 
components ,  and U V W correct to 2

z( )O R  are: 
 

4 2 2z m

0 z
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and  
 

5 3 2z

0

( 3 2 )
30
RwW

z
⎡ ⎤
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where T (= T1 + T2) represents total second-order 

effects and 
0

r
z

ξ= . 

 The above expressions for velocity components 
show that for the present case and with the 
approximation introduced, the cross-viscous and 
elastico-viscous effects are additive. For T1 = T2 = 0, 
we get corresponding expressions for Newtonian 
fluid. 
 Dimensionless form of the radii at which there is 
no-recirculation for the cases of net radial outflow 
(m>0) and net radial inflow (m<0) respectively are 
found to satisfy the following conditions:  
 

(i) m

0 1

0; 0 , 0U UR
ζ = ζ =

⎡ ⎤ ⎡ ⎤∂ ∂
> ≥ ≤⎢ ⎥ ⎢ ⎥∂ ζ ∂ ζ⎣ ⎦ ⎣ ⎦
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(ii) m m n
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0 ( ); 0, 0U UR R R
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  … (15) 
 

The maximum values 1 2
1 2

0 0

and r r
z z

⎡ ⎤ ⎡ ⎤
ξ = ξ =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 of 

these non-dimensional radii are easily found to be: 
 

2 2 2m
1 z2

z

25200 (6720 1448 89)
560

R R T T
R

⎡ ⎤ξ = − − −⎣ ⎦ , 

  … (16) 
2 2 2m
2 z2

z

25200 (6720 1912 1 )
840

R R T T
R

⎡ ⎤ξ = − + +⎣ ⎦ . 

  … (17) 
 
 For the case m 0R >  there is recirculation except in 
the region 10≤ξ ≤ξ  and for m 0R <  there will be no-
recirculation in the region 20≤ξ ≤ ξ  . 
 
Numerical solution  
 Eqs (7)-(10) are non-linear in H, M, G and L, but 
Eqs (7) and (9) are independent of M and L. 
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 We replace the derivatives therein by finite 
difference approximations. All 'sjH  and 'sjG in the 
finite difference equations are functions of the 
variable ζ . We divide the range of (0,1)ζ  in twenty 
parts each of length 05.0=h  with mesh points 2 to 
22. Points 1 and 23 are fictitious points. 
 

 
 
 The boundary conditions can be rewritten as: 
 

2 22

23 21 1 3

2 22

1 3 23 21

2 22

0,
, ,

0, 1,
, ,

0,

H H
H H H H

M M
M M M M
L L

= =
= =

= =
= =

= =

  … (18) 

2 220, 1G G= =  
 
 The finite difference equations obtained represent 
38 non-linear equations. Functions 1, j 3, j,F F  are 
functions of 38 variables, 3 4 20 21, ... , ,G G G G  

3 4 20 21...H H H H . 

 Using the approximate solution for velocity field 
obtained, we obtain first approximation at different 
mesh points in (0, 1). The differences between the 
exact and the approximate values are denoted by 

j j,H GΔ Δ  and can be calculated by 
j jj j j,H H H G G G= + Δ = + Δ . Expanding 1, j andF  

3, jF  by means of Taylor's series and neglecting the 
second and higher powers of the small quantities, 
Newton-Raphson's iterative method is applied to 
solve this system, under the boundary conditions (18). 
A better approximation to H and G is thus found. The 
procedure is repeated till the desired accuracy is 
achieved. Substituting the values of j jandG H  into 
corresponding difference Eqs (8) and (10) at different 
mesh points, Gauss elimination method is used to 
solve the system of linear equations. The values of M′ 
and L are also calculated and finally , andU V W  
are obtained. 

Results and Discussion 
 The numerical computations have been made for 
Rz=0.5, 5.0 and 10.0 and Rm=0.02, -0.02. The 
maximum radii for no recirculation in case of net 
radial outflow and inflow for Rz = 0.5 for varying T 
are calculated by making use of the expressions (16) 
and (17) and for Rz = 5.0 and 10.0 for varying T by 
using forward difference and backward difference 
formulae. It is found that these radii decrease with an 
increase in T and also with an increase in Rz at fixed T 
at Rz

 = 0.5. Reverse is the case for Rz = 5.0 and 10.0 
with an increase in T. 
 The values of dimensionless radial and transverse 
components of velocity for the cases  
 

m m m n0 and 0 ( )R R R R> < = − , 

1 1 2 2

( ) ( )
(T) z m (T) (T) z n (T)/ , /U U R R U U R R+ −

ξ ξ ξ ξ
⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦  

1 1 2 2

( ) ( )
(T) z m (T) (T) z n (T)/ , /V V R R V V R R+ −

ξ ξ ξ ξ
⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦  

 
for different values of T and for maximum and other 
values of 1ξ  and 2ξ have been calculated and shown 
in Figs 2-5. It is seen that if T increases, the radial 
component of velocity for maximum radii for no-
recirculation decreases near the rotor and increases 
near the stator both for radial outflow and inflow for 
Rz = 0.5 and increases near the rotor and decreases 
near the stator for Rz = 5.0 and 10.0. Figs 2 and 3 
representing the behaviour of the radial velocity at 
maximum radii for T = 0, 2 in the cases 

m m0 and 0R R> < , for Rz = 0.5, 5.0 and 10.0, exhibit 
the associated phenomena of no-recirculation. To 
discuss the recirculation behaviour the radial velocity 
 

 
 

Fig. 2—Variation of radical velocity at maximum radii  
(for the case Rm>0) 
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Fig. 3—Variation of radical velocity at maximum radii 
(for the case Rm<0) 

 

 
 

Fig. 4—Variation of radical velocity at fixed radius 
 (for the case Rm>0) 

 

 
 

Fig. 5—Variation of radical velocity at fixed radius  
(for the case Rm<0) 

 
 

Fig. 6—Variation of H′ (ζ) with ζ 

 

 
 

Fig. 7—Variation of M′ (ζ) with T 

 

 
 

Fig. 8—Variation of G (ζ) with ζ 
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Fig. 9—Variation of L (ζ) with T 
 

1 2

( ) ( )
(0) (0)and U U+ −

ξ ξ  are computed at fixed radii for 

m m0 and 0R R> <  and shown through Figs 4 and 5. It 
is found that there is no-recirculation for 0.5zR =  and 
recirculation for z 5.0R =  and 10.0 at T = 2 for 

m 0R > . This shows that a change in the direction of 
net radial flow changes the behaviour of radial 
velocity at fixed radii with T. The transverse velocity 
component for both the cases m̂ 0R >  and m 0R <  at 
maximum radii decreases near both the rotor ( 1)ζ =  
and stator ( 0)ζ =  with an increase in T for 0.5zR = , 
while it increases near both the rotor and stator for 

ẑ 5.0R =  and 10.0. Thus it is clear that an increase in T 
produces more and more recirculation, however, there 
is no-recirculation for the viscous case. The variation 
of non-dimensional velocity functions H′ , M′, G and 
L with Reynolds number zR are obtained and 
represented graphically through Figs 6-9. It is seen 
that  the  values  of  H′,   which  is  independent  of   T 

decreases towards both the rotor and stator. The 
behaviour of M′ for all values of z 0.5R = , 5.0 and 
10.0 is to increase with an increase in T near both the 
rotor and stator. The values of L are observed to 
increase for z 0.5R = , 5.0 and 10.0 near the stator and 
decrease near the rotor with an increase in T. 
 
Conclusions 
 This study concludes that the numerical method 
provides quite good results not only for small values 
of the Reynolds number but for larger Reynolds 
numbers also. The transverse shearing stress, moment, 
dimensionless moment coefficient on the stationary 
disc, the radial pressure variation on the stationary 
disc between the radii ξ  and 0ξ , average normal 
force on the stationary disc up to a radius sξ  can also 
be obtained5. 
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