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Abstract. Finite element and finite difference methods have been widely used, among other
methods, to numerically solve the Fokker-Planck equation for investigating the time history of
the probability density function of linear and nonlinear 2d and 3d problems, and also the ap-
plication to 4d problems has been addressed. However, due to the enormous increase of the
computational costs, different strategies are required for an efficient application to problems
of dimension ≥ 3. Recently, a stabilized multi-scale finite element method has been effectively
applied to the Fokker-Planck equation effectively by means of a considerably reduction of the
required number of elements. Also, the alternating directions implicit method shows good per-
formance in terms of efficiency and accuracy. In this paper various finite difference and finite
element methods are discussed and the results are compared using various numerical examples.
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1 INTRODUCTION

The response of linear systems subjected to additive Gaussian white noise or linearly filtered
Gaussian white noise is Gaussian. The derivation for an N-dimensional system can be found,
e.g. in [1]. For the case of nonlinear systems subjected to additive Gaussian white noise, an-
alytical solutions are restricted to certain scalar systems. It has been shown (see [2]), that the
response of a multi-dimensional memoryless nonlinear system subjected to additive Gaussian
white noise forms a vector Markov process, with transition probability density function satisfy-
ing both the forward (Fokker-Planck) and backward Kolmogorov equations for which numerical
approximations in terms of finite element and finite difference methods can be pursued.

1.1 Scope of this work

A number of numerical methods have been introduced over the past five decades to obtain
approximate results for the solution of the Fokker-Planck equation (FPE). Many of these ap-
proximations can be shown to be accurate. This work deals with a review of several finite
element and finite difference methods. A comparison and assessment of different methods is
carried out by means of various numerical examples including a 2d linear, 2d unimodal and
bimodal Duffing oscillators, 3d linear and 3d Duffing oscillators.

The goal is to evaluate the transient solution for the probability density function (PDF) of the
oscillator due to stochastic (white noise) excitation. Thus, the forward Kolmogorov or Fokker
Planck equation is of interest and will be approximated within the numerical methods.

1.2 Background

The finite element method was first applied by [3] to determine the reliability of the linear,
single degree-of-freedom oscillator subjected to stationary Gaussian white noise. The initial
boundary problem associated with the backward Kolmogorov equation was solved numerically
using of a Petrov-Galerkin finite element method.

[4] has solved the stationary form of the FPE adopting the finite element method (FEM) in
order to calculate the stationary probability density function of response. The weighted residual
statement for the Fokker-Planck equation was first integrated by parts to yield the weak form of
the equations.

The transient form of the FPE has been analyzed by [5] using a Bubnov-Galerkin FEM. It
is shown that the initial boundary value problem can be modified in order to evaluate the first
passage problem. A comparison for the reliability was carried out with the results obtained from
the backward Kolmogorov equation.

The drawback of the FEM is the quickly increasing computational cost with increasing di-
mension. Thus while 2 and 3 dimensional systems have been analyzed in the literature, the
analysis of 4d or 5d problems touches the limits of today’s computational capabilities and are
not yet feasible.

Computationally more economical - in terms of memory requirements, and when consider-
ing the effort spent for the assembly of the mass and stiffness matrices - are finite difference
methods. The application of central differences is, as expected, only feasible for the case of 2d
linear systems, because of stability issues. The stability is a function of the nonlinearity and the
dimension (ratio ∆t and

∏n
i=1 ∆xi), thus being unfavorable to the use of this simple method.

A successful approach to overcome the limitations of simple finite differences was achieved
by [6] in terms of higher order finite differences. The solution of a 4d system using higher order
finite differences is reported in [6]. A comparison of various higher order FD formulations is
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presented in [7].
A viable approach to achieve higher accuracy is the application of operator splitting meth-

ods. Their capabilities with respect to the numerical solution of the FPE has so far received
little attention. Operator splitting methods provide a tool to reduce the computational costs
by the reduction of the solution to a series of problems of dimension of one order less than
the original problem. Thus, more efficiency, required for the solution of problems of larger
dimension (>= 3), can be achieved. An operator splitting method for the solution of the 2d
Duffing oscillator is presented in [8]. An operator splitting scheme for 3d oscillators subjected
to additive and multiplicative white noise is given by [9]. The method consists in a series of
consecutive difference equations for the three fluxes and is numerically stable. The ADI [10]
is adopted in this paper for a series of problems and acceptably accurate results are achieved at
low costs. The implementation of the method is straightforward and can be readily extended to
higher dimensions.

Recent work by Masud et al. introduced a stabilized multi-scale finite element method which
allows for a reduction of the number of elements for given accuracy and, thus, the efficiency of
the computation can be increased by an order of magnitude when solving a 3d problem.

Several four-state dynamical systems were studied by [11, 12] in which the Fokker-Planck
equation was solved using a global weighted residual method and extended orthogonal func-
tions.

Meshless methods were proposed by [13, 14] to solve the transient FPE and [15] for the sta-
tionary FPE. Considerable reduction of the memory storage requirements could be expected due
to coarse meshes employed and thus a standard desktop PC suffices to carry out the numerical
analysis.

In addition, many numerical packages now provide the capability to solve partial differential
equations by means of finite element and finite difference methods. However, in most cases
these tools are limited to 2d and can only solve special forms of elliptic, parabolic or hyperbolic
partial differential equations (PDE). The implementation of FD and FEM into computational
software is shown for the cases of COMSOL (2d linear) and FEAP(general 3d).

2 THE FOKKER-PLANCK EQUATION

The Fokker-Planck equation for a n-dimensional system subjected to external Gaussian white
noise excitation is given by

∂p

∂t
= −

n∑
j=1

∂

∂xj

(zjp) +
1

2

(
n∑

i=1

n∑
j=1

∂2

∂xi∂xj

(Hijp)

)
(1)

where p denotes the transition probability density function, x the n-dimensional state space
vector and z(x) and H(x) denote the drift vector and diffusion matrix, respectively.

The normalization condition for the probability density function is given by:∫
pX(x)dx = 1 , (2)

and the initial conditions are given by p(x0, 0). Examples for initial conditions are, e.g., deter-
ministic given by the Dirac delta function

pX(x0, 0) =
n∏

i=1

δ((xi − x0i)) (3)
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or the n-dimensional Gaussian distribution

pX(x0, 0) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
(4)

in the random case.
At infinity, a zero-flux condition is imposed:

p(xi, t)→ 0 as xi → ±∞ i = 1, 2, . . . , n (5)

Without loss of generality, and for a better comparison, the various methods introduced in
the following, will be presented for the 2d linear case,{

ẋ1

ẋ2

}
=

[
x2

−2ξωx2 − ω2x1

]
+

[
0
1

]
w(t) (6)

The corresponding FPE is

∂p

∂t
= −∂(x2p)

∂x1

+
∂ [(2ξωx2 + x1) p]

∂x2

+D
∂2p

∂x2
2

(7)

which, after application of the chain rule, becomes:

∂p

∂t
= −x2

∂p

∂x1

+ (2ξωx2 + x1)
∂p

∂x2

+ 2ξωp+D
∂2p

∂x2
2

(8)

3 FINITE DIFFERENCE AND FINITE ELEMENT METHODS

Many references deal with the application of FE and FE methods to the numerical solution
of the Fokker-Planck equation (see e.g. [7, 16]).

3.1 Central finite differences

In terms of central finite differences, Eq. (8) becomes:

pm+1
i,j − pm

i,j

∆t
= −x2

pm
i+1,j − pm

i−1,j

2∆x1

+2ξωpm
i,j+(2ξωx2)

pm
i,j+1 − pm

i,j−1

2∆x2

+D
pm

i,j+1 − 2pm
i,j + pm

i,j−1

∆x2
2

(9)
and an explicit formulation is obtained for the probability density function

pm+1
i,j = pm

i,j + ∆t
(
−x2

pm
i+1,j − pm

i−1,j

2∆x1

+ 2ξωpm
i,j + (2ξωx2)

pm
i,j+1 − pm

i,j−1

2∆x2

+D
pm

i,j+1 − 2pm
i,j + pm

i,j−1

∆x2
2

)
(10)

The boundary conditions are given by pi,j = 0 for i, j = 1, N . The discretization using
central finite differences leads to an explicit scheme, which means that the values pm+1

i,j can be
calculated directly from values pm

i,j . Thus, the linear system of equations can be solved directly,
and no inversion of the matrix relating pm

i,j to pm+1
i,j is required.

Explicit finite difference represents the simplest approximation; however, due to stability
issues, implicit FD formulations are generally required.

Implicit, higher order finite difference schemes to solve Fokker-Planck equations have been
developed by [6]. Higher order FD lead to more accurate results, but they are not used for
comparison herein.
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3.2 Alternating directions implicit method

The alternating directions implicit method (ADI) is a finite difference scheme, for which the
finite difference steps in each direction are resolved separately and in each step implicitly for
one dimension and explicitly for the others, leading to a stable finite difference formulation. The
main advantages are that the resulting operational matrix is tridiagonal and, thus, its inverse can
be computed efficiently. Moreover, the dimensionality of the problem is reduced by one and the
problem is reduced to a series of of problems of dimension of one order less.

In Eq. (8), finite differences are first applied implicitly to the x1-direction

p
m+1

2
i,j −pm

i,j

∆ t
2

=

−x2
p

m+1
2

i+1,j−p
m+1

2
i−1,j

2∆x1
+ 2ξωpm

i,j + (2ξωx2)
pm

i,j+1−pm
i,j−1

2∆x2
+D

pm
i,j+1−2pm

i,j+pm
i,j−1

∆x2
2

(11)

and then to the x2-direction.

pm+1
i,j −p

m+1
2

i,j

∆ t
2

=

−x2
p

m+1
2

i+1,j−p
m+1

2
i−1,j

2∆x1
+ 2ξωp

m+ 1
2

i,j + (2ξωx2)
pm+1

i,j+1−pm+1
i,j−1

2∆x2
+D

pm+1
i,j+1−2pm+1

i,j +pm+1
i,j−1

∆x2
2

(12)

Both Eq. (11) and Eq. (12) give M − 2 tridiagonal linear systems of equations in x1 for the
j = 2, . . . ,M − 1 values of x2 and in case of Eq. (11) to M − 2 tridiagonal linear systems of
equations in x2 for the i = 2, . . . ,M − 1 values of x1 and in case of Eq. (12).

The computational cost is mainly due to the n times N matrix inversions which are encoun-
tered in the n-loops solution for a full time step. n denotes the dimension of the problem and
N the number of nodes per dimension.

3.3 Finite element method

Reduction of Eq. (1) to the weak form and the introduction of shape functions of C0 conti-
nuity lead to

Cṗ+Kp = 0 (13)

where
Ce

rs =

∫
Ωe

Nr(x)Ns(x)dx (14)

and

Ke
rs =

∫
Ωe

(
n∑

i=1

zi(x)Ns
∂

∂xi

Nrdx−
n∑

i=1

n∑
j=1

∂

∂xi

Nr
∂

∂xi

[HijNs] dx

)
Nr(x)Ns(x)dx (15)

The integration over time can be performed in a suitable way using the Crank-Nicholson
scheme (θ = 0.5).

3.4 Multi-scale finite element method

The multi-scale FEM used herein was introduced by [17] for the numerical treatment of
advection-diffusion equations in fluid dynamics. Then, the methodology was extended by [18]
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to the special case of the Fokker-Planck equation. Finally, the method was applied for the
numerical solution of the Fokker-Planck equation of a 3d linear system [19]. [20] provide an
overview of stabilized finite element methods and recent developments of their application to
the advection-diffusion equation.

For a description of the method the reader is referred to the aforementioned references. Ba-
sically, a multi-scale FEM means that an approximation of the error term from the traditional
FE formulation is included as a fine scales into the formulation, the probability density function
is then given by

p = p̂+ p′ (16)

where p̂ represents the contribution of the coarse scale and p′ the contribution of the fine scale.

3.5 Implementation within COMSOL / FEAP

The FE code COMSOL provides the possibility to solve partial differential equations in
terms of finite differences. For an extensive discussion, refer to the COMSOL documentation,
[21]. Fig. 1 shows the results obtained for the FPE for the 2d linear oscillator with parameters
discussed later.

Figure 1: Probability density function p(0, 0, t) at central node over time.

The multiscale finite element method was implemented by Masud and coworkers into the
finite element code FEAP and is used herein for comparison of the 3d examples.

4 NUMERICAL EXAMPLES

The numerical methods used in this comparison are:

1. central finite differences (FD)

2. alternating directions implicit method (ADI)

3. Bubnov Galerkin finite element method (FEM)

4. stabilized multiscale finite element method (MSFEM)
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The methods 1-3 are coded in MATLAB and the analysis was carried out on a 64-bit Win-
dows server (32GB). The results for method 4 are obtained on 32 bit Linux or Windows ma-
chines with 2GB memory using an implementation within FEAP, [18].

4.1 2-d linear oscillator

The different methods are applied to solve the FPE for the linear oscillator[
ẋ1

ẋ2

]
=

[
x2

−2ξωx2 − ω2x1

]
+

[
0
1

]
w(t) (17)

The parameters of the oscillator are chosen according to [5] and are given by:

µ σ ξ ω D
[5, 5] 1

9
I(2) 0.05 1 0.1

Table 1: Parameter for the linear oscillator

Finite element results obtained using a 61 × 61 mesh are shown in Fig. 2 and Fig. 3. All
results are calculated with a time increment of ∆t = 0.001 and a total time of τ = 20 natural
periods. The state space is discretized on the domain [−10, 10]× [−10, 10];

Fig. 2 shows the evolution of the probability density function over time. In Fig. 3 the transient
solution for the PDF at the origin is given. The exact stationary value at the origin is p(0, 0)stat =
1.5915e−1.

Figure 2: FEM: 61× 61 - Probability density function p(t) over time.

The accuracy of the numerical solutions are compared at stationarity (i.e. after t = 20 cycles)
using two error measures. The first, the maximum norm

‖e‖∞ = ‖pex − pnum‖∞ (18)
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Figure 3: FEM: 61× 61 - Probability density function at central node p(0, 0, t) over time.

is a measure of the maximum error across the entire mesh. The second,

‖e‖2 = ‖pex − pnum‖2 (19)

can be used to describe the average nodal error e = ‖e‖2/nnodes, where nnodes is the total
number of nodes.

mesh 61× 61 81× 81 101× 101 121× 121
method ‖e‖∞ ‖e‖2 ‖e‖∞ ‖e‖2 ‖e‖∞ ‖e‖2 ‖e‖∞ ‖e‖2

FD 7.05e-3 2.99e-2 4.169e-3 2.405e-2 2.983e-3 2.201e-2 2.371e-3 2.199e-2
ADI 1.66e-2 4.61e-2 4.144e-3 2.375e-2 2.931e-3 2.149e-2 2.305e-3 2.124e-2
FEM 2.04e-3 1.00e-2 1.712e-3 1.152e-2 1.550e-3 1.370e-2 1.464e-3 1.613e-2

Table 2: Comparison of the accuracy for the linear oscillator

Table 2 correctly visualizes the increasing accuracy for all methods when the mesh is refined.
It can also be seen that the FD and ADI deliver similar results. The advantage of the ADI over
FD consists in the fact that the stability of the method allows one to use larger time steps.
The FEM provides more accurate results for the same mesh refinement as the finite difference
methods. The FEM is the preferable method to investigate the first passage problem, in case
small probabilities of failure are involved and a highly accurate method is required.

Alternatively, the accuracy of the solution at stationarity can also be represented by com-
parison of the exact and numerical covariance matrices Kxx, the latter computed from FE/FD
results for the PDF.

The transient solution for the probability density at the center node can be obtained with all
three methods as listed in Table 2. Fig. 4 shows a comparison for the PDF at the origin using
finite difference method and different mesh sizes.
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Figure 4: FD - Comparison for probability density function at central node p(0, 0, t) over time.

4.2 2-d Duffing oscillator

4.2.1 Unimodal

The unimodal Duffing oscillator is considered next:[
ẋ1

ẋ2

]
=

[
x2

−2ξωx2 − ω2x1 − ω2γx3
1

]
+

[
0
1

]
w(t) (20)

The parameters of the oscillator are chosen as:

µ σ ξ ω D γ
[0, 10] 1

2
I(2) 0.2 1 0.4 0.1

Table 3: Parameters for the unimodal Duffing oscillator

The state space is discretized on the domain [−15, 15]× [−15, 15].
It is known that central finite differences are not suited in case of nonlinearities, but ADI

can be utilized nonetheless. In case the Duffing-oscillator is analyzed, it is found that the ADI
can be used due to its implicit formulation with the largest time step ∆t, thus providing a good
compromise between accuracy and efficiency as can be seen from Table 4. The time steps used
are ∆t = 1e− 2 (ADI), ∆t = 1e− 3 (FEM) and ∆t = 5e− 4(FEM: mesh 101).

The exact analytical expression for the stationary PDF of the unimodal Duffing oscillator of
Eq. (20) is given as:

σ2
x0

=
πG0

4ξω3
0

σ2
v0

= ω2
0σ

2
x0

(21)

pX(x) = C exp

(
− 1

2σ2
x0

(
x2 +

γ

2
x4
)
− 1

2
σ2

v0
v2

)
The value of the stationary PDF at the central node is pstat(0, 0) = 1.6851e− 1.
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Figure 5: FEM: 101× 101 - Probability density function at central node p(0, 0, t) over time.

method / mesh 61× 61 81× 81 101× 101
‖e‖∞ ‖e‖2 ‖e‖∞ ‖e‖2 ‖e‖∞ ‖e‖2

ADI 1.7832e-2 4.9323e-2 9.6731e-3 3.5553e-2 6.1694e-3 2.8444e-2
FEM 2.6002e-3 1.1587e-2 1.3999e-3 8.5297e-3 9.3290e-4 6.8215e-3

Table 4: Comparison of the accuracy for the unimodal Duffing oscillator
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4.2.2 Bimodal

The equations for the bimodal Duffing oscillator are characterized by the changed sign of the
term ω2x1. [

ẋ1

ẋ2

]
=

[
x2

−2ξωx2 + ω2x1 − ω2γx3
1

]
+

[
0
1

]
w(t) (22)

The parameters of the oscillator are chosen according to [5] and are given by:

µ σ ξ ω D γ
[0, 10] 1

2
I(2) 0.2 1 0.4 0.1

Table 5: Parameter for the bimodal Duffing oscillator

The state space is discretized on the domain [−15, 15]× [−15, 15]. Again, the ADI provides
a tool for obtaining accurate results rather quickly.

In Fig. 6 the PDF is depicted for stationary conditions and a 61 × 61 mesh. A comparison
of the evolution of the probability density function at the origin is shown in Fig. 7 for FEM and
different meshes.

To compare the solution, the analytical expression according to [22] should be used. The
exact analytical expression for the bimodal Duffing oscillator of Eq. (22) is given as:

pX(x) = C exp

(
− 1

2σ2
x0

(
−x2 +

γ

2
x4
)
− 1

2
σ2

v0
v2

)
The value of the stationary PDF at the central node is pstat(0, 0) = 8.3161e − 3. The max-

imum value of the stationary PDF of the bimodal oscillator at x1,2 = ±
√

1/γ = ±3.1623 and
y1,2 = 0 is pstat(x1,2, 0) = 0.1013. A comparison of the evolution of the probability density
function at the mesh point (x = 3, y = 0) which is closest to the maximum of the PDF is shown
in Fig. 8 for FEM and different meshes; pstat(3, 0) = 0.0988.

method / mesh 61× 61 81× 81 101× 101
‖e‖∞ ‖e‖2 ‖e‖∞ ‖e‖2 ‖e‖∞ ‖e‖2

ADI 4.7186e-2 1.8229e-1 1.1899e-2 4.2491e-2 7.5077e-3 3.0640e-2
FEM 6.8085e-3 1.9074e-2 2.6024e-3 1.1265e-2 2.8419e-3 1.3709e-2

Table 6: Comparison of the accuracy for the bimodal Duffing oscillator
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Figure 6: 61× 61: Stationary probability density function pstat.

0 5 10 15 20 25 30 35 40 45 50
−0.01

0

0.01

0.02

0.03

0.04

0.05

time [s]

pd
f(

0,
0,

0)

 

 

FEM: net 612

FEM: net 812

Figure 7: FEM: Comparison of the probability density function at the central node p(0, 0, t) over time.
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Figure 8: FEM: Comparison of the probability density function at the node p(3, 0, t) over time.

4.3 3-d linear oscillator

A 3-rd state variable is introduced in terms of a low pass filter for the white noise excitation
which is applied to the linear 2d system.ẋ1

ẋ2

ẋ3

 =

 x2

−2ξωx2 − ω2x1 + x3

−αx3

+

0
0
1

w(t) (23)

The parameters of the 3d linear oscillator are:

µ σ ξ ω D α
[0, 0, 0] 0.2I(3) 0.2 1 0.4 1

Table 7: Parameter for the 3d linear oscillator

Tables 8 and 9 shows a comparison of the accuracy of the results for the linear oscillator.
The time step is chosen to be ∆t = 0.01, and only for FEM (net 813) ∆t = 0.001 is required.
The exact stationary value of the PDF at the origin is p(0, 0, 0) = 0.2409.

method / mesh 253 413

‖e‖∞ ‖e‖2 ‖e‖∞ ‖e‖2

ADI 1.8009e-1 3.6649e+0 4.8336e-2 4.8748e-1
FEM 6.5802e-3 4.6480e-2 3.5574e-3 4.6357e-2

MSFEM 1.2533e-2 5.0262e-2 memory

Table 8: Comparison of the accuracy for the linear oscillator
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Figure 9: Probability density function at the central node p(0, 0, 0, t) over time.

method / mesh 613 813 1013

‖e‖∞ ‖e‖2 ‖e‖∞ ‖e‖2 ‖e‖∞ ‖e‖2

ADI 1.2542e-2 2.1170e-1 6.9165e-3 1.8067e-1 4.3899e-3 1.6063e-1
FEM 1.4081e-3 3.4554e-2 3.9016e-4 2.4920e-2

Table 9: Comparison of the accuracy for the linear oscillator
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4.4 3-d Duffing oscillatorẋ1

ẋ2

ẋ3

 =

 x2

−2ξωx2 − ω2x1 − ω2γx3
1 + x3

−αx3

+

0
0
1

w(t) (24)

The parameters of the 3d Duffing oscillator are:

µ σ ξ ω D α γ
[0, 0, 0] 0.2I(3) 0.2 1 0.4 1 0.1

Table 10: Parameters for the 3d Duffing oscillator

Fig. 10 shows converged results for the evolution of the PDF at the origin over time using
ADI for two different degrees of nonlinearity and for the corresponding linear system (γ = 0).

0 5 10 15 20 24
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time [s]

pd
f(

0,
0,

0)

 

 

813 net, linear γ = 0, dt = 0.01

813 net, γ = 0.1, dt = 0.01

413 net, γ = 0.5, dt = 0.01

Figure 10: Probability density function at the central node p(0, 0, 0, t) over time.

5 DISCUSSION

Despite of the greater numerical effort, the FEM is preferable over FD, because it yields
more accurate results. However, at this time the FEM is only suitable for dimension ≤ 3. In the
case of 3d and 4d problems, the stabilized multi-scale FEM provides a tool with a high order of
accuracy, preserving numerical efficiency due to the fact that a coarser mesh size can be used.

The first effective numerical solution for 4d problems was reported by [23] in terms of high-
order finite differences. The advantage of operator splitting methods including the ADI is the
stability of the method, meaning that larger time steps (when compared to FEM) can be used,
thus and speeding up the analysis as the dimensionality of the problem is reduced by one.

The recently introduced PUFEM (see Kumar et al.) represents a possibility to obtain good
results with coarse mesh sizes. The price paid is the computational overhead required in order
to allow for the proposed coarse mesh size.
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From the above discussion it is clear that future developments will be bounded by the so-
called curse of dimensionality for some time.
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