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Abstract

In this paper, we describe a novel method for robust and accurate iterative solution
of the self-consistent Hartree-Fock equation in R

3 based on the idea of tensor-structured
computation of the electron density and the nonlinear Hartree and (nonlocal) exchange
operators at all steps of the iterative process. We apply the self-consistent field (SCF)
iteration to the Galerkin discretisation in a set of low separation rank basis functions
that are solely specified by the respective values on a 3D Cartesian grid. The approx-
imation error is estimated by O(h3), where h = O(n−1) is the mesh size of n × n × n

tensor grid, while the numerical complexity to compute the Galerkin matrices scales
linearly in n log n. We propose the tensor-truncated version of the SCF iteration using
the traditional direct inversion in the iterative subspace (DIIS) scheme enhanced by the
multilevel acceleration with the grid dependent termination criteria at each discretiza-
tion level. This implies that the overall computational cost scales almost linearly in
the univariate problem size n. Numerical illustrations are presented for the all electron
case of H2O, and pseudopotential case of CH4 and CH3OH molecules. The proposed
scheme is not restricted to a priori given rank-1 basis sets allowing analytically inte-
grable convolution transform with the Newton kernel, that opens further perspectives
for promotion of the tensor-structured methods in computational quantum chemistry.

AMS Subject Classification: 65F30, 65F50, 65N35, 65F10
Key words: Orthogonal Tucker tensor decomposition, canonical model, tensor-truncated
methods, discrete convolution, Hartree-Fock equation, Coloumb and exchange matrices,
multigrid accelerated SCF iteration.

1 Introduction

In recent years the concept of tensor-structured numerical methods has opened new per-
spectives for solving the basic equations of mathematical physics in R

d, d ≥ 3, in particular,
the many-particle Schrödinger equation [2, 11, 3, 27], and multidimensional elliptic spectral
problems [13, 21]. Tensor methods are based on the idea of separable approximation of
d-variate functions and related operators arising in the discretisation and solution process
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posed in a multivariate function space in R
d. This concept appears to be particularly attrac-

tive for simplified approaches, like the ab initio Hartree-Fock and density functional theory
methods, reducing the dimensionality of the problem to d = 3, though the kernels of the
nonlocal operators involved are functions of six spatial dimensions [14, 6, 22, 23, 24, 19].

The traditional numerical methods in ab initio electronic structure calculations are based
on the Galerkin approximation in the problem-dependent Gaussian-type orbitals (GTO) ba-
sis (meshless methods). Many efforts have been devoted to the development of rigorous
schemes for the analytical evaluation of the so-called two-electron integrals inherent for
this approach, which have yielded state-of-the-art software packages [34]. The Hartree-Fock
model presupposes at least cubic (or fourfold) scaling in the number of the basis functions
[26]. Hence computations using Gaussian bases for large molecules may become infeasible.
The simplified models based on the appropriately adjusted pseudopotentials, can be solved
by using grid-oriented methods over n× n× n spacial grids via the traditional plane waves,
wavelet or finite element discretizations, with computational cost which scales at least lin-
early in the volume size, NV = n3, [1, 9, 10]. In this way, the practically tractable grid-size
for the calculations using these traditional approaches is limited by the value n ≈ 500.

The principal question then arises: is it possible to solve the Hartree-Fock/Kohn-Sham
models by the grid-based methods with linear scaling in the univariate grid-size n, i.e.,
sublinear in the volume, O(N

1/3
V )? In what follows, we give the promising answer to this

question by introducing a tensor-structured numerical scheme that solves the Hartree-Fock
equation with O(n logn)-complexity. To that end, we suggest the novel concept for the
numerical solution of the Hartree-Fock equation which is based on the use of a moderate
number of the problem-adapted discrete Galerkin basis functions living on 3D Cartesian grid,
and represented with a low separation rank. Such a basis can be viewed as a kind of algebraic
generalization/optimisation of the traditional GTO or Slater-type orbitals providing the way
to O(n logn) discrete evaluation of the arising six-dimensional volume integrals.

The core of our method is the tensor-structured computation of the electron density and
the Galerkin matrices of the nonlinear Hartree and (nonlocal) exchange operators at all steps
of iterations on nonlinearity, based on the systematic use of the rank-truncated linear tensor-
tensor operations (see Appendix and [23, 24, 17]). Within the solution process, all principal
multilinear algebra operations, such as the scalar and Hadamard products, the laborious
3D convolution transform, and the rank truncation procedures are implemented with O(n)-
complexity. Due to almost linear scaling in n of the 3D tensor-structured arithmetic, we
achieve high accuracy of calculations due to accessibility of the large n× n× n tensor grids
of size up to 163843 at the finest approximation level. In electronic structure calculations

this implies rather fine resolution with the mesh size h ≈ 10−4
◦

A providing possibility for
arbitrary space orientation of a molecule in the computational box.

Particularly, the self-consistent field (SCF) iteration applies to the Galerkin discretisa-
tion of the Hartree-Fock equation with respect to certain problem adapted basis with low
separation rank. Making use of piecewise linear grid representation of the Galerkin basis
functions, and piecewise constant representation of the electron density, leads to the approx-
imation error of order O(h2), in the Hartree and exchange potentials, where h = O(n−1)
is the respective mesh size. In the case of only few spacial singularities, the locally refined
tensor grids can be adapted.

In this paper the traditional direct inversion in the iterative subspace (DIIS) SCF iteration
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scheme commonly used in the physical literature [30, 15, 4] is applied. We enhance the
DIIS iteration by a multilevel strategy with grid dependent termination criteria at each
discretization level. It has a two-fold effect, providing a good initial guess on finer grids,
and allowing improved approximation O(h3), via Richardson extrapolation over a sequence
of grids. The discrete orbitals, represented by the respective coefficients vectors are updated
by diagonalising the Galerkin stiffness matrix at each iteration on nonlinearity at the expense
O(N3

b ), where Nb is the dimension of the Galerkin subspace. In general, the convergence
proof for the nonlinear DIIS iteration is still an open question [26].

We observe that in numerical practice, our multigrid accelerated DIIS iteration exhibits
fast and uniform in n convergence (linear convergence rate) so that the overall computational
time scales linearly in n—the tool apparently works. It is worth noting that the current
version of our method still scales cubically in the size of approximating basis. Hence, any
algebraic optimisation of this basis set within the solution process may allow fast and high
accuracy ab initio computations for large molecules. Quadratic scaling in the size of the
approximating basis might be possible in the case of iterative solution of the Galerkin spectral
problem, or in the framework of direct minimization algorithms (see [26, 32] for detailed
discussion on direct minimization).

We present numerical illustrations for the all electron case of H2O, and pseudopotential
cases of the CH4 and CH3OH molecules using the particular Galerkin basis set via discretized
GTO basis functions. The GTO basis is chosen only so that convenient comparison might
be made with the standard MOLPRO package which computes integrals related to this basis
analytically [34]. Numerical computations confirm almost linear scaling in the grid-size, n,
indicating that the proposed tensor-structured SCF iteration may provide efficient solution
of ab initio and DFT computations for large molecules.

The rest of the paper is organized as follows. In §2 we describe the standard Galerkin
scheme for the nonlinear Hartree-Fock equation, and discuss various types of commonly
used sets of Galerkin basis functions. Our choice can be only constrained by requirements
on the low separation rank of the individual basis functions, and possibly low dimension
of the Galerkin subspace. In §2.3, we introduce nonstandard agglomerated representations
of the Coulomb and Hartree-Fock exchange Galerkin matrices, which are well suited for
tensor arithmetic. §2.5 describes the basic representation of the Fock operator in the rank-
structured tensor format, which is the key point for efficient O(n logn)-implementation of the
tensor-truncated SCF iteration. In §3, we first formulate the SCF iteration that implements
the unigrid tensor-truncated DIIS scheme. The (cascadic) multigrid version of the tensor-
truncated DIIS iteration includes Richardson extrapolation over the final pair of sequential
(refined) grids. We prove O(N3

b n log n)-complexity of the proposed numerical method. In
the particular case of GTO basis, Nb is proportional to the number of electrons in the
molecule. §4 presents various numerical illustrations in the case of moderate-size molecules,
which confirm the theoretical prediction of O(n logn)-complexity. In §5 the main conclusions
are formulated. In the appendix we describe the tensor-structured formats used in our
computational scheme.
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2 Galerkin scheme and tensor approximation

2.1 Problem setting

We introduce the tensor-truncated numerical method to compute valuable quantities in the
2N -electrons Hartree-Fock equation for pairwise L2-orthogonal electronic orbitals ψi : R

3 →
R, ψi ∈ H1(R3), that reads as

FΦψi(x) = λi ψi(x),

∫

R3

ψiψjdx = δij , i, j = 1, ..., N (2.1)

with FΦ being the nonlinear Fock operator

FΦ := −
1

2
∆ + Vc + VH + K.

Here we use the definitions

τ(x, y) := 2

N∑

i=1

ψi(x)ψi(y), ρ(x) := τ(x, x),

for the density matrix τ(x, y), and electron density ρ(x), and

Vc(x) = −
M∑

ν=1

Zν

‖x− aν‖
, Zν > 0, aν ∈ R

3,

for the nuclear potential. The Hartree potential VH(x) is given by

VH(x) := ρ ⋆
1

‖ · ‖
=

∫

R3

ρ(y)

‖x− y‖
dy, x ∈ R

3, (2.2)

while the nonlocal exchange operator K reads as

(Kψ) (x) := −

N∑

i=1

(
ψ ψi ⋆

1

‖ · ‖

)
ψi(x) = −

1

2

∫

R3

τ(x, y)

‖x− y‖
ψ(y)dy. (2.3)

2.2 Standard Galerkin scheme

Usually, the Hartree-Fock equation is solved by the standard Galerkin approximation of the
initial problem in the form (2.1) posed in H1(R3) (see [26] for more details). For a given finite
basis set {gµ}1≤µ≤Nb

, gµ ∈ H1(R3), the molecular orbitals ψi are represented (approximately)
as

ψi =

Nb∑

µ=1

Cµigµ, i = 1, ..., N. (2.4)

To derive the equation for the unknown coefficients matrix C = {Cµi} ∈ R
Nb×N , we first

introduce the mass (overlap) matrix S = {Sµν}1≤µ,ν≤Nb
, given by

Sµν =

∫

R3

gµgνdx,
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the stiffness matrix H = {hµν} of the core Hamiltonian H = −1
2
∆ + Vc,

hµν =
1

2

∫

R3

∇gµ · ∇gνdx+

∫

R3

Vc(x)gµgνdx, 1 ≤ µ, ν ≤ Nb,

and the symmetric density matrix

D = 2CC∗ ∈ R
Nb×Nb . (2.5)

The nonlinear terms representing the Galerkin approximation of the Hartree and exchange
operators are usually constructed by using the so-called two-electron integrals, defined as

bµν,κλ =

∫

R3

∫

R3

gµ(x)gν(x)gκ(y)gλ(y)

‖x− y‖
dxdy, 1 ≤ µ, ν, κ, λ ≤ Nb.

Introducing the Nb ×Nb matrices J(D) and K(D), with D defined by (2.5),

J(D)µν =

Nb∑

κ,λ=1

bµν,κλDκλ, K(D)µν = −
1

2

Nb∑

κ,λ=1

bµλ,νκDκλ,

and then the complete Fock matrix F ,

F (D) = H +G(D), G(D) = J(D) +K(D), (2.6)

one obtains the respective Galerkin system of nonlinear equations for the coefficients matrix
C ∈ R

Nb×N ,

F (D)C = SCΛ, Λ = diag(λ1, ..., λN), (2.7)

C∗SC = IN ,

where the second equation represents the orthogonality constraints
∫

R3 ψiψj = δij , with IN
being the N ×N identity matrix.

In the standard implementation based on the precomputed two-electron integrals, the
complexity to build up the matrix G scales as O(N4

b ), that is dominated by computational
cost for the exchange matrix K(D). In turn, the core Hamiltonian H can be precomputed
in O(N2

b ) operations, hence, in the following, we will not focus on this issue.
The nonlinear system (2.7) can be solved by certain SCF iteration, where at each iterative

step the respective linear eigenvalue problem has to be solved with the updated matrix G(D).
Given F (D), using the direct diagonalization for solving the system (2.7) leads to the cost
O(N3

b ). The alternative approach can be based on the direct minimization of the Hartree-
Fock energy functional,

IHF = inf

{
1

2

N∑

i=1

∫

R3

|∇ψi|
2 +

∫

R3

ρVc +
1

2

∫ ∫

R3

ρ(x)ρ(y) − |τ(x, y)|2

‖x− y‖
dxdy

}
,

under the orthogonality constraints in (2.1), see [32] for more details.
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2.3 Agglomerated representation of the Galerkin matrices

In our approach, fast and accurate evaluation of the Galerkin matrices J(D) and K(D) is
based on certain reorganization of the standard computational scheme given in §2.2. Specif-
ically, instead of precomputing the full set of two-electron integrals bµν,κλ and the elements
of the density matrix D, we use agglomerated representations for J(D)) and K(D). In par-
ticular, the Galerkin representation of the Hartree operator (the Coloumb matrix) is now
based on the agglomerated integrals,

J(D)µν =

∫

R3

gµ(x)VH(x)gν(x)dx, 1 ≤ µ, ν ≤ Nb, (2.8)

including a single convolution transform in R
3 to compute the Hartree potential in (2.2),

VH = ρ ∗
1

‖ · ‖
,

where the electron density is given by

ρ(y) = 2
N∑

a=1

(
Nb∑

κ,λ=1

CκaCλagκ(y)gλ(y)

)
. (2.9)

In turn, as proposed in [17], we represent the matrix entries of K(D) by the following three
loops: For a = 1, ..., N , compute the convolution integrals,

Waν(x) =

∫

R3

gν(y)
Nb∑
κ=1

Cκagκ(y)

‖x− y‖
dy, ν = 1, ..., Nb, (2.10)

and then the scalar products

Kµν,a =

∫

R3

[
Nb∑

κ=1

Cκagκ(x)

]
gµ(x)Waν(x)dx, µ, ν = 1, ..., Nb. (2.11)

Finally, the entries of the exchange matrix are given by sums over all orbitals,

K(C)µν =

N∑

a=1

Kµν,a, µ, ν = 1, ..., Nb. (2.12)

The advantage of above representations is due to the minimization of the number of con-
volution products that have to be computed by numerical quadratures. What is even more
important, that we have the possibility of efficient low-rank separable approximation of the
discretised density ρ(x) as well as of the auxiliary potentials Waν(x) at step (2.10).

Effective realization of such a concept is based on certain unrestrictive technical assump-
tions on the Galerkin basis functions gµ. First, we suppose that the initial problem is posed
in the finite volume box Ω = [−b, b]3 ∈ R

3 subject to the homogeneous Dirichlet boundary
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conditions on ∂Ω (due to the exponential decay of the orbitals ψi(x), as ‖x‖ → ∞). For
given discretization parameter n ∈ N, introduce the equidistant tensor grid

ω3,n := ω1 × ω2 × ω3, ωℓ := {−b+ (m− 1)h : m = 1, ..., n+ 1}, ℓ = 1, ..., 3, (2.13)

with the mesh-size h = 2b/n. Define the set of piecewise constant basis functions {φi},
i ∈ I := {1, ..., n}3, associated with the respective grid-cells in ω3,n (indicator functions),
and the corresponding set {χj}, j ∈ J := {1, ..., n − 1}3, of tensor-product continuous
piecewise linear (in each spacial variable) polynomials. We denote the corresponding FE
spaces as

Vn = span{φi}, and Wn = span{χj} ∈ H1
0 (Ω).

Now the basis set {gµ} is supposed to satisfy the following properties:

(A) (Approximability). The Galerkin approximation error over the quantities in (2.7) is
physically admissible.

(B) (Separability). Each basis function gµ(x) ∈ H1
0 (Ω), can be represented by the RG-term

separable expansion in x = (x1, x2, x3), with moderate number of terms RG,

gµ(x) =

RG∑

k=1

g
(1)
µ,k(x1)g

(2)
µ,k(x2)g

(3)
µ,k(x3), µ = 1, ..., Nb. (2.14)

(C) (Discrete separability). Functions gµ(x) allow the approximate representation in either
basis sets {φi} and {χj}, by the rank-RG coefficients tensors Gµ = [Gµ,i] ∈ R

I and
Xµ = [Xµ,j] ∈ R

J , respectively.

(D) (Separable quadratures). The Galerkin integrals for J(D) and K(D) given by (2.8) -
(2.12) can be accurately represented by the well separable numerical quadratures in
the discrete basis sets {Gµ} and {Xµ}, providing asymptotical convergence as h→ 0.

Notice that the basis sets {φi} and {χj} can be generalized to those based on the higher
order piecewise polynomials over nonuniform (locally refined) tensor grids. This will only
concern with some technical aspects of our approach. The particular numerical effects of
such generalizations should be carefully verified on realistic data in electronic structure
calculation.

2.4 On the choice of the Galerkin basis functions

The examples of problem-independent grid-oriented basis sets are given by plane waves,
wavelets, and by the piecewise polynomial finite element (FE) basis functions already men-
tioned in the Introduction. Usually, the dimension of the respective Galerkin spaces is much
larger than in the case of problem dependent basis sets (see below). The practically tractable
grids (indices) of size n× n× n are presently limited by the value n ≈ 500.

Several efficient “meshless” basis sets {gµ} are known in the literature on computational
quantum chemistry. In particular, we mention the linear combination of atomic orbitals
(LCAO) and their successors, Slater-type orbitals (STOs). The most popular are the so-
called Gaussian-type orbitals (GTOs) and their more general version, contracted Gaussian
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functions, which probably constitute the best compromise between STOs and GTOs (cf. [26]
for detailed discussion). The construction of such problem dependent basis sets is distinctively
based on the precomputed electronic orbitals for single atoms.

An alternative to the analytically given GTO-type basis functions are the so-called fully
numerical atomic orbitals [26], that are solely specified by their numerical values on a grid.
Such a choice of basis functions fits well the spirit of our tensor-structured numerical method.
On the one hand, this allows to utilize the already existing problem adapted basis sets taking
advantage of the important physical information, that is well known for the individual atoms.
At this step, in the present approach, one has the possibility to further algebraic optimization
of the Galerkin subspace (reduction of the Galerkin dimension Nb). On the other hand, the
(low-rank) separable representation of functions and operators reduces the 3D calculations to
fast numerical operations implemented only on the univariate grids (1D calculations) [22, 17].
In this way, the computation of the volume integrals, convolution transforms, scalar products
and function-function multiplications can be simplified dramatically.

The particular requirements on the approximating basis set to be fulfilled in the frame-
work of our tensor-structured numerical scheme are formulated in the previous section (see
conditions (A)-(D) in §2.3). The systematic construction of the high-quality low tensor rank
approximating basis can be established on:

• Algebraic optimization of the conventional ‘meshless” GTO-type basis sets (RG = 1);

• Rank reduction of the Slater-type basis (RG = O(log ε−1), up to the tolerance ε > 0,
cf. [18]);

• Using the united (agglomerated) orthogonal Tucker vectors, whose rank is supposed to
be weakly dependent on the particular molecule and the grid parameters [22, 23, 24].

All these concepts still require further theoretical and numerical analysis and will be ad-
dressed elsewhere.

The main advantage of the low tensor rank approximating basis sets is the linear scaling
of the resultant algorithms in n, that already allows to advent the huge n × n × n-grids in
R

3 (specifically, n ≤ 2 · 104, in the contemporary computing practice on the base of tensor-
structured methods). This could be benefitial in the FEM-DFT computations applied to
large molecular clusters.

2.5 Tensor computation of the Galerkin integrals in J(D), K(D)

The beneficial feature of our method is that functions and operators involved in the compu-
tational scheme (2.8) - (2.12) are efficiently evaluated using (approximate) low-rank tensor-
product representations in the basis sets {Gµ} and {Xµ} at the expense that scales linear-
logarithmic in n, O(n logn).

To that end, we introduce some interpolation/prolongation operators interconnecting the
continuous functions on Ω and their discrete representation on the grid via the coefficient
tensors in R

I (or in R
J ). Note that the coefficients space of 3-tensors

Vn = R
I := V1 ⊗ V2 ⊗ V3,
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is the tensor-product space with Vℓ = R
n, (ℓ = 1, 2, 3), cf. Appendix. Conventionally, we

use the canonical isomorphism between Vn and Vn,

Vn ∋ f(x) =
∑

i

fiφi(x) ⇐⇒ F := [fi]i∈I ∈ Vn.

We make use of similar entities for the pair Wn and Wn = R
J := W1 ⊗ W2 ⊗ W3, with

Wℓ = R
n−1, (ℓ = 1, 2, 3).

Now we define the collocation and L2-projection mappings onto Vn. For the continuous
function f , we introduce the collocation “projection” operator by

PC : f 7→
∑

i

f(yi)φi(x) ⇐⇒ F := [f(yi)]i∈I ∈ Vn,

where {yi} is the set of cell-centered points with respect to the grid ω3,n. Furthermore, for
functions f ∈ L2(Ω), we define L2-projection by

P0 : f 7→
∑

i

〈f, φi〉φi(x) ⇐⇒ F := [〈f, φi〉]i∈I ∈ Vn.

Likewise, we denote the L2-projection onto Wn by Q0.
Using the discrete representations as above, we are able to rewrite all functional and

integral transforms in (2.8) - (2.12), in terms of tensor operations in Vn. In particular,
for the continuous targets, the function-times-function, and the L2-scalar product can be
dicretised by tensor operations as

f · g 7→ F ⊙G ∈ Vn, and 〈f, g〉 7→ h3〈F,G〉,

with
F = PC(f), G = PC(g),

where the scaling constant defines the grid-cell volume h3, and ⊙ means the Hadamard
(entrywise) product of tensors.

The convolution product is represented by

f ∗ g 7→ F ∗T G ∈ Vn, with F = PC(f) ∈ Vn, G = P0(g) ∈ Vn,

where the tensor operation ∗T stands for the tensor-structured convolution transform in Vn

described in [20] (see also [24, 23] for application of fast ∗T transform in electronic structure
calculations). Related to the separable quadrature assumption (cf. item (D) in §2.3), we
notice that under certain assumptions on the regularity of the input functions the tensor
product convolution ∗T can be proven to provide an approximation error of order O(h2),
while the two-grid version via the Richardson extrapolation leads to the improved error
bound O(h3) (cf. [20]).

Representations (2.8) - (2.9) can be now rewritten (approximately) in the discrete tensor
form as follows,

ρ ≈ Θ :=

N∑

a=1

(
Nb∑

κ,λ=1

CκaCλaGκ ⊙Gλ

)
, where Gκ = PC(gκ),

9



and then

VH = ρ ∗ g ≈ Θ ∗T PN , where PN = P0(g), g =
1

‖ · ‖
, (2.15)

with PN ∈ Vn being the collocation tensor for the Coloumb potential. This implies the
tensor representation of the Coloumb matrix,

J(D)µν ≈ 〈Gµ ⊙Gν ,Θ ∗T PN〉, 1 ≤ µ, ν ≤ Nb. (2.16)

The separability property (A) ensures that rank(Gµ) ≤ RG, while tensors Θ and PN are
to be approximated by low-rank tensors. Hence, in our method, the corresponding tensor
operations are implemented using fast multilinear algebra equipped with the corresponding
rank optimization (tensor truncation).

Likewise, tensor representations (2.10) - (2.12) realized in [17], now look as follows,

Waν ≈ Υaν :=

[
Gν ⊙

Nb∑

κ=1

Cκa ⊙Gκ

]
∗T PN , ν = 1, ..., Nb, (2.17)

with the tensor PN ∈ Vn defined by (2.15),

Kµν,a ≈ χµν,a := 〈

[
Nb∑

κ=1

CκaGκ

]
⊙Gµ,Υaν〉, µ, ν = 1, ..., Nb, (2.18)

finally providing the entries of the exchange matrix,

K(D)µν =

N∑

a=1

χµν,a, µ, ν = 1, ..., Nb. (2.19)

Again, the auxiliary tensors and respective algebraic operations have to implemented with
the truncation to low-rank tensor formats.

Notice that the core Hamiltonian H = {hµν} can be computed by the respective tensor
operations in Wn, and Vn,

hµν ≈
1

2
〈∇TGµ,∇TGν〉(Wn)3 + 〈V0, Gµ ⊙Gν〉Vn

, 1 ≤ µ, ν ≤ Nb, (2.20)

where V0 = P0(Vc) ∈ Vn, and where the rank-RG tensors Gµ (µ = 1, ..., Nb) represent the
Galerkin basis functions gµ in Wn by Gµ = Q0(gµ). Furthermore, the operator

∇T : Wn → (Wn)3 := {w =




w1

w2

w3


 : wk ∈ Wn, k = 1, 2, 3},

denotes the discrete gradient map by 3-way central differences at yj, j ∈ J , where (Wn)
3 is

the “vector space” of 3-tensors.
With the particular requirements on the rank, rank(Gµ) ≤ RG, the operator ∇T applies

to each individual rank-1 canonical 3-tensor in Wn by

∇T (x1 ⊗ x2 ⊗ x3) :=




∇1x1 ⊗ x2 ⊗ x3

x1 ⊗∇2x1 ⊗ x3

x1 ⊗ x2 ⊗∇3x3


 ∈ (Wn)3,
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where the univariate discrete gradient matrix ∇k (k = 1, 2, 3) is defined conventionally by
central differences on the vectors in R

n−1 with zero extension, imposed by the homogeneous
Dirichlet boundary conditions (recall that Wn ∈ H1

0(Ω)).

3 Multilevel tensor-truncated SCF iteration via DIIS

3.1 General SCF iteration

The standard SCF algorithm can be formulated as the following “fixed-point” iteration ([26]):
Starting from initial guess C0, perform iterations of the form

F kCk+1 = SCk+1Λk+1, Λk+1 = diag(λk+1
1 , ..., λk+1

Norb
) (3.1)

CT
k+1SCk+1 = INorb

,

where current Fock matrix F k = Φ(Ck, Ck−1, . . . , C0), k = 0, 1, ..., is specified by the par-
ticular relaxation scheme. For example, for the simplest approach, called the Roothaan
algorithm, one has F k = F (Ck). In practically interesting situations this algorithm usually
leads to “flip-flop” stagnation [26].

Recall that here, λk+1
1 ≤ λk+1

2 ≤ ... ≤ λk+1
Norb

are Norb negative eigenvalues of the linear
generalized eigenvalue problem

F kU = λSU, (3.2)

and R0 × Norb matrices Ck+1 contain the respective Norb orthonormal eigenvectors
U1, ..., UNorb

. We denote by Ck+1 ∈ R
R0×R0 a matrix representing the full set of orthogonal

eigenvectors in (3.2).
We use the particular choice of F k, k = 0, 1, ..., via the DIIS-algorithm, (cf. [30]), with

the starting value F 0 = F (C0) = H .
We propose the modification to the standard DIIS iteration, by carrying out the iteration

on a sequence of successively refined grids with the grid-dependent stopping criteria. The
multilevel implementation provides robust convergence from the zero initial guess for the
Hartree and exchange operators. The coarse-to-fine grids iteration, in turn, accelerates the
solution process dramatically due to low cost of the coarse grid calculations.

The principal feature of our tensor-truncated iteration is revealed on the fast update of
the Fock matrix F (C) by using tensor-product multilinear algebra of 3-tensors accomplished
with the rank truncation described above. Another important point is that the multilevel
implementation provides simple and robust scheme for construction good initial guess on the
fine grid-levels.

3.2 SCF iteration using DIIS scheme

Recall that in the case of orthonormal basis, i.e., the overlap matrix equals the identity,
the DIIS iteration is substituted by the commutation property, [F (D), D] = 0, on the exact
solution. In the general case, the DIIS algorithm is based on the fact that the equation

F (D)DS − SDF (D) = 0
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is the equivalent formulation of the initial Hartree-Fock Galerkin equation (2.7), see [26].
In the present paper, we use the original version of DIIS scheme (cf. [15]), defined by the

following choice of the residual error vectors (matrices),

Ei := [C
T

i+1F (Ci)Ci+1]|{1≤µ≤Norb;Norb+1≤ν≤R0} ∈ R
Norb×(R0−Norb), (3.3)

for iteration number i = 0, 1, ..., k, that should vanish on the exact solutions of the Hartree-
Fock Galerkin equation due to the orthogonality property. Hence, some stopping criteria
applies to residual error vector Ei for i = 0, 1, 2, ....

The minimizing coefficients vector c := (c0, ..., ck)
T ∈ R

k+1 is computed by solving the
constrained quadratic minimization problem for the respective cost functional (the averaged
residual error vector over previous iterands),

f(c) :=
1

2

∥∥∥∥∥

k∑

i=0

ciEi

∥∥∥∥∥

2

F

≡
1

2
〈Bc, c〉 → min, provided that

k∑

i=0

ci = 1,

where
B = {Bij}

k
i,j=0 with Bij = 〈Ei, Ej〉,

and with Ei defined by (3.3). Introducing the Lagrange multiplier ξ ∈ R, the problem is
reduced to minimization of the Lagrangian functional

L(c, ξ) = f(c) − ξ(〈1, c〉 − 1),

where 1 = (1, ..., 1)T ∈ R
k+1, that leads to the linear augmented system of equations

Bc− ξ1 = 0, (3.4)

〈1, c〉 = 1.

Finally, the updated Fock operator F k is built up by

F k =
k−1∑

i=0

copt
i F i + copt

k F (Ck), k = 0, 1, 2, ..., (3.5)

where the minimizing coefficients copt
i = ci (i = 0, 1, ..., k) solve the linear system (3.4). For

k = 0 the first sum in (3.5) is assumed to be zero, hence providing copt
0 = 1, and F 0 = F (C0).

Recall that if the stopping criteria on Ck, k = 1, ..., is not satisfied, one updates F k by
(3.5) and solves the eigenvalue problem (3.1) for Ck+1.

Note that in practice one can use the averaged residual vector only on a reduced subse-
quence of iterands, Ek, Ek−1, ..., Ek−k0

, with small k0 < k. In our numerical examples below,
we usually set k0 = 4.

3.3 Tensor-truncated multilevel DIIS iteration

In this section, we describe the resultant numerical algorithm. Recall that the discrete
nonlinear Fock operator is specified by a matrix

F (D) = H + J(D) +K(D), (3.6)
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where H corresponds to the core Hamiltonian (fixed in our scheme) and the discrete Hartree
and exchange operators are given by tensor representations (2.16) and (2.19), respectively.

First, we describe the unigrid tensor-truncated DIIS scheme.
Algorithm TT DIIS (Unigrid tensor-truncated DIIS iteration).

1. Given the core Hamiltonian matrix H, the grid parameter n, and the termination param-
eter ε > 0.
2. Set C0 = 0 (i.e. J(C0) = 0, K(C0) = 0), and F 0 = H.
3. For k = 0, 1, ..., perform

a) Solve the full linear eigenvalue problem of size R0×R0, given by (3.2), and define Ck+1

as a matrix containing the Norb eigenvectors corresponding to Norb minimal eigenvalues.

b) Terminate iteration by checking the stopping criteria

‖Ck+1 − Ck‖F ≤ ε.

c) If ‖Ck+1 − Ck‖F > ε, compute the Fock matrix

F (Ck+1) = H + J(Ck+1) +K(Ck+1)

by the tensor-structured calculations of J(Ck+1) and K(Ck+1), using grid-based basis
functions with expansion coefficients Ck+1, update the Fock matrix F k+1 by (3.5), and
switch to Step a).

4. Returns: Eigenvalues λ1, ..., λNorb
and eigenvectors C ∈ R

R0×Norb.
Figure 4.3 shows the convergence of Algorithm TT DIIS for solution of the Hartree-Fock

equation in the pseudopotential case of CH4. It demonstrates that convergence history is
almost independent on the grid size on the examples with n = 64 and n = 256, correspond-
ingly.

To enhance the unigrid DIIS iteration, we propose the multilevel version of Algorithm
TT DIIS defined on a sequence of discrete Hartree-Fock equations specified by a sequence of
grid parameters np = n0, 2n0, . . . , 2

Mn0, with p = 0, ...,M , corresponding to the succession
of dyadically refined spacial grids. To that end, for ease of exposition, we also introduce
the incomplete version of Algorithm TT DIIS, further called Algorithm TT DIIS(k), which
represents only its part starting from iteration number k = k ≥ 1. The input data for
Algorithm TT DIIS(k) include the current approximation Ck and a sequence of all already
precomputed Fock matrices, F 0, F 1, ..., F k−1.

We sketch this algorithm as follows.
Algorithm TT DIIS(k) (Incomplete unigrid tensor-truncated DIIS iteration).

1. Given the core Hamiltonian matrix H, the grid parameter n, the termination parameter
ε > 0, Ck, and a sequence of Fock matrices F 0, F 1, ..., F k−1.

2. Compute J(Ck), K(Ck), F (Ck) = H + J(Ck) +K(Ck), and F k by (3.5).
3. For k = k, k + 1, ..., perform steps a) - c) in Algorithm MTT DIIS.

We further assume that the core Hamiltonian H is precomputed beforehand.
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Algorithm MTT DIIS (Multilevel tensor-truncated DIIS scheme).
1. Given the core Hamiltonian matrix H, the coarsest grid parameter n0, the termination
parameter ε0 > 0, and the number of grid refinements M .
2. For p = 0, apply unigrid Algorithm TT DIIS with n = n0, εp = ε0, and return the number
of iterations k0, matrix Ck0+1, and a sequence of Fock matrices F 0, F 1, ..., F k0

.
3. For p = 1, ...,M , apply successively Algorithm TT DIIS(kp−1 + 1), with the input param-
eters np := 2pn0, εp := ε02

−2p, Ckp−1+1. Keep continuous numbering of the DIIS iterations
through all levels, such that the maximal iteration number at level p is given by

kp =

p∑

p=0

mp,

with mp being the number of iterative steps at level p.
4. Returns: kM , CkM+1, and a sequence of Fock matrices F 0, F 1, ..., F kM

.
In the present numerical examples, we start calculations on n0×n0×n0 3D Cartesian grid,

with n0 = 64, and end up with maximum nM = 8192, for all electron case computations,
or nM = 1024, for the pseudopotential case. Further, in Section 4, we show by numerical
examples that in large scale computations the multilevel Algorithm MTT DIIS allows us to
perform most of iterative steps on coarse grids thus reducing dramatically the computational
cost and, at the same time providing a good initial guess for DIIS iteration on nonlinearity
at each consequent approximation level.

3.4 Complexity estimate in terms of RG, Nb and n

The rest of this section addresses the complexity estimate of the multilevel tensor-truncated
iteration in terms of RN , R0, n and other governing parameters of the algorithm. For the
ease of discussion we suppose that rank(Gµ) = 1, µ = 1, ..., R0.

Lemma 3.1 Let rank(Gµ) = 1, µ = 1, . . .R0 and rank(PN) ≤ RN ≤ CNorb. Suppose that
the rank reduction procedure applied to the convolution products Υaν in (2.10) provides the
rank estimate rank(Υaν) ≤ r0. Then the numerical cost of one iterative step in Algorithm
MTT DIIS at level p, can be bounded by

Wp = O(R0RNnp lognp +R3
0r0Norbnp).

Assume that the number of multigrid DIIS iterations at each level is bounded by the unique
constant I0, then the total cost of Algorithm MTT DIIS does not exceed the double cost at
the finest level n = nM , 2WM = O(I0R

3
0r0Norbn).

Proof. The rank bound rank(Gk) = 1 implies rank(
R0∑

m=1

cma Gm) ≤ R0. Hence, the numerical

cost to compute tensor-product convolution Υaν in (2.10) amounts to

W (Υaν) = O(R0RNnp log np).

Since the initial canonical rank of Υaν is estimated by rank(Υaν) ≤ R0RN , the multigrid rank
reduction algorithm, having linear scaling in rank(Υaν), see [23], provides the complexity
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bound O(r0R0RNnp). Hence the total cost to compute scalar products in χµν,a (see (2.11))
can be estimated by

W (χµν,a) = O(R3
0r0Norbnp),

which completes the first part of our proof. The second assertion is due to linear scaling of
the unigrid algorithm in np, that implies the following bound

n0 + 2n0 + ...+ 2pn0 ≤ 2p+1n0 = 2nM ,

hence, completing the prove.

Remark 3.2 In the case of large molecules and RG = rank(Gµ) ≥ 1, further optimization
of the algorithm up to O(RNR

2
0np)-complexity may be possible on the base of rank reduction

applied to the rank-RGR0 orbitals and by using an iterative eigenvalue solver instead of
currently employed direct solver via matrix diagonalization. Alternatively, one can apply
direct minimization schemes [32].

4 Numerical illustrations

4.1 General discussion

Our algorithm for the ab initio solution of the Hartree-Fock equation in tensor-structured
format is examined numerically on some moderate size molecules. In particular, we consider
the all electron case of H2O, and the pseudopotential case of CH4 and CH3OH molecules.
In the present numerical examples the discrete GTO basis functions are used for the reasons
of convenient comparison with the standard MOLPRO package based on the analytical
evaluation of the integral operators in the GTO basis.

The size of the computational box introduced in §2.3 varies from 2b = 11.21
◦

A and

2b = 15.45
◦

A for H2O, and CH4 molecules, respectively. The smallest step-size of the grid

h = 0.0027
◦

A is reached in the SCF iterations for H2O molecule, using the finest grid level
with n = 4096, while the average step size for the computations using the pseudopotentials

of the moderate size molecules is about h = 0.015
◦

A, corresponding to the grid size n = 1024.
Using the equidistant n × n × n tensor grid given by (2.13), the functions in Vn of the

type (2.14) are discretized in the intervals [−b, b]. In this way, we obtain the canonical repre-
sentation of the electron densities and orbitals on 3D Cartesian grid, further applied for the
tensor-structured calculation of the Hartree (2.2) and the nonlocal exchange (2.3) potentials.
Notice, that the Galerkin representation of the exchange operator leads to the evaluation of
the exchange integral term over R

3 × R
3. Our tensor-structured techniques provide means

for the discrete evaluation of this integral using the fast tensor-product convolution and
other tensor-product operations (see Appendix), which are of almost linear complexity with
respect to the one-dimension grid size n. The convolving Poisson kernel is effectively repre-
sented in the rank-RN canonical format with the rank parameter in the range 20 ≤ RN ≤ 30,
depending logarithmically on the univariate grid size n, RN = O(logn).
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4.2 Tensor computation of the Coulomb and exchange matrices

A detailed description of the tensor-product numerical schemes for the Coulomb and ex-
change matrices in the case of closed shell systems is presented in [23, 17]. In this section,
we verify the performance of the tensor-structured computations of the Coulomb and ex-
change matrices by using the solutions for the orbitals of molecules, taking the expansion
coefficients Cµi for the GTO basis in (2.4) from the MOLPRO package.
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Figure 4.1: Left: Absolute approximation error (blue line: ≈ 10−6 a.u.) in the tensor-product
computation of the Hartree potential of C2H6, measured in the grid line Ω = [−5, 7]×{0}×
{0}. Right: the absolute error for the Coulomb matrix of H2O, (≈ 10−5 a.u.).

The Coulomb (Galerkin) matrix of the Hartree potential, VH , is computed by tensor
inner products in {gk},

Jkm :=

∫

R3

gk(x)VH(x)gm(x)dx, k,m = 1, . . .Nb, x ∈ R
3.

Figure 4.1,left shows the absolute approximation error (blue line: ≈ 10−6 a.u.) in the
tensor-product representation of the Hartree potential of C2H6 molecule, measured in the
subinterval Ω = [−5, 7] × {0} × {0}. Figure 4.1,right presents the absolute accuracy for the
Coloumb matrix of H2O, computed by tensor-structured techniques on the large grid with
the one-dimension size n = 8192, providing the absolute accuracy ≈ 10−5. This corresponds

to the approximation error O(h3) achieved on the grid with high resolution, h ≈ 0.0008
◦

A.
The exchange matrix in the Galerkin GTO basis is given by

Kk,m := −
1

2

∫

R3

gk(x)
τ(x, y)

|x− y|
gm(y)dxdy, k,m = 1, . . . Nb.

Figure 4.2,right shows the L∞-error in the matrix elements of K for the pseudodensity of
CH3OH computed on the grid with n = 1024. Figures 4.2,left illustrate the high accuracy
achieved in the computation of the exchange matrix of H2O molecule on the grids n = 8192,

that corresponds to the fine step-size h ≈ 0.0016
◦

A, and the asymptotic approximation error
O(h3), h = 1/n.
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4.3 Multilevel tensor-truncated SCF iteration

The tensor-structured algorithms for calculation of the Coulomb and exchange parts of the
Fock operator enable numerical solution of the ab initio Hartree-Fock equation, by using
Algorithms TT DIIS and MTT DIIS in §3.3. Starting with the zero initial guess for matrices
J(D) = 0 and K(D) = 0 in the Galerkin Fock matrix (2.6), we solve the eigenvalue problem
at the first iterative step (p = 0) using only the H part of the Fock matrix in (2.6), that
does not depend on the solution.

Figure 4.2: L∞-error in Kex = K for the density of H2 and pseudodensity of CH3OH.

Thus, SCF iterations start with the expansion coefficients Cµi for orbitals in the GTO
basis, computed using only the core Hamiltonian H. At every iteration step, the Hartree
and exchange potentials and the corresponding Galerkin matrices, are computed using the
updated expansions coefficients Cµi. The L2-error in the correction term to the coefficient
matrix Ck, is used for the convergence control. Figure 4.3 shows the convergence of the
single-grid scheme for the solution of the Hartree-Fock equation in the pseudopotential case
of CH4.
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Figure 4.3: Convergence of the unigrid SCF iteration (Algorithm TT DIIS) for the pseu-
dopotentail case of the CH4 molecule on the grid sizes n = 64 (left) and n = 256 (right).

The multilevel solution of the nonlinear eigenvalue problem (2.7) is realized via SCF
iteration on a sequence of uniform grids, beginning from the initial coarse grid, say, with
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n0 = 64, and proceeding on the diadically refined grids, np = n02
p, p = 1, ...,M . We use

the grid dependent termination criteria εnp
:= ε02

−2p, keeping the continuous numbering of
the iterations. Figure 4.4 (left) shows the convergence of the iterative scheme in the case of
pseudopotential of CH4. Convergence in the total Hartree-Fock energy reaching the absolute
error 9 · 10−6 a.u. on the grid size n = 1024 is shown in Figure 4.4 (right). The total energy
is calculated by

EHF = 2

N∑

a=1

λa −

N∑

a=1

(
J̃a − K̃a

)

with J̃a = (ψa, VHψa)L2, and K̃a = (ψa,Vexψa)L2 , being the so-called Coulomb and exchange
integrals, respectively, computed in the orbital basis ψa (a = 1, ..., N).
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Figure 4.4: Multilevel convergence (left) for the pseudopotential of CH4 molecule, and con-
vergence of the HF energy in the grid levels (right). The initial level 1 corresponds to n = 64,
while the final level 5 corresponds to n = 1024.

Figure 4.5 (left) shows the linear scaling in n, corresponding to CPU time at one iteration.
Figure 4.5 (right) shows the number of “effective” iterations counted by rescaling the total
computational time to the iteration time-unit observed at each iterative step at the finest
grid-level.

Figure 4.6 represents the convergence history of the nonlinear iteration for CH3OH mea-
sured by the iteration residual error (left), and by the energy error (right), respectively.

Figure 4.7 (left) shows convergence of the SCF iteration for all electron case of H2O.
This challenging problem is solved efficiently due to usage of large 3D Cartesian grids up to
the volume size N = 81923. Figure 4.7 (right) shows convergence of the HF energy for the
corresponding grid levels.

5 Conclusions and further perspectives

We present the grid-based tensor-truncated numerical method for the robust and accurate
iterative solution of the self-consistent Hartree-Fock equation at the cost O(n logn), discre-
tised over the 3D n × n × n Cartesian grid. The computational scheme is based on the
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Figure 4.6: Residual (left) and the energy (right) iteration history for CH3OH molecule.

discrete tensor representation of the Fock operator at each step of the multilevel SCF itera-
tion applied to the nonlinear 3D eigenvalue problem. Numerical tests confirm the theoretical
complexity estimates.

This scheme is neither restricted to the analytically separable basis functions like GTO
orbitals nor to the traditional plane waves approximations. The Galerkin basis can be
modified by adapting to the particular problem in the framework of the tensor-structured
solution process.

The main computational blocks of the numerical scheme allow the natural parallelization
on the level of matrix elements computation, rank decompositions, and the multilinear tensor
operations.

6 Appendix: Description of tensor-structured formats

Let H = H1 ⊗ ... ⊗ Hd be a tensor-product Hilbert space (see [31]), where Hℓ (ℓ = 1, ..., d)
is a real, separable Hilbert space of functions of the continuous or discrete argument (say,
Hℓ = L2([a, b]) or Hℓ = R

n). Each w ∈ H can be written as a sum of rank-1 (elementary,
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Figure 4.7: Multilevel convergence of the SCF iteration applied to the all electron case of
H2O (left), and convergence in the energy in n (right).

separable) tensors

w =
∑

k

w
(1)
k ⊗ w

(2)
k ⊗ . . .⊗ w

(d)
k (w

(ℓ)
k ∈ Hℓ).

The scalar product of rank-1 tensors in H is defined by

〈w(1) ⊗ . . .⊗ w(d), h(1) ⊗ . . .⊗ h(d)〉 =

d∏

ℓ=1

〈w(ℓ), h(ℓ)〉.

A dth order tensor is a function of d discrete arguments, f : R
I1×...×Id → R, specified by a

multi-dimensional array over I = I1 × ...× Id, with Iℓ = {1, ..., nℓ}, ℓ = 1, ..., d. We write

V = [vi1,...,id : iℓ ∈ Iℓ] ∈ R
I , ℓ = 1, ..., d,

to denote a real-valued dth order tensor, that is an element of the tensor-product Hilbert
space H := Vn = ⊗d

ℓ=1Vℓ, with Vℓ = R
Iℓ , and n being the d-tuple (n1, ..., nd). Vn is equipped

with the Euclidean inner product 〈·, ·〉 : Vn×Vn → R. Tensor V ∈ Vn requires
∏d

ℓ=1 nℓ reals
for storage.

The concept of tensor methods is based on approximation of multivariate functions with
low separation rank. In particular, we are interested in decomposition of a tensor f ∈ Vn,
in the set of separable tensors, i.e., in some classes S ⊂ Vn of “rank structured” elements
based on sums of rank-1 tensors. In this way, the canonical rank-1 tensor is represented by
outer product of vectors t(ℓ) = {t

(ℓ)
iℓ
}iℓ∈Iℓ

∈ Vℓ (ℓ = 1, ..., d),

T ≡ [ti]i∈I = t(1) ⊗ ...⊗ t(d) ∈ Vn with entries ti = t
(1)
i1

· · · t
(d)
id
,

requiring only
∑d

ℓ=1 nℓ ≪
∏d

ℓ=1 nℓ reals to store it (now linear scaling in the dimension d).
In the present paper, we apply data sparse representation to high order tensors based on

the Tucker and canonical models.
The rank-(r1, . . . , rd) Tucker approximation [5] is based on subspaces Tn := ⊗d

ℓ=1Tℓ of
Vn for certain Tℓ ⊂ Vℓ with rℓ := dim Tℓ ≪ nℓ. Given the rank parameter r = (r1, ..., rd),
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we denote by T r,n (or simply T r) the subset of tensors in Vn represented in the so-called
Tucker format

V(r) =
∑r1

ν1=1
. . .
∑rd

νd=1
βν1,...,νd

t(1)ν1
⊗ . . .⊗ t(d)

νd
, (6.1)

with some vectors t
(ℓ)
νℓ

∈ Vℓ = R
Iℓ (1 ≤ νℓ ≤ rℓ), which form the orthonormal basis of

Tℓ = span{t
(ℓ)
ν }rℓ

ν=1 (ℓ = 1, ..., d). The coefficients tensor β = [βν1,...,νd
], that is an element of

a dual tensor space Vr = R
r1×...×rd, is called the core tensor. The parameter r = max

ℓ
{rℓ}

is called the maximal Tucker rank. In our applications, we normally have r ≪ n = maxnℓ,
say r = O(logn).

Given a rank parameter R ∈ N, we denote by CR,n = CR ⊂ Vn a set of tensors which
can be represented in the canonical format

V(R) =
∑R

ν=1
µνu

(1)
ν ⊗ . . .⊗ u(d)

ν , µν ∈ R, (6.2)

with normalized vectors u
(ℓ)
ν ∈ Vℓ (ℓ = 1, ..., d). The minimal parameter R in (6.2) is called

the rank (or canonical rank) of a tensor V(R).
The storage requirement for the Tucker (resp. canonical) decomposition is bounded by

rd + drn (resp. R+ dRn), where usually r ≪ R.
The above defined classes of rank-structured tensors are being applied in our tensor-

product approximation schemes.
It is worth to note that linear transforms of elements in tensor-structured representa-

tion are reduced to 1D-operations, that can be accomplished with the rank truncation. In
particular, for tensors A1, A2 in the canonical format

A1 =

R1∑

k=1

cku
(1)
k ⊗ . . .⊗ u

(d)
k , A2 =

R2∑

m=1

bmv
(1)
m ⊗ . . .⊗ v(d)

m ,

we make use of the following operations:
1. Euclidean inner product (complexity O(dR1R2n) ≪ nd),

〈A1, A2〉 :=

R1∑

k=1

R2∑

m=1

ckbm

d∏

ℓ=1

〈
u

(ℓ)
k , v(ℓ)

m

〉
.

2. Hadamard product (complexity O(dR1R2n) ≪ nd),

A1 ⊙A2 :=
R1∑

k=1

R2∑

m=1

ckbm

(
u

(1)
k ⊙ v(1)

m

)
⊗ . . .⊗

(
u

(d)
k ⊙ v(d)

m

)
∈ CR1R2

.

3. Convolution of two 3rd order tensors A1, A2 (same for high order tensors),

A1 ∗ A2 =
R1∑

k=1

R2∑

m=1

ckbm(u(1)
m ∗ v

(1)
k ) ⊗ (u(2)

m ∗ v
(2)
k ) ⊗ (u(3)

m ∗ v
(3)
k ) ∈ CR1R2

,

with linear scaling in n, O(R1R2n logn) ≪ n3 logn (corresponds to 3D FFT).
These basic properties lead to the linear scaling in n of tensor-structured multilinear

algebra applied in the framework of tensor-truncated iteration.
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