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Abstract 

The Korteweg de Vries (KDV) equation which is a non-linear PDE plays an 
important role in studying the propagation of low amplitude water waves in shallow 
water bodies, the solution to this equation leads to solitary waves or solitons. In this 
paper, we present the analytic solution and use the explicit and implicit finite 
difference schemes and the Adomian decomposition method to obtain approximate 
solutions to the KDV equation. As the behavior of the solitons generated from the 
KDV depends on the nature of the initial wave, this work aims to study two possible 
scenarios (hyperbolic tangent initial condition and a sinusoidal initial condition) and 
obtained solution analytically, numerically with the aforementioned methods. 
Comparison between the four different solutions is done with the aid of tables and 
diagrams. We observed that valid analytical solutions for the KDV equation are 
restricted to time values close to the initial time and that the Adomian decomposition 
method is a wonderful tool for solving the KDV equation and other non-linear PDEs. 

Keywords: Korteweg de Vries equation, Adomian decomposition method, Solitons, Finite 
difference, Numerical analysis.  

 

1 Introduction 

The Korteweg-de-Vries equation (KDV) which is a non-linear PDE of third order has been of 

interest since 150 years ago. The KDV equation is used to study the unusual water waves that 

occur in shallow, narrow channels such as canals.  

In 1844, John Scott Russell while conducting experiments to determine the most efficient design 

for canal boats observed a phenomenon on the Edinburgh-Glasgow canal. He observed that 

water in the channel put in motion by a boat drawn by a pair of horses accumulated in a state of 
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violent agitation and then rolled forward with great velocity assuming the form of a large solitary 

elevation, a rounded, smooth and well defined heap of water which continued its course along 

the channel without change of form or diminution of speed. Its height gradually diminished after 

one or two miles. He called this singular and beautiful phenomenon the Wave of Translation (1).  

Russell deduced empirically that the speed   of the wave is related to the depth  of the water in 

the canal and to the amplitude   of the wave by 

 

                                                                                             

 

where   is the acceleration due to gravity. The Korteweg-de-Vries equation (KDV) was 

originally developed by (2) in order to describe the behavior of one-dimensional shallow water 

waves with small but finite amplitudes. More recently, this equation also has been found to 

describe wave phenomena in Plasma physics (3), (4), anharmonic crystals (5), (6), bubble liquid 

mixture (7), (8) etc.  The solutions to the KDV PDE are called solitons or solitary waves.  

 

2 Theoretical Background. 

The dynamics of solitary waves is modeled by the KDV equation. The KDV is a non-linear, 

dispersive, non dissipative equation which has soliton solutions. The General Korteweg de Vries 

equation (GKDV) is of the form  

 

       

  
         

       

  
  

        

   
                                                     

 

Where           is a positive integer and  ,   are positive parameters. The Korteweg de 

Vries equation developed by (2) is similar to the GKDV with     and is of the form 

 

       

  
        

       

  
  

        

   
                                                            

 

       describes the elongation of the wave at place   and at time  . KDV is non-linear because 

of the product shown in the second summand and is of third order because of the third derivative 

in the third summand. The non-linear term,    
  

  
 is similar to the usual wave equation  

  

  
   

term. This implies that as long as   does not change too much, the wave propagates with a speed 

proportional to  . The non-linear term introduces the possibility of shock waves into the 

solution. The   
   

    term produces dispersive broadening that can exactly compensate the 

narrowing caused by the non-linear term under proper conditions (9). 

 

KDV has been studied analytically by (10), (11), (12), (13) and (14). KDV has motivated 

considerable research into numerical solution by several methods. Recently the study of solitons 

has been the focus of many research groups (15), (16), (17), (18) and (19). 
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The aim of the research is to discover whether non-linear and dispersive systems can support 

waves with particle-like properties. Starting with two different form of the initial condition, we 

determine the propagation of the wave profile over time for a wave of length           . The 

initial conditions are  

                               
 

 
        

    

 
                              

                 

                                   
  

 
                                          

With the parameters     ,             and           . Also, we choose        

and       . It should be noted that there are specific values of    and   that can produce 

solitary waves. 

 

3 Methodology 

3.1      Analytical solution of the KDV equation 

Finding analytical solutions to linear PDE is simplified by the principle of linear superposition, 

which tells us that the sum of two solutions is also a solution. When the description of a physical 

system is made more realistic by including higher-order effects, there results non-linear PDEs 

which are more difficult to solve analytically in contrast to trying to solve linear PDEs 

analytically (9). 

Recall that the simplest mathematical wave is a function of the form                which 

is a solution of the simple PDE          where   denotes the speed of the wave. The well 

known wave equation             leads to two wave fronts represented by the terms 

        and       . We start here by assuming a trial solution of the form  

 

                                                                                           

Equation [3] becomes  

  
  

  
   

  

  
  

   

   
                                                                         

  

  
 
 
 

  
  

       

According to (20), these solutions can be represented in terms of elliptic integrals as 

 
  

  
 
 
 

  
  

 

 

     

 

  

                                                                       

The integral on the left hand side of equation [8] can be evaluated by using a transformation 
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Using equation [6], [8], [9] and [10] we get [11] 

      
  

 
             

 
                                                      

By substituting equation [11] into equation [6] we have  

        
  

 
        

                                                       

The analytical result is implemented by using the initial condition to determine the value of   .  

For the first initial condition, we get the value of     

        
  

 
        

           
 

 
        

    

 
   

       
 

          
 

  
        

    

 
                                         

For the second initial condition, we get the value of     as 

        
  

 
        

               
  

 
  

       
 

          
 

  
    

  

 
                                                   

The complete computer program to obtain the analytical results is done with the help of the 

Computer Algebra System Mathematica 5.0 by Wolfram Research Inc.  

NOTE: There is a limitation to getting reliable solutions analytically as the boundary conditions 

were not used in obtaining the analytical solution in contrast with the separation of variable 

method used for linear PDEs where the analytical solutions are constrained to both the boundary 

and initial conditions. The analytical solution in [12] gives reliable values for time close to the 

initial condition    .  We therefore get the analytical solution only for the interval       

to compare with the numerical results to be obtained later.  

3.2      Numerical solution of the KDV equation 

3.2.1 Explicit scheme (Zabusky and Kruskal scheme) 

The KDV equation can be solved numerically using a centered, finite difference scheme (10). 

                   

In terms of the discrete variables the derivatives in the KDV equation are given by 
              

   
   

 

   
                                      

 
 

      
                                     

 

               
   

   
                                       

   

     
                 

                             (15) 
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For the initial time step (   ), we apply a forward difference scheme in the time derivative to 

avoid       in the discretized equation. 
 

          

  
   

 

   
                                      

 
 

      
                                     

 

           
   

   
                                       

   

      
                 

                              (16) 

 

Fig 1 and Fig 2 show 3D graphical representation of the explicit scheme solution of the KDV 

equation after 2000 time steps. The graphs were produced using MATLAB 7.8.0 from 

Mathworks, Inc. 

 
Figure 1: Explicit solution of the KDV equation (initial condition 1) after 2000 time steps (200 

seconds). 

 

 
Figure 2: Explicit solution of the KDV equation (initial condition 1) after 2000 time steps (200 

seconds). 
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3.2.2 Implicit scheme (Goda scheme) 

An implicit scheme for approximating the KDV equation was proposed by (21) and is extended 

here to the KDV equation for all values of   and  . 
 

            

  
  

 

   
                                             

 
 

      
                                                             

 

Choosing        ,                 ,          and                      we 

have a pentagonal system of linear equation to solve at each time step using LU decomposition 

scheme for determining the inverse of a matrix. 
 

                                                      

                                                            

                                                                                 

(18) 

                                                                            

                                                                    

The pentagonal system of linear equation can be written in matrix form as 

 
Figure 3: Implicit solution of the KDV equation (initial condition 1) after 2000 time steps (200 

seconds). 

 
Figure 4: Implicit solution of the KDV equation (initial condition 2) after 2000 time steps (200 

seconds). 
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The graphs showing the implicit scheme solution of the KDV equation are shown in Fig 3 and 

Fig 4. 

 

3.3 Adomian Decomposition Scheme 

The Adomian Decomposition scheme developed by George Adomian is a semi-numerical 

method which leads to approximated solutions of non-linear PDEs (22).  The Adomian 

decomposition method has been used by researchers to obtain approximate solution to the KDV 
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equation for different   and   values. (23) applied the Adomian decomposition for     

and           . (24) applied the method to the KDV equation with      and     .  In 

this work, we develop a formula for the KDV equation with any   and   values. 

Recall the KDV equation in [3]; 
 

       

  
        

       

  
  

        

   
   

 

We define the operators     
 

  
          

  

             
 

  
and so equation [3] can be written 

in the form 
 

                                                                  
From [19] we can write 

                                                                     

We also define the inverse operator to operator         
   given by 

  
                                                                       

Applying the inverse operator in equation [21] on both sides of equation [20] gives 
 

  
        

 
        

               

    
 
       

                                                              
 

Where  
 
 which is a constant of integration is the solution of the equation 

  

  
    and is just the 

initial condition which is purely a function of  .   

The Adomian decomposition assumes that the solution        to the PDE can be expressed by 

an infinite series of the form 

            

 

   

                                                                    

and the decomposed form of the non-linear operator    into an infinite series of polynomials is 

given by 

         

 

   

                                                                       

  are the Adomian special polynomials (22) and   is an arbitrary parameter which aids in the 

grouping of the terms. The parameterized form of equation [22] is written as 

 

    
 
        

                            

                   

  
 
         

                   
  

            

      
  

                            
 

Comparing powers of   gives  
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To obtain the Adomian polynomials we use equation [24] 

     
  

  
 

     

 

   

       

 

   

   
   

  

 

   

 

                    

                          
   

  
   

   

  
   

   

  
   

   

  
      

         

   

  
      

   

  
   

   

  
       

   

  
   

   

  
   

   

  
 

      

   

  
   

   

  
   

   

  
   

   

  
                    

(26) 

Comparing powers of   gives  

      

   

  
                                                                     

      

   

  
   

   

  
                                                    

     

   

  
   

   

  
   

   

  
                                   

      

   

  
   

   

  
   

   

  
   

   

  
                 

                            

       

     

  

 

   

                                                           

If we approximate the values of the solution to the KDV equation using three terms, then we 

have the solution 

                                                      
The computer program to determine the values of                          and the solution is 

written in Mathematica 5.0 for initial condition 1 and 2 and the solutions are of the following 

form: 

For initial condition 1: 
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The three terms solution has 36 terms while the four terms solution has 92 terms. 

For initial condition 2: 

                    
  

 
   

        
  
 

 

  
  

       
  
 

     
  
 

 

 
 

 

                   
  

 
   

        
  
 

 

  
  

       
  
 

     
  
 

 

 
 

           
   
 

 

   

 
          

  
 

 

   
 

          
  
 

 

   
 

           
   
 

     
  
 

 

   
 

 

The four terms approximate solution for the second initial condition gives 13 terms. Graphical 

plot of the Adomian decomposition solution for the two initial conditions are presented in Fig 5 

and Fig 6. 

 

Figure 5: Adomian decomposition solution of the KDV equation (initial condition 1) after 2000 

time steps (200 seconds). 
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Figure 6: Adomian decomposition solution of the KDV equation (initial condition 2) after 2000 

time steps (200 seconds). 

 

4 Discussion of Results. 

Table 1 and 2 shows the solution of the KDV equation for        and        using the 

Analytic method, explicit method, implicit method and the Adomian decomposition method for 

the time interval       . The choice of time interval is because the analytic solution is liable 

to the restriction that the time remains close to the initial time     to obtain reliable results.  

Fig 7 – 10 compares the results obtained from the different methods with time increment. The 

analytic solution deviates from the other methods as time increases since the analytic solution is 

oblivious of the boundary conditions. The closeness between the results from numerical explicit 

and implicit method and the Adomian decomposition method shows that the decomposition 

method is a powerful tool for solving the KDV equation.  

More accurate results are not necessarily obtained from increasing the number of terms used in 

the Adomian decomposition method. The common approach is to use the Adomian-Malakian 

convergence acceleration procedure proposed by (25). 

 

 

Figure 7: Results for initial condition 1 with x = 14, 0 ≤ t ≤ 1 using the Analytic, Explicit, 

Implicit and Adomian methods. 
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Figure 8: Results for initial condition 1 with x = 44, 0 ≤ t ≤ 1 using the Analytic, Explicit, 

Implicit and Adomian methods. 

 

 

 

Figure 9: Results for initial condition 2 with x = 14, 0 ≤ t ≤ 1 using the Analytic, Explicit, 

Implicit and Adomian methods. 

 

 

Figure 10: Results for initial condition 2 with x = 44, 0 ≤ t ≤ 1 using the Analytic, Explicit, 

Implicit and Adomian methods 

 

 

 



 

 

 

Numerical solution of KDV equation. 333 

 

 

 

Table 1: Results from initial condition 1 for        and        after 10 time steps for 

comparison. 
 

 

t = 0.0 

x 

Analytic Explicit Implicit Adomian 

 

t = 0.2 

x 

Analytic Explicit Implicit Adomian 

0 0.999955 0.999955 1.000000 0.999955 0 1.095520 1.000000 1.000000 0.999955 

14 0.987872 0.987872 0.987872 0.987872 14 1.082600 0.988074 1.000961 0.988075 

26 0.401312 0.401312 0.401312 0.401312 26 0.445677 0.402724 0.403922 0.402719 

36 0.012128 0.012128 0.012128 0.012128 36 0.013578 0.012145 0.012116 0.012145 

44 0.000500 0.000500 0.000500 0.000500 44 0.000560 0.000501 0.000499 0.000501 

52 0.000020 0.000020 0.000000 0.000020 52 0.000023 0.000000 0.000000 0.000020 

 

t = 0.4 

x 

Analytic Explicit Implicit Adomian 

 

t = 0.6 

x 

Analytic Explicit Implicit Adomian 

0 1.197420 1.000000 1.000000 0.999956 0 1.305460 1.000000 1.000000 0.999957 

14 1.183680 0.988274 1.014401 0.988279 14 1.290920 0.988470 1.028206 0.988482 

26 0.494476 0.404147 0.406569 0.404126 26 0.548039 0.405581 0.409255 0.405533 

36 0.015200 0.012162 0.012104 0.012162 36 0.017016 0.012179 0.012092 0.012178 

44 0.000627 0.000501 0.000499 0.000501 44 0.000702 0.000502 0.000498 0.000502 

52 0.000026 0.000000 0.000000 0.000020 52 0.000029 0.000000 0.000000 0.000020 

 

t = 0.8 

x 

Analytic Explicit Implicit Adomian 

 

t = 1.0 

x 

Analytic Explicit Implicit Adomian 

0 1.419280 1.000000 1.000000 0.999958 0 1.538360 1.000000 1.000000 0.999959 

14 1.404010 0.988664 1.042389 0.988686 14 1.522440 0.988854 1.056967 0.988890 

26 0.606693 0.407025 0.411981 0.406940 26 0.670756 0.408479 0.414748 0.408347 

36 0.019048 0.012195 0.012080 0.012195 36 0.021321 0.012212 0.012067 0.012211 

44 0.000786 0.000503 0.000497 0.000503 44 0.000881 0.000503 0.000497 0.000503 

52 0.000032 0.000000 0.000000 0.000021 52 0.000036 0.000000 0.000000 0.000021 

 

Table 2: Results from initial condition 2 for        and        after 10 time steps for 

comparison. 
 

t = 0.0 

x 

Analytic Explicit Implicit Adomian 

 

t = 0.2 

x 

Analytic Explicit Implicit Adomian 

0 0.000000 0.000000 0.000000 0.000000 0 0.000000 0.000000 0.000000 0.000004 

14 0.748511 0.748511 0.748511 0.748511 14 0.824909 0.747315 0.756014 0.747314 

26 1.000000 1.000000 1.000000 1.000000 26 1.095570 0.999997 1.013363 1.000000 

36 0.822984 0.822984 0.822984 0.822984 36 0.905428 0.824111 0.832049 0.824111 

44 0.464723 0.464723 0.464723 0.464723 44 0.515395 0.465715 0.467671 0.465714 

52 0.000000 0.000000 0.000000 0.000000 52 0.000000 0.000000 0.000000 0.000004 

 

t = 0.4 

x 

Analytic Explicit Implicit Adomian 

 

t = 0.6 

x 

Analytic Explicit Implicit Adomian 

0 0.000000 0.000000 0.000000 0.000009 0 0.000000 0.000000 0.000000 0.000013 

14 0.907505 0.746121 0.763671 0.746118 14 0.996439 0.744928 0.771485 0.744921 

26 1.197470 0.999988 1.027086 1.000000 26 1.305510 0.999974 1.041183 1.000000 

36 0.994207 0.825237 0.841317 0.825238 36 1.089380 0.826364 0.850795 0.826366 

44 0.570964 0.466711 0.470659 0.466704 44 0.631753 0.467710 0.473687 0.467695 

52 0.000000 0.000000 0.000000 0.000009 52 0.000000 0.000000 0.000000 -0.000013 

 

t = 0.8 

x 

Analytic Explicit Implicit Adomian 

 

t = 1.0 

x 

Analytic Explicit Implicit Adomian 
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0 0.000000 0.000000 0.000000 0.000018 0 0.000000 0.000000 0.000000 0.000022 

14 1.091760 0.743737 0.779463 0.743724 14 1.193420 0.742548 0.787609 0.742528 

26 1.419340 0.999954 1.055671 1.000000 26 1.538420 0.999928 1.070565 1.000000 

36 1.190890 0.827490 0.860489 0.827493 36 1.298550 0.828616 0.870408 0.828620 

44 0.698073 0.468713 0.476758 0.468685 44 0.770206 0.469720 0.479870 0.469676 

52 0.000000 0.000000 0.000000 -0.000018 52 0.000000 0.000000 0.000000 -0.000022 

5 Conclusion  

The applicability of the KDV equation in numerous fields such as fluid dynamics, plasma 

physics and solid state physics have stimulated interest  in methods of solving the equation. The 

implicit Goda scheme is desirable to the explicit Zabusky & Kruskal scheme accuracy wise but 

requires more computational time as a system of linear equation is solved at each time step. The 

Adomian decomposition method should be extended to other non-linear partial differential 

equation as the results obtained in this study validate the reliability of the method in non-linear 

equations 
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