
Numerical Solution of the Lifting Surface Equation

E.O. Tuck and D.W.F. Standingford
Dept. of Applied Mathematics, University of Adelaide, Australia 5005.
EMail: etuck@maths.adelaide.edu.au, dstandin@maths.adelaide.edu.au

Abstract

The piecewise-constant vorticity method of Tuck* for solution of the lift-
ing surface integral equation determines accurately integrated quantities
such as the lift produced by planar lifting surfaces. Here a modification
to this method is presented whereby the leading-edge singularity strength
and leading-edge suction force, and hence the induced drag, may also be
calculated accurately.

Introduction

Lifting surfaces may be wings on airplanes or birds, windmills, racing car
downforce devices, aerodynamic aids such as tails or fins on airplanes or
dragsters, frisbees or aerobees, paper planes, kites, control surfaces in air
or water, hydrofoils, boomerangs or re-entry space vehicles. In all cases,
forward motion induces a pressure difference between the upper and lower
sides of a relatively thin surface which is dependent upon the geometry of
that surface, and which can be obtained by solving an integral equation
over the surface.

In particular, for a lifting surface z — /(x,y) that is close to the plane
z = 0 in an ^-directed stream [/, the pressure difference or loading is pro-
portional to a bound vorticity 7(2, y) which is determined for small / by
solution of the lifting surface integral equation (LSIE)

x,y) (1)

over the projection B of the lifting surface onto the plane z — 0. The kernel
function iy(X, y) = y-%(l + X/#), with # = \X^+Y\ is the downwash
induced by a unit horseshoe vortex (Ashley and LandhaP, Tuck*). Equation
(1) can be integrated once with respect to x and the resulting "constant"
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1 96 Boundary Element Technology XII

of integration used to satisfy the Kutta condition at each fixed y, requiring
7 = 0 at the trailing edge of B. No analytic solutions of (1) exist.

A simple way to discretize and solve numerically the LSIE (1) is to
assume that the loading 7(2, y) is constant on each of a finite number of
rectangular panels. A system of linear equations then results from colloca-
tion, which is solved directly for the vector of values of 7. This method has
been used (Tuck*, Tuck^) to produce very accurate (7-figure) values for the
lift coefficient

However, close examination of the calculated loading in the vicinity of the
leading edge (LE) reveals a highly localised inadequacy in the representation
of the inverse square-root LE singularity (Standingford and Tuck̂ ). All
known numerical techniques for solving the LSIE (1), including the popular
VLM or vortex lattice method (Lan̂ ), exhibit this type of feature (see
Lazauskas, Standingford and Tuck^ for a survey) and yet the LE singularity
strength is of direct aerodynamic significance. One method of fixing this
problem for the VLM, presented by Carter and Jackson^ is to assume a
quadratic profile of ̂ /x — XLEI(X, y) over the first 3 collocation points from
the LE. We first turn to the two-dimensional version of the problem to seek
an alternative remedy.

The airfoil equation

The airfoil equation

/;Vo z-c

is the two-dimensional equivalent of the LSIE (1), for a given function f'(x),
and integrates once to give

/:
(3)

An implicit constant of integration in f(x) ultimately determines the unique
solution of (2) satisfying the Kutta condition 7(1) = 0. For example, if the
airfoil is a flat plate with f'(x) = 1, this solution has

Note the inverse square root LE singularity at x = 0, and a zero of square-
root type at the trailing edge x — I.

Although an explicit analytic solution can be written down as a quadra-
ture (Tricomî , pp 173-180) for any /'(x), the airfoil equation (2) may also
be solved numerically to "remarkable accuracy" (James"*) by the VLM. In
that method, the unknown function 7(2) is replaced by a finite but large
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Boundary Element Technology XII 197

number of Dirac delta functions whose strength is to be determined by col-
location. This method thus models the flow by discrete line vortices, rather
than by a smooth distribution of vorticity. The location of these vortices
and collocation points is crucial to success of the VLM.

At one level higher in "smoothness", to solve the airfoil equation in a
manner analogous to the three-dimensional method of Tuck*, we assume a
constant value 7(£) = 7, on each of n panels, which are Chebyschev spaced,
resulting in the discrete set of linear equations

log|z, -f|c%; = /(%,)

where the integral equation has been forced to hold at the n collocation
points Xj, i = 1 ... n. The integral itself can be evaluated exactly over each
panel, and the resulting algebraic equations

(4)
.7 = 1

require inversion of the influence matrix

^ (5)

Solution of the set of equations (4) produces an accurate estimate for
the overall lift (proportional to /7 dx], which converges with O(n~̂ } rate.
However, inspection of the output values of the function \fx 7(2), which
should be smooth near x = 0 shows instead a distinct "kink" which does
not appreciably diminish in amplitude with an increase in the number n of
panels used. This numerical artefact is largely local to the first few values of
7 from the leading edge and hence the error it contributes to the predicted
lift tends to zero rapidly with n, being proportional to the size of the panels,
which for a Chebyshev grid are especially small in that vicinity. However,
the effect on local properties near the LE can be significant.

To correct this numerical error, the representation of the strength of the
inverse square root singularity in the loading function 7(2) near the leading
edge x = 0 must be improved.

One method that is quite successful but computationally expensive is
"subpanelization", in which we subdivide each panel into many smaller
subpanels, and then modify the numerical integration of the kernel in the
integral equation to account for the variation of the relative loads on each
of the subpanels, namely, an inverse square root interpolation to the centre
of that subpanel, based on the reference value 7^ = 7(£j) at the centre of
main panel j.

Rather than using large numbers of subpanels to achieve greater reso-
lution of the LE behaviour, it is possible in two dimensions to specifically
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198 Boundary Element Technology XII
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include the singularity, by assuming an inverse square root load distribution
over all of the n panels, resulting in the influence matrix

(6)

The integral in (6) can also be evaluated exactly, although with slightly more
difficulty, regardless of the particular grid used. When the new matrix A{j
is inverted, the kink in the loading effectively disappears while the rate of
convergence to the lift coefficient is maintained (See Figure 1).

P'or any given grid, we may now calculate the difference between the
influence matrix A{j ~ A^ assuming constant loading, as given by (5) and
the more accurate influence matrix with the singularity built in,
as given by (6). Hence a correction matrix E^ = A^ — /4^ is obtained for
any discretization. For a Chebyschev grid (cosine spacing) the correction
matrix E^ is a fixed constant (the size of the smallest panel) multiplied by a
set of factors whose only parameter is the number of panels n. For example,
for n — 12 the most significant corrected influence coefficients A^ and their
correction factors Ei are:

CORRECTED MATRIX MATRIX CORRECTION
l/J
1
2
3
4

1 2 3 1
0.1019 0.1679 0.1831 0.1711
0.0602 0.2355 0.2178 0.1915
0.0401 0.1409 0.3367 0.2495
0.0285 0.0937 0.1951 0.4108

•/.I

2
3
4

1 2 3 4
-0.0032 -0.0046 -0.0025 -0.0016
0.0014 -0.0013 -0.0037 -0.0019
0.0004 0.0020 -0.0010 -0.0033
0.0002 0.0007 0.0019 -0.0010
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Boundary Element Technology XII 1 99

Since the (two-dimensional) airfoil equation has an analytic solution
and numerical methods are really only needed for lifting surfaces in three
dimensions, the influence matrix correction E{j is more useful when applied
to the three-dimensional problem. Integrated once in the x direction, the
kernel for the three-dimensional LSIE (1) may be expressed as W(X, Y) =
#xy = y-2(X 4- E, where

Now the kernel, KXY is to be integrated over a rectangular panel. We ob-
serve that the numerical scheme provides adequate accuracy in the spanwise
direction Y and turn our attention to the X— integration of KX- Integrating
once with respect to F, we obtain

4- A) - y-(% + A) + 1

All of the terms here are analytic with respect to X except when Y = 0 and
X — > 0. In this case there is a weak singularity in \og(Y+R). If we let Y = 0,
then this is reduced to the two-dimensional kernel and we might expect that
a correction factor equal to that used in the two-dimensional case would
be appropriate. We use the above formula for KX as it stands only when
y = 2/_7, > Q; if this is not so, the identity log(y + #) = 21ogX-log(y-#)
is used. Now when Y takes the same sign on both sides of the panel, the
term 2 log X is either not present (both Y values positive) or else cancels out
(both Y values negative). On the other hand, when the sign of Y changes
from one side of the element to the other (this occurs when the collocation
point lies in the same chordwise strip as the panel), the integration over the
full panel takes the form

\og(Y+ + R+)~\og(Y-+R-) = log(Y+ + R+)-(2\ogX-\og Y~ - R

There is now a —2 log X term present, so the appropriate three-dimensional
correction to the influence matrix A^ is exactly —2 times that for the cor-
responding two-dimensional kernel. On application of this correction, the
LE kink in the three-dimensional results for 7 disappears, as it did in two
dimensions (see Figure 2).

Comparison of results

Most lifting-surface algorithms are designed to provide accurate results for
doubly integrated quantities such as lift and pitching moment. It is some-
what harder to obtain accurate results for the spanwise variation of loading
F(?/) = f ̂(x,y) dx (and consequently the induced drag), and harder again
to determine the pointwise variation of loading j(x,y) itself, especially near
the leading edge and the wingtips. The following table (reproduced in part
from Hauptmann and Miloh^ with the current results added) compares the
lift and moment slope coefficients for a circular wing.
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200 Boundary Element Technology XII

Mgure 2: Effect of correcting the LE kink for a 3D square wing.

Present solution
Hauptman and Miloh^
Jordan**
Prandtl lifting line

C
1.
1.
1.
9

L/OM'
790
7907,50
790023
444

-
0.
0.
0.
0.

CM/AM/
4661
46882
46617
611

We also compare the resolution of the leading edge singularity strength
with those of Guermorid^ and Jordan^. Figure 3 shows the spanwise vari-
ation of the leading edge singularity strength. This is by far the hardest
quantity to determine correctly by any numerical lifting surface method.
Jordan's infinite-series analytic solution predicts a finite value for the LE
singularity strength at the wingtip, hut with an infinite slope as a function of
the spanwise co-ordinate, so that the strength drops very rapidly as we move
away from the wingtip. For finite numbers of panels, the present method
(and Guermond^) suggests incorrectly that the LE singularity strength is
zero at the wingtip. However, it then rises rapidly to a maximum close to
the wingtip, and as the precision of our computation is increased by tak-
ing more panels, this maximum moves closer to the wingtip itself, and the
results approach those of Jordan.

Induced drag on planar surfaces

The induced drag of a lifting surface (see Tliwaites', page 454) may be
evaluated as the kinetic energy in t he FrefFtz plane, far downstream and
perpendicular to the free stream direction -Kr. The resulting formula for
the induced drag of a general (non-planar) lifting surface is a double integral
involving the chord wise-integrated loading function F. In general, it is diffi-
cult to evaluate this double integral numerically. Authors such as Katz and
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Boundary Element Technology XII 201

Pigure 3:
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Plotkin^ present Riemann-based algorithms assuming that T has a discrete
span-wise representation, but to date we have found these slow to converge
with the number of spanwise panels.

In the case of a single planar lifting surface of span 6, integration by
parts results in the following integral, given in Ashley and Landahl\ page
136, equation 7-44.

f \ I I I
' ~ ~~4— / / ~i—}— log y — yi\ dyidy.

47T Vo Vo d?/ m/i

Assume that I/f^/) may be accurate!)' represented as a Fourier series ['((/) =
f/oo^ZlLi /L,sin(?^), where •(/ = |sin#. Then the induced drag coefficient
is given in Ashley and Landahl^ as

In the case o( a non-planar wing, an equivalent method has not been found.
Whether there are computationally efficient ways to calculate C'/j, for non-
planar geometries is an interesting question. However, by considering the
balance of forces on (he body, it should not be necessary to directly evaluate
Co, at all. The force perpendicular to the flat wing provided by the pressure
jump between its bottom and top sides must balance the drag and suction
forces, such that C$ - C\sinA — C#-
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202 Boundary Element Technology XII

Leading edge suction

It may be shown (see for example Milne-Thompson™, page 125, or
Siekmann^) that there is a non-zero suction force that acts tangent to
a sharp (cusped) point on a profile in two-dimensional flow. This force may
be regarded as the product of the infinite pressure required to make the fluid
negotiate a 180* turn, times the zero area of an infinitesimal body element
on which it acts. It may be shown that the magnitude of this LE suction
force is proportional to the square of the coefficient of the inverse square
root LE singularity produced in the pressure field at the cusp.

It has not always been clear (see for example Billington^) that this
result is directly portable to three-dimensional flow. However, it has been
shown (Tuck̂ , Lan^ and others) that if the suction force is to exist for a
three-dimensional thin wing, then it must be given by S - \5$Q(yYdy,
where Q(y) is the singularity strength

Q(y) = lim 7(z,t/)x/z - XLE-
X-+ZLE

Hence for a small angle of attack, we expect the LE suction force coefficient
to be given by

4 . - . - . . -" (?)

Evaluating the integral in (7) is made very easy when the integrand is
represented as a Fourier series such that

where y = |cos$. In this case, the LE suction force is given by Cs —

2g//l = ̂ Bi.

Results

To verify the present computational method, CL/OL, CD Jo? and Cs/o? are
calculated independently for an elliptic planform wing of varying aspect ra-
tio. These quantities are plotted in Figure 4. Note that we should find
CL/O. — CD̂ C? -f CS/Ĝ  - While the unextrapolated results are reasonable
(riy — HX = 18 gives at least 3 figure accuracy for planforms with /R > 1),
there is a noticeable decrease in accuracy as AFt — > 0, especially for elliptic
and delta planforms. Nonetheless, the error Cĵ /a — CD Jo? — Cs/Q? con-
verges toward zero with rate n~* . The problem of planar surfaces of curved
planform has been tackled from a different direction by Guermond^'^, who
conformally maps the planform into a rectangular one before discretization.
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Boundary Element Technology XII 203
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Discussion

The power of the current technique is not fully realised for planar wings
because it is relatively simple to calculate the induced drag ('#, directly
from the Trefftz-plane double integral. However, for lifting-surface geome-
tries that are non-planar, or with multiple components such as endplates or
biplane wings, or in ground effect, such direct evaluation of C#, is computa-
tionally difficult. By comparison, the evaluation of the LE suction force C$
is essentially geometry-independent, once the pointwise loading 7 has been
accurately calculated by solution of the non-planar equivalent of the LSIE
(1). An immediate consequence is that the induced drag of wings with end-
plates or in ground effect can be confidently tackled, and we are doing this
in further work in progress (see Standingford and Tuck^, Standingford^).
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