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NUMERICAL SOLUTVION OF NAVIER - STOKES
EQUATIONS AT HMIGH REYNOLDS NUMBERS

by
Alekse§ Ilyich Shestakov

ABSTRACT
A numerical method is presented which is designed to solve
the Navier-Stokes equations for two-dimensional, incompressible
flow. The method is intended for use on problems with high Reynolds
numbers for which calculations via finite difference methods have
been unattainable or unreliable. The proposed scheme is a hybrid
utilizing a time-splitting finite difference methad in areas away
from the boundaries. In areas neighboring the boundaries, the equations
of motion are solved by the newly proposed vertex methed by Chorin,
The major accomplishment of the new scheme is that it contains
a simple way for merging the two methods at the interface of the
two subdomains. The proposed algorithm is designed for use on the
time dependent equations but can be used on steady state oroblems
as well, The method is tested on the popular, time-independent,
square cavity problem, an example of a separated flow with closed
streamlines. Numerical results are presented for a Reynolds number

of 10°.
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1.__Introduction

Presently much of the numerical work on the Navier-Stokes
equations is done by approximating the partial derivatives in the
equations of motion by Sinite differences. Since the interesting
phenomena occurring in fluids of low viscosity initially appear in
regions cf small area, it has been very difficult tuv produce reliable
results for problems with high Reynolds numbers.

Analysis implies that at least several grid points must fall

'1/2); thus, an

within the boundary layer whose thickness is o(R
upper bound on the Reynolds number seems to be imposed, since ane

always has a finite amount of space available on the computer. This
problem is especially important in cases dealing with flows in wakes

or separated flows when the initial boundary layer may not be visible

to a coarse finite difference grid. Another drawback of finite
differences is that in areas near the boundaries sharp gradients

may give rise to large truncation errors which swamp the original
approximation. The problem is further complicated by the truncation er-
rors which may cause a numerical viscosity to form which is greater than
the viscosity of interest, Dorodnicyn [11]. If care is not exercised,
it is possible to generate the right solution to the wrong problen.

In fact, as discussed by Fox, Herring, et al. [13], it is often
difficult to predict when difference methods go awry, They can

easily give incorrect solutions without signalling that further
resolution is required. All of these drawbacks have led some

researchers to construct other numerical schemes suitable for use



in flows with high Reynolds numbers.

A relatively new scheme was propesed by Chorin [8]. The scheme
is grid-free and seems to simulate the physics encountered in fluids.
In Chorin's scheme, the vorticity in the fluid and in the boundary
layers is subdivided into blobs of small but finite support, and
the equations of motion are solved by following the blobs throughout
the fluid. The scheme has given some reliable results (Chorin [8],
Davari [10], Shestakov [22]), however, it sometimes suffers the
drawback of requiring long running times. Its speed, or lack of it,
is due to the fact that if n vortex blobs are present in the fluid,
then o(nz) interactions must be computed per time step, since
each vortex influences all of the others. Furthermore, the blobs
move according to two components, one of which is a random displacement.
This displ.cement Teads to a partiaiiy random distribution of verticity
which becomes more random as the number of blobs present in the fluid
dacreases. Hence, one must sometimes resort to unsatisfyinq methods
to get accurate results: use many vortices, or average over ensembles
(Shestakov [22]).

Since only at the boundary or whenever blobs are near one another,
is it essential to keep track of individual vortices, it is natural
to consider a "grouping" scheme which would replace vortex blobs
far from an object by "larger" blobs. This approach has been tried
{vavari [10]) but is also unsatisfying since large vortices stil?
Tead to o(nz) oporations per time step. It is well known that in
two~dimensional flow the all-important effect of viscosity is

confined to regions near the bourdaries of solid bpdies. The effect



of viscosity is to create the vorticity making up the boundary layer
which later separates into the fluid. Once away from the boundary,
the effect of viscosity is negligible. On the other hand, as
previously noted, it is this thin viscous layer which is often
invisible to finite difference methods and which is responsible for
most of the interesting phsnomena. Assuming that vorticity was
already introduced into the fluid, finite difference methods should
work very well in regions away from boundaries. It is thus natural
to try to combine these two methods of solution.

The following describes an algorithm to do just that. In
areas close to the boundary, the vorticity is evaluated and subdivided
into vortex blobs of small support. Away from the body, the Navier-
Stokes equations are solved by a time-splitting finite difference
method. The proposed hybrid method is tested on the pcpular problem
of computing the steady-state incompressible flow inside a square
cavity when one of the sides of the cavity slides in its own plane
with constant unit velocity.

The cavity flow problem has been very popular cver the years
and enjoyed an extensive bibliography, {1], [3], [5]1, [14], [¥7], [19],
and [21]. It is part of a larger class of steady, separated flows
with closed streamlines studied by Batchelor [2]. The velocity field
depends cn the Reynolds number and has been evaluated numerically
and exrerimentally by several researchers. As the Reynolds number, R,
tends to zero the so-called creeping flow case arises which yields
a symmetric velocity field and one large vortex filling out most of

the cavity with its center near the sliding edge.



As R increases, two things have been ohserved. First, the
center of the large vortex moves downstream parallel to the sliding
edge, and secondly, the small counter-rotating vortex in the upstream
stationary corner begins to grow in size. The growth of this vortex
continues until R > 500, at which point the corner vortex begins to
shrink back into its corner.

The position of the center of the large interiar vortex exhibits
a similar peculiar behavior. As mentioned above, as R grows away
f rom zero, the center of the vortex moves downstream. Above 100,
however, the center of the vortex turns the corner and begins to move
toward the center of the cavity. As proposed by Batchelor, and as
verified by others, tke large center vortex becomes inviscid as R
increases and the vorticity in the interior approaches a uniform
limiting value. The viscous effects are then confined to increasingly
thin shear layers along the three stationary walls.

Several researchers have obtainhad results for high Reynolds
numbers. Burgraff, [5], did an extensive study and was able to get
numerical solutions for R as high as 500. Pan and Acrivos [1],
computed the creeping flow case and performed laboratory experiments
for higher R. They were able to make visual observations for R as
large as 4000 at which point instabilities began to affect the flow.
Greenspan [14] computed numerical solutions for R = 2000, 1.5 x 104
using a mesh size of 1/20, and for R = 104. 105 using a mesh size of
1/40. However, his iterative technique does only a local check on
the iterate and the computation is stopped when the values do not

change appreciably from one iteration to the next. Greenspan also
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did not observe any counter-rotating vortices nor did he exhibit

any velocity profiles through the vortex center. Using a non-uniform
grid, and a new method for evaluating the wall vorticity, Runchal,

et ai., [21], obtained results for R = 104. They were also not able
to visualize the corner vortices nor did they display any velocity
profiles. Testing four different differencing techniques, Bozeman
and Dalton [3] were able to get two to converge at R = 103. They then
discarded one of them as giving an obviously incorrect result. A1l
of the above numerical calculations were performed by iterating

on the steady-state Navier-Stokes equations and as noted by Bozeman
and Dalton, this technique may produce solutions which don't change
appreciably from one time step to another rather than the true
steady-state solution.

A1l of the above numerical work was done by approximating the
derivatives by finite differences. Since, on occasion, different
difference schemes yield different results, all of the above comp-
utations should be carefully analyzed before pronounced correct. 1T
hope that the present work will serve a twofold purpose: Serve
as another contribution to the literature of a square cavity problem,
and more importantly, introduce a numerical technique that may be

useful in problems with high Reynolds numbers.



2. Equations of interest and description of problem

To avoid confusion, scalars and scalar funciions will be denoted
by simple letters, e.g. h, ¢, X, and the underiine will be reserved
to distinguish vectors, and vector functions, e.g. r, U, V¢.

The equations of interest are the non-dimensionalized Navier-
Stokes equations for two-dimensicnal, incompressible flow, written in

the vorticity transport form

21
3t5+(y_'_V__)E-'§A§, (2.])
(z-w=0. (2.2)
Definition U = (¥, V) = velocity vector ,

R = Reynolds number ,
= ¥ x U = vorticity .

Since U is two dimensional, £ 15 considered to be a scalar.

Equations (2.1) and (2.2) are to be solved in a domain D with
the imposed "no-s1lip" boundary condition:

U (at the boundary) = velocity of the boundary, (2.3a)
or if the boundary is at rest,

U = 0 at the boundary. {2,3b)

There will also be a specified initial condition,

y(t=0)-= fo » @ given function. (2.4)

Since the flow is incompressible and two-dimensional, there
exists a scalar function p which can be used to define the velocity:

U= (U, v) = (3, ¥ -3, v). (2.5)
Definition ¢ = stream function.

Using (2.5) and the definition of £ as the curl of U, it follows



that:
Ay = -E . (2.6)

Equation (2.5) determines ¢ up to an additive constant. If
the boundary condition (2.3b) is to hold, then ¢ satisfies,

¥ = constant
at the boundary.

Consider, in particular, the problem of computing the steady-
state velocity field inside a unit-square cavity (Figure 1).
Initially the fluid is assumed to be at rest and at t = 0 , the
bottom edge has impulsively becun to slide in its own plane with

unit velocity.



3. Principle of the method of soluﬁon

Equations (2.1) and (2.2) will be solved by integrating them
forward in time. Given Em, the vorticity at the mth time step, the
problem at hand is to calculate E,'m"'.

Let D=DjuyDy, such that

D.

1
dist (DZ, W)=68>0.

ADZ=¢.and

Let
geel+gy, (3.12)
such that,
support (ET) €04 (3.1b)
Since g'? is to be a collection of vortex blobs,
m _ _m
E] (E) = § ;j EO (r -!j) . (3.2)

E'g will denote the vorticity given on an interior grid; thus, define
ma .
{z};} = &.
Let g"'. gg. and w']“, w'; correspond to the velocities and stream functions
induced by the two vorticities Em, and Em respectively, Then, it
1 2

follows,

,l_f{'()=§:390(1-1§'). (3.3)

and

0 - Joy% (- ). (3.4)

& (r) s the vorticity function of one vortex located at the origin,

go (r) is the velocity field induced by that vortex, and ¥ (r) is

the induced stream function (see §4).



Calculate gme by solving

Wy = ~g5  in D (3.5)
with the boundary values, .
wg(s) = -uﬂ(s) along 3D, (3.6)
Knowing ug » let
Up = (8, ¥p » -3, ¥p) 3.7)
If " = wT + ug , then (3.6) implies

"= 0on o0, (3.8)
and if QW = UT + Ug , then (3.8) implies
Men=0 onap,
where N is the normal vector along ap. Thus jf" is a velocity field
which has no component normal to the boundary, or, in other words,
there is no "leekage" or "seepage" out of or into D.
The updating of the field €m 15 done by two distinct methods.
In the domain Dy» the one adjacent to the boundary, the vorticity is
represented by ET, a collection of vortices (see (3.2)). The field
ET is advanced in time by Chorin's vortex scheme [8] (see §4). In
the interior subdomain, Dys the vorticity is given by ;g, a function
known on a grid over the domain. The equations of motion, {2.1), and (2.2)
are solved by approximating the partial derivatives by finite differences
and by using a time-splitting scheme to advance sg.
After ET. sg are advanced, it is clear that (3.1b) may be violated;
that 1s, some of the vortices which make up ;T may now 1ie outside
D or inside Dy and similarly some vorticity stored in Dy on the grid

may have convected or diffused into Dy or outside D. The vortices



which now 1ie outside D are eliminated, while the ones lying in D,
are interpolated onto the grid. By choosing the time step carefully,
1t can be shown that vorticity originally in b, cannot travel more
than a specified distance, which 1s taken to be less than §, the
distance from D, to 0. The vorticity in Dy which has been convected
or which has diffused into Dy is "remembered” on an “expanded”

mesh. This vorticity 1s then coagulated into new vortices. The
above process thus gives a new E'{'+ 1 sh and a new 5"2"" € Dp-

This completes the evaluation of &M+,

10



4. Chorin's vortex scheme

In this section, a sketch of Chorin's vortex scheme [8] 1s presented
as it pertains to this problem.

Consider the problem of computing the evolution of vorticity §
according to equations (2.1), (2.2), (2.5), and (2.6) subject to the
boundary conditions (2.3a) or (2.3b). Chorin assumes that this
vorticity in D) can be written as a sum of blobs, or vortices,

§(o = § &, le-rp)

where each EI.J is a radically symmetric function of small support,

and || = sz + yz . Assuming that the E‘I W differ only in strength
and not 1n shape, by assigning a strength cj to the Jth blob, rewrite

E'l as:
E](I_) = § ;J :O (r- Lj) ' (4.1)
where
i o, r<g
5yle) = { T 4.2)

0 ,r>c .
The constant ¢ 1c the cut-off length, to be determined shortly and
r = |r|. Although g (r) is singular at the origin, its shape becomes

convincing when one considers the integral of the vorticity,
j]e](x.y)dxiv . J& Ey%olr - ry) dr = § &

where the {ntegrals have been evaluated using polar coordinates.

Equation (4,2) will look even more convincing after the generation

n



of vorticity at the boundary has been discussed.
The basic blcb ;o(g) generates its own blob stream function, ¥ys
which is computed by solving
gy = -4y
Neglecting boundary values for the moment, it follows that

’,
l

“ P - %F Togr ,r>o
Yolr) = (4.3)
° - E%G v sr<a .

Using (2.5), (4.1): and (4.3), 1t 1s possible to generate the velocity
field induced by E]:

QI(X-Y) = § CJ !o(x - XJD Y- yJ) . (4'4)
go(x,y) is then the velocity induced by a single blob Jocated at the
origin, and (xj,yd) is the location of the jth vortex. yo can be

calculated by differentiating (4.3);
1
— (-¥sx) s v>0
2my -
Uplxay) = (@w,s = B0,) = .
lg;g; (=y:X) . r<o .
The velocity Qo, and therefore 94. is a continuous velocity fieid
obtained from a discontinuous, in fact singular, distribution of

varticity.
It's possible (Davari [10]), to generate a continuous stream fn.,
Yy by the addition of a constant, which yields

’
z'%?lﬂg" +F20

Volr) =
1 -%; {1 -10g0 - g) »P<O

12



and it is this expression which is used by the computer program.

The computaticn of the evolution of £, according to (2.1) 1s
accompiished by a first order correct in time, differencing algorithm
which uses no spatial grid but merely keeps track of the centers of
the vortices. The field Lh does not satisfy any boundary conditions;
sections § and 7 explain how to generate a velocity field Qz with
¥x Y =0in D and which cancels the normal boundary component of
U;. Then defining U S U, + U, , it follows that,

U-n=U -n + U, + n = 0 along ap.
Thus, U is a velocity field which satisfies the normal boundary
condition.

Momentarily neglecting the second boundar: condition, U +s =0,
solve the equation,

2 Bt (U D) =g og (4.5)
in Dy in two steps. Equation (4.5) states that the vortices move
according to two components. The first, the convective one, is
Euler's equation,

pt D=0, (4.6)

or 1f we fo1low the fluid particles
051

e "0
The second component is the diffusive one,

B & TRAE . (4.7)
Equation (4.6) fs solved by keeping track of the locations of
the vortices. If (x,, y1) denote the location of the 1M vortex
blob then,

13



gf (x1,.v1) = Z CJ Lj,o (x~| - XJ» ¥i - .VJ) +!2 ("i'yi’f‘ ’
higl

or if (x'}',ﬂ') is the location of the 1”‘ vortex at the m&";_ime step,
then .
LY = G+ k[z g Yo 0 = s 7 - )+ 4y G, D) (a.8)

J#i
where k is the time step. This is simply Eulsr': method for the solution
of o.d.e's.

Equation (4.7) is solved by the vandom walk method developed by
Chorin [8], whose idea was described by Courant, et al. [9] in their
classic paper on difference schemes. If n = ("1’“2) is a vector whose
components are gaussianly distributed random variables, with mean zero
and variance 2k/R, then (4.7) is approximated by

LT = 0D + (yny) (4.9)

(see [8] for an easy algorithm for constructing n ’"2)‘

Denoting the term in the [.] brackets in (4.8) by QW, then (4.8)
and (4.9) are combined to yield,

Gy = GG + K+ (ngany)
as the approximation to (4.5).

Consider now the generation of vorticity at the Loundary. As
previously noted, the field U does not satisfy the tangential boundary
condition,

UssmOory-gs = tangential velocity of the boundary, where
s is the unit tangent vector to 3». Tc correct this deficiency in U,
imagine the existence ~f a thin viscous boundary layer which cancels
the tangential compoiicnt of U. To evaluate the vorticity necessary to

14
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do this, integrate ¥ x U along the boundary layer. If the boundary 1s
divided into segments of length h, and the midpoint rule is used as

an approximatfon to the integral, the vorticity in a boundary layer of
thickness v and length h is

h/2 v h/2 v
f f (2 x U) dydg = f f (-ayu) dydx = -U(0,v) h.
-h/2 0 =h/2 0

U(0,v) is the free stream velocity at the edge of the boundary layer
and it is set equal to U(0,0), the tangential velzcity component of U
which needs to be cancelled {see Fig. 2). Note that the above calcula-
tion was done using a local coordinate system. This vorticity s then
coagulated into a new vortex blob. The newly created blob is ailowed
to diffuse, and ft is its shape, inside the cut-off lcngth o which
exerts a constant velocity at the boundary equal to -U * 5. This
accomplishes the cancellation of U « S and gives a value for o, namely
o = h/2v. The new blobs diffuse into D and become part of §. The

entire process 1s then reiterated.

16



5. Finite difference method,

1. Difference operators

In the interior subdomain, p,, the vorticity field g, is advanced
in time by approximating the equation of motion:

Wt U D E=FAE, (5.1)
(v-9) =0
by a finite difference scheme.

Subdivide Dg» which in the problem of interest is a square domain,
with a square mesh of fixed mesh size d. Assume that apz always lies
the same distance & from 3p. Define

';T,j”z {6 + id, & + jd, mk) ,
i.e. ;T,j represents the vorticity at the point x = § + id, y = § + jd,
t = mk. Assume that D, is covered by a mesh with M + 1 grid points in
each coordinate spatia) direction, hence

& = (61,3 1m0
Define the shift operators

S+151,‘

EEREER R RN BRI RN
define the one sided difference operators,
Dﬂ Bt (s11 - I)d , DtZ = 1(512 - 1)d ,
and define the central difference operator
=1 =1
Dor = 2Py * Dq) + By = 5045 -Dp)
2. Time-splitting scheme

Using these definitions, (5.1) is solved by a time-splitting method,

whereby an intermediate field ;m+1/2 is caleculated. Then using Um,

16



and ;m+1/2' the vorticity at the next time step, cm+1, is evaluated.
Symbolically, r

M2 - g |- gy 2 - Vg™

o0 8™2 4 lu+20_2;'"J (5.2a)

R
gL w2 %[ o V2 -y,

m+]

1,40, ™V2 4 1o p o ] (5.2b)
—

If the unknowns are combined, the equations can be rewritten as

k k mH1/2 _
(1 + 3'0g) - G0 e /e =

m k
(1= 3"y + S0P (5.32)
K m
T+ %V DOZ -Z_DJ-ZD 2)5 -
(1 - 30y + 501 )5™ 12 - (5.3b)

It can be proved that the analogue of (5.3) is unconditionally
stable when equation (5.1) ix linear and has constant coefficients.

Using a Ven Neuman Stability analyeis. let

m ’\/—' (eysiey)

ivd =" (5.4)

To prove stability it is necessary to show thai p < 1.

= Uk :V._k. ._.Vk
Define c1=-ﬁ.c2_2d.b_—£?-,

and substitute (5.4) into (5.3). After cancelling powers of e, and
substituting (5.3a) into (5.3b) obtain

[



2
1- b(1-cosej) - V-chsinej
p= .
]+ b(l-coseJ) + '\/-lcjsineJ
i=
p is necessarilly < 1, if wach one of the factors in the product is < 1.

However, since b > 0, and 1 - coseJ >0, j=1,2, it is evident that
the numerator of each factor is less in modulus than the denominator.

Therefore, p < 1 and the scheme is unconditionaliy stable.
3. Evaluation of vnlocity fields

At the beginning of each time step, the locations and strengths of
each vortex blob are stored in an array, thereby specifying the field
5?. Correspondingly, the vorticity Eg is given on a grid covering Dos

8- {‘T.j}it'ro '

In order to advance g, in D,, the velocity field U must be evaluated
on the same grid. The velocity U is a sum of the velocities induced by
the two functions 5] and Ey- However, (4.4) is not used to calculate
gh on Dy, as this would entail summing over all the blobs for each grid
point. Instead, ) and gq are computed on the mesh points constituting
. Using these calculated values for ¥y on 3D, as boundary data, the
finite difference analogue of

oy, = 0 on 2, (5.5)
is solved. The number of points per side for this problem i1s always
odd (see below) and may often be of the form 4L - 1, L a positive integer.
The solution of (5.5) is then obtained using the FACR algorithm of
Hockney [15]. After (5.5) is solved, the fiel? Y is approximated by

18



centrai differences of the computed stream function values for 12E
The field Uy is evaluated in D and 3D by solving (3.5) with the
boundary conditions (3.6). and using central differences of the result.
Because the mesh will "expaad" by two mesh widths over one tima
step (see §5.4), the field U will need to be tabulated at the grid points
falling outside Dy. At these points Lh is computéd via (4.4), and U,
is evaluated by differentiating the bi-quadrafﬁc spline interpolator to
b, in 2 (see §7). After the velocities have been evaluated, the field
U 1s specified at the (M + 5) points making up DZ' 3D, . and two mesh
widths surrounding Dys OF symbolically,
M2
g - {l—’-?j i,4=-2
.These values are then stored in an array in memory.

4, Boundary conditions for difference scheme

The finite difference scheme 1s used in the domain D, which is a
distance § away from the real boundary 2D, Hence, the grid on which
£y is updated does not veach any solid boundaries of the fluid. After
examining (5.3a), ic¢ is clear that if (5.1) is discretized at the
point (& + id, & + jd), then (5.3a) gives a Tinear equation for the
3 unknowns

;T+}/§ s ;T+1/2 . ‘T:ilg .
Hence, to compute ;m+]/2 ;m+1/2 is needed; Em;1§2 is the vorticity
which may be carried from D, to the point (x,y) = (8§ - d, & + jd).
Discretizing (5.3a) ac the M + 1 points (ii.yjo) = (5 +id, § + Jod).
where i = 0,1,...,M. gives M + 1 1inear equations for the M + 3 unknowns

£m+]/2 , 1=-1,0,1,...,M + 1, Hence, 1n order to solve the system,
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two more equations must be added for the unknowns ﬁf;]éz and ;ﬂ:}lg .
*o o

Discretizing (5.3a) at the point {x,y) = (8 - d, & + jod) will yield a

. 1/2 m+1/2 m+1/2 . m+1/2
linear equation for ;m+ A Lg% g, ' . Setting ¢ =0
-Z’JO ’ I’JO > 20,3 'zajo

means that no vorticity from D, can travel beyond one mesh width in a
time step of k/2.

Vorticity from D, can reach the point in question in only two
ways, by convection or by diffusion. It can be assured that 52 is

not convected beyond one mesh width as long as

W pax & < d. (5.6)
Diffusion, as discussed by Chorin [8) and Courant [9] is equivalent
to a random walk. Tschebysheff's ttc.vem (Lamperti [18]) states that
gaussianly distributed random variat i« with mean zero will rarely be
greater in magnitude than three standard deviations. During a time
step of duration k, vorticity will diffuse with a standard deviation
of V2k/R'. Hence, in a time step of length k/2, £, will not likely

travel beyond one mesh width if

3VIR <d . (5.7
If {5.6) and (5.7) are satisfied, ;m;1[2 and *;/? can both be set
= :Jo ’JO

to zero and thercby get M + 3 equations for M + 3 unknowns.
After the completion of the implicit differencing in the x-direction,
support (52) has expanded beyond D2 by one mesh width.
Hence, it follows that
,HH

gy g (5.8)
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The solution of (5.3b) is obtained in a similar fashion. The
equations are implicitly discretized in the y-direction and along

each column solve a system of M + 5 equations for the M + 5 unknowns

ml .
Ly 37 -2,-1,0,..., M+ 2

1 m+1

-3 and (N M3 equal to

The system is closed by virtue of setting cm+

zero by the same reasoning as above. Hence, at the completion of these
2 half-steps, support (52) has spread over 2 mesh widths beyond 30,
and the vorticity 52 is tabulated as:

i+ ! w1 LM+2 . (5.9)

S R
5. Stability critera for matrix equations

The heart of the time-splitting scheme involves solving many
tridiagonal systems. Although the Von-Neuman stability analysis showed
that the difference scheme is stable, the algorithm used to invert
the tridiagonal systems gives some stability conditions guaranteeing
that the inversion is numerically stable.

Using the definitions of §5.1, (5.3a) can be rewritten as

K 1/2
[x +ho ] (s - s - oy (s -2l s_])} -

kK _ym k n
[1 - ;ﬁvm(s+2 -5,) ¢+ ?R? (Syp - 2L + 5_2)} 29, - (5.10)
Definition
wz—k g _Rkd T=Rd2-k (5.11)
= » = Iy H . .
2(Rd%+k) 4(Rd%+k) RaZ+k

If (5.11) is now substituted in (5.10), obtain:
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S 0 R e Y - - e R

Vi g * Wyt @@ d g - G2

The equations are solved sequentially for fixed j. For such a fixed

row J define
=olf ; . D =8V, (5.13)
Then (5.12) can be further simplified to read:
-{a+ ci :IHIIZ . ;T;lz -la- ci)‘?ﬂﬁ -
(a + Di)d?.j-l + v:?.j +{a - Di)cli‘.jﬂ . (5.14)
mtl /2

The tridiagonal system which needs to be solved for the unknowns [ i

is of the form A x = y , where

-
1 - (e-¢,) -1
-(a+l:l) 1 -(u~€.|)
A= - {a+ Cz) I (5.15)
+ 1 '(G‘C"_'l)
L “latgy) i

These systems are easily solved using an algorithm described by
ksaacson and Keller [16) (see §7.4). The stability criteria given
by Isaacson correspond to

1> la- Co| » Jat CMI H (5.16a)_

12latgl+a-Cf 1=02..,M-1. (5.16b)
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Definition (||u||:“)2 = max Buﬁ.j)z + (V?.J)?] .

Recalling (5.11), condition (5.16a) s guaranteed if
Rk 0] |, < 2k + 2Re? . (5.17)

Condition {5.16b) requires:
2 max (a, |C1|) <1,
1

If
RAL U] lmyy < 2 (s.18}

then for § = 0,...,M
a> |¢]
and in this case (5.16b) requires:

k 2
1>2¢" or RAE“ + k> &k
RA%+k '

which is always true. Therefore, 1f {5.18) holds then (5.16b) is ful-
filled. It ts also evident that if (5.18) is true, that (5.17) holds;

hance, (5.16a) holds as well. It has thus been proven:

Lemma 1. If Rd]|uy| M <2, then the tridiagonal matrix solver is
max

stable,
If, however, (5.18) does not hold, t.e. {f for some (10.10).

Rd O]

'

equatfon (5.15) may st1l1] be invertible as lung as (5.16b) holds. In

>2 , then along some row j ., a < €, . The matrix A of
dy o 1o

this case (5.16b) requires that

152/ | Rk |[U]]pyy .
o ™
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or rather,

2(Rd? + k) > Rdk |[u,® (5.19)

max®
If {5.19) holds, then {5.17) 1s also true, hence condition (5.16a)
would be satisfied. Moreover, (5.19) will certainly be satisfied
whenever:

0 < 2 + Rd(2d - ||u]|7 K). (5.20)

Inequality (5.20) will be always satisfied if
m
||U||max k<2, (5.21)
which means that in a time step k, vorticity cannot be convected more

than 2 mesh widths. The above has proved:

Lemma 2. If ||U}|™. &k < 2d , then the tridiagonal matrix solver is

max
stable.

Once Eg+1/2 has been computed, a similar computation will yield

+1/2

Eg+,. In this case, since Eg has spread 1 mesh width beyond auz, g?

will spread 2 mesh widths beyond 3D,. Equation (5.3b) takes the form.
r
k m+l
Lx + aq 4d v J(s -5, - az{s,(z -2+ 5_2)]: =
k k m+1,’
[1 - 4—du';“j(s+, -S53) ¢ msﬂ -2+ s_,)]c (5.22)

The system {5.22) is now solved for fixed x, e.g. for fixed column

1. Using the definitions (5.11) and defining
Grefly ozl

(5.22) takes the form:
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+1
vj']

m+1/2 m+1/2 m+1/2
(a + cj);‘(-',j + Y;.(’j + {a - CJ);"*I.J

R R A N CEL AL AR

The resulting tridiagonal systems are similar to those encountered

in the solution for ;m+1/2’ except that the dimension has increased

by two, due to the "expansion of the mesh", e.g. for fixed {1, (5.22)
holds for j = -2,~1,...,M + 2 where C?:IB = :TTL+3 = 0. The resulting
analysis regarding the invertability of the matrices is the same as

before.
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6. Dompin interaction
1. g, flow from b into b,

After the field § has been updated via Chorin's vortex method,
equation {3.1b) may no longer hold. Soma of the vortex blobs may have
escaped through the boundary 3D, and some may have been displaced
inside the subdomain by. The blabs which have escaped through a0 are
simply discarded from the computation, but the ones inside D, must
be interpolated onto the finite difference mesh.

The blobs which cross into D, are interpolated onto the mesh
by a simple linear interpolating scheme. The scheme 1s known to plasma
physicists as "area weighting" or "charge sharing®. There are two
important considerations to keep in mind when interpolating. First,
it is essential that no vorticity be created or destroyed. Secondly,
the blobs crossing into b, wil) sttuate themselves at locations not
coincident with the mesh points, and the interpolating scheme will
replace these blobs with vorticity distributed on a grid. Hence, although
the total amount of vorticity may be unchanged, 1t will be distributed
differently. This different distribution will exert a change in the
induced velocity, and it is important to minimize this effect.

Recall that & is not the value of the vorticity, but, 15 instead
the vorticity integrated over the entire domain. In other words,

if & consisted of only 1 vortex blob,

(D) = gyEg(r - ¥]) 4 then j]ﬁ'{'(r.)dn‘ 5 -
D
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Assume that one vortex with strength 5 has crossed into D, {see
Fig. 3). Draw horizontal and vertical lines through the vortex center
and calculate the ratio of the areas of the 4 resulting rectangles

to the area of a mesh square:

A= (0= x(d - yMdPs Ay e x(d - Wi s

Ay = xyrd?; Ay = yld - x1de

Compute the grid vorticities using the Aj‘s:
-z /d - g A, 12
P B by LU T2 P By o T

R RN WL PR N WO

The area weighting 1s done to minimize the "self-force" phenomenom
known to plasmc physicists. This phenomenom 1s a numerical error
caused by the presence of a grid that has the vortex blobs exerting
forces on 1tself, The hope 1s that by distributing the vorticity due
to 1 vortex over 4 grid points, surrounding fluid particles do not
realize that the vorticity carried by a vortex blob has been redis-
tributed onto the grid. By means of the trapezoida) rule for integra-

tion, 1t can be shown that no vorticity was created or destroyed:
4
2 L
Edxdy = g, .d” = g, ) A =g
ﬂz By alhen,

It 1s interesting to note that the above method of interpolating
s equivalent to Peskin's "s" function technique [16]. In this case
the support of the discrete "5" function 1s 4 mesh squares instead of 16.
Peskin needed 16 because he had 4 different “chains" of points which

were linked by the boundary conditions. The 4 “chains” needed to
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feel the forces simultaneously hence, the "large support” of the "§"

function,
The above interpolating scheme is also equivalent to assuming

that the vortex blobs have a square base and that the basic blob

stream function has the form

1
Eglx.y) = ?-(d - IxDtd - jy) s [x[a]y] < d
0 , Otherwise -
To rerform the interpolation with this blab, cne simply evaluates the

blob function at the grid points,

2. £y flow from D2 into D1

The completion of the time-splitting scheme results in an "expanded"
mesh with vorticity 52 depositedon mesh points outside auz. This
vorticity must then be rearranged into the form of vortex blobs to
satisfy (3.1b). A simple method, albeit expensive,would be to repiace
every nonzero vorticity value of &y outside D, with a blob centered
on a mesh point. This new blob would have the strength Lo = dz ci,j'
This procedure is expensive since it generates many new vortex blobs
per time step.

To be able to keep down the number of newly reconstructed vortex

blobs, the following simple scheme was devised.
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Assume that only the four neighboring vaiues ¢ _, g8,
¥ ’
2,541 2 Ly 5a (see Fig. 4) need to be reconverted into a vortex
blob. The total volume of vorticity that needs to be transferred is
o= (8 g5 e,y * ta,5a * 5 j+1)d2‘ These four grid values
L] * » »

are combined into one blob centered at the center of mass of the four
vorticity values,

Define ol = lop 5l + loq 5t * 1o gnl * e gt -
Then the center of the blgh (xe,ye) is

Xg =8 -2 +dllz,y jql+ Ic_ul)/lcel ,

{6.1)

Yo = 8+ 30+ alley ol + Loy gV gl .
The scheme {6.1) places the center oi the blob inside the mesh
square of interest. It is interesting to note that under some particular

distributfons of the mesh vorticity, scheme (6.1) is the inverse of
the interpolating scheme described in the previous section.

Before discussing how scheme (6.1} is implemented to transfer
the vorticity 52 Tocated in D.l into vortex blobs, recall that at the
beginning of each time step, & is distributed on an (M + 1) x (M + 1)

mesh contained in Dys ©.9.

Em = M M
2 e -
After the time-splitting step, gg has been updated and distributed

m+l,*
on the expanded mesh; denoting this updated vorticity by 52 ,

it follows
M2

+1,% _ omil
IR

l4,5=-2 .
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The values of Eg+]’* that must be recombined into vortex blobs, compaose

f
melL*
1‘1.} .
Vijed(fhj) 224, <M+2 - {{(1,3)] 0<1,j <M}
Consider the bottom edge of Dy» i.e. the vorticity values

the set

{;‘,“*}} for 1= <2,-1,...,M+2, j=-1,-2
Scheme (6.1) will generate M + 4 vortex blobs lying between y = § - 2d
and y = 6 - d where 6 = dist(30,,®).
Some care must be exercised to ensure that no new vorticity is
created or destroyed and that the apportionment of vorticity among
the blobs is similar to its previous apportionment on the grid. In

particular. 2 blobs will be generated by the 6 values:

m+] +1 1 +1

Zj-1,-2 ° 1-1.-1 ’ ‘Tt-1 ’ CT.-Z ’ cTﬂ -2 ;1+1 -1°
where 1 < 1 <M - 1, Scheme {6.1) will generate one blob inside the

square with vertices (i - 1, -2), (i - 1, -1}, {i, -2} , (4§, -1).

This blob will have a total vorticity specified by -ﬁm+] .2 3§T+} -1
? ’

1;”+] » J:M+‘ . The remaining _§m+l will be used tc generate a blob
i,-2 * 271,-1 22,5

in the neighboring square.
In a corner, a different algorithm is used. Consider the 8 values

m+l +1 m+l m+l m+1 1 m+]
.2,-2 ‘-J“l-z"g.-z"-a 1'5-1 1"0-1-""20"5-10

The corner blob 1s generated using the 4 grid values
+] 1+l 1 +]
‘TZ.-Z ' 2y,.2 %‘T;.-l ' IhaY,-1
The blob immediately to the right is generated using the values
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m+l m+1
PP PR LIS A
Finally, the blob above the corner is generated u:.ing the values
+1
AR LIS S P
In this way, all of the vorticity Eg+] 1ying outside D, has been

transferred into blobs and the location of the hlobs within each square
assures that fluid particles several mesh points away do not realize

that a transformation has occurred.
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7. Numerical detaiis

1. Numerical evaluation of velocity fields

At the beginning of each time step, evaluate a velocity ge

satisfying:
ZxY, & in p , and (7.1)
Y +n = -4 -n alongan. (7.2)

The field g2 can be calculated by differentiating a stream function
¥y which satisfies:

Apy, = -E, 1n D, and (7.3)

Up(s) = - (s} along ap. (7.4)
Thus, if

Q,?_ = (ay'l»'Z’ - axu’z) s
equations (7.1) and (7.2) are satisfied.

To calculate wz. subdivide D into L + 1 points in each direction

and thereby define d as:

d = 1/(L1) .
Let wi,j denote the approximation to wz(id,jd) . Thus, using (7.3},

Viger Vg T Mg b gt e gn = el o) 0s)
where now,
£5[1,3] = £,(1d,3d)

and 52[1,J] 20, for all values (id,jd) ¢ Dy. At points wi,j coinciding
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with 9D, the value of 12 j is calculated from (7.4) and the formula
W (r) = Jeo (e - ),
() = Jegule -
where ¥ is defined by (4.3).

If equation (7.5) is to be satisfied at every interior point,
the following large linear system must be solved:
Eyp=y.

where E is block tridiagonal

Al -4
IAL 141
£ = IA- | A= 14 ,
.« . « o ]
A 1 -8

dimension {(A) = (L x L), and £ is made up of L block rows and L block
columns. The number L is set to be of the form 2% - 1, where e is
a positive integer. The problem is thus placed in ready-made form
to utilize the cyclic odd-even reduction algorithm [6].

At the completion of the evaluation of 178 there will be L2
interior values and 4(L + 1) boundary values (from (7.4)) of y, stored
in an array. Denote these grid values by:

v = {wi'j}i,;:L'
The velocity field ge is then approximated by two different methods

in the subdomains Dy and Dy. The use of the finite difference scheme

in D, requires knowing gz on only the mesh points. Hence, ge is

approximated there by centered differences of Vs €.9.
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Uy = (%) 5 = Bgt8y, 501 = ¥y, » ¥1g,5 7 i,y
However, the vortex scheme has no such neat arrangement. The velocity
Y, will need to be avaluated at the centers of the blobs which need
not coircide with the mesh points. Consequently, it will be necessary
to evaluate ga anywhere inside ;. This 1s accomplished by approximating
¥y by a bi-quadratic spline in D, which 1s then analytically differ-
entiated to yield a continuous approximation to _l!e in ;.

The coefficients of the time-splitting scheme are functions of
the velocity U, a sum of the two fields Q.I and ge At grid points
on the “expanded mesh" in D and on anz. y_l is evaluated by (4.4)
while g\,_ is computed by differentiating the spline approximator to
by

At mesh points in Dy, 92 is evaluated by centered differences as
described above. It would, however, be too expensive to evaluate U,
on the mesh points inside D, by means of (4.4). In fact, the use
of (4.4) in D, would defeat the purpose of the entire method, since
a finite difference method was introduced to aveid the countless individ-
ual vortex calculations. Since, however, D, is specifically designed
to be away from the boundary and since support (£;) ¢ oy, it s
possible to make a decent approximation to the field glin ”2 by
numerically solving

&4 = 0 in D, {7.6)

with the boundary vaiues y;(s) specified on 3D,. The function y(s)
1s computed on 3D.| using

Win) = §cjw°(_v; - 5. (2.7)

33



Thus, the vortex formulas, (7.7) and (4.4) are used to calculate only
the field y_.' and the stream function on the boundary of DZ' and (4.4)
1s used to calculate U; on the "expanded” mesh.

The numerical calculation of (7.6) proceeds as above. The same
grid used in the computation of |p1 . is now used to compute ¢i..1'
where we define

83,4 = W8 + id, & + jd) , & = dist(an,, 9D),
1

A

f,j<M-1.
As above, (7.6) 1s approximated by

URSRUEREA IR RITRCIF NI LR

with the boundary values evaluated by (7.7). Equation (7.8) leads
to the Tinear ~ystem

Fe=y., (2.9)
where F has the same form as the matrix E in the previously described
system, but with block dimension (M- 1) x (M - 1).

The integer M - }, unfortunately does not have the simple form
of 2° - 1. 1In the problem of interest, M - 1 was always odd, sometimes
of the form 4N - 1, where N 1s a positive integer. The system (7.9)
was solved by a method proposed by Hockney [13], where the numbar of
cyclic reductions used was either one or two, depending on whether M
was a multiple of two or four respectively. The FFT was not used,
since the number was no longer highly composite. However, at the
start of the calculations the required e-vectors and a-values were

computed and stored in memory.
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2. Approximation via bi-quadratic spline
a. One-dimensional spline

Let {xj} be a monotonically increasing sequence of equally spaced
points on the real line, and let {yjl denote the values that a function
t , 1.2, = . A 2 Xy~ o= Ky
takes at those points, i.e ¥ y(xj) ssume that d Xie; X
for all j.

For some particular j and for |x - le g_f/g, define the spliue
interpolator,
f(x) =g, + + !( Z, ¢’ D
(x) = g; + 20,9, + 5{x" + 7 )00 gy .
It 1s assumed above that Xy = 0, if not, substitute x - X; for x.
The operator Dy, D,B_are the first and second central difference
operators on the spline coefficients {gj} , 1.e
= 1 = ] -
09 = Za(9341 = 95.1)s and DP9y = {9y - 295 + ;).
Thus, f may be rewritten as:
21 X
flx) = E'(gj-] + ng + 9j+'|) + Ea.(gjﬂ - gj-l)
2
1x
t7 7 a2t 9yq)
Relationships for the spline coefficients are derived by requiring

that the spline agree with the given values at the points X4 i.e.

yd = f(xd) = %'(gjd + ng + gd+'|) . (7.10)
Equation (7.10) becomes a tridiagonal system for the spline coefficients

{gj}. Once the {gj} are known, the evaluation of the spline at a

point necessitates the look up of three spline coefficients in a table,
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namely gJ+1 and gj.

b. Two-dimensional spline

Assume that a square mesh of width d is superimposed on D
and that Wi,J is an approximation to wz(id,jd) , the stream function
due to the vorticity Ep- There are a total of L points in each direction,
hence a total of LZ interior values of wi,j' The problem at hand is
to find continuous functions approximating the derivatives of 173
which can be evaluated anywhere in D.

Assume for simplicity that |x - le y ly - yjl 5_1/% and (xj,yj) =
(0,0). Define the two-dimensional spline 1nterpolator,

) = 990 + x0af ) + 12+ Drop_oy) )
where
i) = Fglefilon - ]
and
0,109 y) = [m(y) - 2l (y) + g,g‘f%(y);l
are the first and second central differences of gsj)(y) on the index
i. The function 9{3)(y) is the one-dimensional spline in the vertical

(y) direction around y = y; at the point x = X

@y - 1
9570 = gy sa * 65+ s Bl gn - Ty sa)

+ -—?y(f1 4T Zfi-J + fi,j-l) . (7.12)

Once the coefficients are computed, the evaluation of the spline

at any point necessitates the l1ook up of the nine spline coefficients
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f1.J. f1,j:j' fi:].i' fi:].d:]' which are stored 1n a table. This

table can be stored over the old function values ¥y 3 since they are
]

now superfluous.

There are, however, more spline coefficients than original function

2

values. Initially there were L™ interior values y, i and 4(L + 1)
»

boundary values, giving a total of (L + 2)2 values. Using the previous
L+l
i,J=0"
As previously noted, the evaluation of the spline necessitates the

nomenclature these grid values are stored in the array {W,'J}

Took up of 9 spline coefficients. If the coefficient fi.i 1s stored
in the same location as wi,J’ and 1f the spline ts evaluated “"near®
the boundary location (x,y} = {15,0), then the nine values f1+].+],
fi.:]' fi:J.O' and f1'0 must be looked up. If the spline is evaluated
“near* the corner (x,y) = (0,0), then the nine coefficients fo1.41°
fz].o' f0-1]' fo'o must be looked up. Thus, a “border" of spline co-
efficients surrounds the original function values, and it is necessary
to determine (L + 4)2 spline coefficients: {fi JL:+: .

’_’:-

i

¢. Linear equations for the spline coefficients

The (L + 4)2 spline coefficients will be determined by solving
a system of (L + 4)2 1inear equaticns that they must satisfy.

To begin, (L + 2)2 linear equations can be immediately found by
requiring that the spline agree with the function at the L2 interior
and 4(L + 1) boundary points. For example, if the spline must be
correct at (0,0), then using (7.12) in (7.11) obtain

38



¥(0:0) = ¥ o = 980)(0) + %dzDﬂD_]gfg}(o)

=1
: Ff[“fo.o *8lfg,1 * Frg * Fo,e * g

*hatfiatfan? f-’l,-]]

or

1*fat t’:(f_]’0 +6F + f'l,o)

0s-

64W0.o = f_]’_] + 6f 0.0

taatat i .

Similar equations will hold at the remaining (L + 2)2-1 remaining
mesh points.

However, (L + 4)2 coefficients have been used in the (L + 2)2
equations, hence (L + 4)2 - (L + 2)2 = 4L + 12 more equations are
needed to have the number of unknowns match the number of equations.
After some examination, it is evident that the normal derivative of
the spline at the boundary can be arbitrarily prescribed. Letting

f = f(x,y) denate the spline, it follows that %% = 92 +s . Since,

%§ = -U, * n = Uy * n, by construction, the spline generates a velocity
which nullifies the normal velacity at the boundary due to the vortices.
It is tempting to prescribe %% = -gq « s and thereby construct a velocity
field satisfying both boundary conditions. However, I felt that this
would give rise to an unreasonably non-smooth flow ge which s not
frrotatfonal near the boundary, hence the temptation was resisted. I
assumed that the flow U, is smooth enough that (7.3) still held at

the boundary of D. Equation (7.5) was hence assumed to hoid on the
boundary with the r.h.s. set equal to zero. Thus, it was possible to

exprass the fictitious point outside the boundary in terms of its
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image inside the domain and three points on the boundary (see Fig. 5).
Thus,
¥i,-1 = Mi0 7 i1 7 Va0 T Va0
Using this point outside the boundary, an approximation to the

normal derivative can be obtained by letting,

B0t Y, 02; Yinr,0 - Wy S B o) -

Equations (7.11) and {7.12) are combined with this relationship to

derive an equation for the spline coefficient i o1

1 1
T2y0 * b0t Y0 - Wi T o —(“’ 0) = T[H'I,'l

ot fiaa - fiaa

MUUTR fs,-1)]
or

8205 1 * V41,0 * Ha,e - Wae) T fiy ot B,

f

fi+l,-1 + i-1,1 + 6f1‘] + fi+],1 . (7.13a)

A similar equation will hold at the vertical boundary, x = 0, namely:
B2y 5+ Yo 501 * Vo,50 0,30 T Fysa T g

-6F_q,5 * 66,5 - Fan * Fuge - (7.13b)

Equations (7.13a,b) yield 4L linear equations for the coefficients

f-l.j . fj'_' » fL+2.j , fj.L+2 y» 3= 1,2,...,L.
It remains to find twelve more equations for the twelve coefficients,

adjacent to the corners, e.g. f_; 3 » fg ;- f_y g » etc. These
’ i L]

equations will be derived by prescribing values for the l-"-iE order,

40



and mixed Zﬂg-order derivatives of the spline at the corners.
Since f is an approximation to Ygs it is possible to prescribe
the velocity U = gq + g2 to be zero at the four corners by specifying that
Yp = (3,F,-3,F) = -U; = Uy, (7.14)
Equation (7.14) yields eight more linear equations for the spline

coefficients; in particular, at the corner (x,y) = 0 obtain,

880,00 = ¥(0,0) and 250,0) = -y, (0,0)

or
16dV,(0,0) = =f_y 4+ fy -6 0 60T * T
~16dU)(0,0) = ~fy g = 6 g - Fy gt 6f T
It is now necessary to obtain four more equations to close the
2
system. These are obtained by equating 5—3§-at each of the four
corners to the backwards, 2-g order correct divided difference of the

computed stream function wz. For example, at the corner (x,y) =

(0,0) set,
W0~ 12gq + 0,0 + 3o p + ¥y 0 * 160 -
2
2 3V,
4lug gt g q) * 4y o = 4d W" otd") . (7.15)

Using (7.11) and (7.12),

i S I AP

oy 4_dE(-1,~1 -1.1 L,-17 "1,
Labeling the 1.h.s. of (7.15) C1, the required equation is:

- f + f

C=fy -1 fi,a*fa

Similar equations hold at the remaining corners. Thus, the number
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of equations matches the number of coefficients.

d. Solution of matrix equation

If £ is the vector containing the spline coefficients, define

L=y £ fpoens IL+2)T , where
_ T
8120y g Toge Frgeeees Taag)

for j = +1,0,..., L + 2.
The equation to solve 1s
Pf=y {7.16)
where y = (¥ s Yoo Yyoeees 1“2)7 and

= T H
1.'] (.V_]'Jv -VO,J' .V].Jn--u yL"'Z.J) H
Y contains the computed grid stream function values, ¥y Jg° as well
as the values of the required divided d{fferences of ¥y at the boundary.

The matrix P has the form:

i s 0s ],
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101

161

161

S = 161

161

T e
P
161
01 .

The non-singularity of P is proved by exhibiting its inrerse. The
method of solution uses the Sherman - Woodbury formula and closely
follows a method presented by Widlund [19].
Inftially transform (7.16) into the system
Pu £ L,
where Pu has the same shape as P except S is replaced by Su'

(7.17)

r;a-u
161
1 61

* 61

| oty ,

and for 3 = '1|0'100a-l L+2,
AN for 1 = -1

g «
-V1.j for 1 # -1 .
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In other words, multiply every (L + 4)£ﬂ equation by -u, beginning

with the first. u is a solution of the equation

Assuming, momentarily that S;]

premultiply every "block" row by S;], obtaining
0f=z
where,

-1 01

I611

-1 01| ,

I is the identity matrix,

z=(2,,2 , 2 z )T

27120 Zgs Zyoeer By
and for j = -1,0,1,..., L + 2,

2, =5y ), .

4 "\

Transform (7.18) into
Qf=2,

where
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{7.18)

(7.19)



L SN I
and Eu E(HZ 1> Zgo Epreees 5L+2)T' System (7.19) is now “uncoupled"
and can be solved for f by solving L + 4 tridiagonal systems of

order L + 4 of the type,

Suge= be se=-1,01,..., L+ 2,

where,
b, = (-pz z 2z z )T
e HZa,-1* Ze,0* Ze,1°70 00 “e,l42! ¢
Consider now the evaluation of S;]‘ The system to solve is

Sx=b (7.20)
- \[‘ ) 1 -
where Su is defincd above; y = 3 + V8 15 a solution of ﬁ'+ u = 6.
Note that by defining the vectors

g = 1L0,0,0,0) s 0 2 (0,1,-,0,0,...0°

)
161
161

and the matrix

161

L 1oLl
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then S‘l =B + g_I!_:_T. Hence, using the Sherman - Woodbury formula,
-1 -1 -1 1 -1 T 1
S‘l =B8""' .8 g._.l(l +wBe )

The solution of (7.20) can thus be directly written as
x=8Tp - 87Te, (1 4+ T8 e e Th (7.21)

Define the scalar, B = !TB' b, then recalling the definftion
of W, it follows that
g = -[(B"g)z + u(B"g)3] . (7.22)
where (B"g)e 1s the e component of the vector B b. The matrix

B has a ready LU decomposition, namely,

r'l ] ; 1 ]
e 1 ul
T 1 ul
B=Ly= o s .«
T 1
i S| l-uuz_[

and it 1s now obvious why u was chosen to satisfy :—7+ u=6. For
stability choose
=3+ V_
The evaluation of B'Ib_for the first term of (7.21) is now trivial
since B has been decomposed into a product of triangular matrices.
The evaluation of B"1 £; can be done analytically by induction.
To solve the system
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By = gy
where dimension (v} = dimension (gy) = n. first solve

Ly = ey getting

Y= (.V] -yz.---.yn)T s where
(¥ i3 = 1,2,3,.00, 00

(1"20 +102) , iFf=n

Having solved for y, solve

Uv =y, to find

-y
1,n-3 2
Vo1 7 6 1o
= cLy2n-i-a1 2(n-j-'|)‘ for
v = by —1"_—uz——,. or § =1,2,...n - 2

It is then easy to verify that

1

y_TB" g = -(l/u‘)"'a , hence

(14487 = [1 - (1/u=)“'3]" .
Since 1% Y 33.92 make the simplification that,
0 - ap)™ Tty
which is valid since n wil) be a large integer (> 20). Therefore,

5Ty (1 + w8 e T Ty = el

where B has been evaluated previously by (7.22).

The computation of BB"I

define

§1 proceeds inductively as tollows:
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c=8/(1 - 1)
2n-5 u2(n-2)

3 = c{~1/u) , and b] H

and if z = (2),255.-.52 )T = BB-]SJ' it follows that

n

7 = a](l + b]) , while for

j=2,3,...,n,
if a, = -ua, b, =b /u2 then
A B I B L
. =a.(1+b;).
24 aJ(l bJ)

Thus, having evaluated z, and recalling (7.21), the required solution

is

Q.E.D.
3. Timing tests for the 1inear equacions

The calculation of the stream functions by a¥ys requires solving
3 large linear systems., However, with the aid of modern techniques
these large sparse matrices are quickly inverted.

The first large system to solve is Ey = y, where y contains the
grid values of ¥os the stream function due to £ To be able to use a
cyclic reduction algorithm [6] these were always 2% - 1 interior
grid points per side. That is, the domain D was covered with a
square mash of slze d = 1/64, or 1/32. A test was done to time
a cyclic reduction matrix solver which I wrote to solve the system.
When the r.h.s. of the system was initialized so that all components

were exactly one, the routine solved the equation in .15 seconds
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with a maximum error of 4 x 70']1. The test was done with a mesh
size of d = 1/64.

The second large matrix to invert is F of (7.9). The unknowns
in (7.9) are the grid values of the function ¥ in the domain D,.
The system (7.9) is of smaller dimension than the previous one
since domain D, ¢ D. However, it is hoped that D, will expand as
much as possible to be able to cover as large a part of D as possible.
Therefore, 1 was not at Tiberty to choose the number of points
in Dy at will. A typical case using a interior mesh size d = 1/64,
would be to have 552 unknowns to compute in (7.9). Using 51 points
per side and initializing y in (7.9) to have all components equal
to one, the routine took .45 seconds using 1 cyclic reduction, and
.25 seconds using 2 cyclic reductions. Tne two tests had a maximum

-1 -1 respectively.

error of 4 x 10 and 5 x 10
Both tests above were done on the LLL CDC 7600 machine using

the CHAT compiler and the timing was done with the subroutine O@TIM.
The third system to solve is (7.16), for the spline coefficients

f Using a total of 672 coefficients, a test program was run

i’j.
to find the coefficients needed to interpolate the function e* cos y

on the unit square. The routine took 6.1 x 10'2 seconds and achieved
-14

an accuracy of 10 when the spline was evaluated at the grid

points. This test was run on the LBL CDC 7600 machine and was timed

with the routine SECOND.
4. Tridiagonal matrix inversion

The heart of the fast poisson solvers, and the time-splitting
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difference scheme involves inverting tridiagonal ma“rices. For the
sake of completeness, the following algorithm {s presented (Isaacson
and Keller [16]).

Let the matrix A have the tridiagonal form
2, ]
by a, ¢,

L L P

An L1 decomposition for A can be inductively computed,

—

|

by ap

v,
1 Yo

b3 a3 1 73
A=tl=

ST TR T T
o = ai - biyi-l s 1=2,3,...4n

Y = ci’“i 1=2,3,...n1

The above algorithm was used throughout the computer program
with obvious modifications, depending on the particular need. For
example, the cyclic reduction algorithm needs to invert a matrix
with ones along the super and sub-diagonatls and constant elements

along the diagonal; hence the algorithn is modified to use only 3n
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multiplications.
One advantage of the above method is that if the same matrix
needs to be inverted several times to sclve the system with different

right hand sides, then only one LU decomposition need be performed.
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8. Numerical experiments and results

1. Interpolatior tests

Before the program was put together and run on the cavity problem,
the many subroutines were individually tested. One such test was
performed on the routine which interpolates the vortex blobs onto
the grid. As described in §6.1, the linear interpolation chosen
is equivalent to Peskin's discrete "6" function [20]. Peskin's
thesis, however, describes a different version using trigonometric
functions. In that work, Peskin found that better results were

achieved by using the function.
8;5(xs¥) = oglx - x5)aly - y3) s

1+cost® , Ix] <d
g(x) = d
0 , otherwise ,

a = constant.
The constant o insures thatJr §(x,y) = 1.

This particular interpolating scheme was tested against the
scheme described in §6.1. The test was done by interpolating vortex
blobs at several places on the domain and checking which version
gave the better velocity when compared to the field induced by the
vortex blab. The results showed that the 1inear interpolating
scheme was superior.

Another test compared the linear scheme with the function

8;5(x.y) = ghix - x;dh(y - vy) »
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3 - 4x| - cosmx , |x] < d
h(x) =
0 , otherwise ,
8 = normalization constant.
Once again, the Tinear interpolating scheme produced the better
velocity, and 1t was therefore chosen as the candidate for the computer
progran.
It is, however, not surprising that the linear scheme worked

best. As mentioned in §6, it is important that the remainder of
the fluid not sense that an interpolation has occurred; hence, the
vorticity carried by each blob should be spread to as few mesh
points as possible. Thus, the support of the interpolating "&"
function is four mesh squares, and this function is simply a product
of two one-dimensional "§" functions. Since this one-dimensional
"§" function has a support of two mesh widths and is non-zero on
at most two mesh points, linear interpolation will be the best
choice. The situation will differ if a larger support is specified
in which quadratic, cubic, trigonometric, or higher order interpolation

may be better.
2. Circulating flow in a cavity

The aforementioned numerical method was tested on the square
cavity flow problem. The fluid was initially at rest and at t =0
the bottom edge was made to slide to the right with a unit velccity.
This velocity of the edge remained constant throughout the calculations
and I strived to attain the steady-state solution by solving the

time dependent equations.
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The program was run with the following sets of parameters:
R = Reynolds number = 103.
d = interior mesh size = 1/64, 1/32
1/30, if d = 1/64
h = boundary discretization length =
1720, 1f d = 1/32,
0.1, 1f d = 1/64
0.2, 0.1, 0.08, 0.05, if d = 1/32,
4, if d = 1/64

3d, if d = 1/32.

k = time step =

§= dist(sp.wz) =

The pictorial output will be of the form of Figure 6. The
boundaries of the square coincide with the outside arrows. Each
arrow represents the magnitude and direction of the velocity at the
tail of the arrow. Oue to the relatively large range of [U| throughout
the cavity, the lengths of the arrows vary as lull/ 2, 41.e. one arrow
twice as long as another, signifies a velocity field four times
larger in magnitude. Furthermore, the arrows are scaled so that
the largest plotted velocity draws an arrow as long as the plot mesh
size (= 1/32). Whether the interior mesh, d, equals 1/64 or 1/32,
the plot mesh size remains the same. In both cases, (d = 1/64 or
1732), the boundary of D, coincides with the plotting mesh.

Generally speaking, the results are the same using an {interior
mesh size d = 1/32, or d = 1/64, Figures 6-11 are from runs with
d = 1/64, while figures 12-15 are with d = 1/32.

In both cases, as the run begins, strong vortices of positive
sign are shed from the sliding edge to induce a tangetial velocity
equal to 1. After several steps these blobs are interpolated onto
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the edge of D, where they begin to form a large vortex. Figure 6
shows the beginnings of the large vortex which will eventually
settle near the center of the cavity and dominate the flow. The
path of this center vortex {is traced in Figure 16 as it spirals in
toward its central position.

As this large vortex spirals in, it generates a tangential
velocity component, U « s, which is positive along the four walls.
To compensate for this, blobs of negative sign are generated at the
stationary walls. These negative blobs are then swept up and pushed
into the corners. Figure 7 shows one such negative blob being
carried upwards into the stationary corner (x,y) = (1,1). This
sweeping 'is especially evident in Figure 14 for which d = 1/32.

In that figure it is evident how negative vorticity is generated
at the stationary walls and convected by the flow into the corners.

The blobs of negative sign which are thrust into the sliding
edge in the lower left-hand corner of Figure 14 will cause a very
strong positive blob to be generated at the next time step so that
the condition U « s = 1 may be satisfied. This strong blob of positive
sign is responsible for the peculiar Toop that the stream-lines make
near the downstream corner of the sliding edge (Figures 9-11).
Streamiines running parallel to the boundary x = 0 carry negative
vorticity which has been shed from that edge. These streamlines
then run into strong blobs of positive 5ign comming off the edge
y = 0, generating a counter-clockwise motion, and it is this counter-
clockwise motion which causes the Toop.

At the beginning of each run, there were no vortices present in
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the fluid since the flow was assumed to be at rest, After the first
time step, some blobs of positive sign were shed from the s1iding
edge. These blobs in turn caused other blobs to be generated along
the four walls in order that the tangential condition ba satisfied.
As time progresses some blobs may be lost through 20 and others may
enter into D,. When the equations of motion are solved in o, by
the time-splitting scheme, other blobs are regenerated in n.I by
the “"expanding mesh". Eventually a balance is reached between the
nimber of blobs being generated on the expanding mesh and along
2D, and the blobs lost through 3D or entering into Dy. This stable
figuré has an almost linear dependence on the time step (Figure 17}.

The results for d = 1/32 were obtained by first running the
program with d = 1/32, k = .2, h = 1/20 for 80 time steps. Using
the resulting vorticity field as an initial condition, the program
was restarted for the 4 different time increments, 0.05, 0.08,
0.1, o0.2.

As expected, halving the time step is roughly equivalent to
doubling the stable number of vortices in . It seems that
every vortex has a finite 1ife expectancy in 2 after which it is
either lost through the boundary or enters into D2‘ Halving the
time step allows the vortex to exist for twice as many time steps
in D]. Since, approximately the same number of vortices is stil)
generated per time step, twice as many vortices will be allawed to
1ive inside n;.

The foregoing can be altered by allowing blobs to "merge" if

they 1ie one on the other, and the computer program does exactly that.
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At the time that the blobs need to be moved, it is necessary to calculate
their distance from each other to calculate the velocities. If that
distance is less than /10, the two vortices are merged and are

treated as one. Thus, there is an upper 1imit to the possible

number of vortices in Dy. This linear dependence of the number

of vortices on the time step would hold in exterior flows as well,

sc long as the boundary is finite and the domain ) enclosing the
boundary be also finite.

The runs were terminated when I felt that no new information
could be obtained from them. For the case k = 0.1, d = 1/64, the
pragram was run for 260 time steps. For the case k = 0.2, d = 1/32,
160 time steps were run, For the case k = 0.1, d = 1/32, 140 time
steps were run after initializing the field with the results of the
80Eﬂ time step at k = 0.2. The cases k = 0.08, 0.05 were run to
determine if the stable number of vortices exhibited the expected
growth.

Figures 8, 12, 14 are plots of the velocity fields at one time
step for three different runs. These plots are not atypical, but
there is a slight variaticn of the field from one time step to another.
There is always a large vortex present in the center of the cavity
which dominates the flow, but the location of the vortex center
does not remain entirely stationary. I feel that allowirg the program
to run for more time steps would eventually fix the location of the
large vortex to one general area. The counter-rotating vortices
in the corners, on the other hand, are not always present. At times

they disappear for several time steps only to reappear in subsequent
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time steps as new blobs are convected to the corners.

The program will probably never reach a true steady state in
which there 1s absolutely no change between time steps, since there
15 always a random component present in the vorticity field. This
randomness not only affects the vorticity E] in D.| but also affects
the boundary conditions of the time-splitting scheme, hence the finite
difference scheme itself. Thus, I expect, the center of the large
vortex to always oscillate slightly about some equilibrium point.

The corner vortices, being viscous in nature (Batchelor [2]), and
smaller in size are more influenced by the randomness of E]. The
negative vorticity composing them may, at any one time step, escape
through 3D only to be replaced by new blobs to satisfy the boundary
conditions. Thus, a dynamic equilibrium will be attained; that is,
as vorticity 1s lost, more will be generated by the system as it
is needed. Wheneves U « s > 0 at a stationary wall, a blob of negative
sign will be generated to cancel that component. This blob wil?
diffuse into the fluid and be convected by the velocity field.

A1l this is to be expected in problems with high R. That is,
there is always a randomness to any flow; the higher the Reynolds
number, the more random the flow. Hence, to get a very detailed
description it may be necessary to average several time steps.

Figures 9, 10, 11, 13, 15 represent tha velocity flelds after
averaging. As is evident, the randomness of previous plots is
smoothed out, and the finer details of the flow become apparent.

The resulting graphs of the velocity profiles (Figures 18, 19)

and the calculation of the extent of the spread of the corner vortex
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were done using the average plot of 60 time steps (Figure 11).

Figure 20 merits some discussion. It lists the induced velocities
on the sides of the cavity by the field plotted in Fiaure 11,
The velocities should be read along each side as that side is followed
in the positive direction, i.e. keeping the domain D on one's left.
The first striking impression is that the tangential boundary condition
is not very well satisfied, For example, the horizontal velocity
U is never exactly one along the bottom sliding edge, nor is it
exactly zero along the top stationary wall. Similarly, the component
v is not exactly zero along the side walls. A detailed explanation
regarding why the plotted component U + s in Figure 20 does not
satisfy the required boundary condition is postpdned until §9.
However, it should now be mentioned that the plotted velocity U
(= U + 92) takes into account only the vorticity already present
in the fluid from the previous time step. The viscous boundary
layer which is responsible for satisfying the tangential boundary
condition is not used in plotting, and, in fact, Chorin's scheme
assumes it to play only a local role at the time of its creation.
Hence, the tangential boundary condition is always satisfied by
construction. The boundary layer is omni-present but has a global
effect only upon having diffused into the fluid.

The extent cf the spread of the corner vortices can be determined
by a close examination of Figure 20. In particular, along side 3
(y = 1), the tangential velocity 1s first positive signifying flow
toward the corner (x,y) = (1,1}, Progressing down the table, signifies

movement in the direction of decreasing x; the component U changes
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sign becoming negative. The sign of U remains negative until the
corner (x,y) = (0,1) is approached when U changes sign once more,
becoming positive, denoting the presence of another corner vortex.

The normal boundary componen¢ in Figure 20, on the other hand,
cannot be so rationalized. The results in Figure 20 are a measure
of the accuracy of the method described in §5, and could be improved
by use of a finer mesh size d at the cost of larger demands of storage.

Finer mesh sizes, surprisingly, do not necessarily mean slower
running times. A considerable portion of time is spent computing
vortex interactions, Therefore, it is the number of vortices
present in the fluid which primarily governs the speed of the method,
and as previously noted it is the length of the time step which
effectively dictates how many vortices will exist in D]. However,
recalling the stability results of §5, it is not possible to reduce
the interior mesh size independently of k, since the "expanding"
mesh assumes that vorticity cannot travel much more than one .lesh
width in a time duration of k/2.

Figure 17 also includes approximate running times for the program
once the number of vortices in D had stabilized. The program was
written in LRLTRAN, the Livermore Laboratory version of FORTRAN,
and was run on the CDC 7600 R and S machines. The program was compiled
by the CHAT compiler and the timing was done with the aid of the
subroutine OATIM. It should be noted that the times given in Figure
17 give the total time needed to complete one entire time step.

The times listed include the work necessary to do such extraneous

60



things as plotting the velocity field every time step.

3. Comparison of results

As mentioned in §1, the large scale features of the flow for
large R are well established. They have been observed experimentally
by Pan and Acrives [1] for Reynolds numbers as high as 4000, and
numerically by Burgraff [5] (R = 400}, Bozeman and Dalton [3] (R = 103),
Runchal et al. [21] (R = 104), and Greenspan (R = 2 x 103, 104,

1.5 x 104, 105) among others. A1l of the above experimenters obtained
their results by solving the steady-state equations by an iterative
procedure. Most stopped their calculations when the difference
between successive iterates was less than some predetermined constant.

Bozeman and Dalton sought to minimize the residual, defined
as r = Ax - b, when solving the linear system Ax = b. As pointed
out by Bozeman, the above conditions simply imply the attainment of
solutions which do not change appreciably from one iteration to
another. [ make no claim that the results presented here are the
exact ones, but watching the large vortex form and spiral in towards
an equilibrium state does lead me to believe that a correct steady-
state is quickly becoming attained. It should be further mentioned
that at no time did I experience a lack of convergence of the method.
That is, making a judicious choice of k, h, d always led to the
familiar large vortex core with counter-rotating vortices in the
stationary corners.

Figure 21 exhibits the size of the upstream corner vortex

as compared with other results. The size of the vortex is defined
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as the distance that the back flow extends along the vertical side.
This result agrees surprisingly well with the experiments

of Pan and Acrivos and the calculations of Bozeman and Dalton and
contrast with the calculation of Greenspan at R = 2000.

Figures 18 and 19 give the velocity profiles of U and V along
horizontal and vertical 1ines through the vortex center., For
comparison purposes, Figure 22 includes the results of Bozeman for
R = 1000, Burgraff's for R = 400, and Burgraff's theoretical result
as R +=. Note the 1inear dependence of the velocity profiles
near the vortex center signifying the constant vorticity core predicted
by Batchelor [2].

Figure 23 plots the location of the center of the primary
vortex as compared to other results. As evidenced by Figure 16,
the location of this center does not remain motionless, but does
seem to be spiralling in towards the point (.62, .45). My faith
in the correctness of this conclusion is further enhanced by the
fact that averages of the runs using different parameters give similar
results. Comparing the location of this center with the results
of Bozeman implies that the hybrid method described here places
the vortex center closer to the physical center of the cavity

itself.
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9, Discussion of Results

The preceding was a presentation of a numerical method for
use in fluid flow problems with high Reynolds numbers. It 1s a
hybrid method utilizing a well established finite difference scheme
in conjunction with the newer vortex scheme proposed by Chorin [8].

The method has yielded accurate results on the square cavity flow
problem, an example of a steady circulating flow.

As a hybrid method, it must simultaneously satisfy the requirements
imposed on each individual scheme, as well as to any other restrictions
imposed by the combination process. As described in §5, the time-
splitting scheme is unconditionally stable in regards to the time
step k, and the mesh size d, when the familiar Von-Neuman stability
analysis is used. However the solution of the tridiagonal matrices
formally implies stability-1ike restrictions on the time step
((5.18) and (5.21)) to guarantee that no growth of errors occur in
the inversion process.

A brief remark should be made regarding the conditions (5.18)
and (5.21). They stem from the stability criteria (5.16a,b)
which translate into the requirement that the matrices (5.15) be
diagonally dominant. The more strongly the inequalities (5.16a,b) are
satisfied, the more diagonally dominant the matrices become, and the less
the unknowns ;Tt}/Z depend on each other. This weaker dependence means
that the boundary conditions and the values sg takes on mesh points
bordering 3D, exert a weaker effect on the solution of Eg in the

interior of D,. Hence, far from the domain Dy the vorticity 52
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is less influenced by the random fluctuations of 5].

Being relatively new, the vortex scheme Jdoes not yet possess
well-established stability conditfons. 1In particular, no known
relationship exists between k and the boundary discretization length,
h. One confusing aspect of the scheme is the apparent lack of
satisfaction of the tangential boundary condition by the velocity
Y (Figure 20). As noted in §8.2, the velocity U does not include
the numerical boundary layer which always exists to satisfy
the tangential boundary condition. In fact, U represents
the velocity outside the boundary layer and is thus useful to spot
unexpected features such as back flow or separation.

Although the numerical boundary layer can be evaluated at t = tm’
it has a global effect only at t = tm+1 when it has been subdivided
into vortex blobs and allowed to diffuse according to the heat
equation. Roughly half of the blobs are immediately lost as they
diffuse through 3D and are thus discarded from the computation.

The other half travel too far with the current choice of parameters.
The structure of the blobs inside the-cut-off length, o(= h/2n),

was designed to have them exert a constant tangential velocity on

3D as they diffused normally into the fluid. However, the diffusive
component is a random step in time, and in a time duration of k,

the blobs experience a random push with a standard deviation of
\fEE?E. The parameters chosen imply that those blobs diffusing

into the fluid travel beyond ¢ after they have been created.

Thus, although at the time of its creation the numerical boundary

layer contained the correct amount of vorticity to cancel U « s
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at ap, after diffusing in the form of blobs, it may not be strong
enough, and the tangential boundary condition must be satisfied
by the creation of another layer.

It may then be inquired if it is better to choose a smaller
k, or larger o, i.e. larger h, to obtain better locking results
than those depicted in Figure 20, Unfortunately, several factors
need to be simultaneously weighed before decreasing k indiscriminately.
As described in §8, smaller time steps mean more vortices, hence
longer running times. Furthermore, the normal boundary component
is canceled by the construction of a flow wh'ch is irrotational
near 30. This flow is currently constructed by finite differences
since no sharp gradients are expected to occur in it in areas bordering
on 3D. By experimenting with smaller time steps, I have observed
a "rougher” looking velocity field near the boundary, which I
attribute to the fact that the proximity of the new vortices to
ap caused by the smaller k's give less smooth normal boundary conditions
which need to be cancelled by the irrotational flow. This, in turn,
causes worse satisfaction of the normal condition. Thus, in trying
to better satisfy the tangential condition one may worsen the normal
one.

A less obvious consideration was proposed by Chorin [8). The
convective component in the vortex scheme is O{k), while the
diffusive component depends on the standard deviation of the

]/2). Hence, as k is decreased, the

random walk and is thus ok
diffusive component may dominate, or at least exert a greater influence,

over the convective component making the flow look more random.
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Furthermore, less convection implies lower R, hence, care must be
exercised that one is not solving a problem of the wrong viscosity.
On the other hand, increasing o, hence h, means the boundary
layer is subdivided into fewer blobs and is, therefore, a worse
approximation. The entire intention 1s defeated, the tangential
condition may be better satisfied, but only at fewer points along
the boundary.
It shculd be asked whether it is fair to demand fine detail
from the vortex scheme near 8D. Fine detail is unavailable to finite
difference methods, anyway, unless one uses prohibitively small
mesh sizes, or as proposed by Dorodnicyn [11] discretizes different
approximations (boundary layer, ideal-fluid, etc.) in their correspond-
ing areas. The method described here can be made more accurate
by simultaneously decreasing k and d at the expense of greater
demands of storage and computer time. The improvement in the satis~
faction of the normal boundary condition can be easily judged by
looking at tables such as Figure 20, Although that flow represents
the flow outside the numerical boundary layer, it should be parallel
to ap. However, improvements in the satisfaction of the tangential
boundary condition may be harder to judge and remains an open problem
The domain interaction imposes mo profound considerations or
restrictions. As presented here, no restriction arises from the flow
of £, into D, and only two criteria should be adhered to in regards
to flow of &y into by First, the method assumes that vorticity
cannot be convected in a normal direction much beyond one mesh size

in a time duration of k/2. Secondly, the standard deviation of the
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random walk should not be 50 large as to allow too much vorticity
to diffuse beyond one mesh size in a time k/2. Therefore, it is
not permissible to decrease d without simultaneously decreasing k.
It is not my intention, however, to paint too gruesome a
picture, as none of the above ambiguities or restrictions caused
convergence difficulties. The numerical program gave convincing
results for all choices of parameters discussed. Initially, I

174, but the results presented

expected to make § no smaller than O(R
here were done when the edge of the "expanding” mesh was a distance
O(R'Vz) away from ap. This turned out to be § = 4d when d = 1/64,
and 6 = 3d when d = 1/32. The results obtained give further credence
to the usefulness of the vortex scheme to deat with the creation

of the correct vorticity in problems at large R.

The hybrid method presented here was tested on a specific
problem with a convenfent geometry. The computer program exploited
the particular geometry by using fast numerical techniques ready-
made for these domains., However, the basic idea should be applicabie
in a wide class of flows. Basically one should try to subdivide
the domain of interast into two subdomains, one bounded near the
boundaries, and one away from the boundaries, possibly unbounded,
depending on the problem. In the domain near the boundary the
equations of motion are solved by the vortex method. 1In the
other domain & suitable finite-difference method, or another method
of a non-random type, can be chosen, with some care taken 1f this

domain 1s unbounded.
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nurber of time/iteration

d h k vortices {seconds)
1/32 1720 0,05 1890* 29.5%
1732 1/20 0.08 1620 24
1732 1720 0,1 1220 15
1/32 1720 0.2 750 7
1/64 1/30 2.1 1550 25

d = interior mesh width

h = boundary discretization length

k = time {nterval)

number of vortices = approximate stable number of vortices in D,

time/iteration = running time necessary to complete 1 time step

Fig, 17, Comparison table for runs with different time steps and
different mesh widths.

* Program was stopped for this run as only 2000 locations were
allocated for the vortices. However, the number of vortices
was stabilizing and should not have {ncreased much beyond 2000,
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Vertical distance from bottom wall
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Fig. 18. Velocity profile of u-component along a vertical line

through the vortex center.
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Vertical velocity component
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Fig. 19. Velocity profile of v-component along a horizontal line

through the vortex center.
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Fig. 20,

{ on following page )

Velocities induced on the boundary by the field plotted in Fig. 11,
Read table by circumscribing the domain 2 in the pesitive s direction.
Side 1 is the wall y=0, side 2 is x=1, side 3 is y=1, side 4 is x=0,
Index k in the left hand column is an increasing index along the boundavy,
Along side 1, k=1 denotes the point (x,y) = {(0,0), Along side 2, k=1 de~
notes the point (x,y) = (1,0).
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K SIDE |
U v
! 0. 0.
2 0.410326 ~C.023214
3 0.452289 -0.001452
4 0.570850 -0.032727
S 0.535703 -0.002114
6 0.624472 -0.016317
7 0.61761 ~0.006944
8 0.677272 ~0.003766
9 0.670239 ~0.002959
10 0.797468  -0.013922
11 0.770240 0.010163
12 0.778676 0.001973
K] 0.833026 -0.004533
18] 0.800356 0.007673
15 C.B79527 0.006544
16 0.847721 0.0132315
17 0.825109 0.005127
18 0.875455 ~0.006141
i9 0.866425 0.008450
20 0.879536 0.010300
21 0.906121 -0.005907
a2 0.875243 -0.003487
23 0.826133 -0.002170
24 0.841655 0.003915
25 0.844571 -0.002369
26 0.789553 -0.002810
27 0.783479 ~0.016098
28 0.782163 0.010558
29 0.701674 0.000918
30 0.771285% -0.012461
31 0.879872 -0.010789
32 0.380096 -0.000812
AVERAGE VELOCITIES
SI0E
uav VAV
0.712250 -0.002883

SIDE 2
U v
0. 0.
0.0129%6 0.255764
-0.001777 0.263143
-0.008771 0.248103
-0.000624 0.256864
0.003157 0.t80125
-0.017628 0.273952
-0.000714 0.208638
0.004334 0.290742
-0.001893 0.162723
0.012349 0.19344y
0.007162 0.213963
0.008039 0.124285
0.Gou4B2 0.174508
0.005375 0.138339
0.005572 0.098977
0.002142 0.06B8150
-0.003537 0.027883
-0.000111 0.041181
0.003099 0.025099
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~0.0008649 -0.006989
-0.012568 -0.021071
~0.000207 =0.7 5045
-0.0041t6 -0.6. 9561
~0.00163% -0.025524
0.00040! -0.0177686
-0.092349 -0.017712
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UAv VAV
0.000455 0. 086674
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SIDE 3
u v
0.
003473 0.000077
013442 0.001047
.023087 -0.000949
.030004 0.000697
.030827 0.002781
019278 0.001560
.008960 0.001302
.000995 0.002198
011309 0.001702
02687%  -0.000621
058198 0.003838
064574 0.001836
088022  -0.004726
085062  0.003717
084271  -0.000957
10074  -0.006584
099561 0.00293]
066352 0.002803
063349 0.006486
055177 ~0.003z47
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015680  ~0.002204
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. 004554 0.001037
011529 7.001698
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0.000585

SIDE 4
U v
0. 0.
~0.000561 0.000147
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-0.001172 -0.016518
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0.001349 -0.113547
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Vortex size
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Fig. 21. Variation in size of upstream corneyr vortex vs. Reynolds

number.
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Fig. 22. Comparison of velocity profiles of u-component along a

vertical 1ine through the vortex center.
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Y - direction
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Fig. 23. Effect of Reynolds number on the location of the center

of the primary vortex.
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