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NUMERICAL SOLUTION OF NAVIER - STOKES 
EQUATIONS AT HIGH REYNOLDS NUMBERS 

by 
Aleksei Ilyich Shestakov 

ABSTRACT 
A numerical method is presented which is designed to solve 

the Navier-Stokes equations for two-dimensional, incompressible 
flow. The method is intended for use on problems with high Reynolds 
numbers for which calculations via finite difference methods have 
been unattainable or unreliable. The proposed scheme is a hybrid 
utilizing a time-splitting finite difference method in areas away 
from the boundaries. In areas neighboring the boundaries, the equations 
of motion are solved by the newly proposed vortex method by Chorin. 
The major accomplishment of the new scheme Is that it contains 
a simple way for merging the two methods at the interface of the 
two subdomains. The proposed algorithm is designed for use on the 
time dependent equations but can be used on steady state problems 
as well. The method is tested on the popular, time-independent, 
square cavity problem, an example of a separated flow with closed 
streamlines. Numerical results are presented for a Reynolds number 
of 10 3. 

PI 



1. Introduction 

Presently much of the numerical work on the Navier-Stokes 
equations is done by approximating the partial derivatives in the 
equations of motion by finite differences. Since the interesting 
phenomena occurring in fluids of low viscosity initially appear in 
regions o^ small area, it has been very difficult to produce reliable 
results for problems with high Reynolds numbers. 

Analysis implies that at least several grid points must fall 
within the boundary layer whose thickness is o(R~ ' ); thus, an 
upper bound on the Reynolds number seems to be imposed, since one 
always has a finite amount of space available on the computer. This 
problem is especially important in cases dealing with flows in wakes 
or separated flows when the initial boundary layer may not be visible 
to a coarse finite difference grid. Another drawback of finite 
differences is that in areas near the boundaries sharp gradients 
may give rise to large truncation errors which swamp the original 
approximation. The problem is further complicated by the truncation er
rors which may cause a numerical viscosity to form which is greater than 
the viscosity of interest, Dorodnicyn [11]. If care is not exercised, 
it is possible to generate the right solution to the wrong problem. 
In fact, as discussed by Fox, Herring, et al. [13], it is often 
difficult to predict when difference methods go awry. They can 
easily give incorrect solutions without signalling that further 
resolution is required. All of these drawbacks have led some 
researchers to construct other numerical schemes suitable for use 
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in flows with high Reynolds numbers. 
A relatively new scheme wa r proposed by Chorin [8]. The scheme 

is grid-free and seems to simulate the physics encountered in fluids. 
In Chorin's scheme, the vorticity in the fluid and in the boundary 
layers is subdivided into blobs of small but finite support, and 
the equations of motion are solved by following the blobs throughout 
the fluid. The scheme has given some reliable results (Chorin [8], 
Davari [10], Shestakov [22]), however, it sometimes suffers the 
drawback of requiring long running times. Its speed, or lack of it, 
is due to the fact that if n vortex blobs are present in the fluid, 
then 0(n ) interactions must be computed per time step, since 
each vortex influences all of the others. Furthermore, the blobs 
move according to two components, one of which is a random displacement. 
This displacement leads to a partially random distribution of vorticity 
which becomes more random as the number of blobs present in the fluid 
decreases. Hence, one must sometimes resort to unsatisfyi>n method; 
to get accurate results: use many vortices, or average over ensembles 
(Shestakov [22]). 

Since only at the boundary or whenever blobs are near one another, 
is it essential to keep track of individual vortices, it is natural 
to consider a "grouping" scheme which would replace vortex blobs 
far from an object by "larger" blobs. This approach has been tried 
(Uavari [10]) but is also unsatisfying since large vortices still 
lead to 0(n ) operations per time step. It is well known that in 
two-dimensional flow the all-important effect of viscosity is 
confined to regions near the boundaries of solid bodies. The effect 
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of viscosity is to create the vorticity making up the boundary layer 
which later separates into the fluid. Once away from the boundary, 
the effect of viscosity is negligible. On the other hand, as 
previously noted, it is this thin viscous layer which is often 
invisible to finite difference methods and which is responsible for 
most of the interesting phenomena. Assuming that vorticity was 
already introduced into the fluid, finite difference methods should 
work very well in regions away from boundaries. It is thus natural 
to try to combine these two methods of solution. 

The following describes an algorithm to do just that. In 
areas close to the boundary, the vorticity is evaluated and subdivided 
into vortex blobs of small support. Away from the body, the Navier-
Stokes equations are solved by a time-splitting finite difference 
method. The proposed hybrid method is tested on the popular problem 
of computing the steady-state incompressible flow inside a square 
cavity when one of the sides of the cavity slides in its own plane 
with constant unit velocity. 

The cavity flow problem has been very popular over the years 
and enjoyed an extensive bibliography, [1], [3], [5], [14], [17], [19], 
and [21]. It is part of a larger class of steady, separated flows 
with closed streamlines studied by Batchelor [2]. The velocity field 
depends on the Reynolds number and has been evaluated numerically 
and experimentally by several researchers. As the Reynolds number, R, 
tends to zero the so-called creeping flow case arises which yields 
a symmetric velocity field and one large vortex filling out most of 
the cavity with its center near the sliding edge. 
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As R increases, two things have been observed. First, the 
center of the large vortex moves downstream parallel to the sliding 
edge, and secondly, the small counter-rotating vortex in the upstream 
stationary corner begins to grow in size. The growth of this vortex 
continues until R : 500, at which point the corner vortex begins to 
shrink back into its corner. 

The position of the center of the large interior vortex exhibits 
a similar peculiar behavior. As mentioned above, as R grows away 
from zero, the center of the vortex moves downstream. Above 100, 
however, the center of the vortex turns the corner and begins to move 
toward the center of the cavity. As proposed by Batchelor, and as 
verified by others, the large center vortex becomes inviscid as R 
increases and the vortidty in the interior approaches a uniform 
limiting value. The viscous effects are then confined to increasingly 
thin shear layers along the three stationary walls. 

Several researchers have obtained results for high Reynolds 
numbers. Burgraff, [5], did an extensive study and was able to get 
numerical solutions for R as high as 500. Pan and Acrivos [1], 
computed the creeping flow case and performed laboratory experiments 
for higher R. They were able to make visual observations for R as 
large as 4000 at which point instabilities began to affect the flow. 
Greenspan [14] computed numerical solutions for R = 2000, 1.5 x 10 

4 5 using a mesh size of 1/20, and for R = 10 , 10 using a mesh size of 
1/40. However, his iterative technique does only a local check on 
the Iterate and the computation is stopped when the values do not 
change appreciably from one Iteration to the next. Greenspan also 
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did not observe any counter-rotating vortices nor did he exhibit 
any velocity profiles through the vortex center. Using a non-uniform 
grid, and a new method for evaluating the wall vorticity, Runchal, 
et al., [21], obtained results for R = 10 . They were also not able 
to visualize the corner vortices nor did they display any velocity 
profiles. Testing four different differencing techniques, Bozeman 
and Dal ton [3] were able to get two to converge at R = 10 . They then 
discarded one of them as giving an obviously incorrect result. All 
of the above numerical calculations were performed by iterating 
on the steady-state Navier-Stokes equations and as noted by Bozeman 
and Dalton, this technique may produce solutions which don't change 
appreciably from one time step to another rather than the true 
steady-state solution. 

All of the above numerical work was done by approximating the 
derivatives by finite differences. Since, on occasion, different 
difference schemes yield different results, all of the above comp
utations should be carefully analyzed before pronounced correct. I 
hope that the present work will serve a twofold purpose: Serve 
as another contribution to the literature of a square cavity problem, 
and more importantly, introduce a numerical technique that may be 
useful in problems with high Reynolds numbers. 
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2. Equations of interest and description of problem 

To avoid confusion, scalars and scalar functions will be denoted 
by simple letters, e.g. h, <j>, x, and the underline will be reserved 
to distinguish vectors, and vector functions, e.g. jr, IJ, V£. 

The equations of interest are the non-dimensionalized Navier-
Stokes equations for two-dimensional, incompressible flow, written in 
the vorticity transport form 

3 t5 + (U.- V)C = 1 & ? , (2.1) 

(V • U) = 0 . (2.2) 
Definition (J = (U, V) = velocity vector , 

R = Reynolds number , 
£ = V x U. = vorticity . 

Since JJ is two dimensional, £ is considered to be a scalar. 
Equations (2.1) and (2.2) are to be solved in a domain D with 

the imposed "no-slip" boundary condition: 
U. (at the boundary) = velocity of the boundary, (2.3a) 

or if the boundary is at rest, 
U = 0 at the boundary. (2,3b) 

There will also be a specified initial condition, 
U. (t = 0) = f , a given function. (2.4) 
Since the flow is incompressible and two-dimensional, there 

exists a scalar function I|I which can be used to define the velocity: 
i = (U, V) = (3 y #, -3 X D-). (2.5) 

Definition i> = stream function. 
Using (2.5) and the definition of l as the curl of U, it follows 
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that: 
A* = -? • (2-6) 

Equation (2.5) determines i|i up to an additive constant. If 
the boundary condition (2.3b) is to hold, then î  satisfies, 

^ = constant 
at the boundary. 

Consider, in particular, the problem of computing the steady-
state velocity field inside a unit-square cavity (Figure 1). 
Initially the fluid is assumed to be at rest and at t - 0 , the 
bottom edge has impulsively becun to slide in its own plane with 
unit velocity. 
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3. Principle of the method of solution 

Equations (2.1) and (2.2) will be solved by integrating them 
forward in time. Given f, the vortlclty at the m t n time step, the 
problem at hand is to calculate E m + . 

Let D = D\\> Dj, , such that 
D. rt C 2 " • • a n d 

dist (D 2 J ZD) = S > 0 . 

Let 

such that, 
€? - 5? * $ . U.la) 

support (5^) c Di . (3.1b) 
Since d 1 1s to be a collection of vortex blobs, 

«T W = J 5J 5o ̂  " -̂  • (3-2) 

d| will denote the vorticity given on an interior grid; thus, define 

Let uT, yS, and 1J1T, $ correspond to the velocities and stream functions 
induced by the two vortldtles tf, and 5 m respectively. Then, it 
follows, 

j/J (r) - l ?j Ufl (r - r m) , (3.3) 

and 
*1 ID 'Uj %£-$)• (3-4) 

K0 {r) <s the vorticity function of one vortex located at the origin, 
IL (r_) Is the velocity field induced by that vortex, and iji (jr) 1s 
the Induced stream function (see §4). 

8 



/w£ - -< Sm 1no 

with the boundary values, 

*g(s) - -i>™(s) along 3D. 

Knowing ^ . let 

<g = o y 4. -ax $ . 
If /" E ^ + 1^ , then (3.6) 

/ = 0 on 3D , 

Calculate U>) by solving 

(3.5) 

(3.6) 

(3.7) 
es 

(3.8) 
and if if = u!f + l^ , then (3.8) implies 

(f • n_ = 0 on 3D, 
where ̂  is the normal vector along 3D. Thus Jj"1 is a velocity field 
which has no component normal to the boundary, or, in other words, 
there is no "leekage" or "seepage" out of or into D. 

The updating of the field c"1 is done by two distinct methods. 
In the domain D,, the one adjacent to the boundary, the vorticity is 
represented by tf1, a collection of vortices (see (3.2)). The field 
£<! is advanced 1n time by Chorin's vortex scheme [8] (see 54). In 
the interior subdomain, D 2, the vorticity is given by J£, a function 
known on a grid over the domain. The equations of motion, (2.1), and (2.2) 
are solved by approximating the partial derivatives by finite differences 
and by using a time-splitting scheme to advance 5p. 

After ^j1, d? are advanced, it is clear that (3.1b) may be violated; 
that 1s, some of the vortices which make up £? may now lie outside 
V or Inside Dn, and similarly some vorticity stored 1n p, on the grid 
may have convected or diffused into D, or outside D. The vortices 
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which now H e outside D are eliminated, while the ones lying 1n o« 
are Interpolated onto the grid. By choosing the time step carefully, 
1t can be shown that vortlclty originally In £>2 cannot travel more 
than a specified distance, which 1s taken to. be less than S, the 
distance from D, to 3D. The vortlclty In flj which has been convected 
or which has diffused Into ^ Is "remembered" on an "expanded" 
mesh. This vortlclty Is then coagulated Into new vortices. The 
above process thus gives a new Sy c l . and a new ?5 £ 0 » ' 
This completes the evaluation of ?"+l. 
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4. Chorln's vortex scheme 

In this section, a sketch of Chorln's vortex scheme [8] 1s presented 
as it pertains to this problem. 

Consider the problem of computing the evolution of vortldty C 1 

according to equations (2.1), (2.2), (2.5), and (2.6) subject to the 
boundary conditions (2.3a) or (2.3b). Chorln assumes that this 
vortlcity In ̂  can be written as a sum of blobs, or vortices, 

where each £. , Is a radically symmetric function of small support, 

and |rj « y x + y . Assuming that the C, , differ only In strength 
and not 1n shape, by assigning a strength c. to the i blob, rewrite 
5, as: 

5,(D - I Cj C 0 ( £ - £ , ) . (4.1) 

where 
, r < a 

50(r) « < Z W , r (4.2) 
0 , r > a . 

The constant o Is the cut-off length, to be determined shortly and 

r • | r j . Although c0(r_) 1s singular at the origin, I ts shape becomes 

convincing when one considers the integral of the vortlcity, 

jU,to,y)W • j / j ?jC0(r - t,) dr - J 5 j 

where the integrals have been evaluated using polar coordinates. 
Equation (4.2) will look even more convincing after the generation 
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of vortlclty at the boundary has been discussed. 
The basic blob t,Ar_) generates Its own blob stream function, * , 

which 1s computed by solving 

% - -v 
Neglecting boundary values for the moment, It follows that 

i " h 1 0 g r > r t a 

* 0(r) *{ i (4.3) 

Using (2.5), (4.1), and (4.3), 1t 1s possible to generate the velocity 
field Induced by £,: 

^(x.y) = I ?j UgCx - Xj, y - y j ) , (4.4) 

U_(x,y) Is then the velocity Induced by a single blob located at the 
origin, and (x-,y,) Is the location of the j vortex. \L can be 
calculated by differentiating (4.3); 

_! 
2nr' 
-— (-y.x) , r > a 

Vx.y) * (y 0, - •jft) . 
^ ( - y . x ) . r < o 

The velocity 1L, and therefore U,, Is a continuous velocity field 
obtained from a discontinuous, in fact singular, distribution of 
vortlclty. 

It's possible (Davarl [10]), to generate a continuous stream fn., 
i>0, by the addition of a constant, which yields 

' " 2? l 0 9 r • r - " 
r0». 1 /i - , r Ti (1 - log o - M , r < o , 
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and it is this expression which is used by the computer program. 
The computation of the evolution of 5, according to (2.1) 1s 

accomplished by a first order correct 1n time, differencing algorithm 
which uses no spatial grid but merely keeps track of the centers of 
the vortices. The field U, does not satisfy any boundary conditions; 
sections 5 and 7 explain how to generate a velocity field Ug with 
V x Ug = 0 In £>.| and which cancels the normal boundary component of 
IJj. Then defining U = U, + Ug , it follows that, 

JL ' S. " Hi ' D. + U 2 * a = 0 along 3D. 
Thus, IMs a velocity field which satisfies the normal boundary 
condition. 

Momentarily neglecting the second boundar;; condition, U • £ = 0, 
solve the equation, 

8 t S, + {U • 2) 5, • jj- A5, (4.5) 

in c-| in two steps. Equation (4.5) states that the vortices move 
according to two components. The first, the convective one, is 
Euler's equation, 

3 t 5, + (U • V) C, * 0 , (4.6) 
or if we follow the fluid particles 

°«1 
W "° • 

The second component is the diffusive one, 
ate, 4 AC, . (4.7) 

Equation (4.6) Is solved by keeping track of the locations of 
the vortices. If (x^. y^) denote the location of the 1 t h vortex 
blob then, 
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at <xi'*i> * E H % < x i " x r *i - yj > + h < xrV 
or if (x m,y m) is the location of the 1 t h vortex at the mtl- time step, 
then 
(xf'.yf 1) « (x?,ym) + kl ^ ? U,, (x? - xj. yf - y?) + Ug (x^, y*) ; (4.8) 

where k is the time step. This 1s simply EulerV method for the solution 
of o.d.e's. 

Equation (4.7) is solved by the random walk method developed by 
Chorin [8], whose Idea was described by Courant, et al. [9] in their 
:lassic paper on difference schemes. If n_ * (ni.no) 1 s * vector whose 
components are gausslanly distributed random variables, with mean zero 
and variance 2k/R, then (4.7) is approximated by 

(xf 1.y'J + 1)Mx ,J.y m) + (n,.n2) (4.9) 
(see [8] for an easy algorithm for constructing n 1.n 2)-

Denoting the term In the [.] brackets in (4.8) by if, then (4.8) 
and (4.9) are combined to yield, 

( x f ' . y ^ ) * (x?,y,J) + k U m
+ ( v n 2 ) 

as the approximation to (4.5). 
Consider now the generation of vortlcity at the boundary. As 

previously noted, the field U, does not satisfy the tangential boundary 
condition, 

IJ • s. • 0 or IJ • s_ • tangential velocity of the boundary, where 
s. is the unit tangent vector to 9D. TC correct this deficiency In U, 
Imagine the existence ?f a thin viscous boundary layer which cancels 
the tangential component of JJ. To evaluate the vortlcity necessary to 
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do this, Integrate V x U. along the boundary layer. If the boundary 1s 
divided Into segments of length h, and the midpoint rule Is used as 
an approximation to the Integral, the vortlclty In a boundary layer of 
thickness v and length h Is 

h/2 v h/2 v 
f f (V x U) dydx - j f (-3yu) dy<k s -U(0,v) h. 

-h/2 0 -h/2 0 
U(0,v) Is the free stream velocity at the edge of the boundary layer 
and it 1s set equal to D(0,0), the tangential velocity component of U. 
which needs to be cancelled (see Fig. 2). Note that the above calcula
tion was done using a local coordinate system. This vortlclty Is then 
coagulated Into a new vortex blob. The newly created blob Is allowed 
to diffuse, and it 1s Its shape, Inside the cut-off length o which 
exerts a constant velocity at the boundary equal to -U. • s_. This 
accomplishes the cancellation of U. • s. and gives a value for o, namely 
a - h/2ir. The new blobs diffuse Into D and become part of £,. The 
entire process Is then reiterated. 
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5. Finite difference method. 

1. Difference operators 

In the interior subdomaln, o„» t n e vorticity field ?- 1 S advanced 
1n time by approximating the equation of motion: 

» t 5 2 + (U • V) 5 Z = -f A € 2 , (5.1) 
(V -U) = 0 

by a finite difference scheme. 
Subdivide D2> which in the problem of interest is a square domain, 

with a square mesh of fixed mesh size d. Assume that M u always lies 
the same distance 6 from 30. Define 

î.j s h < 6 + 1 d * S * J d ' m k ) ' 
i .e. c? < represents the vorticity at the point x = 5 + id , y = 6 + j d , i ,J 
t = mk. Assume that D~ is covered by a mesh with M + 1 grid points in 

each coordinate spatial direction, hence 
cm = re"1 i H 
h i%i,y i,j=o • 

Define the shift operators 

S + l ? i „ ; E c 1 ± l , i ' S +2 s i . J ' C i , j+J ' I c 1 , j ~ S i , J ; 

define the one sided difference operators, 

D ± 1 = + (S ± 1 - I ) /d , D ± 2 = +{S + 2 - I ) /d , 

and define the central difference operator 
D 0 1 s£(D +, +D_,) . D 0 2 i l ( D + 2 - D . 2 ) . 

2. Time-splitting scheme 

Using these definitions, (5.1) 1s solved by a time-splitting method, 

whereby an intermediate f ield q" 1 * 1 / 2 is calculated. Then using U m , 

16 



and c m + 1 /' 2, the vortlclty at the next time step, c"*1, 1s evaluated. 
Symbolically, 

?m+l/2 . ?n = k r.^^m+l/2 _ ̂ ^ + 

K l D - l ^ 1 / 2 + K 2

D -2^] <5-2a> 
sm+l . ?n»l/2 . k ^ ^ l / 2 . ^ m + 1 + 

lo^D. ,^ 1 / 2 + X 2

D - 2 H • ( 5- 2 b> 
If the unknowns are combined, the equations can be rewritten as 

(l + V D - ̂ -n n \c™+l/2 = { 1 r^l 2R°+r-lK 

<' - %\z + f R V - 2 > « m ' < 5 - 3 a > 
1 1 V %Z 2T+2 U -2 K 

(I - | u m D 0 1 + | s D + 1 D . 1 ) ?
m + 1 / 2 • (5.3b) 

It can be proved that the analogue of (5.3) is unconditionally 
stable when equation (5.1) is linear and has constant coefficients. 
Using a Von Neuman Stability anal.y-'* let 

To prove stability it is necessary to show that p < 1. 
n„«n„ r - u k r - v k h - V k Define c, = ̂  ,c 2 = ̂  , b = ̂  , 
and substitute (5.4) into (5.3). After cancelling powers of e, and 
substituting (5.3a) into (5.3b) obtain 
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p • 
1 - b(l-cos6j) - V^TcjSine, 
1 + b(l-cos6j + V-icjSlne, 

p Is necessarllly £ 1, if ««ch one of the factors 1n the product 1s <_ 1. 
However, since b > 0, and 1 - cose., > 0, j • 1,2, it 1s evident that 
the numerator of each factor 1s less 1n modulus than the denominator. 
Therefore, p < 1 and the scheme 1s unconditionally stable. 

3. Evaluation of velocity fields 

At the beginning of each time step, the locations and strengths of 
each vortex blob are stored in an array, thereby specifying the field 
£?. Correspondingly, the vorticity rfj is given on a grid covering £>2» 

In order to advance 5 2 1n o 2, the velocity field (J. must be evaluated 
on the same grid. The velocity U. Is a sum of the velocities Induced by 
the two functions £j and ;.. However, (4.4) 1s not used to calculate 
£j on c 2, as this would entail summing over all the blobs for each grid 
point. Instead, iK and U, are computed on the mesh points constituting 
MU. Using these calculated values for ^ on 3D, as boundary data, the 
finite difference analogue of 

A ^ - 0 on 0 2 (5.5) 
1s solved. The number of points per side for this problem Is always 
odd (see below) and may often be of the form 4L - 1, L a positive Integer. 
The solution of (5.5) 1s then obtained using the FACR algorithm of 
Hockney [15]. After (5.5) is solved, the flel* Sq is approximated by 
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central differences of the computed stream function values for V y 
The field U, 1s evaluated 1n c and ac by solving (3.5) with the 

boundary conditions (3.6). and using central differences of the result. 
Because the mesh will "expand" by two mesh widths over one time 

step (see §5.4), the field U.W111 need to be tabulated at the grid points 
falling outside 0,. At these points U, is computed via (4.4), and Il
ls evaluated by differentiating the bi-quadratlc spline interpolator to 
t- in D, (see §7). After the velocities have been evaluated, the field 
Û  1s specified at the (M + 5) points making up 0-. 30- and two mesh 
widths surrounding z>2» or symbolically, 

- |-ijf i.j=-2 
-These values are then stored in an array in memory. 

4. Boundary conditions for difference scheme 

The finite difference scheme is used in the domain D„ which is a 
distance 6 away from the real boundary 30. Hence, the grid on which 
5« is updated does not reach any solid boundaries of the fluid. After 
examining (5.3a), ic is clear that if (5.1) is discretized at the 
point (S + id, <5 + jd), then (5.3a) gives a linear equation for the 
3 unknowns 

,m+l/2 jn+1/2 .m+1/2 
5 1- l , j * c 1, j * c1+l,j • 

Hence, to compute ?J£] / Z » S ^ j 2 1 s needed; £ J V 2 is the vorticity 

which may be carried from D2 to the point (x,y) • (6 - d, 6 + jd). 

Discretizing (5.3a) a,; the H + 1 points ta.y, ) • (6 * Id, « + J d), 
J 0 o 

where 1 * 0,1,...,H. gives H + 1 linear equations for the H + 3 unknowns 
S ^ ] ' 2 , 1 • -1,0,1 M + l. Hence, 1n order to solve the system, 
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two more equations must be added for the unknowns s m, { and ej! ! = • 

Discretizing (5.3a) at the point (x,y) = (5 - d, 6 + j d) will yield a 

, j „ „ „„!,4.4„„ f „ _ .m+1/2 _m+l/2 Ji+1/2 <:<,•<•,-.,„ jn+1/2 _ n linear equation for j , ' , , c , '. , z,n . . Setting C , .= = 0 -^.J0 - I » J 0 u,j -^,J0 

means that no vorticity from D, can travel beyond one mesh width in a 
time step of k/2. 

Vorticity from D, c a n ""each the point in question in only two 
ways, by convection or by diffusion. It can be assured that 5- 1 S 

not convected beyond one mesh width as long as 

Diffusion, as discussed by Chorin [8] and Courant [9] is equivalent 
to a random walk. Tschebysheff's tK,-em (Lamperti [18]) states that 
gaussianly distributed random varlat U" with mean zero will rarely be 
greater in magnitude than three standard deviations. During a time 
step of duration k, vorticity will diffuse with a standard deviation 
of "V2k/R . Hence, in a time step of length k/2, £„ will not likely 
travel beyond one mesh width if 

3 VicTF <.d . (5.7) 
If (5.6) and (5.7) are satisfied, c"1!1^2 and ^\/\ can both be set 

to zero and thereby get M + 3 equations for H + 3 unknowns. 
After the completion of the implicit differencing in the /-direction, 

support (£,) has expanded beyond D~ by one mesh width. 
Hence, it follows that 

^ " | ^ / 2 } u = - i ' (5"8) 
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The solution of (5.3b) is obtained in a similar fashion. The 
equations are implicitly dlscretized in the y-direction and along 
each column solve a system of H + 5 equations for the M + 5 unknowns 

Ci+!-. J = -2,-1,0 H + 2 . 

The system is closed by virtue of setting c m _, and C ? + M + 3 equal to 

zero by the same reasoning as above. Hence, at the completion of these 
2 half-steps, support (? 2) has spread over 2 mesh widths beyond 30 2 

and the vorticity t,- i s tabulated as: 

^ - ^ T , } > . . • (5.9) m+1 _ < rm+l I,' 
, , 1 , j =" 2 

5. Stability critera for matrix equations 

The heart of the time-splitting scheme involves solving many 
tridiagonal systems. Although the Von-Neuman stability analysis showed 
that the difference scheme is stable, the algorithm used to invert 
the tridiagonal systems gives some stability conditions guaranteeing 
that the inversion is numerically stable. 

Using the definitions of §5.1, (5.3a) can be rewritten as 

(5.10) 

(5.11) 

If (5.11) is now substituted in (5.10), obtain: 

/ • Iff ^.jts+i " s - i } " i5? (s+i " " * s-i }] « " -

f 1 - ^ . ^ * - 5 ^ * ^ ? ^ - 2 1 * 5 - 2'] $J 
Definition 

c , - k Rkd Rd2-k c * - 4 » l > - 5 » Y - * 
2(RtT+k) 4(R<T+k) R<T+k 
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The equations are solved sequentially for fixed j . For such a fixed 

row j define 

* f B < J ' D 1 5 ( J V U • 
Then (5.12) can be further simplified to read: 

- <-• c,<i3 * fl« - c - v ^ j -
< a + D i > ? ? . i - i + < j + « o - ' > i ^ , j + i • 

The trldlagonal system which needs to be solved for the unknowns C^*] 
1s cf the form A x_« y_ , where 

(5.13) 

(5.14) 

- (o + C,) 1 -(a-C,) 
(a + C2) 1 • (5.15) 

• 1 -(a - V , ) 
- (a + C„) , 

These systems are easily solved using an algorithm described by 
Isaacson and Keller [16] (see $7.4). The stability criteria given 
by Isaacson correspond to 

1 > |a - C 0| , |a + C„| ; (5.16a) 

1 > |a+ C^l + |o- C t| . 1 - 1,2,..., M - 1 . (5.16b) 
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Definition (| |U| | ^ / . max [ ( U ? / • ( V ^ / ] . 

Recalling (5.11), condition (5.16a) Is guaranteed If 

Rdk llOHj^x <2k + 4RdZ • (5.17) 

Condition (5.16b) requires: 
2 max (a, |C4|) < 1 . 1 ' 

If 
R d | | U | | ^ x < 2 . (5.18) 

then for 1 • 0.....H, 
<»> |C,| • 

and in this case (5.16b) requires: 

1 > 2o « — « — or Rd 2 + k > k , 
Rd^+k 

Mhlch Is always true. Therefore, 1f (5.18) holds then (5.16b) 1s ful
filled. It 1s also evident that If (5.18) Is true, that (5.17) holds; 
hence, (5.16a) holds as well. It has thus been proven: 

Lama 1. If M||U||[J^ < 2, then th* trldlagonal matrix solver Is 
stable. 

If, however, (5.18) does not hold, I.e. If for some (1 ,j ), 

Rd if? , > Z , then along some row j„, a < Cf . The matrix A of V J o ° " \> 
equation (5.15) may still be Invertlble as long as (5.16b) holds. In 
this case (5.16b) requires that 

1>2|C 1 | . Bdk_ IIOlCx . 
0 2(Rdz+k) 
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or rather, 
2(Rd2 + k) >Rdk llii,^,,. (5.19) 

If (5.19) holds, then (5.17) 1s also true, hence condition (5.16a) 
would be satisfied. Moreover, (5.19) will certainly be satisfied 
whenever: 

0 < 2k + Rd(2d - ||U||JJaxk). (5.20) 
Inequality (5.20) will be always satisfied 1f 

l l " l C x k < 2 d . (5-21) 
which means that in a time step k, vorticity cannot be convected more 
than 2 mesh widths. The above has proved: 
l.emma 2. If ||U||I!1 k < 2d , then the tridiagonal matrix solver is 
stable. 

Once So ' has been computed, a similar computation will yield 
^ + 1. In this case, since ̂ + 1 / 2 has spread 1 mesh width beyond 3Z>2, £ m 

will spread 2 mesh widths beyond SB,. Equation (5.3b) takes the form. 

I' +|j VL< S
+2- S-2>-^ S

+2- 2 I + S# + 1 = 
1 - IX .A i - s - i> + i?< s

+ i - 2 I + s - i ) ] ? m + 1 / ( 5- 2 2 ) 

The system (5.22) 1s now solved for fixed x, e.g. for fixed column 
1. Using the definitions (5.11) and defining 

cj B *%.! • Di s B V U • 
(5.22) takes the form: 
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•««• °X3-i • fl • <-- V d • 

The resulting tridiagonal systems are similar to those encountered 
in the solution for ? n , except that the dimension has Increased 
by two, due to the "expansion of the mesh", e.g. for fixed 1, (5.22) 
holds for j = -2,-1,...,M + 2 where ? ^ 3 = c f * ^ = 0. The resulting 
analysis regarding the invertability of the matrices is the same as 
before. 
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6. Domain Interaction 

1. £) flow from 0, Into D 2 

After the field 5 1 has beef updated via Chorln's vortex method, 
equation (3.1b) may no longer hold. Soma of the vortex blobs may have 
escaped through the boundary 3i>, and son* may have been displaced 
Inside the subdomaln D-. The blobs which have escaped through 3D are 
simply discarded from the computation, but the ones Inside D 2 must 
be Interpolated onto the finite difference mesh. 

The blobs which cross into Z>2 are interpolated onto the mesh 
by a simple linear Interpolating scheme. The scheme Is known to plasma 
physicists as "area weighting" or "charge sharing". There are two 
Important considerations to keep In mind when Interpolating. First, 
1t is essential that no vortidty be created or destroyed. Secondly, 
the blobs crossing Into 0- will situate themselves at locations not 
coincident with the mesh points, and the Interpolating scheme will 
replace these blobs with vortldty distributed on a grid. Hence, although 
the total amount of vortldty may be unchanged, It will be distributed 
differently. This different distribution will exert a change 1n the 
Induced velocity, and it is Important to minimize this effect. 

Recall that ?, Is not the value of the vorticlty, but, 1$ Instead 
the vorttdty Integrated over the entire domain. In other words, 
if 5j consisted of only 1 vortex blob, 

«?(!) • t,50(r - rj) , then J ^ f e j o * • c, • 
D 
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Assume that one vortex with strength c 1 has crossed Into O g (see 
Fig. 3). Draw horizontal and vertical lines through the vortex center 
and calculate the ratio of the areas of the 4 resulting rectangles 
to the area of a mesh square: 

A, - (d - x)(d - y)/d Z; A 2 - x(d - y)/d 2 j 

A 3 - x y / d Z ; A 4 - y ( d - x ) / d Z . 

Compute the grid vortldtles using the A / s : 

«1.j ' ! l A l / d Z ' ?1+1.j • W * ' 

The area weighting Is done to minimize the "self-force" phenomenon 
known to plasmc physicists. This phenomenon is a numerical error 
caused by the presence of a grid that has the vortex blobs exerting 
forces on Itself. The hope Is that by distributing the vortlclty due 
to 1 vortex over 4 grid points, surrounding fluid particles do not 
realize that the vortlclty carried by a vortex blob has been redis
tributed onto the grid. By means of the trapezoidal rule for Integra
tion, 1t can be shown that no vortlclty was created or destroyed: 

It 1s Interesting to note that the above method of Interpolating 
1s equivalent to Peskln's "6" function technique [16]. In this case 
the support of the discrete "6" function 1s 4 mesh squares Instead of 16. 
Peskln needed 16 because he had 4 different "chains" of points which 
were linked by the boundary conditions. The 4 "chains" needed to 
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feel the forces simultaneously hence, the "large support" of the "6" 
function. 

The above interpolating scheme 1s also equivalent to assuming 
that the vortex blobs have a sauare base and that the basic blob 
stream function has the form 

s0(x.y) = < J r < d - l xl>< d- 1*1) • 1*1.M < d 

[ 0 , otherwise • 
To perform the Interpolation with this blob, one simply evaluates the 
blob function at the grid points. 

2. 5- flow from D- Into D. 

The completion of the time-splitting scheme results in an "expanded" 

mesh with vortlcity £» depositedon mesh points outside 3D,. This 
vortldty must then be rearranged into the form of vortex blobs to 
satisfy (3.1b). A simple method,albeit expensive,would be to replace 
every nonzero vorticity value of E;Z outside P, with a blob centered 

2 on a mesh point. This new blob would have the strength 5 = d t,, .. 
This procedure is expensive since it generates many new vortex blobs 
per time step. 

To be able to keep down the number of newly reconstructed vortex 
blobs, the following simple scheme was devised. 
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Assume that only the four neighboring values e_ 2 j • c-l j • 

'•-I i+1 a n d ?-l i+l ̂ s e e F'9' ^ n e e t l t 0 b e r e c o n v e r t e t ! ' n t 0 a vortex 
blob. The total volume of vorticity that needs to be transferred is 
?e = <«-2.J + «-l.J + ?-2,j+l + e-l.j+1 , d'- T h e S e f 0 U r 9 H d V a l U e S 

are combined into one blob centered at the center of mass of the four 
vorticity values. 

Define | g E U . 2 > j | • | c_ u| + | e. 1 J +,| + ^ ^ . 

Then the center of the blob (x ,y ) is 
x e = 6 - 2d + d ( | C _ 1 ) j + 1 | + |c.lfjl)/|«;el , 
y e = 6 + jd + d < u . 2 > j + 1 | + u _ 1 J + 1 l ) / i g . 

The scheme (6.1) places the center or the blob inside the mesh 
square of interest. It is interesting to note that under some particular 
distributions of the mesh vorticity, scheme (6.1) is the inverse of 
the interpolating scheme described in the previous section. 

Before discussing how scheme (6.1) 1s implemented to transfer 
the vorticity ?„ located 1n C, into vortex blobs, recall that at the 
beginning of each time step, 5, 1 S distributed on an (M + 1) x (M + 1) 
mesh contained in ©,, e.g. 

After the time-splitting step, & has been updated and distributed 
* ra+1 ,* on the expanded mesh; denoting this updated vorticity by £- , 

i t follows 

jn+1 .* _ Lm+l l " + 2 

-z . 
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The values of that must be recomblned Into vortex blobs, compose 
the set 

fm+lN M 
V I.J E {(1,j)| - 2 < 1,J <.H + 2} - «1,j)| 0 < 1,J < M } • 

Consider the bottom edge of C-, i.e. the vortlclty values 
nVi( for 1 = ~2*"1 H + * ' J = "1*"2-

Scheme (6.1) will generate M + 4 vortex blobs lying between y • j - 2d 
and y = 6 - d where S = d1st(ao2,a>). 

Some care must be exercised to ensure that no new vortlclty Is 
created or destroyed and that the apportionment of vortlclty among 
the blobs 1s similar to Its previous apportionment on the grid. In 
particular, 2 blobs will be generated by the 6 values: 

m+1 _m+1 Jii+l jn+1 ,m+l m+1 
c1-l,-2 ' S-l.-l ' H,-l ' c1,-2 • c1+l,-2 ' S+1,-1 ' 

where 1 <, i < H - 1. Scheme (6.1) will generate one blob Inside the 
square with vertices (i - 1. -2), (1 - 1, -1). (1. -2) , (1, -1). 
This blob will have a total vortlclty specified by ^j 1*] _2 , ±^\ _., 

*i!-2 • "^n-T T h e r e r a a 1 n 1 n 9 hTj) w 1 1 1 b e u s e d t 0 9 e n e r a t e a b 1 o b 

1n the neighboring square. 
In a corner, a different algorithm Is used. Consider the 8 values 

jn+1 _m+l _m+l ,m+l ,m+l jn+1 _m+l _m+1 
C-2.-2 ' C-l.-2 ' C0,-2 ' 5-2,-l • e-l,-l * c0,-l ' c-2,0 • c-1,0 " 
The corner blob 1s generated using the 4 grid values 

jn+1 ijn+1 i_m+l i_m+l C.2,-2 > J«.l,.2 • tC.2,.i • fS-l ,- i • 

The blob immediately to the right Is generated using the values 
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j.ro+1 j.m+1 jL.m+1 jjn+1 
t^-1,-2 • 2*0,-2 * "5^-1,-1 • ̂ O.-l * 
Finally, the blob above the corner Is generated u^lng the values 
,jn+l jjn+1 i_m+l jjn+1 
ff-2,-1 • tV-1,-1 • 1S_2,0 • ̂ --1,0 • 

In this way, all of the vortldty rf) lying outside D^ has been 

transferred into blobs and the location of the filobs within each square 
assures that fluid particles several mesh points away do not realize 
that a transformation has occurred. 
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7. Numerical details 

1. Numerical evaluation of velocity fields 

At the beginning of each time step, evaluate a velocity y« 
satisfying: 

V x Ug = £ 2 in D , and (7.1) 

UT • JJ = -U, • n along 3D . (7.?) 

The field U, can be calculated by differentiating a stream function 
if2 which satisfies: 

A\)/2 = -£ 2 in o, and (7.3) 

i^2(s) = -il>-|(s) along 3C. (7.4) 
Thus, if 

a, - O y v - 3X*2) , 
equations (7.1) and (7.2) are satisfied. 

To calculate ifi,, subdivide D into L + 1 points in each direction 

and thereby define d as: 

d = 1/(L+1) . 
Let fc . denote the approximation to if.2(id,jd) . Thus, using (7.3), 

*1.J-1 + • l - l . J • 4 *1 . j + *1+l.j + *1J*1 = d % [ 1 ' j ] + 0 ( d 2 ) ( 7 " 5 ) 

where now. 

S2[1.J] 2 ? 2(id,jd) 

and £ l 2 [ i , j ] = 0 , for al l values (1d,jd) t D7. At points t- * coinciding 
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with Wt the value of \p, , 1s calculated from (7.4) and the formula 

where ifp is defined by (4.3). 

If equation (7,5) is to be satisfied at every interior point, 
the following large linear system must be solved: 

E i = y_ , 
where E is block tridiagonal 

"A I 

I A I 

"-4 1 

1 -4 1 

E = I A • S A = 1 -4 • 

1 

A 1 -4 

dimension (A) = (L x L), and E is made up of L block rows and L block 
columns. The number L is set to be of the form 2 e - 1, where e is 
a positive integer. The problem is thus placed in ready-made form 
to utilize the cyclic odd-even reduction algorithm [6]. 

1 At the completion of the evaluation of ij/,, there will be L 
interior values and 4(L + 1) boundary values (from (7.4)) of <t>2 stored 
in an array. Denote these grid values by: 

L+l 
% <*i.j> i.j=0 

The velocity field Ug is then approximated by two different methods 
in the subdomains D, and D,. The use of the finite difference scheme 
in z>2 requires knowing Ug on only the mesh points. Hence, Uj is 
approximated there by centered differences of ifc,, e.g. 
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ik * {U2'Vl.j = ld<*1.j+l " * U - 1 • *1-].J " *1+l,j )-
However, the vortex scheme has no such neat arrangement. The velocity 
U- will need to be evaluated at the centers of the blobs which need 
not coincide with the mesh points. Consequently, It will be necessary 
to evaluate U» anywhere Inside D,. This 1s accomplished by approximating 
ip, by a bi-quadratic spline 1n D, which 1s then analytically differ
entiated to yield a continuous approximation to U- In 0,. 

The coefficients of the time-splitting scheme are functions of 
the velocity U., a sum of the two fields U, and Ug. At grid points 
on the "expanded mesh" 1n D^ and on W^, Wj Is evaluated by (4.4) 
while U-> is computed by differentiating the spline approximator to 

At mesh points 1n D-, IU 1s evaluated by centered differences as 
described above. It would, however, be too expensive to evaluate U^ 
on the mesh points inside D- by means of (4.4). In fact, the use 
of (4.4) 1n Df would defeat the purpose of the entire method, since 
a finite difference method was Introduced to avoid the countless Individ
ual vortex calculations. Since, however, D„ 1s specifically designed 
to be away from the boundary and since support ( ^ c j j , It is 
possible to make a decent approximation to the field U,1n D, by 
numerically solving 

A4>] • 0 in J>2 (7.6) 
with the boundary values iMs) specified on 30 2- T h e function IJJ,(S) 
is computed on W, using 

*1 (^* fj*ot"^ )' <7-7> 
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Thus, the vortex formulas, (7.7) and (4.4) are used to calculate only 
the field £.( and the stream function on the boundary of D«, and (4.4) 
1s used to calculate U, on the "expanded" mesh. 

The numerical calculation of (7.6) proceeds as above. The same 
grid used in the computation of fc .. 1s now used to compute 4, ... 
where we define 

*1 j H V* + 1d' S * ^ ' S '• d 1 s t ( a c 2 » 3 D)» 
1 <_ 1,j <.H - 1. 

As above, (7.6) Is approximated by 

*1,j-l + *1-l,j • 4*1.j + •l+l.J + •i.j+l ' ° ' < 7' 8> 
with the boundary values evaluated by (7.7). Equation (7.8) leads 
to the linear 'ystem 

F 4 = v. . (7.9) 
where F has the same form as the matrix E In the previously described 
system, but with block dimension (H - 1) x (H - 1). 

The Integer H - 1, unfortunately does not have the simple form 
of 2 P - 1. In the problem of Interest, H - 1 was always odd, sometimes 
of the form 4N - 1, where N Is a positive Integer. The system (7.9) 
was solved by a method proposed by Hockney [13], where the number of 
cyclic reductions used was either one or two, depending on whether H 
was a multiple of two or four respectively. The FFT was not used, 
since the number was no longer highly composite. However, at the 
start of the calculations the required e-vectors an4 e-values were 
computed and stored 1n memory. 

35 



2. Approximation via biquadratic spline 
a. 0ne~d1mensional spline 

Let {xJ be a monotonically Increasing sequence of equally spaced 
points on the real line, and let {y..} denote the values that a function 
takes at those points. I.e. y, • y(x,). Assume that d = x.+- - x., 
for all j. 

For some particular j and for |x - x J <. / 2 , define the spline 
Interpolator, 

fM = 9j + xD ogj + \{%Z + $• JD+D.g.j . 
It 1s assumed above that x. = 0, If not, substitute x - x. for x. 
The operator D , D +D_ are the first and second central difference 
operators on the spline coefficients {g.>} , 1.e 

V j • H<»j+i - 9 M ) - a n d D+ D- 9d = j f y + i - 2 9 J + 9i-ih 

Thus, f may be rewritten as: 
f ( x ) = | < g j . 1 + 6g. + g . + 1 ) + | g < g j + 1 - g . . , ) 

2 
+ 2 - ^ ( 9 J + l - 2 9 j + 9 M ) -

Relationships for the spline coefficients are derived by requiring 
that the spline agree with the given values at the points x - , i.e. 

Equation (7.10) becomes a tridlagonal system for the spline coefficients 
{g,}. Once the {g.} are known, the evaluation of the spline at a 
point necessitates the look up of three spline coefficients 1n a table, 
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namely g ^ and g.. 

b. Two-dimensional spline 
Assume that a square mesh of width d 1s superimposed on D 

and that <i. . is an approximation to ^(id.jd) , the stream function 
due to the vorticity £«. There are a total of L points in each direction, 
hence a total of L interior values of fc *. The problem at hand 1s 
to find continuous functions approximating the derivatives of i|>? 
which can be evaluated anywhere in D. 

Assume for simplicity that |x - x j , |y - y J <. /2 and (Xj.y.-) = 
(0,0). Define the two-dimensional spline Interpolator, 

o 
f(x,y) = g{ j ,(y) + xD01g| j )(y) + |{x2 + f ^ D . ^ t y ) (7.11) 

where 

and 

»n*\i]w - h s{i{ty) - 9$(y>] . 

D+1D_ i g{J ,(y) - l y g{Jj(y) - 2g<%) • g{f|(y)] 

are the first and second central differences of gl (y) on the index 
1. The function gjJ'(y) 1s the one-dimensional spline in the vertical 
(y) direction around y = y^ at the point x = x ^ 

<>iJ,M • K j + 1 + *1.j + f i .M> + ^ f i , J + l " f1 J-l> 

+ ^ ( f i , J + l - 2 f i . ; i + W • ( 7- 1 2 ) 

Once the coefficients are computed, the evaluation of the spline 
at any point necessitates the look up of the nine spline coefficients 
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fi i' f i j+r *i+i i' fi+i 1+r w n 1 c h a r e s t o r e t l 1 n a t a b 1 e - T h i s 

table can be stored over the old function values $, , since they are 
now superfluous. 

There are, however, more spline coefficients than original function 
values. Initially there were L Interior values $, , and 4(L + 1) 
boundary values, giving a total of (L + 2) values. Using the previous 
nomenclature these grid values are stored 1n the array {^ j}|[ +L 0. 
As previously noted, the evaluation of the spline necessitates the 
look up of 9 spline coefficients. If the coefficient f, j 1s stored 
1n the same location as <h ,, and If the spline Is evaluated "near" 
the boundary location (x,y) • (14,0), then the nine values f { + 1 + 1 > 

f\ + T f1+l o* a n d f1 0 m u s t b e ̂ o o k e ( i UP- I f t n e spline Is evaluated 
"near" the corner (x,y) « (0,0), then the nine coefficients f + J + 1, 
f+1 ., f. + 1, f 0 _ must be looked up. Thus, a "border" of spline co
efficients surrounds the original function values, and 1t Is necessary 
to determine (L + 4 ) 2 spline coefficients: if, \L*Z 

c. Linear equations for the spline coefficients 
2 

The (L + 4) spline coefficients will be determined by solving 
2 

a system of (L + 4) linear equations that they must satisfy. 
2 

To begin, (L + 2) linear equations can be immediately found by 
2 

requiring that the spline agree with the function at the L Interior 
and 4(L + 1) boundary points. For example, 1f the spline must be 
correct at (0,0), then using (7.12) In (7.11) obtain 
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*2(o.o) - *0>0 - gJo)(o) + ^V-i<>iSi<o) 
-̂ Ko + 6 ( f o . i + f i . o + fo,-i' + f-i,o ) 

+ fi.i + f i . - i + f - U + f-i.-i] 

64*o.o = f-i,-i + 6fo,-i + fU-i + 6 ( f-i,o + 6 f
0,o + V 

+ f - l , l + 6 f 0 , l + fl,l • 
Similar equations will hold at the remaining (L + 2) -1 remaining 
mesh points. 

2 2 
However, (L + 4) coefficients have been used in the (L + 2) 

2 2 
equations, hence (L + 4) - (L + 2) » 4L + 12 more equations are 
needed to have the number of unknowns match the number of equations. 
After some examination, it is evident that the normal derivative of 
the spline at the boundary can be arbitrarily prescribed. Letting 

af f = f(x,y) denote the spline, it follows that fjj- = Ug • s. . Since, 
af 
fr = "U? ' E = Mi ' £• Dy construction, the spline generates a velocity 
which nullifies the normal velocity at the boundary due to the vortices. 

3f 
It 1s tempting to prescribe |jr • -U-. • s_ and thereby construct a velocity 
field satisfying both boundary conditions. However, I felt that this 
would give rise to an unreasonably non-smooth flow LL which 1s not 
irrotational near the boundary, hence the temptation was resisted. I 
assumed that the flow Ug 1s smooth enough that (7.3) still held at 
the boundary of D. Equation (7.5) was hence assumed to hold on the 
boundary with the r.h.s. set equal to zero. Thus, it was possible to 
express the fictitious point outside the boundary in terms of its 
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image inside the domain and three points on the boundary (see Fig. 5). 
Thus, 

*1,-1 ° 4*i,0 -*i,l "*i-l,0 -*i +l,0-
Using this point outside the boundary, an approximation to the 

normal derivative can be obtained by letting, 

f»M*»i-i.o + W 4 V . a + 0 ( d 2 ; . 
2d 3n 

Equations (7.11) and (7.12) are combined with this relationship to 
derive an equation for the spline coefficient f, ,: 

I s - ' 

y * i t l • * M > 0 + * i + 1 > 0 - *P 1 § 0) • f • fdd.o) = 4 [ f i + 1 J 

+ f l - l . l - f 1 * 1 . - l - f | . l . . l + « f M - f 1 . - l ' ] 
or 

8<^i, i + V i .o + V , , o " «*t,o> - - f i - i , - i - 6 f i , - i 

- f i+1,-l + fi-l,l + 6 f 1 . 1 + f i + l , l • < 7- 1 3 a> 

A similar equation will hold at the vertical boundary, x = 0, namely: 
8< Z*1.j + *0.J-1 + *0,j+l " **>,J> " " f-l,j-l + fl,j-l 

• 6 f - T , J t 6 f l . j - f - l , j * l * f . . J * l • ( 7- 1 3 b ) 

Equations (7.13a,b) yield 4L linear equations for the coefficients 
f-l.j ' fj.-l ' fL+2.j ' fj,L+2 ' j = 1 , Z L-

It remains to find twelve more equations for the twelve coefficients, 
adjacent to the corners, e.g. f_1 _1 » f o -1 * f-i 0 • e t c - T n e s e 

st equations will be derived by prescribing values for the 1—order, 
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and mixed 2—order derivatives of the spline at the corners. 
Since f is an approximation to iju» it is possible to prescribe 

the velocity U_ = U, + U, to be zero at the four corners by specifying that 

h = (V'"V = ̂-1 = (" U1 , " V 1 ) - ( 7 , 1 4 ) 

Equation (7.14) yields eight more linear equations for the spline 
coefficients; in particular, at the corner (x,y) = 0 obtain, 

||(0,0) = V,(0,0) and §£(0,0) = -11,(0,0) 

16dVo.O> - - f . , , . , + f , , . , - 6 f . l i ( ) + 6 f , > 0 - f . ^ , • f , ^ 

-1*111,(0.0) = - f . , , . , - 6 f 0 j . , - f , ^ , + f . , f , + 6 f 0 > , + f u l 

I t is now necessary to obtain four more equations to close the 
3 2f 

system. These are obtained by equating |-j— at each of the four 
corners to the backwards, 2 — order correct divided difference of the 
computed stream function IJI„. For example, at the corner (x,y) = 
(0,0) set, 

% . 0 - 1 2 ( * 0 , l + * l , 0 ) + 3 ( V 0 , 2 + *2,0> + 16*l,l -

4<*l,2 +*2.1> +*2,2 = 4 d 2 W + 0 ( d 4 ) • ( 7- 1 5 ) 

Using (7.11) and (7.12), 

3x3y = ^ f - l , - l " f-l,l * fl,-l + ^.l 1 • 

Labeling the l.h.s. of (7.15) CI, the required equation is: 
C 1 = f-l,-l- f-l,l- fl,-l + fl,l • 

Similar equations hold at the remaining corners. Thus, the number 
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of equations matches the number of coefficients, 

d. Solution of matrix equation 

If f Is the vector containing the spline coefficients, define 

-J S ( f-l,j' f0,J' f1,j 'l^d* • 

for j • -1,0 L + 2. 
The equation to solve 1s 

P f ' £ (7.16) 

where y_ - ( j^ , , £0, ^ y^ + 2 ) T and 

* j " ( y - l . j - y 0 . j - * l , j \ + 2 , / s 

y_ contains the computed grid stream function values, *, ,, as well 
as the values of the required divided differences of * 2 at the boundary. 
The matrix P has the form: 

- S O S 
S6S S 

S 6S S 
S 6S S 
s • • 
• • s 
S 6S S 
- S O S 
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•1 0 1 
1 6 1 
1 6 1 
1 6 1 
1 6 1 
7 • • 
• • 1 
1 6 1 
-1 0 1 

The non-singularity of P is proved by exhibiting Its inverse. The 
method of solution uses the Sherman - Woodbury formula and closely 
follows a method presented by Uidlund [19]. 

Initially transform (7.16) into the system 

where P has the same shape as P except S 1s replaced by S , 
V 0 -v 

1 6 1 
1 6 1 

• 6 1 
-1 0 \ 

and for j « -1,0,1,..., L + 2, 

'W-IJ f o r 1 " _ 1 

(7.17) 

(Vu 
K J f o r 1 ' " 1 
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In other words, multiply every (L + 4 ) — equation by -y, beginning 
with the first, vi is a solution of the equation 

1 i + V - 6 . 

-1 Assuming, momentarily that S exists and Is easy to obtain, 
premultiply every "block" row by S" , obtaining 

where, 
Q f = z. 

•I 0 I 
I 61 I 

I 61 I 
I • 
• • I 
I 61 I 

-I 0 I 

(7.18) 

I is the identity matrix, 

and for j = -1,0,1,..., L + 2, 

Transform (7.18) into 
Q f = z , 
V- -v 

(7.19) 

where 
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V 

pi 0 -ul 
I 61 I 

I 61 I 
I • 

I 61 I 
-I 0 I 

a,id z = { - v ^ , Zg, z.,,..., Zi+g)1- System (7.19) is now "uncoupled" 
and can be solved for £ by solving L + 4 tridiagonal systems of 
order L + 4 of the type, 

where, 
V e = be • e = -1.0,1,..., L + 2, 

t-^e.-r ze,o« ze,l ze,L +2> 
Consider now the evaluation of S" . The system to solve is 

S x » b 
( j - -

(7.20) 
where S 1s defined above; y = 3 + ViMs a solution of - + u = 6. 

Note that by defiling the vectors 

e, s (1,0,0 0 ) T , w = (0,- l , -u,0,0, . . . ) T 

and the matrix 

B s 

u 1 
1 6 1 

1 6 1 

1 6 1 
-1 0 1 
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then S * B + e-vr. Hence, using the Sherman - Woodbury formula, 
l...T„-l 

(7.21) 

S"' - B"' - B"' e,(l + wV'ftjJ'VB' 
The solution of (7.20) can thus be directly written as 

x ' B ' \ - B"'e,(l + r V 1 a , ) " 1 w T B " 1 b i . 
Define the scalar, 6 H w B fe, then recalling the definition 

of w T. 1t follows that 
B - - [(B _ 1b) 2 + w{B"Tb)3J , (7.22) 

where (B b ) e 1s the e^- component of the vector B" b. The matrix 
B has a ready LU decomposition, namely. 

1 u 1 
1/u 1 u l 

1/u 1 p i 

B » LO * 
1/d 1 

-1/u 1/u2 1 1-1// 

and 1t Is now obvious why u was chosen to satisfy ~ * u * 6. For 
stability choose 

u - 3 + Vi". 
The evaluation of B ' ^ f o r the first term of (7.21) 1s now trivial 
since B has been decomposed Into a product of triangular matrices. 

The evaluation of B~ e, can be done analytically by Induction. 
To solve the system 
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where dimension {v) - dimension (e,) • n, first solve 
Ly. = e,, getting 

y_= (y 1iy 2i... >y n) T i where 

(-l/n) d _ 1 , If i = 1,2,3,..., n-1 

[ ( - l /w) n " 2 ( l + ̂ /vi) . 1f J • n 
Having solved for y_, solve 

Uy. = y_ , to find 

v . (-l/y )"+2(i4| , 

V l V l r p 2 • 

¥ . e l , 2 " - M i ± j £ ! j ! ^ l l ) . for J - 1.2.... „ - 2. 

It Is then easy to verify that 

SlV'e, = -(l/u 2)"" 3 , hence 

,Vi._ri = (1 + a'B" e.,) l - (l/u 2)" - 3 

9 

Since y : 33.92 make the simplification that, 
(1 - (l/v*)"" 3)" 1 - 1; 

which 1s valid since n will be a large Integer (> 20). Therefore, 
B"'e.|(l + w T B " 1 e 1 ) " 1 w . V 1 k * B 8" 1*, » 

where B has been evaluated previously by (7.22) 
Tl 

define 
The computation of BB e_ proceeds Inductively as follows: 
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c = 6/(1 - u 2) 
., , c(-l/u) 2"- 5 , and b, ~= M 2 « " - 2 » 

and if z_ = (z-i.z, z_) = £ B e , , it follows that 

z, = a,(l + b,) , while for 

j = 2,3,...,n, 

if a. 5-paj., , b. = b.^/p 2, then 

Thus, having evaluated z_, and recalling (7.21), the required solution 
is 

x. = S _ 1b_ = B _ 1b_ - z. . 

Q.E.D. 

3. Timing tests for the linear equations 

The calculation of the stream functions if,,^, requires solving 
3 large linear systems. However, with the aid of modern techniques 
these large sparse matrices are quickly inverted. 

The first large system to solve is E\ji_ - y_, where $_ contains the 
grid values of Î ,, the stream function due to £,. To be able to use a 
cyclic reduction algorithm [6] these were always 2 e - 1 interior 
grid points per side. That is, the domain D was covered with a 
square mesh of size d - 1/64, or 1/32. A test was done to time 
a cyclic reduction matrix solver which I wrote to solve the system. 
When the r.h.s. of the system was initialized so that all components 
were exactly one, the routine solved the equation in .15 seconds 

48 



with a maximum error of 4 x 10 . The test was done with a mesh 
size of d = 1/64. 

The second large matrix to invert is F of (7.9). The unknowns 
in (7.9) are the grid values of the function ty, in the domain D„ . 

The system (7.9) is of smaller dimension than the previous one 
since domain D„ e. D. However, it is hoped that D, will expand as 
much as possible to be able to cover as large a part of D as possible. 
Therefore, I was not at liberty to choose the number of points 
in o, at will. A typical case using a interior mesh size d = 1/64, 
would be to have 55 unknowns to compute in (7.9). Using 51 points 
per side and initializing y_ in (7.9) to have all components equal 
to one, the routine took .45 seconds using 1 cyclic reduction, and 
.25 seconds using 2 cyclic reductions. Tne two tests had a maximum 
error of 4 x 10 and 5 x 10 respectively. 

Both tests above were done on the LLL CDC 7600 machine using 
the CHAT compiler and the timing was done with the subroutine O0TIM. 

The third system to solve is (7.16), for the spline coefficients 
2 f. .. Using a total of 67 coefficients, a test program was run 

to find the coefficients needed to interpolate the function e cos y 
_2 on the unit square. The routine took 6.1 x 10 seconds and achieved 

an accuracy of 10 when the spline was evaluated at the grid 

points. This test was run on the LBL CDC 7600 machine and was timed 

with the routine SECOND. 

4. Tridiagonal matrix inversion 

The heart of tha fast poisson solvers, and the time-splitting 
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difference scheme involves inverting tridiagonai matrices. For the 
sake of completeness, the following algorithm 1s presented (Isaacson 
and Keller [16]). 

Let the matrix A have the tridiagonai form 

b 2 a 2 c 2 

*-n-l 
b „ *„ n n 

An LU decomposition for A can be Inductively computed, 

A * LU = 

"1 
b 2 a 2 

b 3 a 3 

b a n n 

Y1 
1 Y 2 

^ 3 

1 

a1 * a1 " b1 Y1-l * 1 " 2' 3 n 

Y1 B V a 1 , * * 2.3,...,n-l . 
The above algorithm was used throughout the computer program 

with obvious modifications, depending on the particular need. For 
example, the cyclic reduction algorithm needs to Invert a matrix 
with ones along the super and sub-diagonals and constant elements 
along the diagonal; hence the algorithm is modified to use only 3n 
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multiplications. 
One advantage of the above method Is that 1f the same matrix 

needs to be Inverted several times to solve the system with different 
right hand sides, then only one LU decomposition need be performed. 
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8. numerical experiments and results 

1. Interpolation tests 

Before the program was put together and run on the cavity problem, 
the many subroutines were individually tested. One such test was 
performed on the routine which Interpolates the vortex blobs onto 
the grid. As described in §6.1, the linear Interpolation chosen 
1s equivalent to Peskin's discrete "6" function [20]. Peskin's 
thesis, however, describes a different version using trigonometric 
functions. In that work, Peskin found that better results were 
achieved by using the function. 

^ { x . y ) = ag(x - Xj)g(y - y.) , 

jl + cos**- , |x| < d g(x) • I d 

0 , otherwise , 
a = constant. 

The constant a insures that / 6(x,y) = 1. 
This particular interpolating scheme was tested against the 

scheme described in §6.1. The test was done by interpolating vortex 
blobs at several places on the domain and checking which version 
gave the better velocity when compared to the field induced by the 
vortex blob. The results showed that the linear interpolating 
scheme was superior. 

Another test compared the linear scheme with the function 
fi^fx.y) •» Sh(x - xjh(y - y j , 
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3 - 4|x| - coswx , |x| < d 
h(x) = / 

1 0 , otherwise , 
8 = normalization constant. 

Once again, the linear Interpolating scheme produced the better 
velocity, and it was therefore chosen as the candidate for the computer 
program. 

It is, however, not surprising that the linear scheme worked 
best. As mentioned 1n §6, 1t 1s Important that the remainder of 
the fluid not sense that an interpolation has occurred; hence, the 
vorticity carried by each blob should be spread to as few mesh 
points as possible. Thus, the support of the interpolating "5" 
function is four mesh squares, and this function is simply a product 
of two one-dimensional "6" functions. Since this one-dimensional 
"fi" function has a support of two mesh widths and is non-zero on 
at most two mesh points, linear Interpolation will be the best 
choice. The situation will differ 1f a larger support is specified 
in which quadratic, cubic, trigonometric, or higher order interpolation 
may be better. 

2. Circulating flow in a cavity 

The aforementioned numerical method was tested on the square 
cavity flow problem. The fluid was initially at rest and at t = 0 
the bottom edge was made to slide to the right with a unit velocity. 
This velocity of the edge remained constant throughout the calculations 
and I strived to attain the steady-state solution by solving the 
time dependent equations. 
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The program was run with the following sets of parameters: 
3 

R B Reynolds number * 10 , 
d » Interior mesh sire » 1/64, 1/32 

[l/30, If d - 1/64 h • boundary discretization length * i 1/20, 1f d ' 1/32, 
0.1. 1f d - 1/64 k • time step • < 0.2, 0.1, 0.08, 0.05, If d - 1/32, 
[ 4d. If d « 1/64 6 - d1st(«JJ,«C9) » < 

' 3d, If d - 1/32. 
The pictorial output will be of the form of Figure 6. The 

boundaries of the square coincide with the outside arrows. Each 
arrow represents the magnitude and direction of the velocity at the 
tall of the arrow. Due to the relatively large range of |U| throughout 
the cavity, the lengths of the arrows vary as |U| ' , I.e. one arrow 
twice as long as another, signifies a velocity field four times 
larger 1n magnitude. Furthermore, the arrows are scaled so that 
the largest plotted velocity draws an arrow as long as the plot mesh 
size (• 1/32). Whether the Interior mesh, d, equals 1/64 or 1/32, 
the plot mesh size remains the same. In both cases, (d • 1/64 or 
1/32), the boundary of B« coincides with the plotting mesh. 

Generally speaking, the results are the same using an Interior 
mesh size d • 1/32, or d * 1/64. Figures 6-11 are from runs with 
d - 1/64, while figures 12-15 are with d • 1/32. 

In both cases, as the run begins, strong vortices of positive 
sign are shed from the sliding edge to Induce a tangetlal velocity 
equal to 1. After several steps these blobs are Interpolated onto 
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the edge of £>„ where they begin to form a large vortex. Figure 6 
shows the beginnings of the large vortex which will eventually 
settle near the center of the cavity and dominate the flow. The 
path of this center vortex 1s traced In Figure 16 as It spirals 1n 
toward Its central position. 

As this large vortex spirals in, 1t generates a tangential 
velocity component, JJ • s, which 1s positive along the four walls. 
To compensate for this, blobs of negative sign are generated at the 
stationary walls. These negative blobs are then swept up and pushed 
Into the corners. Figure 7 shows one such negative blob being 
carried upwards Into the stationary corner (x,y) • (1,1). This 
sweeping is especially evident In Figure 14 for which d = 1/32. 
In that figure 1t 1s evident how negative vortlcity 1s generated 
at the stationary walls and convected by the flow Into the corners. 

The blobs of negative sign which are thrust Into the sliding 
edge 1n the lower left-hand corner of Figure 14 will cause a very 
strong positive blob to be generated at the next time step so that 
the condition U • s, * 1 may be satisfied. This strong blob of positive 
sign is responsible for the peculiar loop that the stream-lines make 
near the downstream corner of the sliding edge (Figures 9-11). 
Streamlines running parallel to the boundary x = 0 carry negative 
vortldty which has been shed from that edge. These streamlines 
then run Into strong blobs of positive sign comming off the edge 
y • 0, generating a counter-clockwise motion, and it is this counter
clockwise motion which causes the loop. 

At the beginning of each run, there were no vortices present in 
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the fluid since the flow was assumed to be at rest. After the first 
time step, some blobs of positive sign were shed from the sliding 
edge. These blobs in turn caused other blobs to be generated along 
the four walls in order that the tangential condition be satisfied. 
As time progresses some blobs may be lost through 3n and others may 
enter into D,. When the equations of motion are solved in o, by 
the time-splitting scheme, other blobs are regenerated 1n 0, by 
the "expanding mesh". Eventually a balance 1s reached between the 
number of blobs being generated on the expanding mesh and along 
3D, and the blobs lost through 3D or entering into D~. This stable 
figure has an almost linear dependence on the time step (Figure 17). 

The results for d = 1/32 were obtained by first running the 
program with d = 1/32, fc = .2, h = 1/20 for 80 time steps. Using 
the resulting vorticity field as an initial condition, the program 
was restarted for the 4 different time Increments, 0.05, 0.08, 
0.1, 0.2. 

As expected, halving the time step is roughly equivalent to 
doubling the stable number of vortices in D,. It seems that 
every vortex has a finite life expectancy 1n z>. after which it is 
either lost through the boundary or enters into D^. Halving the 
time step allows the vortex to exist for twice as many time steps 
in D,. Since, approximately the same number of vortices is still 
generated per time step, twice as many vortices will be allowed to 
live inside »,. 

The foregoing can be altered by allowing blobs to "merge" if 
they H e one on the other, and the computer program does exactly that. 
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At the time that the blobs need to be moved, it is necessary to calculate 
their distance from each other to calculate the velocities. If that 
distance is less than a/10, the two vortices are merged and are 
treated as one. Thus, there is an upper limit to the possible 
number of vortices in D,. This linear dependence of the number 
of vortices on the time step would hold 1n exterior flows as well, 
so long as the boundary is finite and the domain 0, enclosing the 
boundary be also finite. 

The runs were terminated when I felt that no new information 
could be obtained from them. For the case k = 0.1, d = 1/64, the 
program was run for 260 time steps. For the case k = 0.2, d = 1/32, 
160 time steps were run. For the case k = 0.1, d = 1/32, 140 time 
steps were run after initializing the field with the results of the 
80^- time step at k = 0.2. The cases k = 0.08, 0.05 were run to 
determine if the stable number of vortices exhibited the expected 
growth. 

Figures 8, 12, 14 are plots of the velocity fields at one time 
step for three different runs. These plots are not atypical, but 
there is a slight variation of the field from one time step to another. 
There is always a large vortex present in the center of the cavity 
which dominates the flow, but the location of the vortex center 
does not remain entirely stationary. I feel that allowing the program 
to run for more time steps would eventually fix the location of the 
large vortex to one general area. The counter-rotating vortices 
in the corners, on the other hand, are not always present. At timds 
they disappear for several time steps only to reappear 1n subsequent 
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time steps as new blobs are convected to the corners. 
The program will probably never reach a true steady state 1n 

which there is absolutely no change between time steps, since there 
Is always a random component present 1n the vorticity field. This 
randomness not only affects the vorticity £. in D, but also affects 
the boundary conditions of the time-splitting scheme, hence the finite 
difference scheme itself. Thus, I expect, the center of the large 
vortex to always oscillate slightly about some equilibrium point. 

The corner vortices, being viscous in nature (Batchelor [2]), and 
smaller 1n size are more Influenced by the randomness of £,. The 
negative vorticity composing them may, at any one time step, escape 
through 30 only to be replaced by new blobs to satisfy the boundary 
conditions. Thus, a dynamic equilibrium will be attained; that 1s, 
as vorticity is lost, more will be generated by the system as 1t 
is needed. Whenever' U • s. > 0 at a stationary wall, a blob of negative 
sign will be generated to cancel that component. This blob will 
diffuse into the fluid and be convected by the velocity field. 

All this 1s to be expected in problems with high R. That is, 
there Is always a randomness to any flow; the higher the Reynolds 
number, the more random the flow. Hence, to get a very detailed 
description 1t may be necessary to average several time steps. 

Figures 9, 10, 11, 13, 15 represent th« velocity fields after 
averaging. As 1s evident, the randomness of previous plots Is 
smoothed out, and the finer details of the flow become apparent. 
The resulting graphs of the velocity profiles (Figures 18, 19) 
and the calculation of the extent of the spread of the corner vertex 
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were done using the average plot of 60 time steps (Figure 11). 
Figure 20 merits some discussion. It lists the induced velocities 

on the sides of the cavity by the field plotted in Fiiure 11. 
The velocities should be read along each side as that side is followed 
in the positive direction, I.e. keeping the domain D on one's left. 
The first striking impression 1s that the tangential boundary condition 
is not very well satisfied. For example, the horizontal velocity 
U is never exactly one along the bottom sliding edge, nor 1s it 
exactly zero along the top stationary wall. Similarly, the component 
V 1s not exactly zero along the side walls. A detailed explanation 
regarding why the plotted component U. • s. in Figure 20 does not 
satisfy the required boundary condition 1s postp6ned until 19. 
However, it should now be mentioned that the plotted velocity U. 
(- 0.) + Ug) takes into account only the vorticity already present 
in the fluid from the previous time step. The viscous boundary 
layer which is responsible for satisfying the tangential boundary 
condition is not used in plotting, and, in fact, Chorin.'s scheme 
assumes it to play only a local role at the time of Its creation. 
Hence, the tangential boundary condition is always satisfied by 
construction. The boundary layer is omni-present but has a global 
effect only upon having diffused Into the fluid. 

The extent cf the spread of the corner vortices can be determined 
by a close examination of Figure 20. In particular, along side 3 
(y • 1). the tangential velocity is first positive signifying flow 
toward the corner (x,y) = (1,1). Progressing down the table, signifies 
movement in the direction of decreasing x; the component U changes 
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sign becoming negative. The sign of U remains negative until the 
corner (x,y) = (0,1) is approached when U changes sign once more, 
becoming positive, denoting the presence of another corner vortex. 

The normal boundary component in Figure 20, on the other hand, 
cannot be so rationalized. The results 1n Figure 20 are a measure 
of the accuracy of the method described in §5, and could be improved 
by use of a finer mesh size d at the cost of larger demands of storage. 

Finer mesh sizes, surprisingly, do not necessarily mean slower 
running times. A considerable portion of time 1s spent computing 
vortex interactions. Therefore, it is the number of vortices 
present in the fluid which primarily governs the speed of the method, 
and as previously noted it is the length of the time step which 
effectively dictates how many vortices will exist in D,. However, 
recalling the stability results of §5, it is not possible to reduce 
the interior mesh size independently of k, since the "expanding" 
mesh assumes that vorticity cannot travel much more than one .iesh 
width in a time duration of k/2. 

Figure 17 also includes approximate running times for the program 
once the number of vortices in D-, had stabilized. The program was 
written in LRLTRAN, the Livermore Laboratory version of FORTRAN, 
and wets run on the CDC 7600 R and S machines. The program was compiled 
by the CHAT compiler and the timing was done with the aid of the 
subroutine O0TIM. It should be noted that the times given in Figure 
17 give the total time needed to complete one entire time step. 
The times listed include the work necessary to do such extraneous 
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things as plotting the velocity field every time step. 

3. Comparison of results 

As mentioned in 51, the large scale features of the flow for 
large R are well established. They have been observed experimentally 
by Pan and Acrivos [1] for Reynolds numbers as high as 4000, and 
numerically by Burgraff [5] (R = 400), Bozeman and Dalton [3] (R = 10 ), 
Runchal et al. [21] (R = 10 4), and Greenspan (R = 2 x 10 3, 10 4, 
1.5 x 10 , 10 ) among others. All of the above experimenters obtained 
their results by solving the steady-state equations by an iterative 
procedure. Most stopped their calculations when the difference 
between successive iterates was less than some predetermined constant. 

Bozeman and DaHon sought to minimize the residual, defined 
as r E Ax - b, when solving the linear system Ax = b. As pointed 
out by Bozeman, the above conditions simply imply the attainment of 
solutions which do not change appreciably from one iteration to 
another. I make no claim that the results presented here are the 
exact ones, but watching the large vortex form and spiral in towards 
an equilibrium state does lead me to believe that a correct steady-
state is quickly becoming attained. It should be further mentioned 
that at no time did I experience a lack of convergence of the method. 
That is, making a judicious choice of k, h, d always led to the 
familiar large vortex core with counter-rotating vortices in the 
stationary corners. 

Figure 21 exhibits the size of the upstream corner vortex 
as compared with other results. The size of the vortex is defined 
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as the distance that the back flow extends along the vertical side. 
This result agrees surprisingly well with the experiments 
of Pan and Acrivos and the calculations of Bozeman and Dal ton and 
contrast with the calculation of Greenspan at R • 2000. 

Figures 18 and 19 give the velocity profiles of U and V along 
horizontal and vertical lines through the vortex center. For 
comparison purposes, Figure 22 Includes the results of Bozeman for 
R = 1000, Burgraff's for R = 400, and Burgraff's theoretical result 
as R * ». Note the linear dependence of the velocity profiles 
near the vortex center signifying the constant vortlcity core predicted 
by Batchelor [2]. 

Figure 23 plots the location of the center of the primary 
vortex as compared to other results. As evidenced by Figure 16, 
the location of this center does not remain motionless, but does 
seem to be spiralling in towards the point (.52, .45). My faith 
in the correctness of this conclusion Is further enhanced by the 
fact that averages of the runs using different parameters give similar 
results. Comparing the location of this center with the results 
of Bozeman implies that the hybrid method described here places 
the vortex center closer to the physical center of the cavity 
Itself. 
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9. Discussion of Results 

The preceding was a presentation of a numerical method for 
use in fluid flow problems with high Reynolds numbers. It is a 
hybrid method utilizing a well established finite difference scheme 
in conjunction with the newer vortex scheme proposed by Chorin [8], 
The method has yielded accurate results on the square cavity flow 
problem, an example of a steady circulating flow. 

As a hybrid method, it must simultaneously satisfy the requirements 
imposed on each Individual scheme, as well as to any other restrictions 
imposed by the combination process. As described 1n §5, the time-
splitting scheme is unconditionally stable in regards to the time 
step k, and the mesh size d, when the familiar Von-Neuman stability 
analysis is used. However the solution of the tridlagonal matrices 
formally implies stability-like restrictions on the time step 
((5.18) and (5.21)) to guarantee that no growth of errors occur 1n 
the Inversion process. 

A brief remark should be made regarding the conditions (5.18) 
and (5.21). They stem from the stability criteria (5.16a,b) 
which translate into the requirement that the matrices (5.15) be 
diagonally dominant. The more strongly the inequalities (5.16a,b) are 
satisfied, the more diagonally dominant the matrices become, and the less 
the unknowns c, / depend on each other. This weaker dependence means 
that the boundary conditions and the values rfj takes on mesh points 
bordering 3o 2 exert a weaker effect on the solution of £j i" t n e 
Interior of c,. Hence, far from the domain D,, the vortldty £, 
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Is less influenced by the random fluctuations of £;,. 

Being relatively new, the vortex scheme Joes not yet possess 
well-established stability conditions. In particular, no known 
relationship exists between k and the boundary discretization length, 
h. One confusing aspect of the scheme is the apparent lack of 
satisfaction of the tangential boundary condition by the velocity 
U_ (Figure 20). As noted in §8.2, the velocity Û  does not include 
the numerical boundary layer which always exists to satisfy 
the tangential boundary condition. In fact, U represents 
the velocity outside the boundary layer and is thus useful to spot 
unexpected features such as back flow or separation. 

Although the numerical boundary layer can be evaluated at t = t 
it has a global effect only at t = t + when it has been subdivided 
into vortex blobs and allowed to diffuse according to the heat 
equation. Roughly half of the blobs are immediately lost as they 
diffuse through 30 and are thus discarded from the computation. 
The other half travel too far with the current choice of parameters. 
The structure of the blobs inside the-cut-off length, a(= h/2ir), 
was designed to have them exert a constant tangential velocity on 
30 as they diffused normally into the fluid. However, the diffusive 
component is a random step in time, and in a time duration of k, 
the blobs experience a random push with a standard deviation of 
yik/R. The parameters chosen imply that those blobs diffusing 
into the fluid travel beyond a after they have been created. 
Thus, although at the time of its creation the numerical boundary 
layer contained the correct amount of vorticity to cancel Û  •_£ 
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at 30, after diffusing 1n the form of blobs, it may not be strong 
enough, and the tangential boundary condition must be satisfied 
by the creation of another layer. 

It may then be inquired if it is better to choose a smaller 
k, or larger o, i.e. larger h, to obtain better looking results 
than those depicted in Figure 20. Unfortunately, several factors 
need to be simultaneously weighed before decreasing k indiscriminately. 
As described in §8, smaller time steps mean more vortices, hence 
longer running times. Furthermore, the normal boundary component 
is canceled by the construction of a flow wh'ch is irrotational 
near Do. This flow is currently constructed by finite differences 
since no sharp gradients are expected to occur in it in areas bordering 
on 30. By experimenting with smaller time steps, I have observed 
a "rougher" looking velocity field near the boundary, which I 
attribute to the fact that the proximity of the new vortices to 
30 caused by the smaller k's give less smooth normal boundary conditions 
which need to be cancelled by the irrotational flow. This, in turn, 
causes worse satisfaction of the normal condition. Thus, in trying 
to better satisfy the tangential condition one may worsen the normal 
one. 

A less obvious consideration was proposed by Chorin [8], The 
convective component 1n the vortex scheme is 0(k), while the 
diffusive component depends on the standard deviation of the 

1 /2 random walk and is thus 0(k ' ). Hence, as k is decreased, the 
diffusive component may dominate, or at least exert a greater influence, 
over the convective component making the flow look more random. 
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Furthermore, less convection Implies lower R, hence, care must be 
exercised that one 1s not solving a problem of the wrong viscosity. 

On the other hand, increasing o, hence h, means the boundary 
layer Is subdivided Into fewer blobs and 1s, therefore, a worse 
approximation. The entire intention is defeated, the tangential 
condition may be better satisfied, but only at fewer points along 
the boundary. 

It should be asked whether it is fair to demand fine detail 
from the vortex scheme near 3D. Fine detail 1s unavailable to finite 
difference methods, anyway, unless one uses prohibitively small 
mesh sizes, or as proposed by Dorodnlcyn [11] dlscretizes different 
approximations (boundary layer, ideal-fluid, etc.) In their correspond
ing areas. The method described here can be made more accurate 
by simultaneously decreasing k and d at the expense of greater 
demands of storage and computer time. The improvement in the satis
faction of the normal boundary condition can be easily judged by 
looking at tables such as Figure 20. Although that flow represents 
the flow outside the numerical boundary layer, it should be parallel 
to 3D. However, Improvements 1n the satisfaction of the tangential 
boundary condition may be harder to judge and remains an open problem 

The domain Interaction Imposes no profound considerations or 
restrictions. As presented here, no restriction arises from the flow 
of £-| Into P_ a n d o n l y t w o criteria should be adhered to In regards 
to flow of Co 'Into #i- First, the method assumes that vortlcity 
cannot be convected in a normal direction much beyond one mesh size 
in a time duration of fc/2. Secondly, the standard deviation of the 
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random walk should not be so Urge as to allow too much vorttdty 
to diffuse beyond one mesh size In a time k/2. Therefore, It Is 
not permissible to decrease d without simultaneously decreasing k. 

It 1s not my Intention, however, to paint too gruesome a 
picture, as none of the above ambiguities or restrictions caused 
convergence difficulties. The numerical program gave convincing 
results for all choices of parameters discussed. Initially, I 
expected to make $ no smaller than 0(R~ ' ), but the results presented 
here were done when the edge of the "expanding" mesh was a distance 
0(R ) away from BD. This turned out to be 4 • 4d when d « 1/64, 
and 6 * 3d when d = 1/32. The results obtained give further credence 
to the usefulness of the vortex scheme to deal with the creation 
of the correct vortlclty In problems at large R. 

The hybrid method presented here was tested on a specific 
problem with a convenient geometry. The computer program exploited 
the particular geometry by using fast numerical techniques ready-
made for these domains. However, the basic idea should be applicable 
1n a wide class of flows. Basically one should try to subdivide 
the domain of Interest Into two subdomalns, one bounded near the 
boundaries, and one away from the boundaries, possibly unbounded, 
depending on the problem. In the domain near the boundary the 
equations of motion are solved by the vortex method. In tire 
other domain a suitable finite-difference method, or another method 
of a non-random type, can be chosen, with some care taken If this 
domain 1s unbounded. 
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11. Figures 
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Fig. 1. Domain of interest and boundary conditions. 
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F1g. IS. Velocity plot, k»J.2. d-1/32. Velocity field after 

averaging over time steps 101-120. 
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0.6 '• 

odenotes time steps 22 - 160 
X denotes time steps 164 • 216 
I denotes time steps 220 - 260 

Fig. 16. Trace of path that center of primary vortex travels, 
k«0.1, d'1/64, h-1/30. 

85 



d h fc 
number of 
vortices 

time/iteration 
(seconds) 

1/32 1/20 0.05 1890* 29.5* 

1/32 1/20 0.08 1620 24 

1/32 1/20 0.1 1220 15 

1/32 1/20 0.2 750 7 

1/6* 1/30 0.1 1550 25 

d * Interior mesh width 

h • boundary discretization length 

k • time Interval 

number of vortices • approximate stable nuntoer of vortices In ^ 

tine/Iteration • "Tinning time necessary to complete 1 time step 

Fig. 17. Comparison table for runs with different time steps and 

different mash widths. 

* Program was stopped for this run as only 2000 locations were 

allocated for the vortices. However, the number of vortices 

was stabilizing and should not have Increased much beyond 2000. 
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-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 
Horizontal velocity component 

Fig. 18. Velocity profile of u-component along a vertical line 
through the vortex center. 
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.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Horizontal distance from lef t vail 

Fig. 19. Velocity profile of v-component along a horizontal line 

through the vortex center. 
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Fig. 20. 

( on following page ) 

Velocities induced on the boundary by the f ie ld plotted 1n Fig. 11. 

Read table by circumscribing the domain D in the positive s. direction. 

Side 1 is the wall y«0, side 2 is x»l , side 3 is y » l , side 4 is x*0. 

Index k in the lef t hard column is an increasing index along the boundary. 

Along side 1 , k=l denotes the point (x,y) - (0 ,0) . Along side 2, k«l cie* 

notes the point (x,y) • (1 ,0) . 
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K SIDE 1 
U V 

1 0. 0 
2 0.410326 -C .023214 
3 0.452289 -0 .001452 
4 0.570850 -0 .032727 
5 0.5B703 -0 .002114 
S 0.624472 -0 .016317 
7 0.61761 -0 .006944 
B 0.677272 -0 .003766 
9 0.670239 -0 .002959 
10 0.7974C8 -0 .013922 
11 0.770240 0 .010163 
12 0.775676 0 .001975 
13 0.833026 -0 .004533 
14 0.800356 0 .007673 
15 C.8795J7 0 . 006544 
16 0.847721 0 .013315 
17 0.825109 0 .005127 
16 0.875455 -0 .006141 
19 0.866425 0 .008450 
20 0.879536 0. .0101 00 
21 0.906121 -0. .005907 
22 0.87524 3 -0. .003487 
23 0.826133 -0. .002170 
24 0.841555 0 .003915 
25 0.844571 -0 .002369 
26 0.789553 -0 .002810 
27 0.783479 -0 .016098 
28 0.782163 0 .010558 
29 0.701674 0 0009IB 
30 0.771225 -0 .012461 
31 0.579B72 -0 .010789 
32 0.3B0096 -0 .000812 

AVERAGE VELOCITIES 
SIDE I 

UAV VAV 
0.712250 -0.002863 

0. 0. 
0.012996 0.255764 

-0.001777 0.263143 
-0.008771 0.248103 
-0.000624 0.256864 
0.003157 0.180125 
-0.017628 0.273952 
-0.000714 0.206638 
0.004334 0.290742 

-0.001893 0.162723 
0.012349 0. 193444 
0.007162 0.213963 
0.008039 0.124285 
0.004482 0.174508 
0.005375 0.138339 
0.005572 0.09B977 
0.002142 O.QEBI50 

-0.003537 0.027883 
-0.000111 0.041181 
0.003099 0.025099 

-0.000640 -0.002596 
-0.000649 -0.006989 
-0.012568 -0.021071 
-0.000207 -0. 1- J045 
-0.004116 -0.0. 0561 
-0.001634 -0.025524 
0.000401 -0.017786 

-0.002049 -0.017712 
-0.000357 -0.013682 
-0.000312 -0.020615 
0.000165 -0.013582 

-0.000133 -0.007157 

SIDE 2 
UAV VAV 
0.000455 0.096674 

0 0 
0 .003473 0 .000077 
0 .013442 0 .001047 
0 .023087 -0 .000949 
0 .030004 0 .000697 
0 .030827 0 .002781 
0 .019278 0 .001560 
0 .008960 0 .001302 
0 .000995 0 .002198 
•0 .011309 0 .001702 
•0 .026873 -0 .000621 
•0 .058198 0 .00383B 
•0 .064574 0 .001836 
•0 .088022 -0 .004726 
-0 .085062 0 .003717 
•0 .094271 -0 .000957 
0 .100764 -0 .006594 
0 .099561 0 .002931 
•0 .066352 0 . 002803 
•0 .063949 0 . 006486 
•a .055177 -0 .003247 
•a .048203 0 .001669 
•a .015680 -0 .002204 
•a .005666 -0 .000080 
0 .004554 0 .001037 
0 .011529 0 .001698 
0 .006426 0 .001297 
0 .004847 0 .000821 
0 .004850 -0 .001130 
0 .003820 -0 .000032 
0. .0011B4 -0 .000217 
0 .000010 -0 .000038 

SIDE 3 
UAV VAV 
-0.022387 0.000585 

SIDE 4 
U V 

0. 0 
•0. .000561 0. .000147 
0. .0001 15 -0. .001078 
0 .000102 -0. 009764 
•0. .001172 -0 .0I65IB 
0 .001228 -0 .028831 
0. .001807 -0 039193 
•0. .002453 -0 051448 
•0. .000056 -0. .071450 
•0. .003271 -0. 080880 
•a .002921 -0 .092462 
•0 .007456 -0 .107574 
•0 .0081B3 -0 .092839 
0 .002548 -0. .123989 
0 .002048 -0 .14B417 
•0 .007489 -0 .138374 
•0 .010473 -0 . 144213 
•0 .003480 -0 .131963 
0 .00721! -0 .115917 
0. .009557 -0 .084148 
0. .003282 -0 .112i59 
0. .001349 -0 113547 
0. 000918 -0 .091038 
•0 .001626 -0 .082341 
0 .001660 -0 .062350 
0 .002494 -0 .036821 
•0. .000433 -0 . 041 018 
0 .001908 -0 . 021927 
0. .002B4 3 -0 .014139 
0. .000315 -0 .043613 
G .005627 -0 .039842 
0. 007510 -0 .084925 

SIDE 4 
UAV VAV 
-0.000695 -0.069456 
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I Experimental results (Pan and Acnvos [1]) 
+ Numerical results (Burgraff [5]) 
© Numerical results (Bozeman and Dal ton [3]) 
x Numerical results (this study) 

Fig. 21. Variation in size of upstream corner vortex vs. Reynolds 
number. 
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N-. R = 400 ( Burgraff [5] ) 
\ R = 1000 ( Bozeman and Dalton [3] ) 
\ \ R • 1000 ( this study ) 
\ R -• » ( Burgraff [5] ) 

Fig. 22. Comparison of velocity profiles of u-component along a 
vertical line through the vortex center. 
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Fig. 23. Effect of Reynolds number on the location of the center 
of the primary vortex-
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