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Numerical solution of the Navier–Stokes
equations for the flow in a cylinder cascade
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(Received 5 March 2003 and in revised form 12 July 2004)

A numerical study of the steady, two-dimensional incompressible flow past a cascade
of circular cylinders is presented. The Navier–Stokes equations are written in terms
of the streamfunction and vorticity and solved using a novel numerical technique
based on using the Chebychev collocation method in one direction and high-order
finite differences in the other direction. A direct solver combined with Newton–
Raphson linearization is used to solve the discrete equations. Steady flow solutions
have been obtained for large Reynolds numbers, far higher than those obtained
previously, and for varying gap widths between the cylinders. Three distinct types
of solutions, dependent on the gap width, have been found. Comparisons with
theoretical predictions for various flow quantities show good agreement, especially
for the narrow gap width case. However, existing theories are unable to explain the
solution properties which exist for intermediate gap widths.

1. Introduction

The solution of the Navier–Stokes equations for large Reynolds number is an area
of considerable interest to theoreticians as well as numerical analysts. Notwithstanding
the numerous techniques and algorithms which have been developed, obtaining an
accurate solution of the equations for large Reynolds number poses considerable
difficulty because of the various scales and thin regions which need to be resolved.
One classical problem which exhibits such difficulties is the computation of the steady
incompressible fluid flow past a circular cylinder. For the theoretician the challenge is
to obtain a description of the flow structure in the limit of the Reynolds number be-
coming large using asymptotic methods to obtain insight into high Reynolds number
flow past a general bluff body. For the numerical analyst the resolution of the import-
ant features of the flow provides one of the challenges in tacking the full problem.

In spite of the many numerical methods and calculations on flow past a circular
cylinder, accurate results have been reported only for Reynolds number (R = Ud/v,
where U is the uniform speed relative to the cylinder at large distance, d the diameter
of the cylinder and v the kinematic viscosity of the fluid) up to about 800, see
Fornberg (1991).

One important aspect of the steady flow problem is the correct description of the
flow features for large Reynolds numbers. This is an area which has aroused con-
siderable controversy. We note that the real flow past a cylinder becomes unsteady and
turbulent at fairly low Reynolds numbers and therefore the motivation of computing
the steady flow requires further explanation. It can be argued that an accurate
solution of the steady flow is needed before the departure from the steady state can
be described, and this is one of the reasons for computing the steady flow. Another
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reason is that the bulk of the asymptotic theory for this and related problems is based
on a steady flow description. Finally the techniques which have been developed here
may be applied to investigate other flows where the steady flow is of primary interest.

Concerning the theory of steady flow past a circular cylinder, it is now generally
accepted that as the Reynolds number is increased, the fluid flow separates from the
surface of the cylinder and an eddy forms behind the cylinder. One of the principal
focuses of attention of many of the theoretical studies was to try to obtain the
description of the separation as well as the eddy structure in the limit of the Reynolds
number being asymptotically large. An excellent review of much of this work has been
given by Chernyshenko (1998). The review describes the complicated flow structure
which arises in the steady flow past bluff bodies and in particular the flow past a
circular cylinder at large Reynolds numbers. It is worth highlighting the different flow
feature on the body scale as well as on the eddy scale which need to be taken into
account when doing numerical computations. First, on the body scale the adverse
pressure gradient on the forward part of the body leads to boundary layer separation.
In fact locally near the point of separation the pressure gradient becomes singular like
O(R−1/32(s0 − s)−1/2) where s is the distance along the body surface and s0 the point
of separation. This behaviour ensures that the boundary layer separates smoothly
from the body, see Smith (1979). The inviscid flow locally near the separation point
is described by the Kirchhoff (1869) free-streamline theory. Next, on the eddy scale,
the dominant feature is the presence of a large eddy comprising a pair of closed
streamline regions of constant vorticity. On the eddy scale the cylinder appears as a
point. It is the description of the eddy features which has raised most controversy.

Batchelor (1956), was one of the first to try to describe the eddy features. He
suggested that the eddy dimensions remain O(1) in the limit that R → ∞. Acrivos
et al. (1965) made another suggestion that the eddy length grows linearly with the
Reynolds number whilst the eddy width remains O(1). This was motivated by their
experimental results but some of the experiments were conducted with a splitter
plate behind the cylinder. Both of these suggestions have been found to lead to
inconsistencies in the more detailed theoretical investigations of the flow.

Smith (1979) and Sychev (1967, 1982) studied the incompressible flow past a bluff
body from the theoretical perspective. They developed an asymptotic theory which
is based on an extension of Kirchhoff’s (1869) free-streamline theory. The paper by
Smith (1979) gives the most detailed theoretical description of the flow field, as well as
historical account of previous work on the problem. Smith (1979) suggested that the
eddy length grows linearly with the Reynolds number whilst the eddy width grows
like O(R1/2).

Fornberg, in a series of papers starting with Fornberg (1980), was one of the
first to obtain an accurate numerical solution to the problem of high Reynolds
number flow past an isolated cylinder. In Fornberg (1980) he managed to obtain
solutions for Reynolds number up to 300. The eddy dimensions were found to
increase linearly with Reynolds number, consistent with the Smith (1979) theory.
Following this Fornberg (1983) showed that for Reynolds number greater than 300
the eddy grew linearly in both dimensions as the Reynolds number increased. These
additional results contradicted the earlier suggestion that the eddy ceased to grow
after R > 300, see Fornberg (1985). In this latter work it was argued that extreme care
needs to be exercised in the implementation of the boundary conditions, the choice
of the numerical algorithm, grid independence studies and so on, and that much of
the earlier numerical work by others was suspect on these grounds. Fornberg (1985)
showed that the wake bubble has eddy length O(R), with width O(R1/2) up to about
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R = 300, and thereafter both the eddy length and eddy width increase linearly with
Reynolds number.

The paper by Taganov (1968) is one of the earliest in which a theory of the
eddy flow with eddy width and eddy length increasing with Reynolds numbers was
proposed. Later Sadovskii (1970) made calculations based on this theory and obtained
results for the one-parameter family of potential flow vortices, now called Sadovskii
vortices. Following Fornberg (1985), Peregrine (1985) and Smith (1985b) also put
forward a revised theory based on the Sadovskii model in which the eddy dimensions
grew linearly with Reynolds number. However, there were many aspects of the theory
which were left unsolved. Later Chernyshenko (1988), and Chernyshenko & Castro
(1996) solved a number of these outstanding technical problems and gave definite
predictions for the behaviours of some of the global properties such as drag, eddy
vorticity and so on, as a function of the Reynolds number.

Subsequently, the work on cylinder flows was also extended to other geometries such
as the flow past flat plates inclined normally to the oncoming stream. Fornberg (1991)
extended his calculation to obtain an accurate solution to the steady Navier–Stokes
equations for flow past a cascade of circular cylinders. His numerical work showed
that for large gap widths between the cylinders, the eddy behind each cylinder was
growing in size with increasing Reynolds numbers, in line with theoretical predictions
by Chernyshenko & Castro (1996). On the other hand a major change in the solution
properties occurs for small and moderate gap widths. For very small gap widths the
eddy is long and slender with the width remaining constant with increasing Reynolds
numbers. The solution features here are similar to that postulated by Acrivos et al.
(1965). Our numerical calculations show that for moderate gap widths, the eddy is
long and slender but there is a dramatic change in properties near reattachment where
the features for a large gap width seem to emerge.

A study of the full Navier–Stokes equations in the related flat-plate cascade
geometry in Ingham, Tang & Morton (1990), Natarajan, Fornberg & Acrivos (1993)
again confirmed the existence of a qualitatively new regime of flow solution for gap
widths above a certain critical value. For large gap widths the solution properties are
qualitatively similar to that obtained in Fornberg (1991) for a row of cylinders. They
suggested that the flow behaviour might be generic for any symmetric bluff body and
also suggested a fundamental difference between the case where the vorticity
distribution in the initial separating flow is determined in the attached boundary layer
at the front of the bluff body, and the case studied by Milos & Acrivos (1987) where
the vorticity distribution is specified as part of the boundary condition for the inlet
flow to the cascade. Recently Castro (2002) has extended earlier work for the flow
past a cascade of flat plates to stratified fluids.

The flow we consider here is that past a cascade of circular cylinders placed in a
uniform stream. In addition to the Reynolds number, this introduces an additional
parameter, namely the gap width W between the cylinders. The asymptotic theory
for this so-called cascade flow is less well developed than that for the isolated body
case. Nevertheless some results are available in the limit R → ∞ with W = O(R).
The structure is similar to that for the isolated cylinder case and is described by
Chernyshenko & Castro (1993). For W = O(1) a numerical treatment is necessary.
Some results have also been predicted for the case W/R → 0, W ≫ 1, R ≫ 1.

One of the objectives of the current work is to present a somewhat unconventional
but robust technique for the solution of the steady Navier–Stokes equations and other
similar equations. The numerical algorithm used involves high-order finite differences
in one direction combined with spectral collocation in the other direction. Another
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Figure 1. Sketch of flow past a cascade of circular cylinders.

objective of this work is to present some new results obtained using the technique for
the flow past a cascade of circular cylinders at large Reynolds numbers.

In § § 2–5 we discuss the formulation of the problem and the numerical techniques
used. The results obtained using the method are discussed in § 6 and finally we finish
with some conclusions.

2. Problem formulation

The cascade is assumed to consist of an infinite number of circular cylinders of
non-dimensional radius unity, placed in a uniform stream with the centres of the
cylinders a non-dimensional width W apart, see figure 1. At large distances from the
cascade the fluid is assumed to be moving with constant speed U in the positive
x-direction and because of the symmetry in the y-direction we need consider only
two-dimensional flow in the region 0 � y � W/2 .

Consider the Navier–Stokes equations in vorticity (ω)–streamfunction (ψ) for-
mulation for a cylinder of non-dimensional radius 1 and Reynolds number R (based
on the cylinder diameter), written as

ψyωx − ψxωy =
2

R
∇2ω, (2.1)

∇2ψ + ω = 0. (2.2)

Here R = Ud/v, where U is the uniform speed relative to the cylinder at large distances
from the cylinder, d the diameter of the cylinder and v the kinematic viscosity of the
fluid.

Because of symmetry we can restrict attention to the flow region shown in figure 2.
The equations have to be solved subject to boundary conditions of no slip on the
body surface. In addition, on the two primary symmetry lines y = 0 and y =W/2, the
conditions are ψ = ω = 0 on y = 0, |x| > 1 and ψ = W/2, ω = 0 on y = W/2. Finally,
ψ → y and ω = 0 holds as x → ±∞.
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Figure 2. Sketch of the physical domain.

The equations together with the boundary conditions have to be solved to obtain
the streamfunction ψ and vorticity ω for various values of the Reynolds number R

and the additional parameter W .
The equations are solved first by transforming the physical domain in the (x, y)-

plane to a strip in the (ξ, η)-domain. A conformal mapping is used similar to that
described by Fornberg (1991).

A mixed finite-difference spectral method is used to solve the equations, with
fourth-order-finite differences in the ξ -direction and Chebychev collocation in the
η-direction. This is very different from the second-order finite difference method used
by Fornberg (1991).

3. Mapping transformation

A conformal mapping is used to transform the basic computational domain to a
rectangular region where the mesh generation is greatly simplified. After such map-
ping from a complex (X = x + iy) plane to a (Z = ξ + iη) plane an additional factor J

is introduced in one of the governing equations, which become

∂2ω

∂ξ 2
+

∂2ω

∂η2
+

1

2
R

{

∂ψ

∂ξ

∂ω

∂η
−

∂ψ

∂η

∂ω

∂ξ

}

= 0, (3.1)

{

∂2ψ

∂ξ 2
+

∂2ψ

∂η2

}

J + ω =0, (3.2)

where J = |dZ/dX| is the Jacobian of the transformation.
The mapping we use takes the original computational domain ABCDEF in the

X-plane, see figure 2, to a strip A′B ′C ′D′E′F ′ in the Z-plane as indicated in figure 3.
The transformation is the same as in Fornberg (1991) with T = (π/W ) coth(πZ/W ),
and given by letting

X =
V

W

{

Z +

∞
∑

k=1

αkT
2k−1

}

. (3.3)

Here V and {αi} are real constants and chosen such that X = eiθ maps to η = 0 and
−2 � ξ � 2 for 0 � θ � π. Also y = W/2 is mapped to η =V/2. The value of V can
be obtained by putting X =1 and setting Z = 2. The coefficients αk can be calculated
as in Fornberg (1991). Table 1 gives values for W , V and {αi} that we calculated by
using the symbolic package Mathematica.
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Figure 3. Sketch of the transformed domain.

W 5 10 20

V 4.356406392635564 9.67308621426570 19.8357743123441
α1 1.1531763706116489 1.0340400782648907 1.0082932136650135
α2 −0.0040942260731489 −0.0002241793310169 −0.000013642557745
α3 0.0001559958018689 2.108785214 × 10−6 3.206019 × 10−8

α4 −6.23943862 × 10−6 −2.08276999 × 10−8 −7.91088 × 10−11

α5 2.5171939 × 10−7 2.0778269 × 10−10 1.972 × 10−13

α6 −9.5370049 × 10−9 −2.0689 × 10−12 −4.9 × 10−16

W 50 100 1000
V 49.93421992520 99.967103482 999.9967
α1 1.0013176826219767 1.0003290951026844 1.0000032898789570
α2 −3.4680066 × 10−7 −2.165360 × 10−8 −2 × 10−12

α3 1.30 × 10−10 0. × 10−12 −0 × 10−8

α4 −5.15 × 10−14 −2.0 × 10−16 −2.0 × 10−24

α5 2. × 10−17 2. × 10−20 2 × 10−30

α6 −8. × 10−21 −2. × 10−24 −2 × 10−36

Table 1. The values of α for W = 5, 10, 20, 50, 100 and 1000.

The mapping described above takes a region in the X-plane and transforms it to a
strip in the Z-plane, see figures 2 and 3 subject to the following boundary conditions:

On the line E′F ′ (ξ < −2, η = 0) ψ =0, ω = 0.

On A′B ′ : (ξ > 2, η = 0) ψ =0, ω = 0.

On F ′A′ : (|ξ |� 2, η = 0) ψ =0, ψη =0.

On E′D′ : (ξ = −∞) ψ = η, ω =0, ψξ = 0.
On B ′C ′ : (ξ = ∞) ψ = η, ω =0, ψξ = 0.
On D′C ′ : (η = V/2) ψ =W/2, ω = 0.

Since the resolution requirements are different in different parts of this region,
we consider a further transformation in the ξ -direction such that ξ = g(τ ) is used
where g(τ ) is a combination of cubic and quintic splines (see figure 4). We use an
equi-spaced grid in the τ -plane. The mapping between the Z-plane and this plane
consists of independent grid stretching described as follows. For τ < −2

g(τ ) = a0 + a1(τ + 2) + a2(τ + 2)2 + a3(τ + 2)3 (3.4)
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Figure 4. Sketch of the transformed domain.
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Figure 5. Grid lines in the X-plane.

and the ai are calculated subject to the conditions g(−2) = −2, gτ (−2) = 0.3,

gττ (−2) = 0 and ξ (−3) = −3.
For τ > 2, we let

g(τ ) = b0 + b1(τ − 2) + b2(τ − 2)2 + b3(τ − 2)3 (3.5)

and the conditions used here to find bi are g(2) = 2, gτ (2) = 0.3, gττ (2) = 0 and
g(21) = 300.

When −2 <τ < 2

g(τ ) = c0 + c1τ + c2τ
2 + c3τ

3 + c4τ
4 + c5τ

5 (3.6)

and the ci are calculated such g(−2) = −2, gτ (−2) = 0.3, gττ (−2) = 0, g(2) = 2, gτ (2) =
0.3 and gττ (2) = 0.

In the η-direction the grid is non-uniform and the η points are located at the
Chebychev collocation points, see below. Figures 5 and 6 shows the grid lines before
and after the mapping for a sample coarse grid. One of the disadvantages of using
the standard Chebychev collocation points on the reduced domain ABCDEF is that
there is a natural clustering of points near the boundary CD. For the large-gap-width
case, this is wasteful of points in regions where they are not needed; a possibly better
approach is to use different points in addition to making use of the symmetry as
described, for example, in Fornberg (1998 § 5.1).
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Figure 6. Grid lines in the Z-plane.

4. Numerical method

If ξ = ξ (τ ), by using a uniform grid in τ we have to find |dZ/dX|2 numerically at
each grid point Xjk = xj + iyk . The equations (3.1) and (3.2) transform to

ω + J (A(τ )ψτ + B(τ )ψττ + ψηη) = 0, (4.1)

where J is the Jacobian of the conformal mapping, and

A(τ )ωτ + B(τ )ωττ + ωηη + E(τ )
R

2
(ψτωη − ψηωτ ) = 0, (4.2)

where A(τ ) = ∂2τ/∂ξ 2, B(τ ) = (∂τ/∂ξ )2 and E(τ ) = ∂τ/∂ξ .
In the τ -direction the domain is truncated to τmin � τ � τmax. A uniform grid in τ

is taken with

τi = τmin + (i − 1)h, i = 1, . . . m, (4.3)

and

h =
τmax − τmin

m − 1
. (4.4)

We used fourth-order finite difference in the τ -direction and Chebychev collocation in
the η-direction. Thus first and second derivatives in τ are discretized via the difference
formulae

(ψτ )p,j =
1

12h
(ψp−2,j − 8ψp−1,j + 8ψp+1,j − ψp+2,j ), (4.5)

(ψττ )p,j =
1

12h2
(−ψp−2,j + 16ψp−1,j − 30ψp,j + 16ψp+1,j − ψp+2,j ), (4.6)

where (ψ)pj refer to values of the streamfunction at the points τp and zj . Here zj

are the collocation points cos(jπ/n), j = 0, . . . , n. The domain 0 � η � V/2 is linearly
mapped to −1 � z � 1 and η = ηj = (V/4)(zj + 1), j =0, . . . , n. Then the first derivative
in η is given by -

(

∂ψ

∂η

)

p,j

=

n
∑

k=0

Dj,kψp,k,
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where Dj,k are the elements of the Chebychev collocation differentiation matrix D,
see Caunto, Hussaini & Zang (1987). Similar expressions can be written for the
second-derivative terms.

The discretization leads to a set of nonlinear difference equations. Newton–Raphson
linearization was used to solve this nonlinear system with ωij = Ωij + ωij , ψij =

Ψij + ψ ij such that |Ωij |, |Ψij |≪ 1 and working with the correction terms Ψ and
Ω and where the overbar denotes some initial guess. The linearization together with
the discretization leads to a linear system of the form

A
(p)

Φp−2 + B
(p)

Φp−1 + C
(p)

Φp + D
(p)

Φp+1 + E
(p)

Φp+2 = F
(p), 1 � p � m, (4.7)

where Φp = (Ψ p, Ωp)T is the vector of unknown streamfunction and vorticity cor-
rections at each station τ = τp, and

Ψ p =













Ψp0

...

Ψpm













, Ωp =













Ωp0

...

Ωpm













with Ψpj , denoting the value of the streamfunction at the points τ = τp, η = ηj . Each
of the coefficient matrices in (4.7) is a dense matrix arising from the system (2.1)
enforced at the collocation points. The matrices A

(p), B(p), C(p), D(p), E(p) are dense
matrices of size 2(N + 1) by 2(N + 1). The use of fourth-order differences in τ gives
rise to the block pentadiagonal structure in (4.7). The linear system was solved for
all the vectors Φp , 1 � p � m, by using a direct solver, exploiting the sparsity pattern
of the block pentadiagonal matrix. The number of unknowns is 2(N + 1)m. Typical
values of N and m used in the fine grids are N = 80, m =800.

5. Alternative boundary conditions

One of the difficulties in using a spectral collocation method with the vorticity
streamfunction formulation of the Navier–Stokes equations is in the implementation
of the no-slip boundary conditions on the body. In the usual finite-difference
approximation to these equations some derived local conditions are used for the
vorticity on the body surface. In the spectral collocation approach this is inadequate
and leads to a degenerate system of equations, see Ehrenstein & Peyret (1989). A
different technique has to be adopted and here we use an approach pioneered by
Davies & Carpenter (1997) in which some integral constraints are used instead. These
integral relations can be derived from Navier–Stokes equations by integration.

At inflow we use the prescribed inflow condition, whereas at outflow we use the
conditions

∂2ψ

∂τ 2
= 0,

and

J
∂2ψ

∂η2
+ ω = 0,

with ∂ψ/∂τ =0 to eliminate the points outside the domain. On η =0, V/2 the
conditions on Ψ and ω are used.

The no-slip conditions on the cylinder surface cause most difficulty since the condi-
tions ψ = 0 and ∂ψ/∂η =0 cannot be imposed directly as this leads to a degenerate
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system of equations. The difficulty stems from lack of proper conditions for ω on the
cylinder surface.

Using the definition of ω in terms of Ψ

J
∂2ψ

∂η2
+ ω =0,

on η = 0 is not enough as this on its own does not guarantee that ψη =0 on η = 0
is satisfied. The boundary conditions ψ =0, ψη =0 imply certain certain integral
constraints on the vorticity which need to be satisfied.

In place of the no-slip condition on the tangential velocity component, we instead
use the following integral constraint. From

{

∂2ψ

∂ξ 2
+

∂2ψ

∂η2

}

J + ω = 0,

we obtain
∫ V/2

η = 0

(

∂2ψ

∂ξ 2
+

ω

J

)

dη +

[

∂ψ

∂η

]V/2

η = 0

= 0. (5.1)

This was used together with ψ = 0 in place of the no-slip condition at η = 0. A test
on the accuracy of the method is how well the no-slip condition is satisfied on η = 0.

It was found that this was satisfied to the same tolerance as the rest of the discrete
equations. For additional points concerning the numerical method see Azzam (2003).

6. Results and discussion

Results for the flow past a cascade of circular cylinder were obtained for various
values of Reynolds numbers and various gap widths. Extensive checks were made
to validate the code and to check for grid independence and sensitivity to domain
truncation both upstream and downstream. Typically calculations were carried out
with 81 Chebychev nodes and between 600 and 800 points in the ξ -direction. It
was found that the calculations were most sensitive to the location of the upstream
boundary for large gap widths. For most of the calculations τmin = −7 (with a
corresponding xmin value between −100 and −90) was used and decreasing τmin did
not cause any significant change in the results. The value of τmax was set to a large
enough value to ensure that the eddy was contained in the computational domain.
Setting τmax to be smaller than the eddy length resulted in only part of the eddy being
computed. The boundary conditions used at the downstream end allowed the eddy
to pass smoothly out of the domain.

In the η-direction the standard collocation points ηj = cos(jπ/M) were used. Except
for a few points in R-space, and in particular for large W , the convergence pattern was
quadratic and the solution was obtained in a few Newton iterations. The solution at
a previous value of the Reynolds number was used as a starting value in most of the
computations. Difficulty in convergence was experienced for W = 100, near R =400
where continuation to the next value in R-space required very small increments in R.
The reason for the difficulties in convergence at some of these points in parameter
space may be attributed to a change in solution properties near critical values, as can
be seen for example in the change in the sensitivity to grid size changes near these
values.
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W\R 100 200 400 600 800

5 F 10.0 18.6 35.5 52.3 69.1
5 P 10.0 18.6 35.5 52.2 68.9

20 F 11.9 22.0 41.5 60.6 79.3
20 P 11.9 22.0 41.7 61.1 80.2

100 F 13.2 26.1 56.1 84.5 105
100 P 13.3 26.2 56.6 88.6 114

Table 2. Comparison of the length of recirculation region between the present results (P) and
Fornberg’s (1991)(F).

6.1. Grid dependence studies

Extensive grid dependence tests were made to check that the results obtained on the
finest grids were grid independent. The behaviour of various flow properties such as
the length of the eddy, its width, maximum vorticity on the body surface and drag
coefficients, was compared for a varying number of point in the τ -direction and a
varying number of Chebychev collocation points. Figures showing the results of these
comparisons and other grid-dependence studies are available as a supplement to the
online version of this paper or from the authors or JFM Editorial office, Cambridge.
They show that the W = 5 results are fully resolved up to R = 4000. Results for the
W = 20 case show that they are fully resolved on the finest grids used for these gap
widths. For a gap width of W = 5 even a coarse grid with as few as 32 Chebychev
points in the vertical direction is enough to obtain reasonable results.

The same is not true however for increasing gap widths. The length of the eddy
appears to be the most sensitive quantity to compute accurately. For W =50, the
length of the eddy is sensitive to the number of points used, and the accuracy
also depends on the Reynolds number. At least 64 points and at least h = 1/20 are
necessary for low Reynolds numbers for this case. For higher Reynolds numbers
(R > 800) the number of Chebychev points required to resolve the flow features
increases. At the larger Reynolds numbers, the results for eddy length on the finest
grid (N = 100, h = 1/30) suggest converged values especially for the eddy width, and
drag.

The W = 100 gap width case is even harder to compute accurately for the high
Reynolds numbers. The only computed quantity which is grid independent is the eddy
width. The length of the eddy can be accurately computed up to about R =700. At
a Reynolds number of 800 there is about 10% difference in the results between the
three finest grids used. At larger Reynolds numbers the differences are much larger.

One may conclude therefore that whereas for small gap widths the flow feature can
be resolved using fairly coarse grids, for larger gap widths, using a coarse mesh can
cause huge differences in the overall solution properties, particularly for the length of
the eddy. It was not possible to compute with even finer meshes because of computer
resource limitations.

6.2. Comparison with Fornberg (1991)

A comparison of our results with those of Fornberg (1991) is given in tables 2–5
for the eddy length and width for selected values of W and R. It is seen that our
results agree well with those of Fornberg (1991) for the small gap widths. For the
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W\R 100 200 400 600 800

5 F 1.97 2.09 2.17 2.20 2.22
5 P 1.70 2.093 2.167 2.1997 2.217

20 F 2.71 3.37 3.98 4.26 4.75
20 P 2.69 3.35 3.96 4.24 4.75

100 F 2.88 3.98 9.02 24.1 35.1
100 P 2.864 3.993 9.390 25.93 37.32

Table 3. Comparison of the width of recirculation region between the present results (P) and
Fornberg’s (1991)(F).

W\R 100 200 400 600 800

5 F 17.8 25.1 35.4 43.4 50.0
5 P 17.87 25.18 35.67 43.78 50.64

20 F 10.3 14.5 20.6 25.3 29.3
20 P 10.28 14.54 20.76 25.62 29.72

100 F 9.2 12.6 16.7 17.6 18.6
100 P 9.157 12.56 16.64 17.31 18.54

Table 4. Comparison of the maximum vorticity on body surface the between present results
(P) and Fornberg’s (1991) (F).

W\R 100 200 400 600 800

5 F 2.974 2.543 2.278 2.47 2.10
5 P 2.988 2.563 2.313 2.218 2.168

20 F 1.248 1.028 0.906 0.86 0.831
20 P 1.256 1.039 0.9229 0.883 0.8618

100 F 1.072 0.847 0.672 0.50 0.424
100 P 1.08 0.8485 0.6581 0.4897 0.4245

Table 5. Comparison of the drag coefficient between the present results (P) and Fornberg’s
(1991) (F).

larger gap widths, in particular W = 100, the agreement is good up to R = 400, but
for Reynolds beyond this value, there are some differences, particularly in the length
of the eddy. For W = 100 and R =800 the difference between the two results is about
10%. The difference in the width of the eddy at the same value of the Reynolds
number is smaller. There may be several reasons for the discrepancies. In Fornberg
(1991) the large-W results were obtained with a modified version of the code. In our
case the same code has been used for all gap widths. In addition in Fornberg (1991)
the results were computed with a second-order method in both directions whereas
the method used here is of fourth order in one direction and spectral in the other
direction. Thus overall our method has greater accuracy. On the other hand the grid
dependence studies do not indicate converged values for the eddy length at R = 800.

6.3. Streamline and vorticity plots for different gap widths

Our numerical results indicate that at least three distinct types of solution exist,
depending on the gap width. The first type (I) is shown in figures 7 and 8 where
the streamline and vorticity contours are plotted for W = 5 for various values of
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Figure 7. Streamfunction contours for W = 5.

the Reynolds number. The type I solutions show the presence of a long thin eddy
behind the cylinder with the eddy length increasing with Reynolds numbers. It is
noticeable in figure 8 that the vorticity in the eddy region is not constant. The eddy
length is plotted as a function of Reynolds number in figure 9 and the length is



64 J. S. B. Gajjar and N. A. Azzam

–50 0 50 100 150 200 250 300
0

1

2

3 –2

1
–0.5

0.5

–0.1

–0.1
0 1

–0.1

–0.1–0.1

R = 500

–50 0 50 100 150 200 250 300
0

1

2

3

2

–1
1

1

–0.5 –0.5

–0.5

–0.5–0.5

–0.1
010 10 1

–0.1–0.1
–0.1

0.1

1000

0

1

2

3

–2

2

1
1

–1

1

–0.5 –0.5
–0.5

–0.5

–0.5
–0.5–0.5

0.5

01010101

–0.1–0.1
–0.1

–0.1

1500

0

1

2

–3

–2

–2

–1 –1

1
1

–1

–0.5–0.50.5

–0.5

–0.5–0.5–0.5–0.5

0101010 1

–0.1–0.1
–0.1

–0.1

2000

0

1

2

–3–2
–2

–2

–1

1
–1

–1

–1
–1

1 –0.5–0.505–0.5

–0.5–0.5–0.5
0.5

0 0101

–0.1–0.1–0.1
–0.1

2500

1

0

1

2

32
–2

–2

2

–1

–1 –1 1

–1
–11

1

–0.50.505

–0.5

–0.50.5–0.5
0.5

0 101010 1

–0.1–0.1–0.1
–0.1

3000

0

1

2

–3

3

–2
–2

–22

–1
–1–1

–1

–1
–1

–1–1

–0.50 505–0.5

–0.5–0.5–0.5

0
.5

0 1010101

–0.1–0.1–0.1

0.1

3500

0

1

2

–3
3

–2 –2

–22

–1
1–1

–1

–1
–1–1

1

0.50.505–0.5

–0.5–0.5–0.5
0.5

010101

–0.1

–0.1–0.1–0.1

0.1

3850

–50 0 50 100 150 200 250 300

–50 0 50 100 150 200 250 300

–50 0 50 100 150 200 250 300

–50 0 50 100 150 200 250 300

–50 0 50 100 150 200 250 300

–50 0 50 100 150 200 250 300

Figure 8. Vorticity contours for W = 5. The contour levels plotted are
−3,−2,−1,−0.5,−0.1,1,2,3,4,6.

found to increase linearly with the Reynolds number. In figure 9 the eddy width is
plotted against R and this shows the width remaining constant with increasing R. The
values of the various flow quantities such as eddy length L, eddy width Wi, maximum
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R L Wi ωmax D

100 10.03 1.970 17.87 2.994
500 43.85 2.186 39.92 2.260

1000 85.64 2.228 56.69 2.137
1500 127.5 2.246 69.59 2.092
2000 169.4 2.257 80.48 2.068
2500 211.4 2.265 90.07 2.052
3000 253.4 2.271 98.74 2.041
3500 295.7 2.276 106.7 2.031

Table 6. The length of the eddy L, its width Wi, maximum vorticity on the surface of the
cylinder ωmax, and the drag coefficient D for W = 5.

vorticity on the cylinder ωm and drag D are tabulated in table 6 for some selected
Reynolds numbers.

The drag coefficient D can be evaluated as a line integral along the cylinder surfaces
corresponding to the relation (in polar coordinates):

D =
4

R

∫

π

0

(

∂ω

∂r
− ω

)

sin(θ) dθ. (6.1)
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Figure 10. Streamfunction contours for W = 20. The contour levels plotted are
9,7,5,4,3,2,1,0.5,0,−0.5,−1.

The solution features found here for small gap widths are not dissimilar to the
boundary layer type solutions for the wake discussed by Smith (1985a) and Milos &
Acrivos (1986).

As the gap width increases, the solution properties alter considerably from those
for narrow gaps, giving rise to a type II solution. This can be seen clearly in the
streamline and vorticity contours for W = 20 shown in figures 10 and figure 11. Behind
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Figure 11. Vorticity contours for W = 20. The contour levels plotted are
−3,−2,−1,−0.5,−0.1,1,2,3,4,6.

the cylinder there is a long thin eddy, but near reattachment, the eddy width increases
abruptly. The eddy structure for a type II solution is a combination of a long thin
eddy with a Sadovskii (1971) type of vortex near reattachment. The eddy length
and width as a function of Reynolds number were shown in figure 9. The length is
seen to increase linearly with increasing Reynolds number. The eddy width increases
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R L Wi ωmax D

100 11.92 2.692 10.28 1.260
500 51.43 4.083 23.30 0.9009

1000 98.97 5.231 33.35 0.8496
1500 145.4 6.257 41.06 0.8305
2000 191.6 6.978 47.55 0.8202
2500 238.0 7.455 53.26 0.8138

Table 7. The length and width of the eddy, maximum vorticity and drag coefficient for
W = 20.

R L Wi ωmax D

100 13.10 2.858 9.371 1.110
500 64.27 11.10 19.71 0.6982

1000 111.6 23.22 27.00 0.6106
1500 156.5 25.91 33.47 0.6023
2000 203.9 26.47 39.06 0.6026
2500 253.3 26.48 43.97 0.6037

Table 8. The length of the eddy, width, max. vorticity and the drag coefficient for W = 50
taken from the finest grid with N = 100, h = 1/30.

R L Wi ωmax D

100 13.28 2.865 9.157 1.079
500 73.74 17.75 17.06 0.5676
700 101.9 32.30 17.84 0.4498
900 126.7 41.37 19.36 0.4092

1200 163.3 49.48 22.10 0.3916
1400 188.5 52.64 24.00 0.3899

Table 9. The length of the eddy, width, max. vorticity and the drag coefficient for W = 100
taken from the finest grid with N = 111, h = 1/30.

with Reynolds number but levels out for large Reynolds numbers. Selected numerical
values are tabulated in table 7.

For large gap widths, the solution properties for the isolated cylinder case are
expected to emerge and this can be seen clearly in the results for W = 50 shown in
figures 12 and 13 and for W = 100 shown in figures 14 and 15. Selected numerical
values are tabulated in tables 8 and 9 respectively. This is another distinct type of
solution found which we label type III. Here the presence of a large Sadovskii vortex
behind the cylinder is seen with the dimensions increasing with Reynolds numbers.
The cylinder appears as a point on the scale of the eddy. The vorticity contours clearly
show the region of uniform vorticity inside the eddy. The trend for the eddy length
is increasing linearly as before, but the eddy width for fixed gaps cannot increase
indefinitely, and changes behaviour as the Reynolds numbers increases beyond a
critical value as seen in figure 9, see also table 9.

In figure 16 we show perspective plots of the vorticity and streamwise velocity for
the three different types of solutions at selected Reynolds numbers for gap widths
of W = 5, 20 and 50. For the larger gap widths these show clearly the flat region of
constant vorticity inside the eddy.
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Figure 12. Streamfunction contours for W =50. The contour levels plotted are
20,10,9,7,5,4,3,2,1,0.5,0,−0.5,−1,−1.5,−2,−2.5,−3,−3.5,−4,−4.5,−5,−5.5.
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Figure 13. Vorticity contours for W = 50. The contour levels plotted are
−3,−2,−1,−0.5,−0.2,−0.1,1,2,3,4,6.

6.4. Comparison with theoretical predictions

Theoretical results for the steady flow past an isolated (single) bluff body and a
cascade of bluff bodies are described in the review article by Chernyshenko (1998).
The theory for the isolated bluff body is more developed than that for a row of bluff
bodies, but nevertheless some predictions are available for the behaviour of certain
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Figure 14. Streamfunction contours for W = 100. The contour levels plotted are
50,40,30,20,10,5,1,0.5,0,−0.5,−1,−1.5,−2,−2.5,−3,−3.5,−4,−5,−6,−7.

global properties. The principal results, see Chernyshenko & Castro (1993), may be
described as follows. Let L be the length of the eddy and Wi be the eddy width.
We also let Re= R/2 be the Reynolds number based on radius. Then under certain
conditions, which are discussed more fully in Chernyshenko & Castro (1993), the
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following estimates hold:

ωdk
2
dRe= 2CD2

0(b), (6.2a)

L
/(

k2
dRe

)

= 1
/[

2D2
0(b)(αC)1/2

]

, (6.2b)

Wi
/(

k2
dRe

)

= W
/[

2LD2
0(b)(αC)1/2

]

. (6.2c)
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Figure 16. Perspective plots of the vorticity (left) and streamwise velocity (right) for
(a) R =3000,W = 5, (b) R = 2500,W = 20, and (c) R =1500,W = 50.

Here the right-hand sides of (6.2) contain various quantities such as C, D0(b), α
which are all functions of W/L and arise in the asymptotic theory. The values of
these functions are tabulated in Chernyshenko (1993). Also, ωd is the value of the
(constant) eddy vorticity inside the Sadovskii vortex, and kd is a constant stemming
from the condition of smooth separation past a bluff body. For an isolated circular
cylinder kd = 1/2 but the value kd = 0.45 has been used when making comparisons by
Chernyshenko & Castro (1993) on the grounds that there is a weak dependence of
kd on Re. There are additional assumptions regarding the validity of the theory as
described in detail by Chernyshenko & Castro (1993). For the case (W/L) → 0, W ≫ 1
the predictions reduce to

ωd →
9

W
, (6.3a)

cdRe → 91.3k2
dRe/W, (6.3b)

Wi/L → 2W
/(

2.538k2
dRe

)

. (6.3c)
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Comparison of the eddy length with the prediction (6.2a) and (6.3b) is shown in
figure 17. As in Chernyshenko & Castro (1993) the Reynolds number increasing is
shown by going from solid to open symbols, but no additional meaning is attached
to when the symbols change from solid to open. The agreement between the theory
and numerical results is particularly good for the narrow gap width case. For larger
gap widths, the present results show no sign of approaching the theoretical curve,
although the results of Fornberg (1991) are better in this respect. In figure 18 the
ratio of the eddy half-width to eddy length is compared with (6.2c) and (6.3c). Again
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Figure 19. cdRe as a function of W/k2
dRe. For symbols and line styles see the caption to
figure 17.

for (W/L) → 0 the agreement with the predicted asymptote is good. Similar results
for the eddy drag shown in figure 19 agree well with the predictions.

One important point to note is that the numerical results for the eddy vorticity
approach a constant value only for large gap widths. For W small, the contour plots of
the vorticity in figure 8 shows that the vorticity is not constant in the long and slender
eddy. The theoretical asymptotes (6.3) are based on the assumption of a Sadovskii
vortex with constant eddy vorticity, and thus the good comparison seems somewhat
surprising and may be fortuitous. It is possible that some of the global estimates
used in deriving the asymptotic predictions apply equally to other models of the flow
in wakes in the limit of (W/L) → 0. In the work of Acrivos et al. (1965) the flow
in the slender eddy is described by the boundary layer equations, and the vorticity
is not assumed to be constant, see also Smith (1985a), Bhattacharya, Dennis &
Smith (2001).

6.5. Type I boundary layer solutions: comparisons with theory

Let us now try to assess some of the theoretical implications of the work by Smith
(1985a) and Milos & Acrivos (1986). In these papers it is suggested that because the
eddies are long and thin compared to the lateral dimension y it is appropriate to
consider boundary layer scalings with x =RX, y = O(1) and take the limit R ≫ 1. In
this case the Navier–Stokes equations reduce to the boundary layer equations, see
Smith (1985a),

UUX − ψXUy = −PX + Uyy, ψy = U, (6.4)

with boundary conditions

ψ = Uy = 0 on y =0, ψ = W/2, Uy = 0 on y = W/2,

for X > 0. Also U → 1 as X ≫ 1. The starting conditions at X =0+ are different in
the two papers. In Smith (1985a) the conditions

X = 0+, U =

{

0 for 0 <y < λ

(W/2)/((W/2) − λ) for λ< y < W/2
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are used. In Milos & Acrivos (1986) the starting conditions are taken to be

U (X = 0+, y) =







−uc(y), 0 � y � λ/2,

uc(1 − y), λ/2 � y < λ

u0(y), λ<y <W/2.

Here λ is the eddy width, uc(y) is the (unknown) reverse flow that enters the inviscid
region from the boundary layer region, and u0(y) is the prescribed streamwise velocity
above the eddy boundary. For the problem at hand a suitable choice for u0(y) would
be u0(y) = (W/2)/((W/2) − λ). It should also be mentioned that the Milos & Acrivos
(1986) paper was concerned with describing the experiments of Acrivos et al. (1965)
and Acrivos et al. (1968) in which a splitter plate was used behind the cylinder and
because of this the no-slip condition U = 0 is imposed on y = 0 in their subsequent
computations of the boundary layer equations. This apart, the principal difference
between the Smith (1985a) and Milos & Acrivos (1986) suggestions is in the form of
the eddy velocity prescribed at inflow. A more detailed description of the matching
of the boundary layer flow to that near the cylinder is given in Smith (1985a).

Smith (1985a) has shown that the equations can be rescaled to involve just one
parameter: H = 2λ/W . Some solutions of the boundary layer problem (6.4) are
presented in Smith (1985a). For small values of H difficulties were encountered
in obtaining grid-independent solutions. For W =5 we can make some qualitative
as well as quantitative comparisons with the results of Smith (1985a). From the
numerical data for W = 5, λ=1.13 approximately, giving a value of H =0.452.
From the boundary layer problem (6.4) the length of the eddy can be estimated
as Ls = (R/2)(W/2)2xatt where xatt is the reattachment length given by the normalized
problem involving H . The factor of R/2 arises because of the Reynolds number based
on the diameter, and the other factor stems from the normalization, see Smith (1985a,
equation I2.7). For a value of H = 0.452 the results of Smith (1985a) give xatt = 0.023
approximately, giving Ls =0.072R. Our Navier–Stokes computations give L =0.084R

for W = 5 which is in excellent agreement with the theoretical result. For W = 20,
our results suggest that λ= 2 approximately, giving H =1/5. For small values of H ,
Smith (1985a) reported difficulties in obtaining converged results and therefore direct
comparison with Smith (1985a) for H = 0.2 is not possible.

In figures 20 and 21 we show centreline and edge velocities from the Navier–Stokes
computations. These may be compared directly with figure 5 in Smith (1985a). The
trends for the edge velocity for large H (implying small W in our case) are broadly
similar. For H decreasing (W increasing), the Navier–Stokes data shows the presence
of a bulge in the edge velocity near reattachment. In the boundary layer solutions
of Smith (1985a), the initial trend for the edge velocity is similar but no such bulge
exists. Of course as remarked already, at these values of H the results of the boundary
layer calculations are not grid independent and probably unreliable for large values
of X.

In figures 22–24 we plot graphs of the streamfunction and vorticity and velocity
as a function of y for various x locations from the Navier–Stokes data for selected
Reynolds numbers and different gap widths. It is clear that for W =5 as we approach
the cylinder, the initial streamwise velocity in the eddy region is small and negative.
In Smith (1985a) the initial profile used assumes zero velocity in the eddy to leading
order. Exactly what difference taking a non-zero eddy velocity makes to the results
remains unclear.

For the type II solutions, figure 23 shows that downstream just prior to the
formation of the eddy, the streamwise velocity decreases significantly. The velocity in
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Figure 20. Centreline velocity from the Navier–Stokes computaions for R = 3000,W = 5;
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Figure 21. Edge velocity (at y = W/2) from the Navier–Stokes computations for
R = 3000,W = 5; R = 2500,W = 20; R = 1500,W = 50.

the eddy is predominantly linear, becoming uniform outside the eddy region. The type
III solutions figure 24 show that after reattachment, the velocity recovers, becoming
positive and tending to a uniform state with increasing x.

Finally, one other point concerning the boundary layer theory is that in both Smith
(1985a) and Milos & Acrivos (1986) numerical difficulties were encountered in the
limit of the eddy width parameter λ approaching zero. The solutions of Milos &
Acrivos (1986) suggest the appearance of a singularity as λ approaches zero. Without
more detailed evidence and analysis it is difficult to make any substantive comparisons,
but it is possible that a singularity may point to the disappearance of the boundary
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Figure 22. Graphs of (a) streamfunction, (b) vorticity, and (c) streamwise velocity at various
x locations for W = 5, R =3000.

layer type of solution and the appearance of the type III solution. What is also clear
is that type II solutions do not seem to be described by the boundary layer theory.

Therefore although the Navier–Stokes computations are qualitatively in line with
the theory, a more detailed and more accurate solution of the boundary layer problem
is needed before any substantive claims can be made.

7. Conclusion

We have used a spectral Chebychev collocation combined with a high-order finite
difference numerical method to compute the solution for flow past a cascade of
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Figure 23. Graphs of (a) streamfunction, (b) vorticity, and (c) streamwise velocity at various
x locations for W = 20, R = 2500.

cylinders for R ≫ 1. Excellent agreement has been found for small gap widths with
previous work by Fornberg (1991). For large gap widths, and increasing Reynolds
numbers there are some differences between our results and those of Fornberg
(1991). The reasons for the differences are not clear although it is suggested here
that they may be due to the higher-order accuracy of the method used here. It is
possible that the differences may be due to inadequately resolved numerical compu-
tations. It is argued that the small gap width results results presented here are fully
resolved.

Our results compare well with theoretical estimates of certain global properties,
especially for small gap widths. However it has been pointed out that the eddy
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Figure 24. Graphs of (a) streamfunction, (b) vorticity, and (c) streamwise velocity at various
x locations for W = 50, R = 1500.

properties for small gap widths are qualitatively more similar to those for a
boundary-layer solution than those stemming from a limit of the potential vortex
model. In particular the latter has constant eddy vorticity which is inconsistent with
the numerical results presented here and elsewhere. Thus the good comparisons
obtained between the theoretical estimates and numerical results requires further
examination.

Castro (2002) has managed to compute to large values of the Reynolds numbers
flow for a cascade of flat plates in a stratified fluid, and qualitatively the results
reported there are very similar to those here in terms of the development of the eddy
features for varying gap widths.
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