
Eigenvalue problems in the form of dif-
ferential equations have widespread ap-
plication in all fields of science and
engineering. Their numerical study re-

quires replacing the continuum formulation with a
discrete version, then solving the resulting model
iteratively using appropriate start values. How to
choose start values in each individual case is a mat-
ter of some controversy.

In this article, I advocate using discrete trans-
parent boundary conditions (DTBCs), a technique
that has proven successful in other contexts. Im-
plementing DTBCs for eigenvalue problems typi-
cally involves an approximation—the slowly
varying approximation—that I present here along
with suitable criteria for its validity. As the exam-
ples make clear, this approach isn’t limited to just
finding eigenvalues but also can be adapted to cal-
culate other properties of physical interest.

Background
Schrödinger’s equation for the stationary states of
a particle with mass m in a 1D potential V(x),

,

is an example of an eigenvalue problem. The coordi-
nate x extends from –� to +�� and acceptable wave-
forms �E(x) must be continuous bounded functions of
x, which are conditions that generally occur only for
special values of the particle energy E. The eigenval-
ues are these allowed energies, and the corresponding
eigenfunctions are the stationary states �E(x).

For simplicity, we can recast the problem as

. (1)

The stationary state Schrödinger equation is re-
covered with the obvious identifications y(x) = �E(x)
and . The discrete ver-
sion of this equation follows by writing x � xn � nh
and f (x) � f (xn) � fn for any function f (x), where n
is an integer and h is the size of the spatial grid. The
procedure would be straightforward except for the
second derivative, which requires some approxi-
mation. To this end, note that

�2fn–1 = �(�fn–1) = f (xn + h) + f (xn – h) – 2f (xn),

where �fn–1 � fn – fn–1 symbolizes the usual forward
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difference operation on any function f (x). Expand-
ing the first two terms on the right in a Taylor se-
ries gives

�2fn–1 = h2f ��(xn) + (h4/12)f (iv)(xn) + O(h6).

The simplest approximation �2fn–1 � h2f ��(xn)
gives the central difference approximation to the
second derivative and yields a discrete version of
Equation 1 that is accurate to O(h3):

�2yn–1 + h2gnyn = 0. (2)

The Numerov method improves on this by us-
ing the original differential equation for y(x) to
write h2f (iv)(xn) = –h2(gy)�� � –�2[gn–1yn–1]. This gives
the Numerov discretization of Equation 1:

, (3)

which is accurate to O(h5). Interestingly, the Nu-
merov version is identical to Equation 2, with the
replacements

, (4)

so the Numerov method’s improved accuracy
comes at negligible computational cost. For the re-
mainder of this article, I will adopt Equation 2 as
the discrete equation of interest, with the assurance
that the results apply equally well to the Numerov
version after suitably redefining the terms.

We can solve Equation 2 recursively, using given
values for yn at two successive points. Numerical
stability requires that in regions in which y(x) is
monotonic, recursion should be performed in the
direction of increasing |y| to reduce the solution’s
relative error.1 Oftentimes, this means construct-
ing separate solutions starting from each interval
limit, then matching them at some intermediate lo-
cation. In any event, start values for each recursive
solution must be known to an accuracy compatible
with the algorithm we use. Obtaining those values
in practical applications has sparked much discus-
sion. Of course, yn = y(xn) are immediately available
if y(x) is known exactly in the neighborhood of the
interval limits, but such is rarely the case.

A less restrictive alternative was developed by
J.L.M. Quiroz Gonzalez and D. Thompson,2 who
showed how to select start values up to Numerov

accuracy by using the exact solution function y(x0)
and its slope y�(x0) at a single endpoint x0. But those
values, too, are often elusive.

Here, I advocate a different approach: instead of
focusing on the exact solution y(x), we can recover
start values from the asymptotic solutions to the
discrete equation for yn. This tactical shift amounts
to fully embracing the discrete formulation for all
values of n; in effect, we impose boundary condi-
tions at the limits of the computational domain that
mimic an interval of infinite extent. Researchers pi-
oneered using such DTBCs in connection with
solving the time-dependent Schrödinger equa-
tion;3–5 applying DTBCs to stationary state prob-
lems is actually simpler, as we will see in the
following sections. Although the technique is fa-
miliar,6 its connection to DTBCs and a rigorous
exposition of the related slowly varying approxi-
mation are new here.

Discrete Asymptotic Forms
If the computational domain corresponds to N1 �
n � N2, then –� < n < N1 and N2 < n < � define the
exterior regions. Our task is to find suitable analytic
solutions to Equation 2 in these exterior regions,
from which we will infer the proper boundary con-
ditions to be imposed at the limits of the actual (fi-
nite) computational interval. Because the exterior
regions include the asymptotic realm n � ±�, so-
lutions here can’t diverge for large |n| if they’re to
be physically acceptable.

Let’s introduce the discrete counterpart of the
logarithmic derivative of y(x), �n � �yn/yn+1, and a
measure of its variability, ��n–1 = �n – �n–1. In terms
of these, Equation 2 becomes

. (5)

Throughout each exterior region, we assume for
now that gn is unchanged from its value at the in-
ner boundary, gN1 or gN2. But if gn doesn’t change,
then neither does �n, so ��n–1 vanishes identically
and Equation 5 reduces to a quadratic form that we
can solve to give the root pair

(6)

with the property

. (7)

(The index n is superfluous here, but I retain it for
its usefulness in subsequent analysis.)

For gn < 0 (or h2gn > 4), both roots of Equation 6
are real. Because (1 – �n)yn+1 = yn, we must select the
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root that makes |yn+1| > |yn| over the left exterior
region (–� < n < N1) and |yn+1| < |yn| on the right
(N2 < n < �) to generate solutions that approach zero
as n � ±�. If 0 < h2gn < 4, then �n

± are complex con-
jugates, and Equation 7 implies |1 – �n

±| = 1. It fol-
lows that the exterior solutions have constant
modulus, |yn+1| = |yn|, and are oscillatory. Specifi-
cally, we have for this case yn+1 = exp(±i�n) 	 yn, where

. (8)

The preceding analysis leads us to the following al-
gorithm for constructing stationary states:

1. If gN1 < 0, take yN1+1 = (1 – �N1)
–1yN1 and cal-

culate yN1+2, yN1+3, … recursively from
Equation 2. Calculate �N1 as the root of
Equation 6 for which |1 – �N1| <1. Alter-
natively, Equation 7 lets us write yN1+1 = (1
– �N1)yN1 with |1 – �N1| > 1.

2. If gN2 < 0, take yN2–1 = (1 – �N2–1)yN2 and cal-
culate yN2–2, yN2–3, … recursively from
Equation 2. With g assumed constant in the
right exterior region, �N2–1 is indistinguish-
able from �N2 and can be found from Equa-

tion 6 as the root for which |1 – �N2| >1.
3. If gN2 > 0, choose an h small enough that

h2gN2 < 4 and take yN2–1 = exp(–i�N2–1)yN2;
then calculate yN2–2, yN2–3, … recursively
from Equation 2. This models the scatter-
ing problem with particles incident from
the left to give, in the transmitted region, a
solution with a phase that increases with x—
that is, a rightward traveling wave. Again,
with g constant in the right exterior region,
�N2–1 is indistinguishable from �N2 and is
calculated from Equation 8.

In all cases, the values for yN1 and yN2 are arbi-
trary, reflecting an overall choice of normalization,
and we can set them equal to unity. If steps 1 and 2
both apply, the recursive solutions we obtain must
be joined at some intermediate point, say, n = M.
For optimal visual effect, we first match the slopes
at yM by adjusting the start value yN2. Then, when-
ever E is an eigenvalue, both recursions will also
give identical values for yM. Otherwise, the solution
is discontinuous at yM and physically unacceptable.
We can find slopes at yM accurate to O(h3) using the
centered difference

y(xM + h) – y(xM – h) = 2hy�(xM) + O(h3). (9)

However, the Numerov implementation is more
demanding and requires points two steps removed
from xM to calculate the slopes y�(xM) to the de-
sired accuracy:

y(xM + h) – y(xM – h) – (1/8)y(xM + 2h) +   
(1/8)y(xM – 2h) = (3h/2)y�(xM) + O(h5). (10)

Although convenient, the requirement that g be
constant in the exterior regions (these regions must
be force free) is unnecessarily restrictive. But if g(x)
isn’t constant in the exterior regions, Equation 6 af-
fords only approximate values. In this context, we
refer to Equation 6 as the slowly varying approxima-
tion and denote the roots ~�n to distinguish them
from the true values �n.

Conventional wisdom dictates that �N1,N2–1 be
known to an accuracy compatible with the solu-
tion technique we use—O(h2) for the central dif-
ference scheme and O(h4) for the Numerov
method. This leads us to ask, how accurate is
Equation 6 when the exterior regions aren’t force
free? An in-depth analysis shows that Equation 6
is justified in principle for calculating �n at the
endpoints of a suitably large computational inter-
val, provided gn is asymptotically monotonic and
finite valued. (See the “Slowly Varying Approxi-
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Figure 1. Some stationary state waveforms of the quantum
oscillator, against the backdrop of the oscillator potential. The
lowest energy wave (yellow) is nodeless, followed in order of
energy by the wave with one node (green), two nodes (violet), and
so forth. Because the energies are accurate, no discontinuity is
evident in these waveforms.
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mation” section for full details.) We can relax the
latter restriction to include gn � –� as n � ±�
(but not gn � +�, which leads to unphysical solu-
tion behavior that reflects a fundamental incom-
patibility between the continuum and discrete
asymptotic limits in such cases).

To test the methods in this section, I examined
several low-lying stationary states of the quantum
oscillator. I performed the calculations in units
where . In these units, the oscillator po-
tential is V(x) = x2, and the allowed energies are the
odd integers Ej = 1, 3, 5, …. I calculated the wave-
forms using the central difference approximation on
a grid containing 512 points spanning the interval
[–5, 5]. For each energy, I generated solutions using
discrete transparent boundary conditions applied to
each end of the computational interval and matched
those solutions near the waveform peak.

Figure 1 shows the results for the three lowest
allowed energies. The waveforms in the figure all
appear smooth, as expected; by contrast, a dis-
continuity is already evident in the waveform for
E = 5.005 (see Figure 2), a value removed from the
true energy by just 1 part in 1,000—a 0.1 percent
change.

Table 1 reports the fractional mismatch at the
match point for each of these waves. The mismatch
grows by an order of magnitude with the aforemen-
tioned 0.1 percent increase in E over the exact value.
For this example, �N1,N2–1 should be calculated to ac-
curacy h2; this requires that the slowly varying ap-
proximation  ~�n given by Equation 6 differ from the
true value �n by no more than O((10/512)2) ~ 
4 
 10–4 at the edges of the computational domain.
I refer to the difference |�n – ~�n| as the figure of
merit. The last column of Table 1 records the figures
of merit estimated from Equation 16; from symme-
try, those at the left end of the computational inter-
val (n = N1) are nearly identical and thus omitted.
These figures of merit are too large by a factor of
five, yet they’re still good enough to get the station-
ary state energies about right.

Although we know that eigenvalues are notori-
ously insensitive to details of the waveform, calculat-
ing other physical quantities might require the extra
precision demanded by strictly applying the method.
Indeed, we can obtain O(h2) figures of merit by en-
larging the computational interval in this example by
a factor of four (while quadrupling the number of
points to keep h fixed). Interestingly, the O(h4) ~ 10–7

accuracy the Numerov method demands would re-
quire in this example an interval size that’s impracti-
cally large, which is no doubt because the oscillator
potential isn’t slowly varying by any realistic measure.

I also checked the applicability of discrete trans-

parent boundary conditions to scattering problems
by calculating the probability for particle transmis-
sion across a square barrier, another instance in
which exact results are available for comparison.
Again in units where , I took the barrier
centered at the coordinate origin with unit height
and width w = 4. This time I calculated the wave-
forms over the range [–10, +10] using the Numerov
scheme on a grid of 2,048 points. At the computa-
tional domain’s right-side edge, I applied discrete
transparent boundary conditions to generate a
rightward moving (transmitted) wave in this region.

Figure 3 displays the numerical solution for a
particle with energy E = 0.5 (half the barrier
height). (This waveform is complex valued;con-
forming to standard practice, color represents the
phase of the wave at each point.) The waveform at

�2 2 1/ m =

�2 2 1/ m =

Figure 2. The waveform for the quantum oscillator with E = 5.005.
The discontinuity in the circled region near the peak on the left
indicates this energy isn’t one of the allowed values.

Energy E

1 8.6931 
 10–4 0.0020
3 2.2554 
 10–3 0.0022
5 3.9290 
 10–3 0.0024
5.005 0.03923 0.0024
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Table 1. Characteristics of some numerically generated
waveforms for the quantum oscillator.
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the far left is a superposition of incident y(I) (right-
ward traveling) and reflected y(R) (leftward travel-
ing) waves; sorting out the contribution that each
makes to the total is a straightforward exercise in
matrix algebra. Noting that yn+1

(I) = exp(i�n)yn
(I) and

yn+1
(R) = exp(–i�n)yn

(R), we can write at the left-side
endpoint n = N1

.

Inverting gives the incident and reflected wave
values at N1:

.

From these, we calculate transmission (T) and re-
flection (R) coefficients, respectively, as

and .

Any elementary quantum physics text treats par-
ticle transmission across a square barrier. In the
units I adopted here, the exact result for the trans-
mission coefficient T(E) is conveniently expressed
as (for E < 1, or below the top of the barrier)7

.

This formula remains valid for E > 1 (above the
barrier) if the hyperbolic sine is replaced by the
trigonometric sine. Table 2 compares exact and nu-
merical results for particle transmission at several
energies below and above the top of the barrier, in-
cluding E = 0.5 for the waveform of Figure 3. (Be-
cause g(x) is constant outside the barrier, figures of
merit for slow variation at both edges of the com-
putational domain are zero and, therefore, not tab-
ulated.) T changes by four orders of magnitude
over this energy range, yet the agreement between
the exact and numerical results is good throughout,
with the largest relative error (approximately 1 per-
cent) occurring for the smallest value of T. The
right-most column shows the independently cal-
culated value for R added into T; because these are
the only outcomes possible in a scattering event,
the sum should be unity. The results verify this ex-
pectation to 11-digit accuracy and indicate that R
is calculated for every energy with a precision that
matches T.

Discrete Radial Wave Equation
for Spherically Symmetric Potentials
A mass m subject to a central potential V(r) has sta-
tionary states of the form R(r)Yl

ml(�, �), where (r,
�, �) are the usual spherical coordinates, Yl

ml de-
notes the spherical harmonic, and R(r) is the radial
wave function. The related function rR(r) satisfies
a Schrödinger-like equation with an effective po-
tential that reflects the angular momentum state of
the orbiting particle (l = 0, 1, 2, � is the orbital
quantum number):

. (11)

The machinery developed in the previous sec-
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Figure 3. Scattering waveform for a particle incident from the left
on a square barrier  when the particle energy is one-half the barrier
height. The wave is complex valued, with the phase at each point
represented by plot color. The wave to the left of the barrier has
both incident and reflected components, and the one to the right
of the barrier describes pure transmission. The shaded rectangle in
the background is the square potential barrier.



MAY/JUNE 2006 55

tion also bears on this class of problems. With the
identifications x � r, y(x) � y(r) = rR(r) and g(x)
� , Equation 1 re-
mains the equation of interest, with solutions
confined to the domain of the spherical coordi-
nate r—that is, from 0 to �. Accordingly, we now
take r � rn � nh and limit the computational do-
main to 0 � n � N. We replace the “missing” half
axis with the boundary condition y0 = 0, express-
ing the physical requirement that the radial wave
at the origin R(0) must be finite, so y(r) must van-
ish there. (We must exercise special care with the
Numerov method because y0 = 0 doesn’t guaran-
tee that (1 + (h2/12)g0)y0 = 0 if g0 is infinite. This
is the case for the radial wave equation, where
Veff(r) is always singular at the origin for l > 0, and
even for l = 0 is singular for the Coulomb poten-
tial and the Yukawa potential, among others.
From a numerical perspective, the simplest rem-
edy is to replace g with a model function that dif-
fers from the actual one  only in having a finite
value at the coordinate origin.)

Moreover, y1 becomes a mere scaling factor
that we can take as unity; together with y0 = 0,
this is sufficient to obtain from Equation 2 the so-
lution y2, y3, � that behaves properly at the ori-
gin. Discrete transparent boundary conditions
make their appearance at the other end of the
computational interval and follow the rules of the
preceding section. Specifically, if gN < 0 and gn is
monotonic in the exterior region n > N, then a so-
lution with the required accuracy that decays for
r � � can be constructed by taking yN–1 = (1 –
�N–1)yN, with �N–1 found from Equation 6 and
yN–2, yN–3, � calculated recursively using Equa-
tion 2. By adjusting the start value yN, we can
match at some intermediate point (rM) the slope
of this decaying solution to the slope of the solu-
tion that vanishes at the origin. Any mismatch in

the ordinate values at rM implies that the given
energy E isn’t allowed.

For the case in which 0 < h2gN < 4, the large r
solutions are oscillatory, and the computational
goal switches from locating eigenvalues to ex-
tracting partial-wave phase shifts. Starting with y0
= 0 and y1 = 1, we construct the solution y2, y3, �
from Equation 2 as before. Now, however, the so-
lution at the far right is a mixture of ingoing and
outgoing radial waves, which we label y(in) and
y(out), respectively. Noting that yn+1

(in) = exp(–i�n)yn
(in)

and yn+1
(out) = exp(i�n)yn

(out), where �n is given by
Equation 8, we can write at the right-side end-
point n = N

.

Inverting gives the unique decomposition into  in-
going and outgoing waves of the solution that van-
ishes as required at the origin:

.

Because yN and yN–1 must be real, we find that 
yN

(in)* = yN
(out); the solution in the outer region is an

equal mix of ingoing and outgoing waves—that is,
a standing wave. The quantity of interest is the
phase of this standing wave, � = arg(yN

(out)). With the
help of Equation 8, we can write this as

(12)
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Energy E T [exact] T [calculated] T + R [calculated]

0.1 7.2849 
 10–4 7.2044 
 10–4 1.000000000012
0.3 4.1567 
 10–3 4.1163 
 10–3 1.000000000001
0.5 1.3877 
 10–2 1.3763 
 10–2 0.999999999998
0.7 4.1302 
 10–2 4.1041 
 10–2 0.999999999998
0.9 0.11929 0.11884 1.000000000002
1.2 0.50178 0.50206 0.999999999999
1.5 0.96933 0.97009 0.999999999995
2.0 0.93319 0.93256 1.000000000000
3.0 0.98589 0.98620 0.999999999999
4.0 0.99253 0.99232 1.000000000000

Table 2. Particle transmission across a square barrier.
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Finally, we find the phase shift for the lth partial
wave �l by comparing this phase with the corre-
sponding free particle result obtained by taking
V(r) = 0 in the effective potential of Equation 11:
specifically, �l = � – �(V = 0).

Table 3 compares l = 0 (S-wave) phase shifts at
several different energies calculated using Equa-
tion 12 with exact results for the spherical well.
Again in units where , I took the well
to have unit depth and radius a = 4. Exact values
for this case are well known. In the units I adopted
here, S-wave phase shifts for the spherical well8 are
given by

(13)

The numerical results agree well with the exact val-
ues of Equation 13 over the whole range of ener-
gies I studied. In this example, the largest error
(approximately 0.2 percent) occurred for the inter-
mediate value E = 0.5, followed closely by the ~0.13
percent discrepancy observed for the smallest en-
ergy in this sample.

Slowly Varying Approximation
This section investigates the validity of Equation 6
in exterior regions that aren’t force free. Because
the arguments I present here are technical and of
limited interest, the casual reader might want to
skip them entirely. 

Let’s return to Equation 2 and let  ~y denote the
solution obtained using some trial ~g that differs
from the actual g in the region of interest. We limit
our remarks to the right exterior region n > N2;
analogous arguments apply to the left exterior re-
gion n < N1. We assume that  ~y and y satisfy identi-
cal boundary conditions at infinity so that ~y
coincides with the exact solution when ~g � g. Now
use the identity

yn�
2y~n–1 – y~n�

2yn–1 � ��yn�y~n–1 – yn�y~n–1)

together with Equation 2 to write

��yn�y~n–1 – y~n�yn–1) = �yny
~

n(�~n–1 – �n–1)] =
h2( gn – g~n)yny~n.

For the right-side exterior, we sum this result from
N2 to � and assume limn�� yn

~yn( ~�n–1 – �n–1) van-
ishes to get (with yN2 = ~yN2 = 1):

.

In the slowly varying approximation we take h2~gn +
�~�n–1 = h2gn; then ~�n is given exactly by Equation 6
(with gn not ~gn, see Equation 5) and

. (14)

To be consistent, the sum on the right of Equation
14 should converge to a function that vanishes as 
N2 � �. Then for a given value of h, we can, in prin-
ciple, always find an N2 large enough to make the
right side O(h2) for central difference calculations
and O(h4) for Numerov work. Our goal, therefore,
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�2 2 1/ m =

Energy E �0(E) [exact] �0(E) [calculated]

0.1 –0.77748 –0.77849
0.5 –0.9416 –0.94348
1.0 –1.3313 –1.3316
5.0 0.82377 0.82370
10 0.59401 0.59383

Table 3. Some S-wave phase shifts for the spherical well.
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Figure 4. The variation of � (ordinate values) from Equation 6 with
the (assumed continuous) variable h2gn/2. The branch �+ takes the
largest values in each of the plot intervals and is green; the �– branch
is brown. The horizontal asymptote at � = 1 is approached from
below by �+ as gn � –� and from above by �– as gn � +�. The range
h2gn/2 > 2 isn’t physical, but I include it here for completeness.
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is to establish the best possible upper bound for this
sum. To that end, recall that the exact solution yn is
bounded; accordingly, we assume subsequently that
N2 has been chosen to make |yn| � yN2 = 1 for all n
� N2. Also, the definition of ~� implies that we can
write ~yn = (1 – ~�n–1)(1 – ~�n–2) … (1 – ~�N2)

~yN2, whereas
Equation 6 requires |1 – ~�| � 1 for each of the n –
N2 factors.

Consider first the case in which gn < 0 (or h2gn >
4). If gn is monotonic for n � N2, then both
branches in Equation 6 define roots ~�n that are real
and also monotonic for n � N2. In fact, both � ~�n–1
and ~�n are monotonic with gn (see Figure 4). More-
over, limn��

~�n exists if lim n��gn also exists, but
even if gn diverges for n � �� we find lim n��

~�n = 1
for the root of interest (the one for which |1 – ~� �
� 1). In either case, lim n�� � ~�n–1 = 0, and Equa-
tion 14 is bounded above by

(15)

The simple bound Equation 15 is adequate to en-
sure that ~�N2–1 differs from the exact value �N2–1 by
an arbitrarily small amount for large enough values
of N2, but it might be too crude for the more exact-
ing task of deciding when the computational inter-
val is large enough. We can obtain a somewhat
better estimate (although not a strict upper bound)
by replacing yn on the right side of Equation 14 with
~yn; this gives

(16)

No better general estimates are likely in this case;
indeed, if we believe only that yn has the same sign
as ~yn for all n � N2, then the monotonic behavior of
gn guarantees that all terms in Equation 14 are cu-
mulative, so the sum’s magnitude exceeds that of
any one term. In particular, we can expect |�N2–1 –
~�N2–1| > |�~�N2–1|.

Similar reasoning applies to the oscillatory
case 0 < h2gn < 4, but now ~�n is complex with real
and imaginary parts that we must handle sepa-
rately. Using Equation 6, we have in place of
Equation 1,

.

The radical increases with gn for h2gn < 2 and de-
creases for 2 < h2gn < 4. In the simplest scenario,
one or the other inequality holds throughout the
exterior region n � N2, with the consequence that
the sums on the right are bounded by

,

assuming gn is monotonic for n � N2. Straightfor-
ward modifications are required if the exterior re-
gion includes the crossover point h2gn = 2. Taken
together, these results again ensure that ~�N2–1 dif-
fers from the exact value by an arbitrarily small
amount provided N2 is sufficiently large. 

If the oscillatory case applies for all n � N2, then
limn��gn � g� must exist. If this limit doesn’t ex-
ist—if gn diverges as n � �—then the exterior re-
gion includes a critical point Nc (not necessarily
integer) defined by h2gNc = 4 and the estimate of
Equation 15 applies for N2 � Nc. But  ~yn oscillates
wildly for n � Nc (because ~� > 1 for h2gn > 4, ~yn and
~yn+1 have opposite sign) and  bears no apparent re-
lation to the discretized version of the continuum
solution in this range. This unphysical behavior
isn’t a failure of the slowly varying approximation;
it stems from the inability of any discrete form on
a uniform mesh to follow a continuum solution
that oscillates with ever-increasing rapidity. Evi-
dently, the continuum limit h � 0 is incompatible
with the discrete asymptotic limit n � � in such
cases. (A similar circumstance arises with the Nu-
merov method if gn < 0 and is unbounded for n �
�. The Numerov renormalized value (see Equa-
tion 4) becomes singular for that Ns (not necessar-
ily integer) that makes 1 + h2/12gNs = 0 and
changes sign for n > Ns, passing through the criti-
cal point Nc to eventually saturate at the value
12/h2. Again, the behavior of ~yn (and yn) is decid-
edly unphysical for n � Ns.). The dilemma is re-
solved in practice by replacing gn with a constant
in the asymptotic region n � Nc, thereby render-
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ing �~�n–1 � 0 there and truncating the sum in
Equation 14 at some N < Nc. In effect, we first cap
the troublesome divergence at the continuum level
and then discretize the resulting model.

Hence, so long as gn is asymptotically monotonic,
the slowly varying approximation of Equation 6
can—at least, in principle—be used to generate so-
lutions to centered-difference or Numerov accuracy
by adopting a suitably large computational interval.

I n this article, I advocate using discrete trans-
parent boundary conditions to solve eigen-
value problems, notably those posed by the
stationary state Schrödinger equations of

quantum mechanics. The methods I outline here
for calculating allowed particle energies, scattering
coefficients, and partial wave phase shifts are used
extensively in a software application, QMTools,
that I authored to help beginning students visual-
ize the abstract concepts of quantum physics. Visit
the QMTools project Web site http://people.uncw.
edu/moyerc/QMTools/ to download the software
along with numerous examples illustrating its ped-
agogical benefits.
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