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WUMERICAL SOLUTION OF WAVEGUIDE PROBLEMS
USING FINITE DIFFERENCE METHODS

K. Pontoppidan

Introduction In a paper by Davies and Muilwyk [1] the finite difference
method was described and used for waveguide problems. The besic idea is to
subdivide the wavegulde cross section by a grid into a number of small
squares. A difference formula is set up for each mesh point of the grid
and the resulting matrix eigenvalue problem is solved by successive overre-
laxation. Only the dominant mode is found using this method. Beaubien and
Wexler [2] modified the method in order to be able to obtain convergence
towards eny desired rode.

In both of the abovementioned methods, the boundary is approximated
by line segments which join the outermost mesh points. For waveguides for
which the boundary coincides with the grid lines, the methods are very ac-
curate. However, for waveguides with curved boundaries, the approximation
of the boundary reduces the accuracy significantly.

The aim of this paper is to present a modified version of the finite
difference method by which it is possible, also for curved boundaries, to
accurately determine the dpminant mode and a number of the higher order
modes. The determination of higher order modes is based on orthogonaliza-
tion with respect to all lower order modes which therefore must be stored
during the computations. As a consequence of this, only relatively coarse
rmeshes can be used. In order not to loose accuracy in case of curved boun-
daries as described above, additional poimts on the boundary are used toge-
ther with the ordinary mesh points.

Finite difference solution A uniform, lossless, homogeneously filled
waveguide of arbitrary cross section is considered. The electromagnetic
fields in the waveguide can be determined from the solution ¢ to the
Helmholz eguation

Vi + k%9 =0 (1)

where k is the cut-off wave number. The boundary conditions are~

¢ = 0 for Ti-modes and %g =0 for TE-modes. (2),(3)
The cross section of the waveguide is subdivided into squares by a grid as
shown in fig. 1 and the field is to be determined in each mesh point of the
grid. The distance between the grid lines is h. For interior points, the
Helmholz equation is approximated by a finite difference formula. For the
point o and its four neighbours 1-4 in fig. 1, this is

¢1/hy *+ é5/0, . b5/hg + o, /By SR U ORI -
For points for which none of the neighbours are on the boundary, (4) is re-
duced to

) + by + 93+ &, - Bo_ + (kn)%e =0 . (5)

For boundary points, which means points of intersection between the
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- boundary and the grid, such as point P in fig.
\\\ 2, the field value is determined by the boun-
"\ dary conditions. For THM-modes this is ¢_ = 0.

To satisfy the boundary condition for TE-modes
the following method has been applied. The
points a and b are found as points of inter-
section between the normal n to the boundary
and the grid lines. The field values ¢ and
¢, in a and b are determined by linear inter-
polation between ¢. and ¢, and between ¢ and
, respectively. ~The field along n is an—
p%oximated by a second order polynomial whiclh
Fig. 1. Subdivision of wave- 1as the values ¢_ and ¢ in & and b and for
guide cross section which the derivaefive in°P is zero. Analyti-
cally, the field ¢P is expressed by

2wy B
P B~ h = 2 :
b a
where h  and are the distances from P to a

and b, %espectlvely.

Now, the computations proceed as follows.

An initial mesh size h is chosen (normally 1/h
n or 1/8 of a dominant length in the cross sec-
tion). The boundary shape is given by a func-
tion expression and the distance from each
boundary point to the ncarest interior point
is calculated and stored. All initial field
values are set equal to unity except the boundary points for Tli-modes which
are set equal to zero. For the initial eigenvalue, k = 1 is used.

The finite difference formula (4) or (5) for all interior points
forms a system of equations which is solveé by successive overrelaxation.
After each completed relaxation process, the boundary values are adjusted
according to (6) in the case of TE-modes. For T-modes, the boundary
points are left unchanged ecual to zero. The equations cannot be satisfied
since the eigenvalue is not correct. A new and better eigenvalue is ob-
tained by the Rayleigh quotient

9 72 ™l

Fig. 2. Boundary point with
corresponding normal

> (7)

where A represents the area of the cross section. The integrals in (7) are
evaluated numerically from the current field values. The relaxation is re-
peated with the new eigenvalue and the process is continued until two con-
secutive eigenvalues only differ by a certain prescribed amount.

Orthogonalization The method described above is known to converge to-
wards the smallest eigenvalue and the corresponding eigenfunction. Higher
order modes, however, ray be found in the same way if they, in addition,
are required to be orthogonal to all previously determined lower order
modes [3].

Let ¢' represent the current field of mode number m after one relaxa-
tion and suppose, that all lower order modes have been determined. ¢' is
usually not orthogonal to the lower order modes and therefore a new ¢
calculated in all points of the mesh by

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on June 30,2010 at 10:54:48 UTC from IEEE Xplore. Restrictions apply.



101

1
m-1 A¢m¢nda
¢ =o' - | T Zaa %y (8)
; n=1 n
A
for which the orthogonality condition is satisfied.

The determination of higher order modes is performed as follows.
Having calculated the first order mode to the required accuracy, the second
order rode is determined in the same way and by applying (8) after each re-
laxation. This procedure is continued until all required modes are deter-
mined.

When the problem is solved for the first coarse mesh, a finer mesh is
generated by halving the distance between grid lines. In doing this, the
number of mesh points is increased by a factor four and the fields in the
new mesh points are determined by linear interpolation from the already
known vazlues. Agein, the relaxation procedure is repeated for each mode
until the required accuracy is obtained. The mesh-halving technique can be
applied as far as storage requirement permits.

Computed results The computer program has been tested for waveguides
with known solution. When three consecutive eigenvalues have been found,
an extrapolated eigenvalue is determined by Aitken extrapolation. Especi-
ally for TM-modes, this gives a very significant improvement of the result.
Tables 1 and 2 show the eigenvalues obtained for the three lowest
order modes in a circular waveguide of dlameter 2a. It is seen that the

Table 1, Circular TE-modées

o My Tz o
ka |error,? | extr. ka |error,%| extr. ka |error,% | extr.
1/6 |1.8731| 1.7 3.2354] 6.0 3.7950f1 1.0
1/16(1.8559| 1.0 3.1407| 2.8 3.8231| 0.2
1/32]1.8516| 0.6 1.8372(3.0920 D 3.0405]/32.8327| 0.03 |3.8377
1/6411.8475] 0.3 1.8435]3.0755] 9.7 3.0670
exact 1.8k12 3.0542 3.8317
Table 2, Circular TM-nodes
Bree gy g Py
ka |error,” | extr, ka2 |error,% | extr. Ia |error,% | extr.
i/8 j2.3636| ©.9 3.Te37| 2.3 49739 3.1
1/156(2.3997| o©.25 3.307T1f 0.6 5.03G3] 1.0
1/3212.4032 o0.06 |2.h0s52|3.825k) ©.16 |3.0328(5.1229| 0.25 | 5.1h405
1/64% |2, 50k 0,017 ] 2.40ck9]5.8302] 0.04 | 3.8310
exact | . 2.5048 3.8317 5.1350

error is almost prorortional to h for TE-modes and proportional to n? for
T¥-modes. The lesser rate of convergence for TE-modes is probably due to
the more complicated boundary condition.

Figs. 3a and 3% show the error for different mesh sizes for the domi-
nant modes in ihe circular waveguide. For comparison, the results obtained
by Tavies and luilwyk are zlso shown. For the TE;IHHOde’ the existence of
the additional boundary points used in the present theory gives an accuracy
which, without these boundary noints, is otitained only after further 2-3
mesh-halvings. OSince each mesh-halving involves four times as many mesh
roints, both computing tire and core storape are significantly reduced.

Tor the TM.. -mode, the improvement of the accuracy is ever rore pronounced
because of the rore rapid convergence in this case. In fig. L the converg-
snce of a higher order mode is shown, namely the second order
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srror. TM, ,-mode in & circular waveguide. The re-
6| DM: Davies and Muilwyk e sui%s obtained by Beaubien and Wexler are
- ”:”“”“"m”.//ﬁ; shown, too, for comparison. Especially for
. ///’ small mesh lengths, the convergence is im-
proved. The increasing error (which is due
’ //// to the fact, that the correct value has been
BT g K passed) observed in the result by Beaubien
”,_ff""—ﬂ#—#‘ and Wexler is probably again due to their
0 ez e " npa less accurate fitting of the boundary.
Test computations for rectangular cross
Fig. 3a. Convergence, for sections give, as expected, results which are

cirecular TE..-mode Similar to those obtained by the two above-
11 mentioned methods.
The number of modes that can be determi-

error,
: ned by this method is limited by the avail-
g DMiRavies and Mulwk able computer core storage and the reoguired
KP : present method e 5
5 o accuracy. If about four modes are required,
i ///, ) the computing times per mode are roughly one
| /////’ minute for TE-modes and 20 sec. for TM-modes.
The computations have been made on an IBM
2 7094 computer and a maximum of about 10.000
' /////____,__,—EL“ locations have been used for the storage of
00 ez B 76  n2a  up to six modes,
Conclusion Using the method presented
Fig. 3b. Convergence, for here, 1t 1s possible to determine the domi-

circular THy,-mode  nant mode as vell as a number of the higher
order modes in waveguides of arbitrary cross

error, % section. The method requires little computer
time and the accuracy for cross sections with
BW: Beaubien and Wesxler L L, *
BT s nreneri wetiad f/ curved boundaries 1s i1mproved compared to

other methods. The limitation of the method
is that for the determination of a single
higher order mode, it is necessary to deter-
mine and store all lower order modes.
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Fig. 4. Convergence, for

circular TMll—mode
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