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Abstract Using a semi-discrete model that describes the heat transfer of a contin-
uous casting process of steel, this paper is addressed to an optimal control problem
of the continuous casting process in the secondary cooling zone with water spray
control. The approach is based on the Hamilton–Jacobi–Bellman equation satisfied
by the value function. It is shown that the value function is the viscosity solution
of the Hamilton–Jacobi–Bellman equation. The optimal feedback control is found
numerically by solving the associated Hamilton–Jacobi–Bellman equation through
a designed finite difference scheme. The validity of the optimality of the obtained
control is experimented numerically through comparisons with different admissible
controls. Detailed study of a low-carbon billet caster is presented.

Keywords Continuous casting · Viscosity solution · Hamilton–Jacobi–Bellman
equation · Finite difference scheme · Optimal feedback control

1 Introduction

Continuous casting is widely used in the steel industry for the casting of different
grades of steel. In the continuous casting process, the aim is to solidify molten steel
into a solid structure with as few defects as possible. A brief description of the process
is as follows. The molten steel arrives at the continuous caster in a ladle (see Fig. 1).
The ladle feeds the molten steel into the tundish, which acts as a reservoir of the
molten steel. The tundish feeds the mould with liquid steel through a stopper rod and
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Fig. 1 The continuous casting process

submerged entry nozzle (SEN) system. The primary extraction of heat occurs in the
water-cooled copper mould. Below the mould, heat is extracted from the strand by
means of the water spray. This region is known as the secondary cooling zone (SCZ).
In the SCZ, the strand is supported by rollers. After the SCZ, the strand cools off
naturally by the air in the radiation zone. After the radiation zone the strand is cut
and sent for further processing such as rolling into sheet metal.

The control of the temperature profile in the secondary cooling zone can con-
tribute to improving the quality of the cast product. However, it was observed in
Brimacombe [3] that improper cooling such as excessive reheating in the secondary
cooling zone severely contributes to crack formation on the surface and in the interior
of the strand. Therefore, one should require the water spray that, on the one hand,
make the temperature profile close to the desired profile as much as possible at the
end of the SCZ, and on the other hand, keep the changes of the temperature profile
in the SCZ in a reasonable scope to avoid the improper cooling.

This leads to the optimal control problem in the SCZ to be considered in this
paper. It is generally recognized that finding the closed-form solution to the optimal
feedback control for a nonlinear system is formidable. In contrast to the efforts in
analytic way, numerous works have been done for the numerical solution of opti-
mal control problems. Basically these are direct and indirect methods. The indirect
method gets the solution of optimal control problem by solving a two-point boundary
value problem given by the necessary conditions of optimality, usually the Pontryagin
maximum principle. However, the Pontryagin maximum principle usually gives only
the optimal control in open-loop form if it does exist. Moreover, the indirect method
that is mainly the multiple shooting method has happened the difficulty in “guess” of
the initial data [18]. For the direct method, its simplifying the original problem leads
to the fall of the reliability and accuracy [19], and exhibits a performance decay for
increasing problem size.
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Correspondingly, it has been realized from Pontryagin’s time that the value function
that satisfies some Hamilton–Jacobi–Bellman equation can give the optimal feedback
solution to the optimal control problem. The new difficulty is that the Hamilton–
Jacobi–Bellman equation may have no classical solution no matter how smooth
its coefficients are. The fundamental turn comes when the viscosity solution of the
Hamilton–Jacobi–Bellman equation was introduced in 1980s [7]: the value function
is the unique solution of the associated Hamilton–Jacobi–Bellman equation. Many
references for viscosity solution of Hamilton–Jacobi–Bellman equation are already
available in literature, which cover both finite-dimensional [1] and infinite-dimen-
sional optimal control problems [2,4,9,11,14]. Moreover, some substantial progresses
have been made for those algorithms of solving numerically the finite-dimensional
Hamilton–Jacobi–Bellman equations [5,6,8,20,21].

In this paper, we study an optimal control problem for the continuous casting
of steel via the viscosity solution approach. This leads to the numerical solution of
the optimal feedback control, which is different to the study in Miettinen et al. [15]
where the optimal control problem of continuous casting with non-differentiable
multi-objective optimization was investigated and solved by the interactive NIMBUS
method.

This paper is organized as follows. In the next section, Sect. 2, a brief overview of a
semi-discrete model developed in Guo et al. [10] with concrete boundary conditions
in different zones is presented, and an example of a low-carbon billet caster is given to
demonstrate numerical solutions of Eq. 2.4 that are needed for the numerical solution
of optimal control in Sect. 5. In Sect. 3, we formulate the optimal control problem in
the SCZ. The dynamic programming principle for the value function of the optimal
control problem is established. Section 4 is devoted to show that the value function
is just the viscosity solution of the corresponding Hamilton–Jacobi–Bellman equa-
tion, and the optimal feedback control is thereby formulated by the value function
under the smooth assumption. In the last section, Sect. 5, we design a finite differ-
ence scheme to the numerical solution of the associated Hamilton–Jacobi–Bellman
equation of the semi-discrete model, and numerical solutions of the optimal feedback
control are presented. Finally, the validity of the optimality of the obtained control is
experimented numerically through comparisons with other admissible controls and
trajectories.

2 Semi-discrete model

Suppose that the cross section of the billet is a rectangular � = [0, a] × [0, b] which
is moving along the z direction with a constant speed v. Let P = P(x, y, z) be the
temperature at the point (x, y, z). Set W(x, y, t) = P(x, y, z), z = vt. Then W satisfies
the following nonlinear heat conduction equation with boundary condition [12]:

ρ(W)[c(W) + Lf (W)]∂W
∂t

= div(K(W)∇W), (x, y) ∈ �, 0 ≤ t ≤ t∗,

−K(W)
∂W
∂n

= Q(x, y, t, W), (x, y) ∈ �,

W(x, y, 0) = Wmold,

(2.1)

where � is the boundary of �. c(W) denotes the specific heat, ρ(W) the density, and
K(W) the thermal conductivity. Wmold is the pouring temperature at the beginning
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of the mould, n the outward normal unity vector of � and t∗ = t1 + t2 + t3, where
vt1, v(t2 − t1), v(t∗ − t2) denote the length of the mould, the SCZ and the radiation
zone, respectively. L is the latent heat and f (W) is a function that describes the
solid-phase fraction variation with temperature. All these parameter functions are
assumed to be bounded, positive, and differentiable in W. Q is the heat flux on the
boundary [3]:

Q(x, y, t, W) =
Qt

[
−3(1 − cw)

2 + cw

(
rd − r

rd

)2

+ 3
2 + cw

]
, in the mould;

h(W − WH2O) + σε(W4 − W4
ext), in the SCZ;

σε(W4 − W4
ext), in the radiation zone,

(2.2)

where WH2O is the spray–water temperature, Wext the ambient spray zone temper-
ature, σ the Stefan–Boltzmann constant, ε the emission factor. h is the heat-transfer
coefficient which is determined by the water spray in the SCZ and hence is the real
control variable. cw is a constant representing the ratio of the heat flux in the corner
of the mould relative to the heat flux at the middle surface. rd is half of the width of
the mould. Qt is assumed to be [3]

Qt = 6(α − β
√

tc)
1 + 2ca

(
1 +

√
t
tc

(ca − 1)

)
, (2.3)

where α and β are constants, and tc is the dwell time in the mould. ca is the ratio of the
heat flux at the mould exit to the heat flux at the top level of liquid steel (meniscus)
in the mould. r = x at (x, 0, t) or (x, b, t) and r = y at (0, y, t) or (a, y, t).

Due to the symmetry of the cross section of the billet, only one quarter region
�0 = {(x, y)| 0 < x < a/2, 0 < y < b/2} is considered. Let us briefly overview the semi-
discrete modeling of the continuous casting [10]. Denote by Tij(t) = T(i	x, j	y, t) for
fixed 	x and 	y, 0 ≤ i ≤ m, 0 ≤ j ≤ n, m ≥ n. The following semi-discrete approxi-
mation Eq. of 2.1 was developed in Guo et al. [10]:

dT(t)
dt

= F(T(t))(AT(t) + BU(t)),

T(0) = g(Wmold),

(2.4)

where T = (T0, T1, . . . , Tn)T , Tj = (Tmj, T(m−1)j, . . . , Tjj, . . . , Tjn)T , j = 0, 1, 2, . . . , n,
U = (u1m, . . . , u10, u20, . . . , u2n)T ,

u1i(t) = Q(i	x, 0, t, g−(Ti0(t))),

u2j(t) = Q(0, j	y, t, g−(T0j(t))), (2.5)

i = 0, 1, . . . , m, j = 0, 1, . . . , n.

A =

⎛
⎜⎜⎜⎜⎝

A0 C0 0 · · · 0 0 0
B1 A1 C1 · · · 0 0 0

· · ·
0 0 0 · · · Bn−1 An−1 Cn−1
0 0 0 · · · 0 Bn An

⎞
⎟⎟⎟⎟⎠ , B =

⎛
⎜⎜⎝

B
0

· · ·
0

⎞
⎟⎟⎠ .
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And g− is the inverse function of the Kirchhoff transform [12]:

T = g(W) =
∫ W

W0
K(ρ)dρ (2.6)

for a given W0. F∗(Tj) = diag{F(Tij)}, F(T) = diag{F∗(Tj)} are diagonal matrices and

F(T) = K(g−(T))

ρ(g−(T))[c(g−(T)) + Lf (g−(T))] . (2.7)

For 1 ≤ j ≤ n − 1,

Aj = (− 2
	x2 − 2

	y2 )Im+n−2j+1 + [Aj1, Aj2],

Aj1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2
	x2 0 · · · 0 01,m−j+1

1
	x2 0 1

	x2 · · · 0 0
· · · · · · · · · · · · · · · · · ·

0m−j+1,1 0 0 · · · 1
	x2 0

0 0 0 · · · 0 1
	y2

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Aj2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01,m−j+2 0 0 · · · 0 0
0 0 0 · · · 0 0

· · · · · · · · · · · · · · · · · ·
1

	y2 0 0 · · · 0 0

0 1
	y2 0 · · · 0 0

1
	y2 0 1

	y2 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2

	y2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B =
⎛
⎜⎝

− 2
	y Im 0 0 0
0 − 2

	y − 2
	x 0

0 0 0 − 2
	x In

⎞
⎟⎠ ,

An = −( 2
	x2 + 2

	y2 )Im−n+1 +

⎛
⎜⎜⎜⎝

0 2
	x2 0 · · · 0 0 0

2
	x2 0 2

	x2 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 2

	x2 0

⎞
⎟⎟⎟⎠ ,

C0 =

⎛
⎜⎜⎜⎜⎜⎝

2
	y2 Im−1 0 0

0 2
	y2 0

0 0 0
0 2

	x2 0
0 0 2

	x2 In−1

⎞
⎟⎟⎟⎟⎟⎠ , Cj =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
	y2 Im−j−1 0 0

0 1
	y2 0

0 0 0
0 1

	x2 0
0 0 1

	x2 In−j−1

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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Bj =
⎛
⎜⎝

1
	y2 Im−j 0 0 0 0

0 1
	y2 0 1

	x2 0

0 0 0 0 1
	x2 In−j

⎞
⎟⎠ , Bn =

( 2
	y2 Im−n 0

0 2
	y2 0 2

	x2

)

where 0i,j stands for the entry 0 at the position (i, j) in the matrices, and Ik denotes the
k × k identity matrix.

It is seen that the Eq. 2.4 is a standard lumped control system with state variable T
and input U. This is one of the advantages of the semi-discrete model of continuous
casting process compared with the infinite-dimensional formulation (2.1). The control
variable U appears only in the SCZ. Specifically, in the mould,

u1i(t) = Qt

[
−3(1 − cw)

2 + cw

(
a/2 − i	x

a/2

)2

+ 3
2 + cw

]
,

u2j(t) = Qt

[
−3(1 − cw)

2 + cw

(
b/2 − j	y

b/2

)2

+ 3
2 + cw

]
,

i = 0, 1, . . . , m, j = 0, 1, . . . , n.

(2.8)

In the SCZ,

U = σε((g−(T0))
4 − W4

ext) + (g−(T0) − WH2O)h, h = (h1m, . . . , h10, h20, . . . , h2n)T ,

h1i(t) = h(i	x, 0, t), i = 0, 1, . . . , m,

h2j(t) = h(0, j	y, t), j = 0, 1, . . . , n.
(2.9)

Note that (g−(T0))
4 −W4

ext denotes the column vector ((g−(Ti0))
4 −W4

ext, (g
−(T0j))

4 −
W4

ext)
T . Therefore, in the SCZ, the Eq. 2.4 becomes

dT(t)
dt

= F(T(t))[AT(t) + Bσε((g−(T0(t)))4 − W4
ext)

+B(g−(T0(t)) − WH2O)h(t)] for almost all t ∈ (t1, t2),
T(t1) = S0,

(2.10)

where h is the control variable determined by the water spray in the SCZ. The g−(S0)

is the temperature profile of the end section of the mould. S0 can be found through
solving Eqs. 2.4 and 2.8 because the pouring temperature Wmold is usually known. In
the radiation zone,

U = σε((g−(T0))
4 − W4

ext).

For any bounded measurable function h, the solution to (2.10) is understood to be
the solution of the following integral equation [17], p. 345

T(t) = S0 +
∫ t

t1
F(T(ρ))[AT(ρ) + Bσε((g−(T0(ρ)))4 − W4

ext)

+B(g−(T0(ρ)) − WH2O)h(ρ)]dρ for all t ∈ [t1, t2].
(2.11)
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Proposition 1 For any bounded measurable h(·), the following two assertions hold.

(1) There exists a unique continuous solution T to Eq. 2.11 with respect to (t1, S0) in
[t1, t2].

(2) ‖T1(t) − T2(t)‖ ≤ C2

[
‖S1 − S2‖ + ∫ t2

t1
‖h1(ρ) − h2(ρ)‖dρ

]
for all t ∈ [t1, t2],

where C2 is a constant and Ti is the solution to (2.11) corresponding to hi and
initial condition Ti(t1) = Si, i = 1, 2.

Proof Under assumptions on these parameter functions of (2.1), for any fixed t, the
function on the right hand side of (2.10) is differentiable in T and is bounded in any
compact set of T and t ∈ [t1, t2]. It follows from Theorem 36 on p.347 and Proposition
C.3.4 on p.351 of Sontag [17] that (2.11) admits a unique local continuous solution.
A simple argument shows that this local solution can be expanded to the whole inter-
val [t1, t2]. This is (1). As for (2), by assumptions on these parameter functions of (2.1)
and (1), it is easy to get that

‖T1(t) − T2(t)‖ ≤ M1

(
‖S1 − S2‖ +

∫ t2

t1
‖h1(ρ) − h2(ρ)‖dρ

)

+M2

∫ t

t1
‖T1(ρ) − T2(ρ)‖dρ

for some constants Mi, i = 1, 2. The assertion (2) then follows from the Gronwall’s
inequality. �	

Now we use an example of a low-carbon billet caster to demonstrate numerical
solutions of Eq. 2.4 that are needed for the optimal control computation in Sect. 5.
The section is 10×10 cm2 and the length of the mould and the SCZ are 0.7 m and 5 m,
respectively.

Let W be the temperature profile as in Eq. 2.1, Wij(t) = W(i	x, j	y, t), i =
0, 1, . . . , m, j = 0, 1, . . . , n. Since we consider only one quarter of the section, we
can require that m	x = a/2, n	y = b/2. Let

W(t) = (W0(t), W1(t), . . . , Wn(t))T ,

Wj(t) = (Wmj(t), . . . , Wjj(t), . . . , Wjn(t))T , j = 0, 1, 2, . . . , n. (2.12)

Then Wj(t) denotes the temperature profile at these grid points of the jth layer of
the section at time t. For a one quarter of the section [0.5 cm] × [0.5 cm], we take
	x = 	y = 1 cm. Hence, m = n = 5 in (2.12). There are total of 36 grid points in the
region. The lowest temperature is the corner point W00 since the water sprays from
two sides to this point and the highest temperature is the center point W55 since it is
the center of the section. Other parameters are listed in Table 1.

Numerical solutions to (2.4) in the sequel are obtained by the classical Runge–
Kutta method for all 36 grid points, and all values of T are transformed back to W
through W = g−(T).

In order to solve numerically the Eq. 2.4, we need the nonlinear functions F(T)

in (2.7) and g(W) in (2.6). g(W) can be found by solving the following ordinary
differential equation

dT
dW

= K(W), T(W0) = 0 (2.13)
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Table 1 Parameters(=P-) used
for the numerical simulation

P- value P- value

a 0.1 m b 0.1 m
	x 0.01 m WH2o, Wext 25◦C

	y 0.01 m σ
5.67 × 10−8W

m2K4
t0 21 s ε 0.8
tf 171 s ca, cw 0.5
v 1/30 m/s α 968.1KW.m−2

β
80.1 KW

m2.s1/2
tc 21 s

W0 34.2860C Wm 1, 580◦C

Table 2 Look-up table for K
and H W[◦C] K[W/m◦C] H[J/m3]

34.286 60.0 1.0
502.9 – 2.0 × 109

708.5 31.85 3.14 × 109

800.0 25.38 4.257 × 109

900.0 26.488 –
1,000.0 27.596 5.0 × 109

1,200.0 – 6.0 × 109

1,300.0 30.92 –
1,400.0 – 6.857 × 109

1,508.6 33.23 7.286 × 109

1,554.3 202.38 9.571 × 109

1,600.0 205.44 9.857 × 109

and F(T) can be constructed using the enthalpy derivative-temperature relation and
the thermal conductivity-temperature relation.

F(T) = K(g−(T))

H′(g−(T))
, (2.14)

where H = H(W) = ∫W
W0 ρ(s)[c(s) + Lf (s)]ds is the enthalpy-temperature relation

of the steel in question. It is seen that in order to find g(W) and F(W), we need
K(W), H(W) that can be obtained through the look-up table (Table 2) and the inter-
polation. Obtained results for these functions are depicted in Fig. 2.

Figure 3 shows numerical solutions of the temperature profile in the mould. There
are total of 36 curves representing the temperature profile at 36 grid points. The lowest
curve represents the temperature change of the corner point in the mould and the top
curve represents the temperature change of the center point in the mould.

With T(t1) as the initial value for the SCZ, we can now solve the Eqs 2.10 and 2.9.
Figure 4 presents the temperature profile without control in the SCZ (i.e., h = 0) and
Figure 5 is the result when these components of the control h(t) are taken the function
of the following
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Fig. 2 Six functions required in the simulation
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Fig. 3 Temperature profile in the mould
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Fig. 4 Temperature profile in the SCZ for h = 0
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Fig. 5 Temperature profile in the SCZ for h given in (2.15)

h1i(t), h2j(t) =

700, 0.7 ≤ vt ≤ 1.7,
500, 1.7 < vt ≤ 2.7,
300, 2.7 < vt ≤ 3.7,
200, 3.7 < vt ≤ 4.7,
700, 4.7 < vt ≤ 5.7,

i = 0, 1, . . . , m, j = 0, 1, . . . , n. (2.15)

It is seen that when h = 0, the outer layer is reheated in the beginning of the SCZ.
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Fig. 6 ‖Wj − Wj−1‖2, j = 1, ..., 5 for h = 0
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Fig. 7 ‖Wj − Wj−1‖2, j = 1, ..., 5 for h given in (2.15)

When h is given as in (2.15), although the temperature of the outer layer decreases
at the beginning of the SCZ, it is reheated later in the SCZ. Their differences of the
temperature between connected different layers for both cases are shown in Figs. 6
and 7, respectively.
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3 Optimal control formulation and dynamic programming principle

In this section, we formulate an optimal control problem for the continuous casting,
which is motivated by avoiding the crack formation in the SCZ. By the transformation
W = g−(T) (see (2.6)), we can formulate the optimal control problem in the setting
of T. For a given ideal temperature profile W∗ = (W∗

0 , W∗
1 , . . . , W∗

n)T of a one quarter
end section of the SCZ, the optimal control problem is to find an optimal control
h∗ = (h∗

1m, . . . , h∗
10, h∗

20, . . . , h∗
2n)T such that

J(t1, S0, h∗) = inf
h(·)∈U(t1,t2)

J(t1, S0, h) (3.1)

subject to (2.10), where

J(t1, S0, h) =
∫ t2

t1

⎡
⎣‖h(t)‖2 +

n∑
j=1

max

(
Gj(g−(T(t))), 0

)⎤⎦dt + ‖g−(T(t2)) − W∗‖2

=
∫ t2

t1

⎡
⎣ m∑

i=0

h2
1i(t) +

n∑
j=0

h2
2j(t) +

n∑
j=1

max

(
Gj(g−(T(t))), 0

)⎤⎦dt

+
n∑

j=1

⎡
⎣ m∑

i=j+1

|g−(Tij(t2)) − W∗
ij|2 +

n∑
k=j

|g−(Tjk(t2)) − W∗
jk|2
⎤
⎦ (3.2)

with

Gj(g−(T(t)))

= ‖g−(Tj(t)) − g−(Tj−1(t))‖2 − cj

=
m∑

i=j

|g−(Tij(t)) − g−(Ti(j−1)(t))|2 + |g−(T(j−1)(j−1)(t)) − g−(Tjj(t))|2

+
n∑

k=j

|g−(Tjk(t)) − g−(T(j−1)k(t))|2 − cj, j = 1, 2, . . . , n, (3.3)

where cj > 0 are given constants.

U(t1, t2) = L∞(t1, t2; E), (3.4)

E = {h = (h1i, h2j)| 0 ≤ h1i ≤ d1i, 0 ≤ h2j ≤ d2j, i = 0, 1, 2, · · · , m,

j = 0, 1, 2, · · · , n
} ⊂ R

m+n+2,

where d1i, d2j are given constants.
Noteworthily,

∑n
j=1 max(Gj(g−(T(t))), 0) in the cost functional (3.2) can be under-

stood as a relaxed state constraint [16] and its function is to keep these differences
of temperature profiles between two connected layers be in a given scope as much as
possible.

Let 〈·, ·〉 denote the Euclidean inner product and ‖ · ‖ the inner product induced
Euclidean norm in Euclidean space of appropriate dimension. Let R

(m+1)(n+1) be the
state space. We say that h is an admissible control if h(·) ∈ U(t1, t2).
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It is seen that there are four objectives of the optimization problem formulated
above: (a) to control in an optimal manner the rapid reheating in the forepart of
the SCZ; (b) to make the temperature profile g−(T(t2)) of the end section of the
SCZ close to a desired temperature profile W∗ as much as possible; (c) to keep these
differences of temperature profiles between two connected layers in a given scope;
and (d) to keep the amount of water spray in a reasonable scope. These objectives
will guarantee to some extent that the quality problem such as crack formation both
in surface and interior of the strand does not occur.

Now define the value function as following

V(τ , S) = inf
h(·)∈U(τ ,t2)

J(τ , S, h) (3.5)

for all (τ , S) ∈ � = [t1, t2] × R
(m+1)(n+1). Here by J(τ , S, h), we understand to be the

cost functional (3.2) and (3.3) with (2.10) where the condition T(t1) = S0 is replaced
by T(τ ) = S and t1 is replaced by τ . U(τ , t2) is similarly defined as U(t1, t2).

Proposition 2 The value function V is continuous with respect to (τ , S) ∈ �.

Proof For any S1, S2 ∈ R
(m+1)(n+1), τ 1, τ 2 ∈ [t1, t2], and any given δ > 0, suppose τ 2, S2

are fixed. Let τm = max(τ 1, τ 2). By Proposition 1, one can find a smooth h ∈ U(t1, t2)
such that

V(τ 2, S2) ≥
∫ t2

τ 2

[
‖h(ρ)‖2+

n∑
j=1

max

(
Gj(g−(T2(ρ))), 0

)]
dρ+‖g−(T2(t2)) − W∗‖2 − δ,

where T2 is the solution to (2.11) produced by h and the initial condition T2(τ 2) = S2.
Suppose T1 is the solution to (2.11) produced by the same h and the initial condition
T1(τ 1) = S1. Then

V(τ 1, S1) − V(τ 2, S2)

≤
∫ t2

τ 1

[
‖h(ρ)‖2 +

n∑
j=1

max

(
Gj(g−(T1(ρ))), 0

)]
dρ + ‖g−(T1(t2)) − W∗‖2

−
∫ t2

τ 2

[
‖h(ρ)‖2 +

n∑
j=1

max

(
Gj(g−(T2(ρ))), 0

)]
dρ − ‖g−(T2(t2)) − W∗‖2 + δ

≤
∫ τ 2

τ 1
‖h(ρ)‖2dρ +

∫ τm

τ 1

n∑
j=1

max

(
Gj(g−(T1(ρ))), 0

)
dρ

+
∫ t2

τm

n∑
j=1

max

(
Gj(g−(T1(ρ))), 0

)
dρ + ‖g−(T1(t2)) − W∗‖2

−
∫ t2

τm

n∑
j=1

max

(
Gj(g−(T2(ρ))), 0

)
dρ − ‖g−(T2(t2)) − W∗‖2 + δ

≤
∫ t2

τm

[ n∑
j=1

Gj(g−(T1(ρ)))+|Gj(g−(T1(ρ)))|
2

− Gj(g−(T2(ρ)))+|Gj(g−(T2(ρ)))|
2

]
dρ

+M|τ 1 − τ 2| + ‖g−(T1(t2)) − W∗‖2 − ‖g−(T2(t2)) − W∗‖2 + δ (3.6)
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for some constant M. Since T1 is continuous, it follows that

T1(τ 2) − S2 = T1(τ 2) − T1(τ 1) + S1 − S2 → 0 as τ 1 → τ 2, S1 → S2.

By Proposition 1, it has

T1(t) − T2(t) → 0 for all t ∈ [τm, t2] as τ 1 → τ 2, S1 → S2.

This together with the dominant convergence theorem yields

limτ 1→τ 2,S1→S2 [V(τ 1, S1) − V(τ 2, S2)] ≤ 0.

The inverse inequality

limτ 1→τ 2,S1→S2 [V(τ 1, S1) − V(τ 2, S2)] ≥ 0

can be proved similarly. Therefore, V(τ , S) is continuous in (τ , S). The proof is com-
plete. �	

Theorem 1 [Dynamic Programming Principle] For any initial condition (τ , S) ∈ �

and r ∈ [τ , t2],

V(τ , S) = inf
h(·)∈U(τ ,r)

⎧⎨
⎩
∫ r

τ

[
‖h(t)‖2 +

n∑
j=1

max

(
Gj(g−(T(t))), 0

)]
dt + V(r, T(r))

⎫⎬
⎭ .

(3.7)

Proof First, by the definition of the value function (3.5), for any δ > 0 one can choose
an admissible control h1(·) ∈ U(r, t2) such that

∫ t2

r

[
‖h1(t)‖2 +

n∑
j=1

max

(
Gj(g−(T1(t))), 0

)]
dt +‖g−(T1(t2))−W∗‖2 ≤ V(r, T(r))+ δ

(3.8)
in which the state T is produced by the admissible control h ∈ U(τ , r) with initial
condition T(τ ) = S, and T1 is the state corresponding to h1(·) such that T1(r) = T(r).
Such a control h1(·) is called δ-optimal.

Define an admissible control h̃(·) ∈ U(τ , t2) by

h̃(t) =
h(t), τ ≤ t ≤ r,

h1(t), r < t ≤ t2

and let T̃(·) be the state corresponding to h̃(·). In view of (3.8), it has

V(τ , S) ≤ J(τ , S, h̃)

=
∫ t2

τ

[
‖h̃(t)‖2 +

n∑
j=1

max

(
Gj(g−(T̃(t))), 0

)]
dt + ‖g−(T̃(t2)) − W∗‖2

≤
∫ r

τ

[
‖h(t)‖2 +

n∑
j=1

max

(
Gj(g−(T(t))), 0

)]
dt + V(r, T(r)) + δ.
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Secondly, for the δ > 0, choose an admissible control h(·) ∈ U(τ , t2) such that for
any r ∈ [τ , t2],

δ + V(τ , S) ≥ J(τ , S, h)

=
∫ r

τ

[
‖h(t)‖2 +

n∑
j=1

max

(
Gj(g−(T(t))), 0

)]
dt + J(r, T(r), h)

≥
∫ r

τ

[
‖h(t)‖2 +

n∑
j=1

max

(
Gj(g−(T(t))), 0

)]
dt + V(r, T(r))

(3.7) thus follows from the arbitrariness of δ. �	

4 Hamilton–Jacobi–Bellman equation and viscosity solution

Starting from the dynamic programming principle, we can derive the associated
Hamilton–Jacobi–Bellman equation that is stated as Theorem 2 below.

Theorem 2 If V(τ , S) ∈ C1(�), then the value function V satisfies the Hamilton–
Jacobi–Bellman equation of the following:

−Vτ (τ , S) + H(τ , S, DSV(τ , S)) = 0, ∀ (τ , S) ∈ [t1, t2) × R
(m+1)(n+1),

V(t2, S) = ‖g−(S) − W∗‖2, ∀ S ∈ R
(m+1)(n+1),

(4.1)

in which the Hamiltonian H is given by

H(τ , S, DSV(τ , S))

= sup
h∈E

{ 〈
−F(S)

[
AS + Bσε((g−(S0))

4 − W4
ext) + B(g−(S0) − WH2O)h

]
, DSV(τ , S)

〉

−‖h‖2 −
n∑

j=1

max

(
Gj(g−(S)), 0

)}
, ∀ (τ , S, DSV(τ , S)) ∈ � × R

(m+1)(n+1),

(4.2)
where S = (S0, S1, . . . , Sn)T and DSV denotes the partial Fréchet gradient of V(τ , ·).
Proof For any 0 < δ < t2 − τ and any given constant control h ∈ E, by the dynamic
programming principle (3.7),

V(τ , S) ≤
∫ τ+δ

τ

[
‖h‖2 +

n∑
j=1

max

(
Gj(g−(T(t))), 0

)]
dt + V(τ + δ, T(τ + δ)),

where T is the state corresponding to h and initial condition T(τ ) = S. Therefore,

0 ≤ 1
δ

∫ τ+δ

τ

[
‖h‖2+

n∑
j=1

max

(
Gj(g−(T(t))), 0

)]
dt + V(τ + δ, T(τ + δ)) − V(τ , T(τ ))

δ
.

Letting δ → 0+ gives

−Vτ (τ , S) + H(τ , S, DSV(τ , S)) ≤ 0. (4.3)
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On the other hand, for any given η > 0, 0 < δ < t2 − τ and h ∈ E, by Proposition 1,
one can find a smooth ĥ(·) ∈ U(τ , t2) such that ĥ(τ ) = h and

V(τ , S) + ηδ ≥
∫ τ+δ

τ

[
‖ĥ(t)‖2 +

n∑
j=1

max

(
Gj(g−(T̂(t))), 0

)]
dt + V(τ + δ, T̂(τ + δ)),

where T̂(·) is the state corresponding to ĥ(·) and the initial condition T̂(τ ) = S.
Therefore,

η ≥ 1
δ

∫ τ+δ

τ

[
‖ĥ(t)‖2 +

n∑
j=1

max

(
Gj(g−(T̂(t))), 0

)]
dt

+V(τ + δ, T̂(τ + δ)) − V(τ , S)

δ

= 1
δ

∫ τ+δ

τ

[
‖ĥ(t)‖2 +

n∑
j=1

max

(
Gj(g−(T̂(t))), 0

)]
dt + Vτ (τ , S)

+
〈
DSV(τ , S),

1
δ

∫ τ+δ

τ

F(T̂(t))
[
AT̂(t) + Bσε((g−(T̂0(t)))4 − W4

ext)

+B(g−(T̂0(t)) − WH2O)ĥ(t)
]

dt
〉
+ 1

δ
o(|δ| + ‖T̂(τ + δ) − S‖)

≥ 1
δ

∫ τ+δ

τ

−H(t, T(t), DTV(t, T(t)))dt + Vτ (τ , S)

+1
δ

o(|δ| + ‖T̂(τ + δ) − S‖).

Letting δ → 0+ again yields −V(τ , S) + H(τ , S, DSV(τ , S)) ≥ −η and hence

−Vτ (τ , S) + H(τ , S, DSV(τ , S)) ≥ 0. (4.4)

The proof is then complete by combining (4.3) and (4.4). �	
Next, we give a sufficient condition of optimality.

Theorem 3 Let Y ∈ C1(�) satisfy (4.1) and let V be the value function. Then

(1) Y(τ , S) ≤ V(τ , S), ∀(τ , S) ∈ �.
(2) If there exists a h∗(·) ∈ U(t1, t2) such that

〈
F(T∗(t))

[
AT∗(t)+Bσε((g−(T∗

0 (t)))4−W4
ext)+B(g−(T∗

0 (t))−WH2O)h∗(t)
]

,

DSY(t, T∗(t))
〉
+ ‖h∗(t)‖2 +

n∑
j=1

max

(
Gj(g−(T∗(t))), 0

)

= −H(t, T∗(t), DSY(t, T∗(t))), (4.5)
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which, in usual way, one writes

h∗(t) ∈ arg inf
h∈E

{〈F(T∗(t))
[AT∗(t) + Bσε((g−(T∗

0 (t)))4 − W4
ext)

+B(g−(T∗
0 (t)) − WH2O)h

]
, DSY(t, T∗(t))

〉+ ‖h‖2+
n∑

j=1

max

(
Gj(g−(T∗(t))), 0

)}
,

(4.6)
for almost all t ∈ [t1, t2], where T∗ is the state corresponding to h∗ and initial condition
T∗(t1) = S0, then h∗(·) is an optimal control.

Proof For any h(·) ∈ U(τ , t2), using the dynamic programming Eq. 4.1, we have

Y(t2, T(t2)) = Y(τ , S) +
∫ t2

τ

[
∂

∂τ
Y(t, T(t)) +

〈
dT(t)

dt
, DSY(t, T(t))

〉]
dt

= Y(τ , S) +
∫ t2

τ

[
∂

∂τ
Y(t, T(t)) + 〈F(S)

[AS + Bσε((g−(S0))
4 − W4

ext)

+B(g−(S0) − WH2O)h
]
, DSY(t, T(t))

〉]
dt

≥ Y(τ , S) −
∫ t2

τ

[
‖h(t)‖2 +

n∑
j=1

max

(
Gj(g−(T(t))), 0

)]
dt. (4.7)

Hence Y(τ , S) ≤ J(τ , S, h) and (1) follows.
For the second assertion, let h∗(·) ∈ U(t1, t2) satisfy (4.5). Substitute (h∗(·), T∗(·))

into (4.7) to get an equality. In particular, Y(t1, S0) = J(t1, S0, h∗). By (1), V(t1, S0) =
J(t1, S0, h∗), which shows that h∗(·) is an optimal control. The proof is complete. �	
Proposition 3 (1) The sufficient condition of optimality (4.5) is also necessary if the
value function V is smooth. Therefore (T∗(·), h∗(·)) is an optimal control-trajectory pair
if and only if

Vt(t, T∗(t)) + 〈F(T∗(t))
[AT∗(t) + Bσε((g−(T∗

0 (t)))4 − W4
ext)

+B(g−(T∗
0 (t)) − WH2O)h∗(t)

]
, DSV(t, T∗(t))

〉
+‖h∗(t)‖2 +

n∑
j=1

max

(
Gj(g−(T∗(t))), 0

)
= 0 for almost all t ∈ [t1, t2].

(4.8)

(2) Let V be the value function. Then for any control-trajectory pair (h∗(·), T∗(·)),
T∗(t1) = S0, the function

t → V(t, T∗(t)) −
∫ t2

t

⎡
⎣‖h∗(ρ)‖2 +

n∑
j=1

max

(
Gj(g−(T∗(ρ))), 0

)⎤⎦dρ (4.9)

is nondecreasing on [t1, t2]. Moreover, (h∗(·), T∗(·)) is an optimal control-trajectory pair
if and only if the above function is constant on [t1, t2].
Proof This proof is standard and we omit the details here. �	

Now we give a definition of viscosity solution to the Hamilton–Jacobi–Bellman
equation (4.1).
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Definition 1 Let u(τ , S) ∈ C(�). We say that
(1) u is a viscosity supersolution to the first equation of (4.1) in � if

−ϕτ (τ , S) + H(τ , S, DSϕ(τ , S)) ≥ 0

for any ϕ ∈ C1(�) such that u−ϕ has a local minimum, relative to � at S ∈ R
(m+1)(n+1).

(2) u is a viscosity subsolution to the first equation of (4.1) in � if

−ϕτ (τ , S) + H(τ , S, DSϕ(τ , S)) ≤ 0

for any ϕ ∈ C1(�) such that u−ϕ has a local maximum, relative to � at S ∈ R
(m+1)(n+1).

(3) u is a viscosity solution to the first equation of (4.1) in � if it is simultaneously
a viscosity subsolution and supersolution in �.

Theorem 4 The value function V is a viscosity solution of the Hamilton–Jacobi–Bell-
man equation (4.1) in �.

Proof Let ϕ ∈ C1(�) and (τ , S) ∈ � be a local maximum point of V − ϕ. Let h ∈ E
be an arbitrary constant control and T be the state corresponding to h and initial
condition T(τ ) = S. Then for any given δ > 0, (r, T(r)) ∈ B((τ , S), δ), the ball centered
at (τ , S) with radius δ in �, for all sufficiently small r. Hence

ϕ(τ , S) − ϕ(r, T(r)) ≤ V(τ , S) − V(r, T(r))

for all r small enough. By the dynamic programming principle (3.7), we get

ϕ(τ , S) − ϕ(r, T(r)) ≤
∫ r

τ

[
‖h‖2 +

n∑
j=1

max

(
Gj(g−(T(t))), 0

)]
dt.

Divide by r − τ > 0 on both sides above and let r → τ , to obtain

−ϕτ (τ , S) − 〈F(S)
[AS + Bσε((g−(S0))

4 − W4
ext) + B(g−(S0) − WH2O)h

]
, DSϕ(τ , S)

〉
≤ ‖h‖2 +

n∑
j=1

max

(
Gj(g−(S)), 0

)
.

This shows that

−ϕτ (τ , S) + H(τ , S, DSV(τ , S)) ≤ 0

for any h ∈ E. Therefore, V is a viscosity subsolution to (4.1) in (τ , S) ∈ �.
Next assume that (τ , S) ∈ � is a local minimum point of V − ϕ, that is, for a given

δ > 0, V(τ , S) − V(r, T(r)) ≤ ϕ(τ , S) − ϕ(r, T(r)) for all (r, T(r)) ∈ B((τ , S), δ). For any
given ρ > 0 and h ∈ E, by the dynamic programming principle (3.7) and Proposition 1,
there exists a smooth h ∈ U(τ , t2) depending on ρ and r such that h(τ ) = h and

V(τ , S) ≥
∫ r

τ

[
‖h(t)‖2 +

n∑
j=1

max

(
Gj(g−(T(t))), 0

)]
dt + V(r, T(r)) − rρ,

where T is the state corresponding to h and initial condition T(τ ) = S. Therefore,

ϕ(τ , S) − ϕ(r, T(r)) ≥
∫ r

τ

[
‖h‖2 +

n∑
j=1

max

(
Gj(g−(T(t))), 0

)]
dt − rρ.
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Divide by r − τ > 0 and let r → τ to get

−ϕτ (τ , S) − 〈F(S)
[AS + Bσε((g−(S0))

4 − W4
ext) + B(g−(S0) − WH2O)h

]
, DSϕ(τ , S)

〉
≥ ‖h‖2 +

n∑
j=1

max

(
Gj(g−(T(τ ))), 0

)
− ρ.

Since ρ is arbitrary, the last inequality reads

−ϕτ (τ , S) + H(τ , S, DSV(τ , S)) ≥ 0,

that is, V is a viscosity supersolution to (4.1). Therefore, V is a viscosity solution to
(4.1) in �. The proof is complete. �	

To end this section, let us go back to the argumentation of optimality conditions.
It is well-known that the assertion (1) of Proposition 3 will lead to the classical veri-
fication theorem, which plays an important role in testing the optimality for a given
control-trajectory pair, and more importantly, in constructing the optimal feedback
control [22]. In fact, suppose the value function V(τ , S) is smooth, then V(τ , S) is a
classical solution to the Hamilton–Jaconbi–Bellman equation claimed by Theorem 2:

−Vτ (τ , S) + H(τ , S, DSV(τ , S)) = 0.

Hence the optimality condition (4.8) is equivalent to (4.5). It is noted that (4.5) says
that h∗(·) ∈ U(t1, t2) is an optimal control with the the initial state S0 if and only if
(4.6) holds, and (4.6) is the formula of finding the optimal feedback control.

However, (4.6) is true only when the value function is differentiable. This is not
true usually. Nevertheless, it is our basis of numerical solution to the optimal feedback
control discussed in the next section.

5 Finite difference scheme for the numerical solution of optimal feedback control

In this section, we use the viscosity solution approach to get numerical solutions of
the optimal feedback control, one of the main tasks of this paper.

The first step is to discretize the Hamilton–Jacobi–Bellman equation (4.1). To do
this, let τj = t2 + j	τ , j = 0, 1, . . . , N where 	τ = (t1 − t2)/N and N is an integer. For
given η > 0, we approximate the Fréchet partial derivative as the following:

〈DSV(τ , S), f 〉 =
〈
DSV(τ , S), η

f
‖f‖

〉 ‖f‖
η

≈
[

V
(

τ , S + η
f

‖f‖
)

− V(τ , S)

] ‖f‖
η

, (5.1)

where f = f (h, S) = −F(S)
[AS + Bσε((g−(S0))

4 − W4
ext) + B(g−(S0) − WH2O)h

]
. Let

f j
i = f (hj

i , S(i)) and fi = f (h, S(i)). For the initial state S(0) = S0 set

S(i) = S(i−1) + fi−1

‖fi−1‖η, i = 1, 2, . . . , M. (5.2)
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Approximate the Hamilton–Jacobi–Bellman (4.1) by the difference scheme, to
obtain [8]

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Vj+1
i − Vj

i

	τ
+ Vj

i − Vj
i−1

η
‖f j

i ‖ + ‖hj
i‖2 +

n∑
p=1

max

(
Gp(g−(S(i))), 0

)
= 0,

hj+1
i = arg inf

h∈E

{Vj+1
i − Vj+1

i−1

η
‖fi‖ + ‖h‖2 +

n∑
p=1

max

(
Gp(g−(S(i))), 0

)} (5.3)

for all i = 1, 2, · · · , M and j = 0, 1, · · · , N, where Vj
i ≈ V(τj, S(i)). Moreover, we

assume the following condition that is a sufficient condition for the stability of the
above difference scheme (5.3) [13]

|	τ |
η

max
1≤i≤M

‖fi‖ ≤ 1. (5.4)

Summarizing, we have the following difference algorithm of solving the Hamilton–
Jacobi–Bellman equation.

Algorithm of solving the Hamilton–Jacobi–Bellman equation.
Step 1 initialization. Set

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V0
i = V(t2, S(i)) = ‖g−(S(i)) − W∗‖2, S(i) = S(i−1) + fi−1

‖fi−1‖η,

h0
i ∈ arg inf

h∈E

{‖g−(S(i)) − W∗‖2 − ‖g−(S(i−1)) − W∗‖2

η
‖fi‖

+‖h‖2 +
n∑

p=1

max

(
Gp(g−(S(i))), 0

)}
, i = 1, 2, . . . , M.

(5.5)

Here the formula for h0
i comes from

h(t) ∈ arg inf
h∈E

{
〈f (h, T(t)), DSV(t, T(t))〉 + ‖h‖2 +

n∑
p=1

max

(
Gp(g−(T(t))), 0

)}
.

(5.6)
Step 2 iteration By (5.3),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vj+1
i = (1 − 	τ

η
‖f j

i‖)Vj
i + 	τ

η
‖f j

i‖Vj
i−1 − 	τ‖hj

i‖2

−	τ

n∑
p=1

max

(
Gp(g−(S(i))), 0

)
,

hj+1
i = arg inf

h∈E

{Vj+1
i − Vj+1

i−1

η
‖fi‖ + ‖h‖2 +

n∑
p=1

max

(
Gp(g−(S(i))), 0

)}
(5.7)

for all i = 1, 2, . . . , M and j = 0, 1, . . . , N − 1.
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From (5.6), the optimal feedback control is

h∗
S0(t) ∈ arg inf

h∈E

{
〈f (h, T∗(t)), DSV(t, T∗(t))〉

+ ‖h‖2 +
n∑

p=1

max

(
Gp(g−(T∗(t))), 0

)}
.

(5.8)

where T∗(·) is the optimal trajectory of the system with initial condition T∗(t1) = S0.
Since (5.8) involves T∗, finding the solution of (2.10) is necessary. In this paper, the
solution of (2.10) is found numerically by the classical Runge–Kutta method.

The steps below give the procedure of finding the optimal feedback control.

Steps of finding the optimal feedback control
Step 1 Call the algorithm of solving the Hamilton–Jacobi–Bellman equation to

get the feedback control function h(t1). Substitute (h(t1), S(0)) into (2.10) to get
the optimal trajectory T∗(�1) where �1 = t1 + 	�, 	� = (t2 − t1)/J for the given
integer J.

Step 2 Replace T∗(�1) as the initial data S(0) in the first step, and call the algorithm
of solving the Hamilton–Jaconbi–Bellman equation again to get the feedback control
function h(�1). Substitute (h(�1), T∗(�1)) into (2.10) to get the optimal trajectory
T∗(�2), �2 = t1 + 2	�.

Step 3 Repeat the above process until we get all feedback control functions h(�k)

and corresponding optimal trajectory T∗(�k), �k = t1 + k	�, k = 0, 1, . . . , J, that is to
say,

h∗
S0(t) =

{
h(t1), h(�1), h(�2), . . . , h(t2)

}
(5.9)

which is the optimal feedback control.
Now we are in a position to find numerical solutions of the optimal control prob-

lem (3.1), (2.10), and (3.2) based on the scheme (5.5), (5.7) and the classical Runge–
Kutta method. All parameters needed in the computation are listed in the Table 1. In
addition, let

c1 = 4.427 × 105, c2 = 3.0829 × 105,
c3 = 1.2743 × 105, c4 = 6.6941 × 104,
c5 = 1.4287 × 104

(5.10)

and d1i, d2j = 700, the maximal value of control given by (2.15). The temperature
profile at t2 = 171s under the control (2.15) is considered as the ideal temperature
profile W∗. As in Sect. 2, m = n = 5.

The computation is performed in Visual C++ 6.0 and numerical results are plotted
by MATLAB 6.1. Figure 8 shows the obtained optimal feedback control at total 11
grid points: (h∗

1i(t), h∗
2j(t)), i, j = 0, 1, 2, 3, 4, 5, 21 ≤ t ≤ 171 (notice that h10 and h20

are corresponding to the same grid point). Under this optimal control, we get the
corresponding optimal temperature profile W∗∗ = g−(T∗) of the SCZ that is plotted
as Fig. 9. Figure 10 presents these differences of temperature between connected
different layers. From these two figures, we can see that the reheating on the forepart
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Fig. 11 Several different arbitrarily chosen admissible controls
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Table 3 Different admissible
controls h and their
corresponding costs J

Case of h Corresponding J

Case 1 25032343.051020
Case 2 34980529.161010
Case 3 25179601.149153
Case 4 56672703.455952
Case 5 40723454.557675
Case 6 24165907.148881
Case 7 25318719.513016
Case 8 53515593.114259
Case 9 23830013.958020

of the SCZ is effectively restrained and these temperature differences of different
layers remain at most in a scope as Fig. 6 where no control is imposed.

The remaining part is the numerical experiment of checking the optimality of
numerical solutions of the obtained optimal feedback control. This is done by com-
paring the cost functional J(t1, S0, h∗) of the obtained optimal control-trajectory pair
with J(t1, S0, h) corresponding to the arbitrarily chosen admissible control h and its
associated trajectory, that is to say, we want to know if the following inequality holds
true

J(t1, S0, h∗) ≤ J(t1, S0, h). (5.11)

Figure 11 lists different admissible controls including that in (2.15), which is
represented as case 8. We compute all corresponding cost functionals J(t1, S0, h).
The computed results are listed in the Table 3. It is seen from Table 3 that for the opti-
mal feedback control h∗, J(t1, S0, h∗) = 23830013.958020 (labeled as case 9), which is
evidently less than other cost functionals J(t1, S0, h). From these comparisons, it seems
that we do get numerical solutions of the optimal feedback control for the continuous
casting of steel.
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