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ABSTRACT

Caldwell and Chiu [1, 2] have used a simple front-fixed method, namely,
the Heat Balance Integral Method (HBIM), to solve one-phase solidification
problems. In this paper the method is extended to two-phase Stefan prob-
lems which arise when the effect of sub-cooling is taken into consideration.
Numerical results for the two-phase cylindrical problem are obtained for a
range of sub-divisions (n), sub-cooling parameters (0), Stefan number (a)
and ratio of conductivities (/<i/%2). The effects of variation of parameters
on the solidification process are also studied.

INTRODUCTION

Melting and solidification problems occur in numerous important areas of
science, engineering and industry. For example, freezing and thawing of
foods, production of ice, ice formation on pipe surface, solidification of steel
and chemical reaction all involve either a melting or solidification process.
Mathematically, melting/solidification problems are special cases of mov-
ing boundary problems. Problems in which the solution of a differential
equation has to satisfy certain conditions on the boundary of a prescribed
domain are referred to as boundary-value problems. In the cases of melt-
ing/solidification problems, however, the boundary of the domain is not
known in advance, so the solution of melting/solidification problems re-
quires solving the diffusion or heat-conduction equation in an unknown re-
gion which has also to be determined as part of the solution.

Moving boundary problems are often called Stefan problems with ref-
erence to early work of J. Stefan, who arround 1890 was interested in the
melting of the polar ice cap. There exists only few exact solutions to the
melting/solidification problems, and existing closed form solutions to these
significant problems are highly restrictive as to allowable initial conditions
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and boundary conditions. So numerical solution becomes the main tool in
the study of the moving boundary problems. Two conditions are needed in
order to solve the moving boundary problems, one to determine the bound-
ary itself and the other to complete the definition of the solution of the
differential equation.

In this paper, we shall consider the numerical solutions of two-phase Ste-
fan problems in cylindrical and spherical geometries using the Heat Balance
Integral Method (HBIM) of Goodman [3] and Bell [4, 5].

PROBLEM FORMULATION

The governing equations for two-phase Stefan problems are similar to those
for one-phase problems. However, we have to distinguish the temperature
in the liquid phase from the temperature in the solid phase. In the following
formulae, 7\ and T<2 represent the temperature in the liquid phase and solid
phase respectively.

£> r AT ~\
;>o (i)

Z>0 (2)

Ti-Tj, r = R(t), t > 0, and 7\ = T,, r = a, Z > 0

T2 = To, r>5(0, t > 0, and T2 = 7>, r = R(t), t>Q

and for the moving boundary and the solid-liquid interface, we have

(3)

< 2 , , _
-i \- A2 % = Lpi (4)dr dr dt

where /3 — 0, 1 or 2 depending on the geometry of the problem, and repre-
sents solidification process in planes, infinite cylinders and spheres.

Heat balance integral method
Since we have to solve two partial differential equations in the two-phase
problem, we have to employ two sets of sub-divisions, one for the solid region
and one for the liquid region (in our formulation we use R and S respectively
for this purpose). In each region, we sub-divide the temperature range into
n equal intervals and use a linear approximation profile at each interval as
in the case of one-phase problems (see Figure 1). The above set of partial
differential equations can then be reduced to a system of ordinary differential
equations.

—
~dt
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Note that we have two very important parameters in this system of ODEs;
where a — L/c(Tf — Tg) is the Stefan number and </> = (To — T/)/(7/ — 7^)
is the sub-cooling parameter. The two-phase Stefan problem reduces to a
one-phase problem when we set <f> = 0 (the system of ODEs decouples to
two systems of ODEs). When solving this system of ODEs, we are mainly
interested in the position of the phase change front R(t) = Rn and the heat
front

Cylindrical solidification
For the cylindrical case (see Figure 2), we set f3 = I and the system of
ordinary differential equations becomes,

(2Ri+i+.
•tti + l — Hi -Ki + 2

(2(1 Rn — Rn-l Si — SQ

v^^j-ri ' •-'3 j"-'j-i-1 ' v-^j-hi ' ""];*-'] — r» o o
oj + 1 - -Jj ^; + 2 -

We need a special starting solution for the initial conditions in order to solve
the system of ODEs. The method of obtaining such a solution is to assume
in the initial small time period Ri(t) and Si(t) have the following forms,

Ri(t) = a + 7\î /̂  4- ri^t 4- n,3̂  4- • • •

and then substitute the above series into the system of ODEs and equate
the coefficents of like powers of t (see Foots [6]). This results in a system
of non-linear algebraic equations for which we can solve to determine the
values of Ri and Sj.

Spherical solidification
For the spherical case, we set j3 = 2 and the system of ordinary differential
equations becomes,
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(3(1

, + ̂ ) ̂ -+i + (5j+i + 2̂ +1̂ - + 3^) 5"; =
V 5";+2 -

12K2^_i

The procedure for solving this problem is the same as for the two-phase
cylindrical problem described in the last section.

NUMERICAL RESULTS

Numerical results for the two-phase cylindrical problem are presented in
Figures 3-10 for a range of sub-divisions (n), sub-cooling parameters (</>),
Stefan numbers (a) and the ratio of conductivities KI/K^- By changing one
of the parameters while keeping the others constant we can study the effect
of varying the parameters on the solidification process. For each parameter
which we consider, we present two graphical results. One of them shows
the effect of varying parameters on the position of phase change front R(i)
and the other shows the effect on the heat front S(i).

Number of sub-divisions (n)
The number of sub-divisions which we use can have a great effect on the
accuracy of the results. However, Figure 3 shows that for the phase change
position R(t), the results for n = 4 are almost indistinguishable from the
results for n = 16. On the other hand, from Figure 4 we can see that the
convergence of the heat front S(t) is much slower. The curve for n = 16 is
not very close to the curve for n — 8.

Sub-cooling parameter (</>)
Figures 5 and 6 show the effect of different sub-cooling parameters (</>) on
the movement of phase change position and heat front. It is very clear
that the sub-cooling parameter (0) has a great effect on the phase change
position. In Figure 5, the curve q> — 0 corresponds to the case of zero sub-
cooling (i.e. one-phase problem). From the graphs we can see that large
values of (/) can slow the solidification process substantially (the curves are
flatter). On the other hand, the effect on the heat front is much smaller as
the curves are much closer in Figure 6.

Stefan number (a)
Figures 7 and 8 show that the effect of the Stefan number (a) on the solid-
ification process is similar to that of the sub-cooling parameter (</>). Large
values of Stefan number will slow down the movement of the phase change
position R(t). On the other hand, the heat front position S(t) is almost
unaffected by the Stefan number.
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Ratio of conductivities
Figures 9 and 10 demonstrate the effect of the ratio of conductivities
A large value of this ratio will speed up the movement of the phase change
position while the effect on the heat front position is small.

SUMMARY AND COMMENTS

Our numerical experiments for two-phase Stefan problem show that the so-
lidification process can be affected by the physical parameters. The effects
mainly appear in the movement of the solid-liquid interface, whereas the ef-
fect on the heat front position is relatively small. We have to mention that
the results for the position of heat front may not be the same order of accu-
racy as those for the phase change position. This is because we have used
the same number of sub-divisions for both regions. Further improvments
on the method can be made by using different numbers of sub-divisions for
two different regions.

The simple method described in this paper can also be used in real
life applications. For example, in the design of water/oil pipes and tanks,
cylindrical or spherical geometries are the most common shapes used.
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Figure 1: Sub-division of the region for HBIM
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Figure 2: Cylindrical solidification
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Figure 3: Effect of number of sub-divisions (n) on R(i).
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Figure 4: Effect of number of sub-divisions (n) on S(i).
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Figure 5: Effect of sub-cooling parameter (<£) on R(t).
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Figure 6: Effect of sub-cooling parameter (<f>) on
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Figure 7: Effect of Stefan number (a) on J?(t).
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Figure 8: Effect of Stefan number (a) on 5(t).
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Figure 9: Effect of ratio of conductivities on R(t).
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Figure 10: Effect of ratio of conductivities on
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