
Nonlinear Analysis: Modelling and Control, 2007, Vol. 12, No. 1, 45–63

Numerical Solutions for Micropolar Transport
Phenomena over a Nonlinear Stretching Sheet

R. Bhargava1, S. Sharma1, H. S. Takhar2, O. A. Bég3, P. Bhargava4

1Department of Mathematics, Indian Institute of Technology, Roorkee, India
2Department of Engineering, Manchester Metropolitan University

Manchester, M1 5GD, England, UK
3 Fire Safety Engineering Science Program

Leeds College of Building, Leeds Metropolitan University
North Street, Leeds, LS2 7QT, England

obeg@lcb.ac.uk; docoabeg@hotmail.com
4Department of Civil Engineering, Indian Institute of Technology, Roorkee, India

Received:06.06.2006 Revised:30.10.2006 Published online: 29.01.2007

Abstract. We present a numerical study for the steady, coupled, hydrodynamic, heat and
mass transfer of an incompressible micropolar fluid flowing over a nonlinear stretching
sheet. The governing differential equations are partially decoupled using a similarly
transformation and then solved by two numerical techniques – the finite element method
and the finite difference method. The dimensionless translational velocity,microrotation
(angular velocity), temperature and mass distribution function are computed for the
different thermophysical parameters controlling the flow regime, viz thenonlinear
(stretching) parameter,b, Grashof number,G and Schmidt number,Sc. All results are
shown graphically. Additionally skin friction and Nusselt number, which provide an
estimate of the surface shear stress and the rate of cooling of the surface, respectively,
are also computed. Excellent agreement is obtained between both numerical methods.
The dimensionless translational velocity (f ′) for both micropolar and Newtonian fluids
is shown to decrease with an increase in nonlinear parameterb. Dimensionless micro-
rotation (angular velocity),g, generally increases with a rise in nonlinear parameterb (in
particular in the vicinity of the wall) and decreases with a rise in convective parameter,
G. The effects of other parameters on the flow variables are also discussed. The flow
regime has significant applications in polymer processing technology andmetallurgy.

Keywords: micropolar fluid, nonlinear stretching sheet, materials processing, boundary
layers, numerical solutions, convective heat and mass transfer, Prandtl number, Schmidt
number, Grashof number.

Nomenclature

Roman

Cf skin friction coefficient cp specific heat at constant pressure
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f dimensionless stream function T temperature
g dimensionless microrotation u velocity along thex-axis
ge gravitational acceleration v velocity along they-axis
G Grashof number D stretching factor
j micro-inertia density Vσ suction velocity
N microrotation x distance along the sheet
Pr Prandtl number y distance normal to the sheet
Sc Schmidt number s surface parameter
p pressure b nonlinear (stretching) parameter
q surface heat flux

Greek

η similarity variable γ micropolar parameter
µ dynamic viscosity θ dimensionless temperature
ν kinematic viscosity β coefficient of thermal expansion
νs microrotation/spin-gradient viscosity φ dimensionless mass transfer
ρ density of the fluid λ suction parameter
κ coupling coefficient ψ stream function

Subscripts

w surface conditions ∞ conditions far away from the surface

1 Introduction

In numerous industrial transport processes, convective heat and mass transfer takes place
simultaneously. Phenomena involving stretching sheets feature widely in for example,
aerospace component production metal casting [1]. In such processes metals or alloys
are heated until molten, poured into a mould or die, and liquid metal is subsequently
stretched to achieve the desired product. When the super heated melt issues from the
dies it loses heat and contract as it cools, a stage in metallurgical processing referred to
as liquid state contraction. With further cooling and the loss of latent heat of fusion,
the atoms of the metallic alloy lose energy and are bound tightly together in a regular
structure. The mechanical properties of the final product depend to a great extent on the
heat and mass transfer phenomena, the cooling rate, surfacemass transfer rate etc. Much
numerical research has been conducted in metal sheet flows including studies by Lait et
al. [2], Goldschmit et al. who examined viscoplastic metal flows [3], Goldschmit [4] who
provides a finite element methodology for general metal flow forming, and more recently
by Cavaliere et al. [5].

Some other important industrial applications of stretching sheet transport phenomena
are the extrusion of a polymeric sheet from a die or the drawing of plastic films [6]. During
the manufacture of these sheets, the melt issues from a slit and is subsequently stretched to
achieve the desired thickness. The mechanical properties of the final product are strongly
influenced by the stretching rate and on the rate of cooling, both parameters which can be
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controlled by engineers. Polyester being a flexible material can tolerate filament surface
stretching during the course of ejection; therefore the surface velocity deviates from being
uniform. A linear stretching rate is all the more desirable,however in practice the stret-
ching rate is observed to change during the process and is therefore generally nonlinear.
Such extensional polymeric flows have attracted considerable attention in mathematical
and experimental rheology since the 1960s. Ballman [7] considered the stretching flow of
a Polystyrene melt. Ziabicki [8] provided a classical treatise on the physical mechanisms
of polymer fiber flow dynamics in extensional sheet and other industrial flows. Denn
and Marrucci [9] considered the stretching flow of viscoelastic suspensions with applica-
tions in plastics manufacturing. Denson [10] studied the stretching regime in polymeric
processing. Newtonian stretching flows have also been studied in detail. Sakiadis [11]
initiated the study of boundary layer flows over a continuoussolid surface moving with
constant speed for viscous fluids. Due to entrainment of ambient fluid, the situation
represents a different class of boundary layer problem, which has a solution substantially
different from that of boundary layer flow over a semi-infinite flat plate. For a Navier-
Stokes (viscous) fluid, the heat and mass transfer on a stretching sheet with suction
or blowing was investigated by Gupta and Gupta [12]. Variousscenarios in thermo-
convective heat and mass transfer for stretching flows were subsequently discussed by
many researchers. Surma Devi et al. [13] reported on numerical (finite difference so-
lutions) for the transient three-dimensional boundary layer flow caused by a stretching
surface. Chen and Char [14] studied the convection flow past astretching surface with
transpiration (wall mass flux) effects. Kumari et al. [15] modeled the hydromagnetic
convection from a stretching surface with prescribed wall temperature/heat flux surface
conditions using the Keller-Box numerical method. Surma Devi et al. [16] considered the
momentum and heat transfer on a stretching sheet, presenting finite difference computa-
tions. Takhar and Nath [17] studied the three-dimensional flow due to a stretching flat
surface with transient effects using shooting methods. They [18] extended this analysis
to consider for the first time, rotational and magnetic body force effects on transient flow
over a stretching surface. Takhar et al. [19] more recently analyzed the flow dynamics and
species mass transfer in a stretching sheet with chemical reaction and magnetic retardation
effects, using the Blottner difference scheme.

All the above investigations were restricted to Newtonian or non-Newtonian (vis-
coelastic or power-law type) fluids. In many environmental and industrial flows the
classical theory of Newtonian fluids is unable to explain themicrofluid mechanical cha-
racteristics observed.Micropolar fluids are fluids with microstructure belonging to a class
of complex fluids with nonsymmetrical stress tensor referred to asmicromorphic fluids.
Physically they represent many industrially important liquids consisting of randomly-
oriented particles suspended in a viscous medium. The classical theories of continuum
mechanics are inadequate to explicate the microscopic manifestations of such complex
hydrodynamic behaviour. Eringen [20] presented the earliest formulation of a general
theory of fluid microcontinua taking into account the inertial characteristics of the sub-
structure particles, which are allowed to sustain rotationand couple stresses. Later Erin-
gen [21] generalized the theory to incorporate thermal effects in the so-called thermomi-
cropolar fluid. The theory of micropolar fluids and its extension, the thermomicropolar
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fluid constitute suitable non-Newtonian hydrodynamic and thermo-hydrodynamic models
which can simulate the flow dynamics of colloidal fluids, liquid crystals, polymeric sus-
pensions, haemotological fluids etc. Many numerical studies of micropolar heat and mass
transfer have been communicated in the literature. Hassanien and Gorla [22] investigated
the heat transfer to a micropolar fluid from a nonisothermal stretching sheet with suction
and blowing. Flow over a porous stretching sheet with strongsuction or injection was
examined by Kelson and Farell [23]. Physically these investigations were confined to the
linearly stretching sheet case. In certain polymeric processes nonlinear stretching effects
are important. In metallurgical process the nonlinear velocity of a metal stream has to
incorporated into models to provide a realistic computation. High velocity streams are
erosive in nature and likely to dislodge particles of mould material. They are also likely
to cause penetration of the metal in to mould material when they impinge upon it. On
the other hand low velocity streams are more susceptible to aspiration and less likely to
completely fill the mould cavity. Industrially therefore a moderate velocity is chosen to
yield the desired characteristics. Drawing of plastic filmsand artificial fibers, are other
applications of nonlinear stretching flows.

The purpose of the present investigation is therefore to study the coupled fluid flow,
heat and mass transfer phenomena over a stretching sheet with nonlinear velocity, for
micropolar fluids. Such a study has not been reported earlier in the literature and is
important in non-Newtonian materials processing. It constitutes the first study to the
author’s knowledge of free convective flow withheat and mass transfer in micropolar
nonlinear stretchingflow regimes. The governing system of conservation equations is
reduced to a coupled, multiple-degree system of nonlinear differential equations, which
are solved by using the finite element method and also a finite difference method. Graphs
are plotted for dimensionless translational velocity, micro-rotation (angular velocity),
temperature and mass transfer function for various values of the nonlinear stretching
parameter, Grashof number and Schmidt number. We also compute dimensionless wall
shear stress function and heat transfer rate, demonstrating excellent agreement between
the two numerical schemes employed.

2 Mathematical model

Consider an isothermal, steady, laminar, incompressible micropolar fluid flowing over
a surface coinciding with the platey = 0, the flow being confined in the regiony >

0. Two equal and opposite forces are introduced along thex-axis so that the surface is
stretched keeping the origin. The physical regime is illustrated in Fig. 1. The governing
conservation equations, assuming thermal equilibrium canbe cast as follows:

∂u

∂x
+
∂u

∂y
= 0 (mass), (1)

u
∂u

∂x
+ v

∂u

∂y
=

(

ν +
κ

ρ

)∂2u

∂y2
+
κ

ρ

∂N

∂y
+ geβ(T − T∞) (momentum), (2)
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u
∂N

∂x
+ v

∂N

∂y
= −

κ

ρj

(

2N +
∂u

∂y

)

+
νs

ρj

∂2N

∂y2
(angular momentum), (3)

ρcp

(

u
∂T

∂x
+ v

∂T

∂y

)

= kf
∂2T

∂y2
+ α∗

(∂T

∂x

∂N

∂y
−
∂T

∂y

∂N

∂x

)

(energy (heat)), (4)

ρcp

(

u
∂CA

∂x
+ v

∂CA

∂y

)

= kg
∂2CA

∂y2
(diffusion (species)), (5)

whereCA is the concentration of the microconstituent present in theflow. The thermal
diffusivity kf in equation (4) and molecular diffusivitykg in equation (5) are assumed
constant. Using the boundary layer concept, the effect of∂N

∂x in the momentum equation
is negligible in comparison to the effect of∂N

∂y . It is similar to the fact that momentum
equation for the velocityv in they direction has been ignored.

Fig. 1. Physical regime.

Similar considerations have been employed successfully byKelson and Farell [23] and
Bhargava et al. [24].The corresponding boundary conditions are given by

y=0: u(x, 0)=Dxb, v(x, 0)=0, N(x, 0)=−s
∂u

∂y
, T =Tw, CA =CAw

, (6a)

y → ∞ : u→ ∞, N → 0, T → T∞, CA → CA∞
. (6b)

HereCAw
> CA∞

, the transfer of species is occurring due to convection fromthe surface
to the full stream fluid. A linear relationship between microrotation functionN and
surface shear(∂u

∂y ) is chosen for investigating the effect of different surfaceconditions
for the microrotation. Heres is the boundary parameter and varies from0 to 1. The first
boundary condition (s = 0) is a generalization of the no-slip condition, which requires
that the fluid particles closest to the solid boundary stick to it neither translating nor
rotating. The second boundary condition i.e. microrotation is equal to the fluid vorticity
at the boundary (s 6= 0), implies that in the neighborhood of a rigid boundary, the effect
of microstructure is negligible since the suspended particles can not get closer to the
boundary than their radius. Hence in the neighborhood of thefluid shear and therefore
the gyration vector must be equal to fluid vorticity.
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3 Transformation of model

Introducing the dimensionless functions,f(η) andg(η), such that the continuity equation
is automatically satisfied and choosing the similarity transformation as given by Vajravelu
[25].

η = y

√

D(b+ 1)

2ν
x(b−1)/2, u = Dxbf ′(η),

v = −

√

D(b+ 1)ν

2
x(b−1)/2

(

f +
b− 1

b+ 1
ηf ′

)

, N =

√

D3(b+ 1)

2ν
x(b−3)/2g(η),

θ(η) =
T − T∞

Tw − T∞
, φ(η) =

CA − CA∞

CAw
− CA∞

,

(7)

where prime denotes differentiation with respect toη. The governing equations (2) to (5)
are then reduced to the following set of nonlinear, coupled ordinary differential equations.

(1 +R)f ′′′ +Rg′ +
2

b+ 1
Gθ −

2b

b+ 1
f ′

2
+ ff ′′ = 0, (8)

−
2

b+ 1
R(2g + f ′′) +Ag′′ +A1

(3b− 1

b+ 1
f ′g − g′f

)

= 0, (9)

θ′′ + Pr (fθ′ − α1gθ
′) = 0, (10)

φ′′ + Sc (fφ′) = 0. (11)

The corresponding boundary conditions (6) reduce to:

f(0) = 0, f ′(0) = 1, g(0) = −sf ′′(0), θ(0) = 1, φ(0) = 1, (12a)

f ′(∞) = 0, g(∞) = 0, θ(∞) = 0, φ(∞) = 0, (12b)

whereR = k
µ , A = Dxb−1ρj

µ , A1 = vsk
ρjνµ2 are the physical micropolar parameter,G =

geβ(Tw−T∞)
D2x2b−1 is the local Grashof number i.e. convective parameter.b = 1 correspond

to the linear stretching sheet. The parametersA andG correspond to local effects i.e
pertaining to specific values ofx. Similar studies were made by Kelson and Desseaux [26]
and have been adopted in the present analysis. Equation (9) is therefore also an ordinary
differential equation.Pr =

ρcpν
kf

is the Prandtl number andSc =
ρcpν
kg

is the Schmidt
number. The shear stress at the surface of the sheet is definedas:

τw = −(µ+ k)
(∂u

∂y

)

y=0
= −Dµx(3b−1)/2f ′′(0)

√

D(b+ 1)

2ν
. (13)

The wall heat flux is computed using the following expression:

qw = −Kf

(∂T

∂y

)

y=0
= −Kf (Tw − T∞)

√

D(b+ 1)

2ν
x(b−1)/2θ′(0). (14)

The set of equations (8) to (11) are highly nonlinear and therefore the system cannot
be solved analytically. The finite element method and also a finite difference technique
have been used to solve the equations under the prescribed transformed boundary condi-
tions (12a), (12b); both methods will now be described.
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4 Numerical methods of solution

4.1 The finite element method

Finite element method is widely used for solving boundary value problems. The basic
concept is that the whole domain is divided in to smaller elements of finite dimensions
called “Finite Elements”. Thereafter the domain is considered as an assemblage of these
elements connected at a finite number of joint called “Nodes”. The concept of discretiza-
tion is adopted here. Other features of the method include seeking continuous polynomial,
approximations of the solution over each element in term of nodal values, and assembly
of element equations by imposing the inter-element continuity of the solution and balance
of the interelement forces. The method entails the following steps:

1. Division of the domain in to linear elements, called the finite element mesh.

2. Generation of the element equations using variational formulations.

3. Assembly of the element equations as obtained in steps (2).

4. Imposition of the boundary conditions to the equations obtained in (3).

5. Solution of the assembled algebraic equations.

The assembled equations can be solved by any of the numericaltechnique viz.
Gaussian elimination. An important consideration is that of shape functionswhich are
employed to approximate actual functions. For one-dimensional and two-dimensional
problems, the shape functions can be linear/quadratic and higher order. However the
suitability of the shape functions varies from problem to problem. Due to the simple
and efficient use in computations, linear as well quadratic shape functions are used in
the present problem. However it is observed that the resultsdo not vary considerably
indicating that both elements provide approximately the same accuracy. The comparison
for both types of shape functions is given in the Table 1.

Table 1. Comparison of results with linear as well as quadratic elements

η h g θ

Linear Quadratic Linear Quadratic Linear Quadratic
1 1.00000 1.00000 0.17619 0.17616 1.00000 1.00003
2 0.48405 0.48407 0.08989 0.089889 0.03404 0.03406
3 0.18795 0.18799 0.04496 0.04496 0.00004 0.00005
4 0.07291 0.07294 0.02020 0.02021 0.00000 0.00000
5 0.02801 0.02805 0.00850 0.00853 0.00000 0.00000
6 0.01048 0.01048 0.00341 0.003471 0.00000 0.00000
7 0.00366 0.00364 0.00129 0.00127 0.00000 0.00000
8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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In our computations, the shape functions for a typical element (ηe, ηe+1) are taken
as: linear element

ψe
1 =

ηe+1 − η

ηe+1 − ηe
, ψe

2 =
η − ηe

ηe+1 − ηe
, ηe ≤ η ≤ ηe+1;

quadratic element

ψe
1 =

(ηe+1 + ηe − 2η)(ηe+1 − η)

(ηe+1 − ηe)2
, ψe

2 =
4(η − ηe)(ηe+1 − η)

(ηe+1 − ηe)2
,

ψe
3 = −

(ηe+1 + ηe − 2η)(η − ηe)

(ηe+1 − ηe)2
.

The general details of the steps employed in finite element analysis can be found in [27]
and are summarized in Fig. 2 below. To solve the differentialequations (8) to (11) with

Fig. 2. Finite element computation stages.

boundary condition (12), we assume:

f ′ = h. (15)

The system then reduces to:

(1 +R)h′′ +Rg′ +
2

b+ 1
Gθ −

2b

b+ 1
h2 + fh′ = 0, (16)

−
2

b+ 1
R(2g + h′) +Ag′′ +A1

(3b− 1

b+ 1
hg − g′f

)

= 0, (17)
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θ′′ + Pr(fθ′ − α1gθ
′) = 0, (18)

φ′′ + Sc(fφ′) = 0. (19)

The corresponding boundary conditions (12a), (12b) reduceto:

f(0) = 0, h(0) = 1, g(0) = −sf ′′(0), θ(0) = 1, φ(0) = 1, (20a)

h(∞) = 0, g(∞) = 0, θ(∞) = 0, φ(∞) = 0, (20b)

The whole domain is divided into eighty two-noded line elements, over each of the
element, finite element equations are derived.

Variational formulation. The variational form associated with equations (15) to (19)
over a typical linear element is given by

ηe+1
∫

ηe

w1(f
′ − h)dη = 0, (21)

ηe+1
∫

ηe

w2

(

(1 +R)h′′ +Rg′ +
2

b+ 1
Gθ −

2b

b+ 1
h2 + fh′

)

dη = 0, (22)

ηe+1
∫

ηe

w3

(

−
2

b+ 1
R(2g + h′) +Ag′′ +A1

(3b− 1

b+ 1
hg − g′f

)

)

dη = 0, (23)

ηe+1
∫

ηe

w4

(

θ′′ + Pr (fθ′ − α1gθ
′)

)

dη = 0, (24)

ηe+1
∫

ηe

w5

(

φ′′ + Sc (fφ′)
)

dη = 0, (25)

wherew1, w2, w3, w4 andw5 are arbitrary test function and may be viewed as the
variation inf, h, g, θ andφ respectively. All functions satisfy all homogeneous boundary
conditions, as per theoretical requirements.

Finite element formulation. As the domain is defined into two-noded elements, hence
the appropriate finite element approximation is assumed as

f =
2

∑

j=1

fjξj , g =
2

∑

j=1

gjξj , h =
2

∑

j=1

hjξj , θ =
2

∑

j=1

θjξj , ψ =
2

∑

j=1

ψjξj , (26)

wherewi = ξ1 for the first node andwi = ξ2 for the second node withi = 1, 2, 3, 4 and
5. Hereξj are the shape functions for the line element(ηe, ηe+1) and are taken as:

ξe
1 =

ηe+1 − η

ηe+1 − ηe
, ξe

2 =
η − ηe

ηe+1 − ηe
, (27)
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whereηe ≤ η ≤ ηe+1. The finite element model of the equations (21) to (25) for the
typical element is given by:













[K11] [K12] [K13] [K14] [K15]
[K21] [K22] [K23] [K24] [K25]
[K31] [K32] [K33] [K34] [K35]
[K41] [K42] [K43] [K44] [K45]
[K51] [K52] [K53] [K54] [K55]

























{f}
{h}
{g}
{θ}
{φ}













=













{r1}
{r2}
{r3}
{r4}
{r5}













, (28)

Here each[Kmn] is of the order2 × 2 and[rm] (m,n = 1, 2, 3, 4, 5) is of 2 × 1. These
matrices are defined as:

K11
ij =

ηe+1
∫

ηe

ξi
dξj

dη
dη, K12

ij =−

ηe+1
∫

ηe

ξiξjdη,

K13
ij = K14

ij = K15
ij = 0, K25

ij = 0,

K22
ij = (1 +R)

ηe+1
∫

ηe

dξi

dη

dξj

dη
dη,−

2b

b+ 1

ηe+1
∫

ηe

hξiξjdη +

ηe+1
∫

ηe

fξi
dξj

dη
dη,

K23
ij =

ηe+1
∫

ηe

ξi
dξj

dη
dη, K24

ij =
2

b+ 1
G

ηe+1
∫

ηe

ξiξjη,

K32
ij = −

2R

b+ 1

ηe+1
∫

ηe

ξi
dξj

dη
dη,

K33
ij = −A

ηe+1
∫

ηe

dξi

dη

dξj

dη
dη −

4R

b+ 1

ηe+1
∫

ηe

ξiξjdη

+A
3b− 1

b+ 1

ηe+1
∫

ηe

hξiξjdη −

ηe+1
∫

ηe

fξi
ξj

dη
dη,

K34
ij = K35

ij = K41
ij = K42

ij = K43
ij = 0, K51

ij = K52
ij = K53

ij = K54
ij = 0,

K44
ij =

ηe+1
∫

ηe

{

−
dξi

dη

dξj

dη
+ Pr ξif

dξj

dη
− Pr α1ξig

dξj

dη

}

dη,

K45
ij = K51

ij = K52
ij = K53

ij = K54
ij = 0,

K55
ij =

ηe+1
∫

ηe

{

−
dξi

dη

dξj

dη
+ Sc ξif

dξj

dη

}

dη,

(29a)
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r1i = 0, r2i = −
(

ξi
dh

dη

)ηe+1

ηe

, r3i = −A
(

ξi
dg

dη

)ηe+1

ηe

,

r4i = −
(

ξi
dθ

dη

)ηe+1

ηe

, r5i = −
(

ξi
dφ

dη

)ηe+1

ηe

,

(29b)

wheref =
∑2

j=1 fjξj , h =
∑2

j=1 hjξj .. The systems of equations after assembly of
the elements are nonlinear therefore an iterative scheme isused to solve it. The system
is linearized by incorporating the known functionf andh. The whole domain is divided
in to a set of80 line elements. Each element matrix is of the order10 × 10. Thus after
assembly of all the elements equations we obtained a matrix of order405 × 405. For the
computational purposeη = ∞ has been fixed as8. If η = ∞ is taken to be more than8,
all the unknown functions do not change up to the desired accuracy.

4.2 Finite difference method

For comparison purposes the same system of equations (15)–(19), subject to boundary
conditions (20) are solved numerically using the finite difference method. This method
is used for solving ordinary as well as partial differentialequations governing boundary
value problem as well as initial value problem. This method can be explained briefly the
following Fig. 3:

Fig. 3. Finite element computation stages.

By using the central difference formulae, the set of equations (15)–(19), can be written
as:

hi =
fi+1 − fi

2he
, (30)

55



R. Bhargava, S. Sharma, H. S. Takhar, O. A. Bég, P. Bhargava

2(1 +R)
hi+1 − 2hi + hi−1

he2
+R

gi+1 − gi1

2he

+
2

b+ 1
Grθi −

2b

b+ 1
h2

1 + fi
hi+1 − hi1

2he
= 0, (31)

−
2

b+ 1
R

(

2gi +
hi+1 − hi−1

2he

)

+A
gi+1 − 2gi + gi1

he2

+A1

(3b− 1

b+ 1

fi+1 − fi−1

2he
gi −

gi+1 − gi−1

2he
fi

)

= 0, (32)

θi+1 − 2θi + θi−1

he2
+ Pr

(θi+1 + θi1

2he
− α1gi

θi+1 + θi−1

2he

)

= 0, (33)

φi+1 − 2φi + φi−1

he2
+ Sc

(φi+1 + φi1

2he

)

= 0, (34)

wherehe is the step length. Since the above equations are non-linearand coupled hence
they cannot be solved exactly. Therefore an iterative scheme is required to be used.
Writing down the equations in the form:

xi = F (l1, l2, . . . , ln), (35)

where eachli is the function of the variablefi, hi, gi, θi andxi is any of the variable
fi, hi, gi, θi. Similarly equations are formulated for each variable of the equations
(30)–(34). Commencing with the initial guess values, new iterate values are obtained.
This process continues until the absolute error|xi − xi−1| is less than the accuracy
required. The condition of convergence of the scheme has been already checked before
implementing the iterative scheme. Following equation (35), the equations (30)–(34) can
be written as follows:

fi+1 = hi2he + fi+1, (36)

hi =
hi+1 + hi−1

2
+

Rhe

1 +R

gi+1 − gi1

4
+

he2

R+ 1
Gθi

−
bhe2

(b+ 1)(1 +R)
h2

1 + fi
(hi+1 − hi1)he

1 +R
= 0, (37)

gi = −
Rhe

(b+ 1)A

(

2gi +
hi+1 − hi−1

2he

)

+
gi+1 − gi−1

A
+
A1he

A

(3b− 1

b+ 1

fi+1 − fi−1

2he
gi −

gi+1 − gi−1

2he
fi

)

, (38)

θi = (θi+1 − θi−1) + Pr
he

4

(

fi
θi+1 + θi−1

2he
− α1gi

θi+1 + θi−1

2he

)

(39)

φi = (φi+1 − φi−1) + Sc
he

4

(

fi
φi+1 + φi1

2he

)

. (40)

The boundary conditions are presented as:

f1 = 0, h1 = 0, g1 = 0, θ1 = 0, φ1 = 0, (41a)

h81 = 0, g81 = 0, θ81 = 0, φ81 = 0, (41b)
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The system of equations (36) to (40) with the boundary conditions (41) has been solved
iteratively and the results obtained are compared with those obtained by FEM.

5 Results and discussion

The variation of the skin friction and heat transfer with respect to convective parameter
G, surface parameters, Prandtl numberPr, and nonlinear parameterb are depicted in
Table 2. It can be seen that the skin friction coefficient−f(0)′′, increases with increase
in s, nonlinear parameter and Prandtl number while it decreaseswith buoyancy parameter
(G). The rate of heat transfer,−θ(0)′, increases with higher values ofb and Prandtl
number and it decreases with an increase in convective parameterG.

Table 2. Table for skin friction−f ′′(0) and the rate of heat transfer−θ′(0) with
different value of surface parameters, Grashof numberG, Prandtl numberPr and

the nonlinear parameterb

s = 0.5, b = 5.0, P r = 1.0 G = 0.5, s = 0.5, P r = 1.0

G −f ′′(0) −θ′(0) b −f ′′(0) −θ′(0)

0.0 1.61543 0.888812 1 −1.14311 1.512
0.5 1.36225 0.957716 2 −0.079178 1.8979
1.0 1.4997 1.01151 3 1.04799 2.27862
5.0 −0.066952 1.28827 5 2.05701 2.66449

10.0 −1.14311 1.5124 10 2.8866 3.0489

G = 0.5, b = 5.0, P r = 1.0 G = 0.5, b = 5.0, s = 0.5

s −f ′′(0) −θ′(0) Pr −f ′′(0) −θ′(0)

0.0 1.2076 1.7363 0.4 1.1829 0.526316
0.25 1.2800 1.06991 0.733 1.3056 0.783232
0.5 1.36225 0.95776 1.0 1.36225 0.95776
0.75 1.45669 0.83748 4.0 1.5247 2.2057
1.0 1.56676 0.70884 7.0 1.5588 2.96119

Comparison between the finite element and finite difference solutions is illustrated
in Table 3, where fors = 0.5, Pr = 7, b = 0.5, Sc = 1.0, G = 0.5 we have compared
profiles ofh, g andθ with η coordinate. Excellent correlation is demonstrated between
the two numerical methods. We observe thath (dimensionless translational velocity),g
(dimensionless micro-rotation) andθ (dimensionless temperature) all decrease continu-
ously from a peak value of unity atη = 0 to a minimum value atη = 8. In addition
we have computed these profiles using both linear and quadratic elements with the finite
element program, again for arbitrary values of the thermophysical parameters and observe
very little difference in the computations.

In the graphs provided, the dimensionless velocity, microrotation, temperature and
mass transfer functions are computed for fixed value of Prandtl numberPr, material
parameterα1, surface parameters, and physical micropolar parameters,A andA1, which
are taken as7.0, 1.0, 0.5, 1.0 and 1.0 respectively, while the effect of other important
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parameters namely,nonlinear parameter,b, Grashof number,G and Schmidt number,Sc,
have been studied explicitly. These functions are shown in Figs. 4, 5.

Table 3. Comparison of the results (FEM – finite element Vs, FDM – finite difference).

s = 0.5, P r = 7., b = 0.5, Sc = 1.0, G = 0.5

η h g θ

FEM FDM FEM FDM FEM FDM
0 1.0 1.0 0.302512 0.302342 1.0 1.0
1 0.526108 0.526407 0.142686 0.142234 0.476286 0.476458
2 0.258348 0.258276 0.074133 0.074120 0.161974 0.161546
3 0.117828 0.117336 0.036948 0.036406 0.045465 0.045873
4 0.050599 0.050213 0.017178 0.017012 0.011584 0.011256
5 0.020490 0.020034 0.007547 0.007850 0.002806 0.002560
6 0.007551 0.007201 0.003131 0.003251 0.000645 0.00084
7 0.002152 0.002104 0.001103 0.001428 0.000124 0.00000
8 0 0 0 0 0 0

Fig. 4 illustrates the variation of dimensionless translational velocity, microrotation,
temperature and mass transfer (concentration) functions with nonlinear parameterb. Pro-
files are depicted both forR = 0 andR 6= 0. R = 0 corresponds to the Navier-
Stokes viscous fluid, which was considered by Vajravelu [25]. Fig. 4(a) demonstrates
the variation of velocity with the parameterb, where velocity decreases asb increases. It
is found that the translational velocity for a Newtonian fluid is less than that for micro-
polar fluids. The results forb = 1 correspond to alinear stretching sheet, for which
the lowest translational velocities are observed. Fig. 4(b) shows the variation of the
microrotation function,g, with b. It is clear from the figure that microrotation function
first increases near the boundary asb increases, but away from the boundary a reverse
pattern is observed. Fig. 4(c) depicts the variation of temperature function,θ, with b.
Temperature for Newtonian flow is less than the micropolar fluids for b = 1 i.e. the
linear stretching case. However forb = 5 the temperature values are almost identical
for both Newtonian (R = 0) and micropolar (R = 0.5) cases. For the highest value
of b (strong nonlinear stretching) we observe a reversal from thelinear case (b = 1),
wherein micropolar fluid temperature (R = 0.5) is less than Newtonian fluid temperature.
This indicates that with strong nonlinear stretching micropolar fluids achieve a decrease
in temperature compared to Newtonian fluids, which may be beneficial in temperature
control of polymer stretching processes. Generally asb rises the temperature increases
with an increase in the nonlinear stretching parameterb. Fig. 4(d) shows the effect of the
stretching parameter,b, on mass transfer function,φ, for the case of a micropolar fluid
(R = 0.5). Mass transfer function,φ, clearly increases markedly with a rise inb; as
expected fast stretching therefore enhances mass transfer. All profiles descend smoothly
from unity at the wall to zero in the free stream (far from the wall). Furthermore the
variation in all above functions becomes less pronounced for largeb values. This is due
to the fact that the coefficient2b

b+1 , 1
b+1 in the differential equations (8) and3b−1

b+1 in (9)
approaches to2, 0 and3 respectively asb approaches infinity, which is true for real flows
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as the stretching parameter cannot be too large i.e. must have a limiting value.

(a) (b)

(c) (d)

Fig. 4. Velocity (a), microrotation (b), temperature (c), mass transfer(d) for differentb
(s = 0.5, P r = 7, G = 5, Sc = 1, R = 0.5).

Fig. 5 illustrates the variation of dimensionless translational velocity, microrota-
tion, temperature and mass transfer functions withη for various Grashof numbers,G.
Fig. 5(a) demonstrates the variation of the velocity distribution with the free convective
parameter,G. It is observed that velocity continuously increases with an increase in the
Grashof numberG, which implies an increase in the boundary layer thickness.Veloc-
ity is observed to be a maximum near the boundary and decreases far away from the
boundary. For moderate value ofG the velocity profile changes its nature; it exhibits a
steep behaviour and decreases as Grashof number decreases.Increasing buoyancy (i.e.
G values) therefore enhance the velocity values i.e. accelerate the flow. Fig. 5(b) shows
the variation of the microrotation distribution,g, which continuously decreases with an
increase in the Grashof number,G. For large values of the convective parameter,G,
near the boundary, microrotation is negative (i.e. forG = 20), whereas away from
the boundary it becomes positive and finally descends to zero. Thus large convection
effects produce a reverse rotation only near the boundary. All microrotation profiles for
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G = 0.5, 1, 10 and20, converge atη ∼ 3 and tend to zero. The temperature distribution,
θ, with η, is shown in Fig. 5(c).θ increases continuously with an increase in the value
of the Grashof number,G. The convective parameter has thus an important role in
controlling the temperature. As in many metallurgical processes [1], temperature rises
to a great value (during intermediate stages), and there is aneed of maintain appropriate
temperatures, which can be achieved using convective (buoyancy) effects. Lower Grashof
numbers therefore depress temperatures throughout the flowregime. In Fig. 5(d) we
observe that the mass transfer function,φ, is increased slightly with a rise in convection
parameter,G. Hence the largest values ofφ correspond toG = 20, and these decrease
asG falls to10, 1 and0.5. Mass transfer therefore may also be inhibited by reducing the
Grashof number,G, in practical applications.

(a) (b)

(c) (d)

Fig. 5. Velocity (a), microrotation (b), temperature (c), mass transfer(d) for differentG
(s = 0.5, P r = 7, b = 5, Sc = 1, R = 0.5).

Finally in Fig. 6 we have illustrated the profile of mass transfer function,φ, with η
coordinate for various Schmidt numbers,Sc. All profiles descend smoothly from unity
at the wall (η = 0) to zero in the free stream (η = 8). A rise in Sc from 0.5 through
1, 2, 3 to 5 induces a considerable reduction inφ values indicating that mass transfer is

60



Numerical Solutions for Micropolar Transport Phenomena

reduced in the micropolar fluid with higherSc values. For higherSc values, the profiles
also descend much faster to zero; this descent becomes more gradual asSc decreases in
value.

Fig. 6. Mass transfer for different Schmidt numberb (s = 0.5, P r = 7, b = 5,
G = 5, R = 0.5).

6 Conclusions

1. The dimensionless translational velocity,f ′, for both micropolar and Newtonian
fluids decreases with an increase in nonlinear parameterb, although values for micro-
polar fluids are consistently higher. For micropolar fluids (using in our computations,
R = 0.5), f ′ increases with an increase in the convective parameterG, while it.

2. Dimensionless micro-rotation (angular velocity),g, generally increases with a rise
in nonlinear parameterb (in particular in the vicinity of the wall) and decreases with
a rise in convective parameter,G (again most notably in the vicinity of the wall).
With considerable distance from the wall (η > 3), G however has negligible effect
on micro rotation profiles.

3. Convective parameter,G i.e. Grashof number, can be used effectively for controlling
the temperature field.

4. Dimensionless temperature,θ for both micropolar and Newtonian fluids, increases
with an increase in nonlinear parameter,b. For micropolar fluids our results indicate
thatθ increases with a rise in convective parameter,G.

5. Dimensionless mass transfer function,φ, for micropolar fluids, increases generally
with an increase in nonlinear parameter,b and also with an increase in convective
parameter,G; howeverφ decreases with a rise in Schmidt number.

6. Skin friction numerically increases with an increase in surface parameters, Prandtl
numberPr and nonlinear parameterb, while decreases with increase in convective
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parameterG, indicating that these parameters accelerate the flow regime. Thus drag
forces can be reduced by an increase in the free convection parameter,G.

7. Heat transfer rate increases with an increase in convective parameterG, nonlinear
stretching parameter,b, and also Prandtl number. The increase in heat transfer rate
indicates a fast cooling of the plate. However a rise in surface parameter,s, is shown
to decrease the heat transfer rate markedly.
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