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We implement relatively new analytical technique, the Homotopy perturbation method, for
solving nonlinear fractional partial differential equations arising in predator-prey biological
population dynamics system. Numerical solutions are given, and some properties exhibit
biologically reasonable dependence on the parameter values. And the fractional derivatives are
described in the Caputo sense.

1. Introduction

Recently, it has turned out that many phenomena in engineering, physics, chemistry, other
sciences [1–3] can be described very successfully by models using mathematical tools form
fractional calculus, such as anomalous transport in disordered systems, some percolations
in porous media, and the diffusion of biological populations. But most fractional differential
equations [4, 5] do not have exact analytic solutions [6, 7]. An effective method for solving
such equations is needed. So approximate and numerical techniques must be used. The
Homotopy Perturbation Method (HPM) is relatively new approach to provide an analytical
approximation to nonlinear problem. This method was first presented by He [8, 9] and
applied to various nonlinear problems [10–12]. Recently, the application of the method is
extended for fractional differential equations [13–15].

Biological population problems are widely investigated in many papers [16–19].
Dunbar [20] establishes the existence of traveling wave solutions for two reaction diffusion
systems based on the Lotka-Volterra model for predator and prey interactions, and discusses
some possible biological implications of the existence of these waves. Gourley and Britton
[21] investigate stability of coexistence steady-state and bifurcations of a predator-prey
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system in the form of a coupled reaction-diffusion equations. Petrovskii et al. [22] obtained
an exact solution of the spatiotemporal dynamics of a predator-prey community by using
an appropriate change of variables, and the properties of the solution exhibit biologically
reasonable dependence on the parameter values. Kadem and Baleanu [23] studied the
coupled fractional Lotka-Volterra equations using the Homotopy perturbation method.

We consider two-species competitive model with prey population A and predator
population B. For prey population A → 2A, at rate a, a > 0 represents the natural birth
rate. For predator population B → 0, at rate c > 0, c denotes the natural death rate. The
interactive term between predator and prey population is A + B → 2B, at rate b > 0,
parameter b denotes the competitive rate. According to a widely accepted knowledge of
fractional calculus and biological population, the time-fractional dynamics of a predator-prey
system can be described by the equations

∂αu

∂tα
=

∂2u

∂x2
+
∂2u

∂y2
+ au − buv, u(x, 0) = ϕ(x),

∂βv

∂tβ
=

∂2v

∂x2
+
∂2v

∂y2
+ buv − cv, v(x, 0) = φ(x),

(1.1)

where t > 0, x, y ∈ R, a, b, c > 0, and u(x, y, t) denotes the prey population density and
v(x, y, t) represents the predator population density, ϕ(x), φ(x) denote initial conditions of
population system; the nonlinear equation of this type has wide applications in the fields of
population growth. The derivatives in (1.1) is the Caputo derivative.

In this paper, we consider the fractional nonlinear predator-prey population model.
and the paper is organized as follows: in Section 2, a brief review of the theory of fractional
calculus will be given to fix notation and provide a convenient reference. In Section 3,
we extend the application of the homotopy perturbation method to construct approximate
solutions for the nonlinear fractional predator-prey system. In Section 4, we present three
examples with different initial conditions to the predator-prey system and show some
properties of this fractional nonlinear predator-prey system. Conclusions will be presented
in Section 5.

2. Fractional Calculus

There are several approaches to define the fractional calculus, for example, Riemann-
Liouville, Gruünwald-Letnikow, Caputo, and Generalized Functions approach. Riemann-
Liouville fractional derivative is mostly used by mathematicians but this approach is not
suitable for real world physical problems since it requires the definition of fractional order
initial conditions, which have no physically meaningful explanation yet. Caputo introduced
an alternative definition, which has the advantage of defining integer order initial conditions
for fractional order differential equations.

Definition 2.1. The Riemann-Liouville fractional integral operator Jα (α ≥ 0) of a function f(t)
is defined as

Jαf(t) =
1

Γ(α)

∫ t

0
(t − τ)α−1f(τ)dτ, (α ≥ 0), (2.1)
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where Γ(·) is the well-known gamma function, and some properties of the operator Jα are as
follows:

JαJβf(t) = Jα+βf(t),
(
α ≥ 0, β ≥ 0

)
,

Jαtγ =
Γ
(
1 + γ

)
Γ
(
1 + γ + α

) tα+γ , (
γ ≥ −1). (2.2)

Definition 2.2. The Caputo fractional derivativeDα of a function f(t) is defined as

0D
α
t f(t) =

1
Γ(n − α)

∫ t

0

f (n)(t)dτ

(t − τ)α+1−n
, (n − 1 < Re(α) ≤ n, n ∈ N). (2.3)

the following are two basic properties of the Caputo fractional derivative.

0D
α
t t

β =
Γ
(
1 + β

)
Γ
(
1 + β − α

) tβ−α,

(JαDα)f(t) = f(t) −
n−1∑
k=0

f (k)(0+)
tk

k!
.

(2.4)

We have chosen the Caputo fractional derivative because it allows traditional initial and
boundary conditions to be included in the formulation of the problem. And some other
properties of fractional derivative can be found in [1, 3].

3. Homotopy Perturbation Method

The Homotopy analysis method which provides an analytical approximate solution is
applied to various nonlinear problems [8, 10, 12–14]. In this section, we extend HPM to (1.1),
according to this method, we construct the following simple homotopy:

∂αu

∂tα
= p

(
∂2u

∂x2 +
∂2u

∂y2 + au − buv

)
,

∂βv

∂tβ
= p

(
∂2v

∂x2 +
∂2v

∂y2 + buv − cv

)
,

(3.1)

where p ∈ [0, 1] is an embedding parameter. In case p = 0, (3.1) is a fractional differential
equation, which is easy to solve; when p = 1, (3.1) turns out to be the original one (1.1). The
basic assumption is that the solutions can be written as a power series in p

u
(
x, y, t

)
= u0 + pu1 + p2u2 + p3u3 + · · · ,

v
(
x, y, t

)
= v0 + pv1 + p2v2 + p3v3 + · · · .

(3.2)
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The approximate solutions of the original equations can be obtained by setting p = 1, that is,

u = lim
p→ 1

∞∑
n=0

pnun = u0 + u1 + u2 + u3 + · · · ,

v = lim
p→ 1

∞∑
n=0

pnvn = v0 + v1 + v2 + v3 + · · · ,
(3.3)

institute (3.2) into (3.1) and compare coefficients of terms with identical powers of p, then
you can get the numerical solutions of the equation. Because of the knowledge of various
perturbation methods that low-order approximate solution leads to high accuracy, there
requires no infinite series. Then after a series of recurrent calculation by using Mathematica
software, we will get approximate solutions of fractional biological population model. In
Section 4, we show some examples that the Homotopy perturbation method gives a very
good approximation of the exact solution.

4. Fractional Predator-Prey Equation

In order to assess the advantages and the accuracy of the Homotopy perturbation method
presented in this paper for nonlinear fractional Fisher’s equation, we have applied it to the
following several problems.

Case 1. In this case, we consider the fractional predator-prey equation and subject to the
constant initial condition

u
(
x, y, 0

)
= u0, v

(
x, y, 0

)
= v0. (4.1)

Substituting (3.2) into (3.1) and equating the terms with the same powers of p lead to the
following two sets of linear equation:

p0 : ∂αu0

∂tα
= 0,

p1 :
∂αu1

∂tα
=

∂2u0

∂x2 +
∂2u0

∂y2 + au0 − bu0v0,

p2 :
∂αu2

∂tα
=
∂2u1

∂x2 +
∂2u1

∂y2 + au1 − b(u1v0 + u0v1),

p3 :
∂αu3

∂tα
=

∂2u2

∂x2 +
∂2u2

∂y2 + au2 − b(u2v0 + u1v1 + u0v2),

p4 :
∂αu4

∂tα
=
∂2u3

∂x2
+
∂2u3

∂y2
+ au3 − b(u3v0 + u2v1 + u1v2 + u0v3),

...
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p0 :
∂βv0

∂tβ
= 0,

p1 :
∂βv1

∂tβ
=
∂2v0

∂x2 +
∂2v0

∂y2 + bu0v0 − cu0,

p2 :
∂βv2

∂tβ
=
∂2v1

∂x2 +
∂2v1

∂y2 + b(u1v0 + u0v1) − cv1,

p3 :
∂βv3

∂tβ
=
∂2v2

∂x2
+
∂2v2

∂y2
+ b(u2v0 + u1v1 + u0v2) − cv2,

p4 :
∂βv4

∂tβ
=
∂2v3

∂x2
+
∂2v3

∂y2
+ b(u3v0 + u2v1 + u1v2 + u0v3) − cv3,

...

(4.2)

Consequently, by applying the Riemann-Liouville fractional operator Jα and Jβ to the above
sets of linear equations, which is the inverse operator of Caputo derivative Dα and Dβ

respectively, the first few terms of the Homotopy perturbation method series for the system
(1.1) are obtained as follows:

u0 = u
(
x, y, 0

)
= u0, v0 = v

(
x, y, 0

)
= v0,

u1 =
(au0 − bu0v0)tα

Γ(1 + α)
, v1 =

(bu0v0 − cv0)tβ

Γ
(
1 + β

) ,

u2 =
u0(a − bv0)2t2α

Γ(1 + 2α)
+
bu0v0(c − bu0)tα+β

Γ
(
1 + α + β

) ,

v2 =
v0(c − bu0)2t2β

Γ
(
1 + 2β

) +
bu0v0(a − bv0)tα+β

Γ
(
1 + α + β

) ,

u3 =
u0(a − bv0)3t3α

Γ(1 + 3α)
+
Γ
(
1 + α + β

)
b(c − bu0)(a − bv0)u0v0t2α+β

Γ(1 + α)Γ
(
1 + β

)
Γ
(
1 + 2α + β

)

−b(c − bu0)2u0v0tα+2β

Γ
(
1 + α + 2β

) +
b(c − 2bu0)(a − bv0)u0v0t2α+β

Γ
(
1 + 2α + β

) ,

v3 = −v0(c − bu0)3t3β

Γ
(
1 + 3β

) +
Γ
(
1 + α + β

)
b(a − bv0)(c − bu0)u0v0tα+2β

Γ(1 + α)Γ
(
1 + β

)
Γ
(
1 + α + 2β

)

+
b(a − bv0)2u0v0t2α+β

Γ
(
1 + 2α + β

) − b(a − 2bv0)(c − bu0)u0v0tα+2β

Γ
(
1 + α + 2β

) .

(4.3)



6 Advances in Difference Equations

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

Time

Po
pu

la
ti
on

d
en

si
ty

Prey

Predator

(a)

0 0.2 0.4 0.6 0.8 1
Time

0

20

40

60

80

100

120

Po
pu

la
ti
on

d
en

si
ty 140

160

180

200

Prey: α = 0.9, β = 1

Prey: α = 0.5, β = 1

Predator: α = 1, β = 0.7

Predator: α = 1, β = 0.9

(b)

Figure 1: Time evolution of population of u(x, y, t) and v(x, y, t) when α = 1, β = 1 in (a) for (4.4).

Table 1: Comparison of the numerical values with Homotopy perturbation method and Variational
iteration method when a = 0.05, b = 0.03, and c = 0.01 for (1.1), and (4.1).

t α = β Numerical value (u, v) by HPM Numerical value (u, v) by VIM

0.02 1 (99.4831,10.6146) (99.4834,10.6323)
0.9 (99.1865,10.9633) (99.3065,10.8375)

0.2 1 (93.0910,17.8514) (93.3908,17.7382)
0.9 (90.5735,20.5567) (92.4584,18.8198)

0.3 1 (87.9348,23.4430) (88.9466,22.7237)
0.9 (83.7933,27.7785) (87.8005,24.0532)

Then the approximate solution in a series form is

u
(
x, y, t

)
= u0 + u1 + u2 + u3 + · · · , v

(
x, y, t

)
= v0 + v1 + v2 + v3 + · · · . (4.4)

Figure 1 shows the approximate solutions for (4.4) by using the HPM when choosing
the constant initial condition u0 = 100, v0 = 10 and a = 0.05, b = 0.03, and c = 0.01. From
the figures, it is clear to see the time evolution of prey-predator population density and
we also know that the numerical solutions of fractional prey-predator population model is
continuous with the parameter α and β.

Table 1 shows the approximate solutions of predator-prey system for (1.1) and
initial condition (4.1) by using the Homotopy perturbation method and Variational iteration
method when parameter a = 0.05, b = 0.03, c = 0.01, u0 = 100, and v0 = 10. It is noted
that only the forth-order of the Homotopy perturbation solution were used in evaluating the
approximate solutions for Table 1 Unlike the Variational iteration method, in this method,
we do not need the Lagrange multiplier, correction functional, stationary conditions, or
calculating integrals, which eliminate the complications that exist in the VIM. So, it is evident
that HPM used in this paper has high accuracy. And from the comparison of the numerical
values with HPM and VIM, we also know that, as the time t and the parameter α, β increase,
the error between the two methods is growing.



Advances in Difference Equations 7

Case 2. In this case, the initial conditions of systems (1.1) are given by

u
(
x, y, 0

)
= ex+y, v

(
x, y, 0

)
= ex+y. (4.5)

By using (3.1) and (3.2), we now successively obtain

u0 = ex+y, v0 = ex+y , (4.6)

u1 =
ex+y(2 + a − bex+y)tα

Γ(1 + α)
, v1 =

ex+y(2 − c + bex+y)tβ

Γ
(
1 + β

) , (4.7)

u2 =
ex+y[(2 + a − bex+y)(a − bex+y) + 2(2 + a − 4bex+y)]t2α

Γ(1 + 2α)
− be2x+2y(2 − c + bex+y)tα+β

Γ
(
1 + α + β

) ,

(4.8)

v2 =
ex+y[(2 − c + bex+y)(bex+y − c) + 2(2 − c + 4bex+y)]t2β

Γ
(
1 + 2β

) +
be2x+2y(2 + a − bex+y)tα+β

Γ
(
1 + α + β

) ,

(4.9)

u3 =

[
be2x+2y

(
(8 + a)(c − 2) − b(18 + 2a + c)ex+y + 2b2e2x+2y

)]
t2α+β

Γ
(
1 + 2α + β

)

+

[
ex+y

(
(2 + a)2(2 + a − b) − (10 + 2a)(8 + a − b)bex+y + (18 + a − b)b2e2x+2y

)]
t3α

Γ(1 + 3α)

+

[
−be2x+2y

(
(2 − c)2 + b(10 − 2c)ex+y + b2e2x+2y

)]
tα+2β

Γ
(
1 + α + 2β

)

+
Γ
(
1 + α + β

)[−be2x+2y(2 + a − bex+y)(2 − c + bex+y)
]
t2α+β

Γ(1 + α)Γ
(
1 + β

)
Γ
(
1 + 2α + β

) ,

(4.10)

v3 =

[
be2x+2y

(
(2 + a)(8 − c) + b(a − 18 + 2c)ex+y − 2b2e2x+2y

)]
tα+2β

Γ
(
1 + α + 2β

)

+

[
ex+y

(
(2 − c)2(2 + b − c) + (10 − 2c)(8 + b − c)bex+y + (18 + b − c)b2e2x+2y

)]
t3β

Γ
(
1 + 3β

)

+

[
be2x+2y

(
(2 + a)2 − b(10 + 2a)ex+y + b2e2x+2y

)]
t2α+β

Γ
(
1 + 2α + β

)

+
Γ
(
1 + α + β

)[
be2x+2y(2 + a − bex+y)(2 − c + bex+y)

]
tα+2β

Γ(1 + α)Γ
(
1 + β

)
Γ
(
1 + α + 2β

) .

(4.11)
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Figure 2: The surface shows the solution of u(x, y, t) and v(x, y, t) when α = 0.88, β = 0.54, a = 0.7, b =
0.03, c = 0.3, t = 0.53 in (a) and c = 0.9, t = 0.6 in (b) for (4.11).
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Figure 3: The surface shows the solution of u(x, y, t) when α = 0.88, β = 0.54, c = 0.3, t = 0.53, a = 0.5, b =
0.03 in (a) and a = 0.7, b = 0.04 in (b) for (4.11).

Figure 2 shows the numerical solutions for prey-predator population system with
appropriate parameter. From the figures, we know that prey population density first increases
with the spatial variables, then decreases. although the predator population density always
increase with the spatial variables with the parameter we choose here. Analysis and results
of prey-predator population system indicate that the fractional model match the anomalous
biological diffusion behavior observed in the field.

Figure 3 shows the numerical solutions for prey population density with different
values of parameter a, b, that is, natural birth rate of prey population and competitive rate
between predator and prey population. Comparing Figures 2 and 3, we concluded that the
parameter a, b infects the increase speed, the Maximum value, and the decrease speed of the
prey population. In the sameway, the parameter b, c infects predator population growth. This
behavior in agreement with realistic results.

Case 3. We will consider the initial conditions of fractional predator-prey equation (1.1)

u
(
x, y, 0

)
=
√
xy, v

(
x, y, 0

)
= ex+y. (4.12)
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We now successively obtain by using (3.1) and(3.2)

u0 =
√
xy, v0 = ex+y,

u1 =

(−x2 − y2 + 4ax2y2 − 4bex+yx2y2)tα
4xy√xyΓ(1 + α)

, v1 =
ex+y

(
2 − c + b

√
xy

)
tβ

Γ
(
1 + β

) ,

u2 =
(a − bex+y)

(−x2 − y2 + 4ax2y2 − 4bex+yx2y2)t2α
4xy√xyΓ(1 + 2α)

− bex+y
√
xy

(
2 − c + b

√
xy

)
tα+β

Γ
(
1 + α + β

) ,

+
√
xy

(
15y4 + 4(a − bex+y)x2y4 + 16bex+yx3y4 − x4(15 + 4ay2 + 4bex+yy2(4y − 1

)))
t2α

16x4y4Γ(1 + 2α)
,

v2 =
ex+y

(
c2 + b

(
bxy + 2√xy

) − 2c
(
1 + b

√
xy

))
t2β

4xy√xyΓ
(
1 + 2β

)

+
bex+y

(−x2 − y2 + 4ax2y2 − 4bex+yx2y2)tα+β
4xy√xyΓ

(
1 + α + β

)

− ex+y
[
(−16 + 8c)xy√xy + b

(
y2 − 4xy2 + x2(1 − 4y − 8y2))]t2β

16x4y4Γ
(
1 + 2β

) .

(4.13)

Because of the knowledge of various perturbation methods that low-order approxi-
mate solution leads to high accuracy, there requires no infinite series (mostly 2–4 terms are
enough). The corresponding solutions are obtained according to the recurrence relation using
Mathematica.

5. Conclusion

In this letter, we implement relatively new analytical techniques, the Homotopy perturbation
method, for solving nonlinear fractional partial differential equations arising in prey-predator
biological population dynamics system. Comparing the methodology HPM to ADM, VIM
and HAM have the advantages. Unlike the ADM, the HPM is free from the need to use
Adomian polynomials. In this method we do not need the Lagrange multiplier, correction
functional, stationary conditions, or calculating integrals, which eliminate the complications
that exist in the VIM. In contrast to the HAM, this method is not required to solve the
functional equations in each iteration the efficiency of HAM is very much depended on
choosing auxiliary parameter. We can easily conclude that the Homotopy perturbation
method is an efficient tool to solve approximate solution of nonlinear fractional partial
differential equations.
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