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Executive Summary

Numerical Solutions of Boussinesq Equations for Fully Nonlinear and Extremely
Dispersive Water Waves

The objective of this work is to develop effective numerical techniques for solving a recently
derived high-order Boussinesq formulation for the study of highly nonlinear and extremely
dispersive water waves in two horizontal dimensions. For this purpose a numerical model
is developed which combines finite difference spatial discretizations with high-order explicit
Runge-Kutta time integration methods.

The dominant computational expense within the numerical model involves the solution of a
(time variant) sparse, ill-conditioned matrix at each stage evaluation. The structure of the
matrix is such that direct solution methods are computationally unattractive, and as a result
Krylov subspace iterative solution methods are employed. The convergence of these basic
methods is found to be prohibitively slow, however, and a number of novel preconditioning
strategies are developed to significantly accelerate their convergence. Specifically, a matrix-
free method in Fourier space (for solving flat-bottom problems) and a (generally applicable)
approximate Schur complement approach are developed, which are shown to provide mesh-
independent convergence, even in rather physically demanding circumstances. The end result
is a robust numerical scheme which provides solutions that effectively scale linearly with the
problem size.

A method of lines type numerical stability analysis of the discrete system is also undertaken,
which combines standard Fourier analysis techniques with matrix-based methods in two
horizontal dimensions. Necessary conditions for numerical stability of the linearized model
are established for a number of different finite difference discretizations in combination with
a variety of time stepping schemes, for both rotational and irrotational formulations. The
matrix based approach is further extended to consider the local effects of the nonlinear terms,
and it is shown that the irrotational formulation has significantly better stability properties
when high nonlinearity is combined with large water depths or refined grids. The analysis
is confirmed through a series of numerical experiments with both the linear and nonlinear
models.

The numerical model is systematically validated, and then used to study a wide variety of
nonlinear wave phenomena of both fundamental and practical interest. Firstly, (hexagonal)
shallow and (rectangular) deep water short-crested wave patterns are investigated, which
arise from the nonlinear interaction of wavefronts at oblique incident angles. In shallow water
it is confirmed that the interaction is strong/weak when the incident angle is small/large.
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viii Executive Summary

Based on the model results for the deep water rectangular patterns, a new explanation for
a number of features observed in recent physical experiments is provided. This involves the
release of parasitic free first harmonics due to third-order discrepancies in the wavemaker
conditions.

Secondly, a quantitative numerical study of crescent waves, arising from the instability of
steep plane Stokes waves to three dimensional perturbations, is undertaken. The most-
unstable phase-locked (so-called L2) patterns are firstly considered, and investigations into
the unstable growth rate as well as the effects of nonlinearity are provided. The model results
suggest that accelerated (compared with linearized theory) growth rates are possible during
later stages of crescent formation. Secondly, the related oscillating crescent forms are studied,
and the model results are in excellent agreement with recent physical experiments. Pre-
existing analysis methods are extended to give accurate predictions of the oscillation period,
while also providing a possible explanation of the selection mechanism in the experiments.
The simulations also demonstrate previously observed L3 and L4 crescent patterns, which
occur momentarily during model transitional states. Finally, the numerical model is used to
investigate the initial competition of various instabilities to the breaking point. Simulations
involving random perturbations match physical observations both in the form (i.e. two- or
three-dimensional) and location of the initial instability.

Thirdly, the basic model is extended to incorporate domains having piecewise-rectangular,
bottom-mounted structures. Analysis demonstrates that theoretically singular exterior cor-
ner points pose potential stability, as well as convergence problems. In practice these diffi-
culties are overcome via repeated (local) applications of high-order smoothing filters. Sim-
ulations involving classical linear breakwater diffraction over a wide range of water depths
demonstrate acceptable model accuracy. A case involving nonlinear gap diffraction is also
simulated, and the results are shown to compare well with those from physical experiments.
The model is finally used to simulate highly nonlinear wave run-up on a vertical plate. An
excellent match with recent experimental measurements is obtained, even in cases where the
wave steepness (waveheight divided by wavelength) exceeds 0.2.

Finally, an extension of the original formulation to allow for rapidly varying bathymetries
is provided, and the resultant linearized model is validated through simulations involving
shoaling and reflection from a plane shelf. Class I and II Bragg scattering, caused by the
interaction of linear surface waves with undular sea bottoms, are also considered and the
results compare well with both experiments and previous simulations. The nonlinear model
is then used to study class III Bragg scattering, due to quartet interactions between non-
linear surface waves and an undular sea bottom. New computational results are presented
which demonstrate a clear downshift/upshift for the reflected/transmitted class III reso-
nance. These can be attributed to third-order interactions among the resultant wavefields.

This thesis establishes the present high-order Boussinesq-type approach as an effective means
for the general study of highly nonlinear and extremely dispersive water waves, particularly
in two horizontal dimensions. The computational results herein, combined with analysis,
provide a deeper understanding of the many complicated physical processes involved in the
various nonlinear wave phenomena considered.



Synopsis

Numeriske Løsninger af Boussinesq Ligninger for Fuldt Ikke-lineær og Extremt
Dispersive Vandbølger

Formålet med dette arbejde er at udvikle en effektiv numerisk metode til løsning af en højere
ordens Boussinesq formulering for ulineære vandbølger i to horizontale dimensioner, samt at
studere diverse ikke-lineære bølgefænomener p̊a lavt og dybt vand.

Den numeriske metode baseres p̊a rumlige finite difference diskretiseringer kombineret med
højere ordens eksplicit Runge-Kutta tidsintegrationer. For hvert tidsskridt skal der løses
et matrix problem, som involverer en (tidsvarierende) sparse, ill-conditioned matrix. I een
horizontal dimension kan direkte metoder overvejes men i to horizontale dimensioner er
iterative metoder klart at foretrække. For at accelerere konvergensen af den valgte iterative
Krylov subspace metode, udvikles og aftestes et antal nye præ-konditionerings strategier. Der
identificeres to attraktive metoder: En matrix-fri metode i Fourier domænet (til problemer
med vandret bund) og en mere generelt anvendelig s̊akaldt approximate Schur complement
metode. Den resulterende numeriske metode er robust og den skalerer lineært med antallet
af beregningspunkter.

En numerisk stabilitetsanalyse, baseret p̊a method of lines, udvikles for det diskrete system,
og denne metode kombinerer standard Fourier analyse med matrix-baserede metoder i to
horizontale dimensioner. Først etableres de nødvendige betingelser for lineær stabilitet for
kombinationen af en række forskellige finite difference diskretiseringer og en række forskel-
lige tids-integrations skemaer. Dernæst, udvides den matrix baserede analyse metode til at
inkludere lokale ikke-linære led i formuleringen. Det viser sig at en rotationsfri formulering
af ligningerne er mere stabil end den generelle formulering, specielt hvis ikke-lineære effek-
ter optræder p̊a store vanddybder. Endelig bekræftes de teoretiske analyser af en række
numeriske eksperimenter med b̊ade lineære og ikke-lineære bølger.

Den resulterende numeriske model testes først p̊a en række kanoniske tilfælde. Dernæst, an-
vendes den til at studere en række ikke-lineære bølgefænomener, som har s̊avel fundamental
som praktisk interesse.

Den første fundamentale undersøgelse involverer to-dimensionelle bølgemønstre i krydsende
bølgetog. P̊a lav vanddybde er interaktionen stærk/svag n̊ar vinklen mellem de to bølgetog
er lille/stor og som resultat af de ikke-lineære interaktioner opn̊as sekskantede mønstre som
er i fin overenstemmelse med observationer. P̊a stor vanddybde fører de ikke-lineære inter-
aktioner til rektangulære mønstre afbrudt af knudelinier. Igen er der glimrende overenstem-
melse med modelforsøg, og i begge tilfælde konstateres diverse fluktioner og modulationer i
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mønstrene, som hidtil ikke har været forklaret i literaturen. For første gang gives der her
en plausibel forklaring p̊a de fleste af de observerede og beregnede modulationer: Årsagen
er anvendelsen af lineær bølge-genererings teori, som er ufuldstændig i forbindelse med ikke-
lineære bølger og derfor resulterer i de s̊akaldte parasit bølger.

Den anden fundamentale undersøgelse involverer udviklingen af tre-dimensionelle insta-
biliteter i stejle dybvandsbølger. Fænomenet simuleres ved at addere to små retningsspredte
perturbationsbølger til en strømfunktions løsning. Først studeres de s̊akaldte L2 crescent pat-
terns som resulterer i quasi-stationære hestesko formede bølgemønstre. Fænomenet bereg-
nes for forskellige bølgestejlheder og forskellige perturbationsstyrker. Endvidere bestemmes
vækstraten af instabiliteterne for forskellige numeriske filtre. Dernæst studeres de s̊akaldte
oscillerende hestesko-mønstre, som opst̊ar n̊ar de ustabile perturbationsbølger ikke er fasel̊ast
til hovedbølgen. Beregningerne viser sig at være i fremragende overensstemmelse med
modelforsøgs-observationer, og indeholder bl.a. de s̊akaldte L3 og L4 mønstre, som er om-
talt i literaturen. For at forklare de observerede og beregnede oscillationsperioder, foretages
en ikke-lineær stabilitetsanalyse. Endelig undersøges fænomener hvor forskellige to- og tre-
dimensionelle instabiliteter konkurrerer.

Den tredje fundamentale undersøgelse involverer bølge interaktioner med rektangulære kon-
struktioner. Den numeriske kode udvides til at h̊andtere randbetingelser i forbindelse med
hjørneeffekter. En numerisk analyse viser at disse hjørnebetingelser fører til potentielle sta-
bilitets og konvergens problemer. I praksis løses disse problemer ved hjælp af lokale nu-
meriske filtre. Modellen aftestes p̊a det klassiske lineære diffraktionsproblem p̊a dybt vand
og lavt vand. Dernæst anvendes modellen til at studere ikke-lineær diffraktion igennem en
snæver åbning, og resultaterne er i god overenstemmelse med modelforsøg. Endelig bereg-
nes ikke-lineært run-up p̊a en vertikal mole. Der opn̊as en fremragende overensstemmelse
mellem beregning og forsøg, selv i tilfælde hvor bølgestejlheden (dvs bølgehøjde divideret
med længde) overskrider 0.2.

Den fjerde og sidste fundamentale undersøgelse involverer bølgeudbredelse p̊a hurtig vari-
erende bund. Til dette formål implementeres nogle korrektionsled til den oprindelige for-
mulering, og den resulterende lineariserede model verificeres p̊a fænomener som reflek-
tion og transmission over stejle sejlrender med forskellige geometrier. Endelig studeres
fænomenet Bragg scattering, som opst̊ar som interaktion mellem overfladebølger og sta-
tionære sandbølger p̊a havbunden. Lineære interaktioner af typen class I og II simuleres og
er i god overenstemmelse med målinger fra literaturen. Dernæst simuleres den s̊akaldte class
III, som involverer ikke-lineære overfladebølger. I dette tilfælde kan Bragg scatter resultere i
s̊avel reflektion som transmission, og der konstateres en downshift/upshift af resonanspunk-
tet for reflektion/transmission, som kan forklares ved hjælp af amplitude dispersion.

Denne afhandling konkluderer, at den anvendte Boussinesq formulering er en effektiv og
nøjagtig metode til at beregne fuldt ikke-lineære og dispersive vandbølger i to horizontale
dimensioner. De numeriske resultater og analyser som beskrives i denne rapport, giver en
dybere forst̊aelse af mange komplicerede ikke-lineære bølgeprocesser som foreg̊ar p̊a dybt og
lavt vand, s̊a vel p̊a vandret bund som p̊a skr̊a bund samt i interaktion med konstruktioner.
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Chapter 1

Introduction

The mathematical description of nonlinear water waves involves the Laplace equation com-
bined with nonlinear boundary conditions at the free-surface and at the sea bottom. This
problem is complicated by the fact that the moving surface boundary is part of the solution.
Direct numerical methods for solving the full equations exist but they are extremely time
consuming and can only be applied to small scale problems. For this reason there is a strong
interest in so-called Boussinesq-type formulations of the water wave problem.

The principle behind Boussinesq formulations is to incorporate the effects of non-hydrostatic
pressure, while eliminating the vertical coordinate, thus significantly reducing the compu-
tational effort relative to a full three-dimensional solution. This principle was initially in-
troduced by Boussinesq (1872)1, who derived new governing equations (which now bear his
name) under the assumption that the magnitude of the vertical velocity increases polonomi-
ally (in his case linearly) from the bottom to the free surface. This type of approximation
inevitably leads to some form of depth limitation in the accuracy of the embedded dispersive
and nonlinear properties. Hence, Boussinesq-type equations are conventionally associated
with relatively shallow water.

Despite these physical limitations, history has proven the original ideas of Boussinesq ex-
tremely influential. Beginning in the late 1970s, commercial numerical models based on this
concept have been developed to solve numerous practical engineering problems. Over the

1Named after Joseph Valentin Boussinesq, 1842–1929. French physicist and mathematician who received
his Ph.D. in 1867. He was professor of differential and integral calculus at the Faculty of Sciences of Lille
(1872-86), and professor of physics and mechanics at Sorbonne, Paris (1886). He was a member of the French
Académie des Sciences (1886), the teacher of mathematics at Agde, Le Vigan, and Gap (1866-1872), and
retired in 1918. Boussinesq made important contributions to numerous branches of mathematical physics.
His work on hydraulics was especially considerable. He studied whirlpools, liquid waves, the flow of fluids,
the mechanics of pulverulent masses, the resistance of a fluid against a solid body, the cooling effect of a
liquid flow, and turbulence. Among his more famous contributions is the ‘Boussinesq approximation’, which
has become one of the most widely used simplifications in all of mathematical physics, and is the original
inspiration for the present work. (This excerpt is taken largely from Weisstein, 2004).

1



2 Chapter 1. Introduction

past 20 years in particular, the international use of Boussinesq-type equations has steadily
increased, as many researchers and engineers regard these formulations to be a balanced
compromise between detailed results and affordable computational cost. Indeed, extended
Boussinesq-type methods are now among those most widely used for predicting the propa-
gation of nonlinear wind-generated waves in harbors and along coast-lines.

This concept has additionally inspired a wealth of research, much of it quite recent, attempt-
ing to overcome the physical limitations associated with the original derivation. This work
continues to the present day (including this thesis!), and has met with much success. In
particular, a recent breakthrough by Madsen, Bingham & Liu (2002) and Madsen, Bing-
ham & Schäffer (2003) has resulted in a formulation having such high accuracy that the
conventional shallow water and weakly nonlinear limitations have been effectively removed.
Efficient numerical solutions of this system are far from trivial, however, and this thesis is
primarily concerned with the development (and application) of a numerical model solving
this particular formulation.

In this chapter a review of the background of the most important historical achievements
in the development of extended Boussinesq formulations is provided in §1.1, leading up to
the highly-accurate formulation considered throughout this thesis. In §1.2 we make clear
the motivation and goals for the research detailed in the present work. The outline for the
remaining thesis chapters is finally provided in §1.3.

1.1 Historical Background

In its classical form, Boussinesq wave theory represents a shallow-water approximation to
the fully dispersive and nonlinear water wave problem, and the equations incorporate a
balance between lowest-order dispersion and lowest-order nonlinearity (see e.g. Boussinesq,
1872; Madsen & Mei, 1969; Mei & LeMéhauté, 1966; Peregrine, 1967). The original use
of the Boussinesq equations concentrated on the propagation of weakly nonlinear solitary
waves (e.g. Madsen & Mei, 1969), but in the late 1970s, use of the equations started to
become popular in coastal engineering, and the focus shifted towards regular cnoidal waves
and irregular waves. With this shift of interest the underlying limitations in linear dispersion
and nonlinearity for shorter waves became of concern.

As a result, relaxing the shallow water limitations within the framework of Boussinesq theory
has received considerable attention, as stated previously, particularly over the past 20 years,
see e.g. Kennedy et al. (2001); Madsen et al. (1991); Madsen & Schäffer (1998); Nwogu
(1993); Witting (1984); Wu (1999, 2001) (see also the review of Madsen & Schäffer, 1999, and
references therein). The historical progression of these advancements is summarized in Table
1.1. Here it can be seen that the earliest work rightly concentrated on improving the accuracy
of the embedded linear dispersive properties. Among the more important developments,
Witting (1984) was the first to demonstrate the efficiency of Padé approximants in connection
with the linear celerity, and Madsen et al. (1991) used this idea to derive a new set of
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Table 1.1: Historical relaxation of shallow water limitations within Boussinesq theory.
Property Reference Limiting kh

Linear dispersion Boussinesq (1872); Peregrine (1967) 0.75
Benjamin et al. (1972) 1.25
Witting (1984) 3–6
Madsen et al. (1991) 3
Schäffer & Madsen (1995) 6
Madsen et al. (2002, 2003) 25–40

Nonlinearity Serre (1953) 0.7
Wei et al. (1995) 1.2
Madsen et al. (1996) 1.7
Gobbi et al. (1998) 3†

Agnon et al. (1999) 6
Madsen et al. (2002, 2003) 25–40

Velocity kinematics Peregrine (1967) 0.5
Nwogu (1993) 1.5
Gobbi et al. (2000) 4
Madsen et al. (2002, 2003) 12
Lynett & Liu (2004b) 6

†Accuracy of superharmonics.

extended lower-order equations having accurate linear dispersion to approximately the deep
water limit (wavenumber times depth) kh ≈ 3. This was later followed by the higher-order
formulation of Schäffer & Madsen (1995), who further extended the limitation to kh ≈ 6.

Weak nonlinearity is also a traditional shortcoming within Boussinesq theory, and as a result
numerous so-called ‘fully nonlinear’ formulations have been recently developed, which means
that they include all nonlinear terms up to the retained order of dispersion. These build on
the early work of Serre (1953) and Su & Gardner (1969). However, despite these claims of
full nonlinearity, analysis has shown that most of them have incorporated far better linear
than nonlinear characteristics, see e.g. Gobbi et al. (2000); Madsen & Schäffer (1998, 1999);
Wei et al. (1995).

A breakthrough in treating nonlinearity was achieved by Agnon, Madsen & Schäffer (1999).
They presented a new procedure by which it is possible to achieve the same accuracy in
nonlinear properties as in linear properties. Their procedure is based on an exact formulation
of the boundary conditions at the free surface as well as at the sea bottom, combined with
an approximate solution to the Laplace equation in the interior domain, which is given in
terms of truncated series expansions about the still water datum. Unlike most conventional
Boussinesq formulations, they also retained the vertical velocity variable as an unknown. As
a result their formulation allows an accurate description of dispersive nonlinear waves out
to kh ≈ 6.

One problem that Agnon et al. (1999) did not resolve, however, is to provide an accurate
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vertical distribution of the velocity field. As shown by Madsen & Agnon (2003), the diffi-
culties in achieving accurate velocity kinematics are primarily due to restrictions caused by
a finite convergence radius of the resulting expansions. This turns out to be a rather severe
restriction to conventional Boussinesq formulations, and most existing formulations can only
produce a reasonable velocity profile for kh ≤ 0.5. Two exceptions are the formulations of
Nwogu (1993) and Gobbi, Kirby & Wei (2000). Nwogu (1993) expanded the velocity field
from an arbitrary (vertical) z-level, which was taken to be approximately mid-depth. The
objective of Nwogu was not to improve the velocity profile, but rather the linear dispersion
relation. Nevertheless, the profile obtained from his lower-order formulation is accurate up
to kh ≈ 1.5 and can be shown to converge up to kh ≈ 3.5 (if higher-order terms are in-
cluded). Recently, Gobbi et al. (2000) presented a higher-order formulation based on a linear
combination of the velocities at two arbitrary z-levels. The linear velocity profile obtained
from their method is applicable out to kh ≈ 4, while their dispersion relation is applicable
up to kh ≈ 6. Recently, Lynett & Liu (2004b) have also proposed a two-layer approach,
with reasonable velocity profiles to kh ≈ 6 (see also Lynett & Liu, 2004a).

Inspired by the original idea of Nwogu (1993), and with the original aim of further increasing
the accuracy of the velocity profile, Madsen, Bingham & Schäffer (2003) (also Madsen,
Bingham & Liu, 2002) generalized the formulation of Agnon et al. (1999) to use an arbitrary
vertical expansion level. The result, as can be gathered from Table 1.1, is a Boussinesq
formulation with accuracy vastly superior to all previous derivations, capable of treating
fully nonlinear waves out to kh ≈ 25–40 (depending on the chosen expansion point), with
velocity profiles accurate to kh ≈ 12. This corresponds to a major breakthrough in modern
Boussinesq theory, as it is the first formulation to effectively remove the shallow water
limitations conventionally associated with this approach. It is again this formulation which
provides the basis for the present work.

As the accuracy of Boussinesq formulations has gradually improved, so has the variety of
physical phenomena which have been incorporated into the various models, which is also
worth mentioning. The major advancements in this regard are listed in Table 1.2, which in-
cludes an achievement of the present work. As can be seen, modern Boussinesq formulations
are capable of treating a wide variety of coastal and offshore phenomena, which explains
their popularity among scientists and engineers. Originally limited to shallow water, Boussi-
nesq models have now successfully been used to study highly nonlinear deep water wave
phenomena e.g. wave instabilities (see Fuhrman et al., 2004d ; Madsen et al., 2002).

1.2 Motivation

As described previously, the Boussinesq equations of Madsen et al. (2002, 2003) represent a
major step forward in the advancement of Boussinesq theory. The high accuracy unfortu-
nately comes at the expense of a rather complicated system of partial differential equations
(PDEs). Numerical (finite difference) solutions in a single horizontal dimension, as presented
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Table 1.2: Historical milestones in incorporating various physical phenomena using
Boussinesq-type formulations. The vertical line after the first four rows roughly divides
the pioneering classical works with more modern developments.

Reference New phenomena

Boussinesq (1872) Original derivation
Rayleigh (1876) Solitary waves
Korteweg & de Vries (1895) Cnoidal waves
Peregrine (1967) Uneven bottom
Abbott et al. (1978) Irregular waves in harbors;

Large scale numerical models
Freilich & Guza (1984) Wave-wave interaction;

Evolution of wave spectra
Yoon & Liu (1989) Wave-current interaction
Madsen & Sørensen (1990) Wave-ship interaction
Schäffer et al. (1993) Breaking of regular waves
Madsen et al. (1997a) Breaking of irregular waves
Madsen et al. (1997b) Surf beat and net circulations
Rakha & Kamphuis (1997) Beach profile evolution
Madsen & Schäffer (1998) Wave blocking by currents
Madsen et al. (2002) Side-band instability
Fuhrman et al. (2004d)† Crescent waves
†See Chapter 8.

in Madsen et al. (2002), are still in a sense trivial, requiring solutions of a banded linear
system at each stage evaluation. This is a problem for which specialized direct methods
(i.e. gaussian elimination) for sparse matrices are known to be well suited for (see e.g. Duff
et al., 1986; Golub & Van Loan, 1996; Meurant, 1999). When the system is extended to two
horizontal dimensions, however, numerical solutions are much more complicated, which is
the focus of the present work.

Hence, with this project we are faced with an exciting and challenging situation: A new
system of partial differential equations for which nobody has yet seriously attempted numer-
ical solutions. Extended Boussinesq equations have, of course, been solved before in two
horizontal dimensions (e.g. Wei & Kirby, 1995), though their resemblance to the system
considered herein is in fact not as large as one might think, as many of the ‘tricks’ used
to obtain high accuracy have only been developed recently. The primary motivation for
this thesis is to develop efficient numerical solutions in two horizontal dimensions for the
high-order Boussinesq formulation of Madsen et al. (2002, 2003).

Directly related to this task is the overall development of a numerical (finite difference) model
based on this system, for the realistic simulation of nonlinear water wave phenomena, which
are important in coastal and offshore engineering. We ultimately consider problems involving
(sometimes rapidly) varying water depths, extreme nonlinearities, and even semi-irregular
domains. The focus is on problems which have been previously unamenable with Boussinesq
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formulations. Through this work we aim to provide a more complete understanding of the
many complicated physical processes involved within the areas investigated.

The original formulation of Madsen et al. (2003) is in many ways very diverse in terms of
the potential applications, allowing for the treatment of fully nonlinear waves over a rather
extreme range of water depths. As originally derived, however, it was limited to mildly
sloping bottoms. A final aim of this thesis is to demonstrate an extension of the original
derivation which removes this limitation, thus broadening the already wide application range
of the model to include problems with rapidly varying bathymetries.

1.3 Thesis Outline

The outline for the remaining chapters of this thesis is as follows. A brief derivation of the
system of PDEs of Madsen et al. (2002, 2003) starting from the standard Laplace problem
for irrotational free surface flow is provided in Chapter 2. Chapter 3 describes various details
of the basic numerical finite difference model used throughout this work. Various precondi-
tioning methods, essential for efficient numerical solutions of this system, are developed and
tested in Chapter 4. The linear and nonlinear stability of the numerical scheme is analyzed
in Chapter 5. The basic model is systematically verified using a number of standard test
cases in Chapter 6. The model is then used to study short-crested waves arising from the
nonlinear interaction of wavefronts at oblique incident angles in Chapter 7. Chapter 8 details
a rather extensive numerical study of the phenomenon of crescent waves, arising from the
instability of steep deep water plane waves to three dimensional disturbances. Chapter 9
describes the extension of the basic model to include bottom mounted piecewise-rectangular
structures, as well as numerous test cases involving nonlinear wave-structure interactions.
Additionally, Chapter 10 describes the extension of the model to allow cases having rapidly
varying bathymetry, and the model is used to investigate, among other things, the phe-
nomenon of Bragg scattering from undular sea bottoms. Finally, conclusions are drawn in
Chapter 11, where some recommendations for further research are also discussed.



Chapter 2

The Boussinesq Formulation

Chapter Summary

Starting from the standard fully nonlinear Laplace problem for inviscid, irrotational free
surface flow, a brief derivation of the high-order Boussinesq formulation used throughout
this work is provided. The formulation combines exact representations of the (dynamic and
kinematic) surface and (kinematic) bottom boundary conditions with truncated solutions
of the Laplace equation in the interior domain. Fourier analysis of the embedded linear
dispersive properties is also provided, demonstrating excellent accuracy to (wavenumber
times depth) kh ≈ 30.

2.1 Introduction

In this chapter a brief review of the derivation of the Boussinesq formulation of Madsen
et al. (2002, 2003) is provided. Starting from the standard fully nonlinear Laplace problem
for inviscid, irrotational free surface flow, the main steps involved in the derivation process
are included. For complete details on the derivation (as well as for a complete analysis
of embedded linear and nonlinear properties for this system), the reader is referred to the
original literature (Madsen et al., 2002, 2003).

This chapter is organized as follows. The equations governing inviscid, irrotational free sur-
face flow are outlined in §2.2, where the exact free surface conditions are also re-formulated
in terms of variables directly on the free surface. The derivation of the Boussinesq for-
mulation begins with an infinite series solution to the Laplace equation in §2.3, which is
generalized to an arbitrary vertical expansion level in §2.4. The final truncated series solu-
tion involving Padé approximants is detailed in §2.5, with the corresponding expression of
the kinematic bottom condition provided in §2.6. Fourier analysis of the embedded linear
dispersion properties is given in §2.7, and conclusions are briefly re-stated in §2.8.

7
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2.2 Governing Equations

We adopt a Cartesian coordinate system with the x- and y-axes located on the still water
plane and the z-axis pointing vertically upwards. The fluid domain is bounded by the sea bed
at z = −h(x, y) and the free surface at z = η(x, y, t), where t is time. Assuming irrotational
flow, the velocity potential φ is related to the velocity components by the definition

u ≡ ∇φ, w ≡ φz, (2.1)

where subscripts denote partial differentiation and

∇ ≡
(

∂

∂x
,
∂

∂y

)

, (2.2)

is the two-dimensional gradient operator. The governing equations and boundary conditions
for the irrotational flow of an incompressible inviscid fluid with a free surface (neglecting
surface tension) are standard

∇2φ+ φzz = 0, −h < z < η, (2.3)

ηt − φz + ∇η · ∇φ = 0, z = η, (2.4)

φt + gη +
1

2

(

∇φ · ∇φ+ (φz)
2
)

= 0, z = η, (2.5)

φz + ∇h · ∇φ = 0, z = −h, (2.6)

where g = 9.81 m/s2 (unless otherwise noted) is the gravitational acceleration. Here (2.3)
is the Laplace equation, which satisfies local continuity throughout the fluid; (2.4) is the
kinematic free surface condition, stating that a fluid particle on the free surface will remain
there; (2.5) is the dynamic free surface condition, stating that the pressure at the surface is
constant; and (2.6) is the kinematic bottom condition, stating that the bed is impermeable.

Following Dommermuth & Yue (1987); Witting (1984); Zakharov (1968), we choose to refor-
mulate the dynamic and kinematic boundary conditions at the free surface by introducing
variables defined directly at the free surface, i.e.

ũ ≡ (ũ, w̃) ≡ (∇φ)z=η, w̃ ≡ (φz)z=η, φ̃ ≡ φz=η. (2.7)

Now spatial and temporal differentiation of the variables at the free surface involves the
chain rule, giving the relations

∇φ̃ = (∇φ)z=η + ∇η(φz)z=η = ũ + w̃∇η, (2.8)

φ̃t = (φt)z=η + ηt(φz)z=η = (φt)z=η + w̃2 − w̃∇η · ũ, (2.9)

where ηt has been eliminated by the use of (2.4). Using (2.7)–(2.9), the dynamic condition
(2.5) can be expressed as

φ̃t + gη +
1

2

(

∇φ̃ · ∇φ̃− w̃2(1 + ∇η · ∇η)
)

= 0, (2.10)
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which is the form used by Dommermuth & Yue (1987). Applying the gradient operator to
(2.10), we transform the equation into the velocity vector equation used by Witting (1984)

Ũt = −g∇η − 1

2
∇
(

Ũ · Ũ − w̃2(1 + ∇η · ∇η)
)

, (2.11)

where

Ũ ≡ (Ũ , Ṽ ) ≡ ∇φ̃ = ũ + w̃∇η. (2.12)

The kinematic surface condition (2.4) may similarly be expressed as

ηt = w̃(1 + ∇η · ∇η) − Ũ · ∇η. (2.13)

We note that (2.11) and (2.13) define the fully nonlinear time-stepping problem, and are
used throughout this work. Finally, expressed in terms of velocity variables, the kinematic
bottom condition (2.6) may be written as

wb + ∇h · ub = 0, (2.14)

where wb = w(x, y,−h, t) and ub = u(x, y,−h, t) are velocities defined directly at the sea
bottom i.e. at z = −h.

2.3 Infinite Series Solution to the Laplace Equation

In order to establish a connection between the velocity variables at the free surface we need to
solve the Laplace equation in the interior domain. As a starting point we follow the classical
Boussinesq procedure and introduce an expansion of the velocity potential as a power series
in the vertical coordinate

φ(x, y, z, t) =
∞
∑

n=0

znφ(n)(x, y, t), (2.15)

where

φ(n)(x, y, t) ≡ φ(n) ≡ ∂nφ

∂zn

∣

∣

∣

∣

z=0

. (2.16)

Inserting (2.15) this into the Laplace equation (2.3) leads a polynomial in z of the form

∇2φ(0) + z∇2φ(1) +
∞
∑

n=2

(

n(n− 1)z(n−2)φ(n) + zn∇2φ(n)
)

= 0. (2.17)

By grouping powers of z this may be equivalently written as

∞
∑

n=0

(

(n+ 2)(n+ 1)φ(n+2) + ∇2φ(n)
)

zn = 0. (2.18)
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Requiring the coefficient for each power of z to vanish, then leads to the classical recurrence
relation

φ(n+2) = − ∇2φ(n)

(n+ 1)(n+ 2)
. (2.19)

Due to this recurrence, we may express the full series in terms of only two variables φ(0) and
φ(1). From (2.16) these are equivalent to

φ(0) = φ(x, y, 0, t), φ(1) = φz(x, y, 0, t), (2.20)

i.e. the series may be expressed entirely in terms of the potential and its z-derivative, both
taken at z = 0. Hence we may write (2.15) as

φ(x, y, z, t) =
∞
∑

n=0

(−1)n

(

z2n

(2n)!
∇2nφ(0) +

z2n+1

(2n+ 1)!
∇2nφ(1)

)

. (2.21)

Following Madsen & Schäffer (1998), we introduce the still water variables

u0 ≡ (u0, v0) ≡ ∇φ(x, y, 0, t) = ∇φ(0), w0 ≡ φz(x, y, 0, t) = φ(1), (2.22)

and obtain the following exact expressions for the velocity field

u(x, y, z, t) = cos(z∇)u0 + sin(z∇)w0, (2.23)

w(x, y, z, t) = cos(z∇)w0 − sin(z∇)u0. (2.24)

Here the cos- and sin- operators are infinite Taylor series operators defined by

cos(λ∇) ≡
∞
∑

n=0

(−1)n λ2n

(2n)!
∇2n, sin(λ∇) ≡

∞
∑

n=0

(−1)n λ2n+1

(2n+ 1)!
∇2n+1, (2.25)

which is an elegant notation introduced by Rayleigh (1876). We emphasize that throughout
this work the interpretation of the powers of ∇ depends on whether this operator is acting
on a scalar or a vector, and in this context the following set of rules should be obeyed (see
Madsen & Schäffer, 1999, Chapter 5)

∇2nu = ∇(∇2n−2(∇ · u)), ∇2n+1u = ∇2n(∇ · u),
∇2nw = ∇2nw, ∇2n+1w = ∇(∇2nw).

Note that (2.23) and (2.24) define the exact velocity profile in the entire water column
−h < z < η expressed in terms of the velocity variables at z = 0, and these expressions
automatically satisfy the Laplace equation. Linear analysis of this system can be shown to
recover the exact linear dispersion relation and the exact linear shoaling gradient (see Agnon
et al., 1999).
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2.4 Generalization to an Arbitrary z-Level

We now generalize (2.23) and (2.24) in the following. The first step is to introduce the
velocities û ≡ (û, v̂) ≡ u(x, y, ẑ, t), which are at an arbitrary level ẑ = ẑ(x, y) in the fluid.
Here ẑ is assumed to be a constant fraction σ of the (negative) still-water depth h i.e.
ẑ = −σh. This generalization of the formulation by Agnon et al. (1999) is inspired by
Nwogu (1993), who was the first to formulate truncated Boussinesq equations in terms of
the horizontal velocity vector defined at an arbitrary z-level.

From (2.23) and (2.24) we find the relations

û = cos (ẑ∇)u0 + sin (ẑ∇)w0, (2.26)

ŵ = cos (ẑ∇)w0 − sin (ẑ∇)u0. (2.27)

In order to invert (2.26) and (2.27) and determine u0, w0 in terms of û, ŵ, we insert (2.25)
in (2.26) and (2.27) and use successive approximations assuming high-derivative terms to be
smaller than low-derivative terms. The inversion process involves higher derivatives of ẑ and
in the following we shall include only terms which are O(∇ẑ), corresponding to a mild-slope
approximation. Finally, we insert the inverted expressions for u0, w0 into (2.23) and (2.24)
and derive the following mild-slope expression for the velocity field

u(x, y, z, t) = cos((z − ẑ)∇)û + sin((z − ẑ)∇)ŵ + Γu∇ẑ, (2.28)

w(x, y, z, t) = cos((z − ẑ)∇)ŵ − sin((z − ẑ)∇)û + Γw · ∇ẑ, (2.29)

where

Γu ≡ (z − ẑ)(cos((z − ẑ)∇)∇ · û + sin((z − ẑ)∇)∇ŵ), (2.30)

Γw ≡ (z − ẑ)(cos((z − ẑ)∇)∇ŵ − sin((z − ẑ)∇)∇ · û). (2.31)

This completes the formulation of the un-truncated system of equations, which consists of
(2.11), (2.13), (2.14), (2.28), and (2.29). A linear analysis of this un-truncated system can
be found in Madsen et al. (2003), and this again recovers the exact linear velocity profile,
the linear dispersion relation, and the linear shoaling gradient.

2.5 Finite Series Expansions Involving

Padé Approximants

For numerical solutions of this system to be possible, the infinite series operators previously
introduced must of course be truncated. We now describe the method of truncation used
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in the derivation of Madsen et al. (2002, 2003), which achieves the best possible accuracy
for a given number of terms. As a starting point, we follow Agnon et al. (1999) and include
the first three terms in both the cos- and the sin-series defined in (2.25). This leads to the
approximations

cos(λ∇) = 1 − λ2∇2

2
+
λ4∇4

24
+O(λ6∇6), (2.32)

sin(λ∇) = λ∇− λ3∇3

6
+
λ5∇5

120
+O(λ7∇7). (2.33)

By inserting (2.32) and (2.33) into (2.28) and (2.29) and analyzing the resulting velocity
profile, it can be shown that the accuracy will increase significantly by choosing ẑ = −h/2,
rather than the ẑ = 0 used by Agnon et al. (1999) (for details see Madsen et al., 2003). On
the other hand, it turns out that an even better accuracy can be achieved by the procedure
presented in the following.

First, we expand the physical velocity variables û, ŵ in terms of pseudo-velocity variables
û∗, ŵ∗ using the connection

û ≡ L(ẑ∇)û∗, ŵ ≡ L(ẑ∇)ŵ∗, (2.34)

where L is a linear operator to be determined. We note that there is some similarity between
this approach and the previous ideas of Schäffer & Madsen (1995) and Gobbi et al. (2000)
who also used generalized velocity variables rather than physical velocity variables. However,
the choice of the L-operator is very important in this process, as shown below. We insert
(2.34) in (2.28) and (2.29) and obtain

u(x, y, z, t) = cos((z − ẑ)∇)L(ẑ∇)û∗ + sin((z − ẑ)∇)L(ẑ∇)ŵ∗, (2.35)

w(x, y, z, t) = cos((z − ẑ)∇)L(ẑ∇)ŵ∗ − sin((z − ẑ)∇)L(ẑ∇)û∗. (2.36)

Note that here the Γu,Γw terms have been dropped. This is consistent with the analysis
of Madsen et al. (2002, 2003) who found that these terms have only a local effect on the
velocity profile, and do not significantly affect linear shoaling properties1.

With the objective of maximizing the formal accuracy of (2.35) and (2.36) applied at z = 0
for the number of terms included relative to the Taylor series expansions given in (2.32) and
(2.33), Madsen et al. (2002, 2003) demonstrate that it is indeed possible to achieve a much
higher order of accuracy without increasing the order of the derivatives if the L-operator is
chosen to introduce Padé approximants in the truncated equations. This was achieved with

L(λ∇) = 1 +
(λ∇)2

18
+

(λ∇)4

504
+

(λ∇)6

15, 120
+

(λ∇)8

362, 880
, (2.37)

1It turns out, however, that these terms are important e.g. in cases involving partial reflection from
bathymetric changes (see Madsen, Fuhrman & Wang, 2005). We will return to this issue in Chapter 10.
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and consequently we obtain

cos(λ∇)L(λ∇) = 1 − 4

9
(λ∇)2 +

1

63
(λ∇)4 +O(λ10∇10), (2.38)

sin(λ∇)L(λ∇) = λ∇− 1

9
(λ∇)3 +

1

945
(λ∇)5 +O(λ11∇11). (2.39)

Note that now the accuracy has become twice the order of the terms included, which is a
typical property of Padé approximants, and with this procedure the formal accuracy of (2.35)
and (2.36) applied at z = 0 has increased from O(λ5∇5) to O(λ9∇9). Unfortunately, this
requires that the L-, cos-, and sin-operators have the same argument, which is only the case
at z = 0. Hence, in general the velocity profiles given by (2.35) and (2.36) are still O(λ5∇5).
Nevertheless, the analysis of Madsen et al. (2002, 2003) demonstrates that in practice the
profiles of (2.35) and (2.36) are much more accurate than those from (2.28) and (2.29), and
in addition this improvement spills over to the embedded linear and nonlinear properties.

By inserting (2.32), (2.33), and (2.37) into (2.35) and (2.36) and ignoring spatial derivatives
higher than fifth order we arrive at the following expressions for the velocity profile

u(x, y, z, t) = (1 − α2∇2 + α4∇4)û∗ + (ψ∇− β3∇3 + β5∇5)ŵ∗, (2.40)

w(x, y, z, t) = (1 − α2∇2 + α4∇4)ŵ∗ − (ψ∇− β3∇3 + β5∇5)û∗, (2.41)

where ψ = (z − ẑ) and

α2 =
ψ2

2
− ẑ2

18
, α4 =

ψ4

24
− ẑ2ψ2

36
+

ẑ4

504
,

β3 =
ψ3

6
− ẑ2ψ

18
, β5 =

ψ5

120
− ẑ2ψ3

108
+
ẑ4ψ

504
. (2.42)

These expressions are generally used throughout the present work. Note that this differs
slightly from Madsen et al. (2002, 2003) who used (2.40) and (2.41) for −h ≤ z ≤ 0 combined
with (2.23) and (2.24) from 0 < z ≤ η. Based on linear analysis, Madsen et al. (2003) found
that optimal velocity distributions are obtained with ẑ ≈ −h/2, and this value is also adopted
throughout, unless otherwise noted.

2.6 The Kinematic Condition at the Sea Bed

The remaining condition which must be considered is the kinematic bottom condition (2.14).
Substituting (2.40) and (2.41) applied at z = −h into (2.14) and setting ẑ = −h/2 leads to
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an expression of the form

(

1 − 4

9
γ2∇2 +

1

63
γ4∇4

)

ŵ∗ +

(

γ∇− 1

9
γ3∇3 +

1

945
γ5∇5

)

û∗

+∇h · (1 − c2γ
2∇2 + c4γ

4∇4)û∗ −∇h · (γ∇− s3γ
3∇3 + s5γ

5∇5)ŵ∗ = 0, (2.43)

where γ = (h + ẑ) = h/2. Here, the ci and si slope coefficients have been left as free
parameters, and used to optimize accuracy with respect to the exact linear shoaling gradient
(see Madsen et al., 2002, 2003). This leads to c2 = 0.357739, c4 = 0.00663819, s3 =
0.0753019, and s5 = −6.31532 × 10−5. These values have been shown to provide very
accurate linear shoaling properties out to kh ≈ 30.

2.7 Fourier Analysis of Linear Dispersion

A very thorough analysis of this system is presented in Madsen et al. (2003), and for brevity
it is not repeated here. For completeness, however, the linear dispersive properties of the
system will be examined, as this is perhaps the most fundamental property embedded in the
system of equations.

The following Fourier analysis proceeds from (2.11), (2.13), (2.40), (2.41), and (2.43), which
represents the fully nonlinear time stepping problem considered throughout this thesis. Lin-
earization firstly gives Ũ = ũ = u0 and w̃ = w0. Restricting the analysis to a single
horizontal dimension and neglecting nonlinear terms, (2.11) and (2.13) simplify respectively
to

u0t + gηx = 0, ηt − w0 = 0. (2.44)

We look for solutions of the form

η(x, t) = Aeiθ, û∗(x, t) = Beiθ, ŵ∗(x, t) = iCeiθ, θ = ωt− kx, (2.45)

where i is the imaginary unit, k is again the wavenumber, and ω is the angular frequency.
These are firstly inserted into (2.44) as well as into the final velocity profiles (2.40) and
(2.41). Evaluating (2.44) combined with (2.43) (setting hx = 0) then yields a 3 × 3 system
of equations in terms of the Fourier amplitudes A, B, and C. For non-trivial solutions we
require that the determinant of this system is equal to zero. This yields the final dispersion
relation

c2

gh
≡ ω2

ghk2
=

1

kh

(

sh(kh/2)ch(−kh/2) − ch(kh/2)sh(−kh/2)

ch(kh/2)ch(−kh/2) − sh(kh/2)sh(−kh/2)

)

, (2.46)

where

ch(λ) ≡ 1 +
4

9
λ2 +

1

63
λ4, sh(λ) ≡ λ+

1

9
λ3 +

1

945
λ5. (2.47)
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Figure 2.1: A plot showing the relative wave celerity compared with Stokes’ target solution.

This can be compared with Stokes’ target solution (i.e. the linear dispersion relation)

c2Stokes

gh
=

ω2

ghk2
=

tanh(kh)

kh
. (2.48)

A plot showing the relative embedded wave celerity with respect to the target solution can
be found in Figure 2.1. Here it can be seen that this formulation contains excellent linear
dispersive properties, as a 2% error is not exceeded until kh > 30.

It is again emphasized that Madsen et al. (2003) provide a complete analysis of this system
(their Method III), including analysis of linear shoaling properties, accuracy of the velocity
profile, and analysis of up to third-order (including amplitude dispersion) nonlinear prop-
erties. In each case the accuracy greatly exceeds that of all previous derivations, having
accurate shoaling to kh ≈ 30, accurate velocity profiles to kh ≈ 12, and nonlinear properties
to kh ≈ 25. For complete details on the analysis the interested reader is again referred to
the original derivation and analysis of Madsen et al. (2003) (see also Madsen et al., 2002).

2.8 Conclusions

In this chapter the main details concerning the derivation of the Boussinesq formulation
of Madsen et al. (2002, 2003) are reviewed, starting from the standard Laplace problem
governing incompressible and irrotational free surface flow. The formulation combines exact
representations of the dynamic and kinematic free surface conditions, as well as the kinematic
bottom condition, with truncated (Boussinesq-type) solutions for the Laplace equation in
the interior domain. The embedded linear dispersive properties of this system are analyzed
on a flat bottom, demonstrating excellent agreement with Stokes’ target solution out to
dimensionless depths of kh ≈ 30.
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Chapter 3

The Numerical Model

Chapter Summary

This chapter describes a number of basic components comprising the numerical finite dif-
ference model, including details on the spatial and temporal discretizations. Other features
of the numerical model are also introduced. These include a description of the boundary
conditions imposed, the use of relaxation zones for generating and absorbing wave fields,
and the use of smoothing filters for adding numerical dissipation. Some relevant details on
the computer processors, programming language, and compilers used during this work are
also provided.

3.1 Introduction

The construction of virtually any non-trivial numerical model requires the careful coordi-
nation of a variety of components. Of fundamental importance are of course the temporal
and spatial discretizations, including boundary conditions. A number of additional elements
must also typically be incorporated in a model suitable for practical simulations. The aim
of this chapter is to provide a description of the most important features of the basic nu-
merical finite difference model used to solve the system of high-order Boussinesq equations
throughout this work.

This chapter is organized as follows. The basic finite difference discretizations are described
in §3.2, with details on the corresponding boundary conditions provided in §3.3. The time
stepping scheme used throughout this work is similarly presented in §3.4. The use of re-
laxation zones for both wave generation and absorption is explained in §3.5. Discussion on
the application of smoothing filters used for introducing numerical dissipation (and their

17
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(a)−(b) (c) (d)

Figure 3.1: Stencils used for the various combinations of finite difference approximations.
These stencils have (a)-(b) 25, (c) 37, and (d) 49 points.

corresponding Fourier analysis) is additionally provided in §3.6. Some details on the com-
puter processors used throughout are given in §3.7, and on the programming language and
compilers in §3.8. Conclusions are briefly re-stated in §3.9.

3.2 Finite Difference Approximations

To solve the system of PDEs numerically we replace each of the continuous derivatives (see
Appendix A) with finite difference approximations. Note that due to the high-derivative
nature of this system, the stencils required are inevitably rather large. A number of cen-
tered finite difference discretizations have been implemented. These are (a) second-order
approximations for each partial derivative, (b) a 25-point (diamond) finite difference stencil,
(c) a 37-point (octagon) stencil, and (d) a 49-point (square) stencil. Each of these stencils
is shown in Figure 3.1. The actual finite difference approximations are all provided in Ap-
pendix B, along with the order of their respective truncation errors. With the exception of
stencil (a), all finite difference approximations are allowed to have the maximum possible
accuracy for the given stencil, which results in greater accuracy for the lower-order partial
derivatives than for their higher-order counterparts. In particular, under finite difference
stencil (b) cross-terms of a given order will tend to be less accurate than corresponding pure
x- or y-derivatives. Alternatively, stencils (c) and (d) provide highly-accurate mixed deriva-
tive approximations. In fact the formal order of accuracy achieved by these two stencils is
equivalent, despite the differences in their size. The coefficients for stencil (c) can be derived
by considering the two-dimensional operator directly, whereas the coefficients in (d) can be
derived via the superposition of the corresponding pure x- and y-derivatives. The minimum
stencil that can be used to (centrally) discretize mixed fifth-order partial derivatives, arising
from (2.40), (2.41), and (2.43), is the 25-point stencil, however the larger stencils do not sig-
nificantly affect the overall structure (i.e. the bandwidth) of the resulting discrete operators.
The relative merits of these various stencils will be investigated further in §6.2.
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3.3 Boundary Conditions

In the numerical solution of any system of PDEs appropriate boundary conditions must
be specified. In the present model combined Dirichlet and Neumann boundary conditions
are used to create closed boundaries (i.e. fully reflecting walls) on a rectangular domain.
Specifically, this corresponds to imposing ηx = 0, u = 0 (similarly for all even x-derivatives),
vx = 0 (similarly for all odd x-derivatives), and wx = 0 (similarly for all odd x-derivatives)
along x-boundaries; and ηy = 0, uy = 0 (similarly for all odd y-derivatives), v = 0 (similarly
for all even y-derivatives), and wy = 0 (similarly for all odd y-derivatives) along y-boundaries.
These conditions are imposed simply by reflecting the finite difference coefficients evenly for
Neumann boundary conditions and oddly for Dirichlet boundary conditions. Note that this
is equivalent to assuming that each variable is either symmetric or anti-symmetric about the
wall. This strategy has the advantage of keeping the overall model structure very regular,
as all equations are considered in some fashion at each individual grid point.

3.4 Time Integration

Throughout the present work the classical fourth-order, four-stage explicit Runge-Kutta
method is used for time integration. Other explicit time-stepping methods have also been
implemented, however this particular method has been found to give a good combination of
accuracy and stability at reasonable computational costs. Considering a system of differential
equations of the form

yt = F (y), (3.1)

where y is a vector of time stepping variables with F (y) representing a corresponding stage
evaluation, this scheme is given by

k1 = ∆tF (yn), (3.2)

k2 = ∆tF (yn +
k1

2
), (3.3)

k3 = ∆tF (yn +
k2

2
), (3.4)

k4 = ∆tF (yn + k3), (3.5)

yn+1 = yn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+O(∆t5). (3.6)

Given the complexity of this system of PDEs implicit methods are not felt to be very at-
tractive, and have not been attempted.
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3.5 Relaxation Zones

In practical wave simulations a means of both generating and absorbing the resulting wave
fields is required. A convenient method for both generating and absorbing waves within a
numerical model is to use so-called relaxation zones. This involves simply ramping between
discrete variables in space using the function

f ∗(i) = cr(i)f1(i) + (1 − cr(i))f2(i), (3.7)

where i is the grid point index, and 0 ≤ cr ≤ 1. Here we describe the method in terms of
a general discrete function f , however in the numerical model relaxation zones are applied
identically on each of the time stepping variables η, Ũ. The variable f ∗ hence corresponds to
the final values to be used in the numerical simulation after the relaxation zones are applied
(this is done at each time step). For relaxing a function up and down we respectively use

cr(i) = α−r(i−1)

r , (3.8)

cr(i) = α−r(Nr−i)

r , (3.9)

for i = 1, 2, · · · , Nr, where Nr is the set number of grid points for the relaxation zone,
and αr and r are shape parameters. Typically, these functions are not extremely sensitive
to the choice of αr (values ranging from 6–9 are generally appropriate). The choice for
the coefficient r is much more crucial, however. A proper choice for r depends on the
number of grid points defining the relaxation zone, and for Nr = 21, 51, 101 we recommend
r = 0.6, 0.8, 0.9, respectively. Experience has shown that zones covering a single wavelength
are generally sufficient both for generation and absorption purposes. Note than with this
method the first/last coefficients with (3.8)/(3.9) should be artificially set to zero.

A typical model setup with waves primarily traveling from left to right (in x) is illustrated
in Figure 3.2, consisting of three relaxation zones: 1) a wavemaker region; 2) a region to
absorb any backward reflected waves (e.g. from bathymetric changes); and 3) a sponge layer
for absorbing the outgoing wave field. In region 1 (3.7) combined with (3.8) is applied to
gradually ramp up the incident wave field, with f1 typically corresponding to some analytical
solution (e.g. a Stokes or stream function solution) and f2 = 0. In region 2 this same
combination is again applied, but with f1 now corresponding to the actual numerical solution,
and with f2 being the same analytical function as used in region 1 (i.e. we gradually ramp
from the analytical to the computed solution). In the sponge layer, region 3, (3.7) combined
with (3.9) is applied, with f1 being the computed solution and f2 = 0. This basic setup is
used throughout this work in all simulations involving progressive incident wave fields. In
cases where there is not a wavefield reflected back to the wavemaker (typically the case on
flat bottoms) it is not necessary to use region 2.

It is finally mentioned, that an example demonstrating the effectiveness of this approach for
wave generation and absorption (using stream function incident waves reflected off a wall)
in a single horizontal dimension can be found in Madsen et al. (2003) (see their Figures 10
and 11). See also Bingham & Agnon (2005).
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Figure 3.2: A sketch showing a typical setup of relaxation zones used in the numerical model.
Region 1 is the wavemaker region, region 2 absorbs any backward reflected wave, and region
3 is the sponge layer.

3.6 Savitzky-Golay Smoothing Filters

An essential component of the numerical model for practical applications is some form of
a dissipative interface. Such a means for introducing numerical dissipation is generally
necessary to maintain numerical stability. On constant depths and regular domains the
numerical model is indeed linearly stable (this is shown in Chapter 5). However it will
be shown through the course of this work that mild levels of numerical dissipation become
necessary in general applications involving nonlinearity, variable bathymetries, or irregular
domains. Throughout most of this thesis we employ Savitzky & Golay (1964)-type smoothing
filters (see also e.g. Press et al., 1992) for this purpose, applied intermittently. These
filters are particularly convenient as they can be easily derived to arbitrary polynomial
order, with the high-order filters generally having lesser effects on well resolved modes. As
implemented, the coefficients for a given two-dimensional filter stencil can be derived to
arbitrary polynomial order within the numerical model. Unsurprisingly, it has been found
that best results are achieved using relatively high-order filters, as these tend to minimize
damage to modes of physical interest.

To more accurately quantify the effects of these filters, a number have been analyzed using
standard Fourier techniques (a description of the analysis is provided in Appendix C). Each
of these filters uses the minimum diamond shaped stencil possible for the given order, and
prior to the analyses the filter coefficients have been summed by row (or equivalently by
column, as they are symmetric), simplifying the analysis to a single dimension. The resulting
amplification portraits for filters of order ranging from 2–10 are shown in Figure 3.3. As a
reference value, discretizations typically use at least 20 grid points per primary wavelength,
hence these filters will primarily only affect higher harmonics, which become important in
nonlinear simulations. Experience has shown that the use of filters having order six or higher
is sufficient for most applications, which is generally confirmed in Figure 3.3, where it is seen
that the amplification factor for the higher-order filters rapidly approaches unity as the
resolution is increased. The choice of filter, however, is inevitably somewhat case specific.
The filter used for a given simulation will generally be mentioned throughout this work.
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Figure 3.3: Amplification portrait for various Savitzky-Golay smoothing filters. The 2nd–
10th-order filters originally arise from (diamond shaped) stencils with 13, 25, 41, 61, and 85
grid points, respectively.

3.7 Computer Processors

During this work two different computer processors have been used for all simulations.
Firstly, a Dell Pentium 4 1.8 GHz processor with 1 GB DDR RAM has been used (this
has been the author’s main workstation). Secondly, simulations have also been run on sin-
gle nodes of the NIFLHEIM cluster supercomputer1. Each node consists of a Pentium 4
2.26 GHz processor, also with 1 GB DDR RAM. Throughout this work (when it is deemed
necessary) the processor used for a given simulation will be made clear.

3.8 Programming Language and Compilers

The numerical model is programmed using FORTRAN 90 (Metcalf & Reid, 1996), which
remains popular with scientists and engineers. This choice is also convenient, as many of
the more standard numerical software packages are also based in a FORTRAN language.

A somewhat surprisingly critical aspect in obtaining high performance, which is certainly
worth mentioning, is that of the compiler. Originally an Absoft FORTRAN compiler was
used. This was later changed to a freely available (for research purposes) Intel compiler.
We refrain from making a detailed comparison. Speaking quite generally, however, (using
similar levels of optimization), this resulted in a speed up by a factor of 2–3 in simulations!
This is mentioned with the hope that others might also benefit from this experience.

1The NIFLHEIM cluster supercomputer was installed on August 12, 2002 at Center for Atomic-scale
Materials Physics (CAMP) at the Technical University of Denmark, with a grant from the Danish Center
for Scientific Computing. The cluster consists of 480 PCs, and has a total peak performance of above 2.1
TeraFLOPS, making it one of the fastest computers in Europe at the time of installation.
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3.9 Conclusions

This chapter describes a number of basic features making up the numerical model used
throughout this thesis. This includes a description of various finite difference schemes im-
plemented (and their corresponding boundary conditions), as well as of the time stepping
scheme used throughout. A number of other important elements comprising the numerical
model are also introduced. These include the use of relaxation zones for generating and
absorbing wave fields, as well as the use of smoothing filters (and analysis of their effects)
necessary for general stability purposes. Finally, some relevant details on the the processors
used for simulations, as well as the programming language and compilers are presented.
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Chapter 4

Preconditioned Iterative Solutions

Chapter Summary

This chapter investigates preconditioned iterative techniques involved in the finite difference
solutions of the Boussinesq model in two horizontal dimensions. It is shown that the re-
sultant system of equations requires that a sparse, unsymmetric, and often ill-conditioned
matrix be solved at each stage evaluation within a simulation. Various preconditioning
strategies are developed and investigated, including full factorizations of the linearized ma-
trix, ILU factorizations, a matrix-free (Fourier space) method, and an approximate Schur
complement approach. A detailed comparison of the methods is given for both rotational
and irrotational formulations, and the strengths and limitations of each are discussed. Mesh-
independent convergence is demonstrated with many of the preconditioners for solutions of
the irrotational formulation, and solutions using the Fourier space and approximate Schur
complement preconditioners are shown to require an overall computational effort that scales
linearly with problem size (for large problems). Through combined physical and mathe-
matical insight effective preconditioned iterative solutions are achieved for the full physical
application range of the model.

4.1 Introduction

As is common in the solution of systems of PDEs, the dominant computational expense
for numerical solutions of the high-order Boussinesq formulation involves solutions of sparse
linear systems of the form

Ax = b. (4.1)

Generally speaking there are two primary solution strategies for systems of this type. These
are so-called direct methods (see e.g. Duff et al., 1986), based on Gaussian elimination

25
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techniques, and iterative methods (see e.g. Saad, 2003), where an initial guess is continually
improved, eventually resulting in a suitable approximate solution. Both of these areas can
truly be considered as fields in their own right (with some inevitable overlap), for which
extensive literature is available. Direct methods for sparse matrices are attractive due to
their inherent robustness. Unfortunately, their large storage demands and lack of scalability
can make such solutions impossible when solving large problems, particularly in two and
three dimensions. Alternatively, iterative methods generally have significantly lower storage
demands, and at their best are both fast and scalable. However, they generally lack the
robustness of direct methods, particularly when solving very difficult problems. Modern
research is continually increasing the effectiveness of these iterative methods, however (see
the recent review of Saad & van der Vorst, 2000), and they are becoming increasingly popular
among scientists and engineers when solving large sparse matrix problems.

Of the various iterative strategies available today, Krylov subspace methods1 are perhaps
those most commonly used. This is due to their combined general effectiveness and relative
ease of implementation (e.g. compared with more complicated multi-grid schemes). For non-
trivial problems, however, these basic methods often provide prohibitively slow convergence.
The key to efficient solution strategies therefore lies in preconditioning of the original system.
The basic idea is to transform the original linear system (4.1) via an operation with a
preconditioning matrix M. For example, preconditioning from the left leads to

(M−1A)x = M−1b. (4.2)

Hence the actual iterative procedure is applied conceptually using the matrix M−1A, which
is of course not explicitly formed (this would result in a dense matrix). This matrix should
generally be well conditioned or have clustered eigenvalues, leading to enhanced convergence
rates. Sparse matrix vector products of the form z = M−1Av inherent within the basic
Krylov subspace methods are thus carried out by first forming w = Av, followed by a solution
of a system having the form

Mz = w. (4.3)

Hence, a good preconditioner M must satisfy the often-conflicting criteria of approximating
A well, while at the same time being somehow ‘easy’ to solve. This is a non-trivial task,
as there is inevitably something about the matrix A making it difficult to invert directly
(otherwise it would not have been necessary to resort to iterative methods in the first place!).
This paradox gives rise to the common phrase ‘the art of preconditioning’.

This chapter is primarily concerned with the development of efficient preconditioned itera-
tive solutions for a rather difficult sparse matrix problem arising from the numerical solution
of the previously introduced Boussinesq formulation. Here it will be shown that finite dif-
ference discretizations of the governing system of PDEs require a solution of a sparse and
(usually) ill-conditioned linear system at each stage evaluation. The structure of the re-
sulting matrix is such that direct methods for sparse matrices are uncompetitive in terms

1Named after the Russian scientist Alexei Nikolaevich Krylov, 1863–1945.
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of both time and storage demands. The development of effective preconditioning methods
is therefore of paramount importance, and a number of strategies are developed. These
include complete/incomplete factorizations of the linearized matrix, a matrix-free (Fourier
space) method, and an approximate Schur complement approach. A detailed comparison
of the methods is given for both rotational and irrotational formulations, and the strengths
and limitations of each are discussed. Mesh-independent convergence is demonstrated with
many of the preconditioners for solutions of the irrotational formulation, and solutions using
the Fourier space and approximate Schur complement preconditioners are shown to require
an overall computational effort that scales linearly with problem size (for large problems).

The outline of this chapter is as follows. The Boussinesq formulation is re-stated in both
rotational and irrotational forms in §4.2. Relevant discussion on the sparse matrix software
used with many of the developed methods is provided in §4.4, with the basic Krylov subspace
method used given in §4.5. Various preconditioning strategies are described in §4.6, and a
detailed comparison of these methods is given in §4.7. Conclusions are drawn in §4.8.

This chapter is published in a similar form in Fuhrman & Bingham (2003) (see also Fuhrman
& Bingham, 2004).

4.2 Rotational and Irrotational Formulations

In this section the governing system of equations from the Boussinesq formulation is re-stated
in a form more in-line with the actual numerical procedure used for their solution. From
(2.11) and (2.13), the dynamic and kinematic free surface conditions are again

Ũt = −g∇η − 1

2
∇
(

Ũ · Ũ − w̃2(1 + ∇η · ∇η)
)

, (4.4)

ηt = w̃(1 + ∇η · ∇η) − Ũ · ∇η. (4.5)

From these it can be seen that evolving η and Ũ forward in time requires a means of
computing the associated w̃, subject to the Laplace equation (2.3), which is inherently
(approximately) satisfied by the velocity profiles (2.40) and (2.41), and the kinematic bottom
condition (2.43). Combining (2.40) applied at z = η with (2.43), while also invoking (2.12)
gives a 3× 3 system that can be solved for û∗, ŵ∗ in terms of Ũ and η. The resulting system
of PDEs is given in matrix form as





A11 − ηxB11 A2 − ηxB12 B11 + ηxA1

A2 − ηyB11 A22 − ηyB12 B12 + ηyA1

A01 + hxC11 + hyC21 A02 + hxC12 + hyC22 B0 − hxC13 − hyC23









û∗

v̂∗

ŵ∗



 =





Ũ

Ṽ
0



 .

(4.6)

Here the subscripts x and y denote partial differentiation. The system contains a number of
operators, which are again given in their entirety in Appendix A. For now it is sufficient to
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mention that each operator contains up to either fourth- or fifth-order mixed partial deriva-
tives. This system of operators shall henceforth be referred to as A, and upon discretization
this system shall be referred to as Ax = b. Each evaluation of (4.4) and (4.5) will hence
require a solution of this system. As stated previously, this chapter concentrates on iterative
methods for solving discrete linear systems of this form. It is also worthwhile to note that
under the assumption of potential (irrotational) flow such that

∂u

∂y
− ∂v

∂x
= 0, (4.7)

the system simplifies slightly to

A =





A1 − ηxB11 −ηxB12 B11 + ηxA1

−ηyB11 A1 − ηyB12 B12 + ηyA1

A01 + hxC1 A02 + hyC1 B0 − hxC13 − hyC23



 . (4.8)

Note that (4.7) is a single component of the vorticity vector, and that the other elements
(involving z-derivatives) have already been eliminated via the expansion of the velocity
potential in the z-direction. This system has certain useful mathematical properties which
shall be made apparent. Water wave models are commonly formulated in terms of a velocity
potential, thus it can be argued that not much is lost physically under this assumption.
Solutions involving A stemming from (4.6) and (4.8) will both be considered in this work.

Having solved for the utility variables û∗, ŵ∗ from (4.6) or (4.8), w̃ can be computed from
(2.41) applied at z = η. In terms of the previously introduced operators, this may be
equivalently written as

w̃ = A1ŵ
∗ − B11û

∗ − B12v̂
∗, (4.9)

which closes the problem.

Writing the governing equations in this form perhaps gives a more clear impression of what
is required to time step the system of PDEs. The operator notation introduced here will be
maintained throughout this thesis.

4.3 Matrix Properties

In this section we will briefly discuss some of the inherent properties of the resulting matrix
A, arising upon discretization of A (using centered finite difference approximations). These
properties are useful in that they provide insight into potential difficulties which might be
expected to arise when attempting solutions of the linear system.

The matrix A is unsymmetric, but has a symmetric block structure. The matrix can have a
variable sparsity pattern depending on the natural ordering of the equations (i.e. whether the
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equations are grouped strictly by PDE or by grid point). Both scenarios are shown in Figure
4.1. It is seen that grouping the equations by PDE, as in Figure 4.1 (a), leads to a natural
block structure as seen e.g. in (4.6). It is often useful to consider such a structure when
implementing a preconditioner so that the natural operator structure is maintained. It is
likewise seen that grouping the discretized equations by grid point results in a much smaller
bandwidth as in Figure 4.1 (b). This ordering results in larger, more concentrated blocks,
which allows for a more efficient implementation of sparse matrix-vector multiplication within
various iterative solution strategies. Regardless of the ordering used, the matrix is generally
far from diagonally dominant. The matrix is also somewhat unusual in that, while certainly
sparse, it contains a substantial number of nonzeros per row. For example, a 37-point finite
difference stencil results in up to 37 · 3 = 111 nonzeros per row.

The properties of the matrix also vary widely depending on the physical situation, with the
most important parameter being the dimensionless number kNh, where

kN =

√

( π

∆x

)2

+

(

π

∆y

)2

, (4.10)

is the modulus of the two-dimensional Nyquist wavenumber vector. This dimensionless
number govern the numerical significance of the Boussinesq terms2. Note that under a
constant discretization (in terms of grid points per wavelength) this is directly proportional to
the dimensionless measure of water depth kh (this measure is used throughout this chapter to
provide more physical relevance). To illustrate this dependence the spectrum of eigenvalues,
λ, for two matrices having different depths (but with identical free surfaces) are shown in
Figure 4.2. Both matrices are generated from the discretization of (4.6) on a 21 × 21 grid,
with the free surface given by

η(x, y) =
H

2
cos kxx cos kyy, (4.11)

with waveheight H = 0.05 m, wavenumbers kx = ky = 2π m−1, and ∆x = ∆y = 0.05
m. The shallow-water matrix, Figure 4.2 (a), uses h = 0.07071 m (i.e. kh = π/5, H/h =
0.7071), while the deep-water matrix, Figure 4.2 (b), uses h = 0.7071 m (i.e. kh = 2π,
H/L = 0.05). Note that here k =

√

k2
x + k2

y and L = Lx ≡ 2π/kx = Ly ≡ 2π/ky are used.
Both matrices have a minimum eigenvalue near unity. The eigenvalues of the shallow-water
matrix are reasonably well clustered, which gives evidence that preconditioning is perhaps
not so crucial in these situations. The spectrum of the deep-water matrix is dramatically
different, having a much larger spread of eigenvalues throughout the right half of the complex
plane. Preconditioning deep-water problems therefore can be expected to be much more
critical. These conclusions are further reflected in the respective condition numbers of the two
matrices, which are 11.5 and 5.47×103 for the shallow- and deep-water matrices, respectively.
The matrices become even more ill-conditioned as the depth is further increased (or the grid
refined), but these matrices illustrate the general nature of this particular linear system. In
practice condition numbers as high as 108 have been encountered.

2The dimensionless ratio of the depth and spatial discretization, h/∆x, has been previously deemed the
‘Abbott number’; see e.g. Abbott (1979); Abbott & Basco (1989); Abbott et al. (1984); Abbott & Minns
(1998).
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Figure 4.1: Sparsity patterns of A using a 37-point finite difference stencil on an 11 × 11
grid when grouping the discrete equations (a) by PDE and (b) by grid point.
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Figure 4.2: Eigenvalues of (a) a shallow-water matrix with kh = π/5 and (b) a deep-water
matrix with kh = 2π.

4.4 Direct Matrix Factorizations

Due to the structure of A (with a bandwidth that continually increases with problem size)
direct matrix factorizations have been found to be uncompetitive as a general solution proce-
dure. However, many of the strategies developed herein use direct methods within a greater
iterative solution strategy. For all direct matrix factorizations and corresponding solutions
the MA41 package from the well-known Harwell Subroutine Library (HSL) is employed. The
factorization method used is a potentially parallel sparse multi-frontal variant of Gaussian
elimination, which is particularly effective on matrices whose sparsity pattern is symmetric,
or nearly so. The method chooses pivots from the diagonal using the approximate minimum
degree algorithm of Amestoy et al. (1996). When solving systems with a single right hand
side (RHS) the routine also makes efficient use of level 2 Basic Linear Algebra Subprograms
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(BLAS), which have been optimized using the Automatically Tuned Linear Algebra Software
(ATLAS, see e.g. Whaley et al., 2000). For full details on the factorization method see Duff
(1986, 1989); Duff & Reid (1984). In the present work only the serial version of the code is
used (a parallel OpenMP version is also available), however, the potential for parallelism is
duly noted here.

4.5 Krylov Subspace Method

Due to the large number of nonzeros per row in A, the Krylov subspace method best suited
to solving this linear system is arguably the Generalized Minimal RESidual (GMRES) algo-
rithm of Saad & Schultz (1986). Indeed, as long as the number of iterations required are kept
reasonable (through effective preconditioning), the additional storage required by GMRES
is generally the same order of magnitude or less than the matrix itself. Furthermore, the
number of iterations must become fairly large before an increase in the number of matrix-
vector products can be warranted by restarting the iteration procedure. For these reasons
unrestarted GMRES is used throughout this work.

4.6 Preconditioning Methods

This section introduces a number of preconditioning strategies that have proven to be effec-
tive in solving Ax = b. Throughout this chapter the preconditioning operation consists of
solving systems of the form (4.3), where zT = [z1, z2, z3] and wT = [w1,w2,w3]. All pre-
conditioning in the present work is done from the left, as shown in (4.2). In limited testing
preconditioning from the right has been found to be equally effective. For a recent review
on preconditioning techniques for sparse matrices see Benzi (2002).

4.6.1 Factored linear preconditioner

A relatively straight-forward method for preconditioning A is to simply neglect the nonlinear
terms (with η = 0 in the remaining operators), which leaves for the rotational system

M =





A11 A2 B11

A2 A22 B12

A01 + hxC11 + hyC21 A02 + hxC12 + hyC22 B0 − hxC13 − hyC23



 , (4.12)

and similarly for the irrotational system

M =





A1 B11

A1 B12

A01 + hxC1 A02 + hyC22 B0 − hxC13 − hyC23



 . (4.13)
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The physical justification for neglecting the nonlinear terms is related to the fact that in deep
water (where the matrix becomes ill-conditioned) the maximum wave steepness physically
possible before breaking is H/L ≈ 0.141 (Longuet-Higgins, 1975; Williams, 1985). This
value gives a rough upper estimate for the relative significance of the nonlinear terms in
deep water. More precisely, as h becomes large (η − ẑ) ≈ −ẑ, and M should quite closely
resemble A. Unfortunately, M generally has the same structure as A, and after factorization
will have essentially the same storage demands as would a direct method. The advantage
of this approach lies simply in the fact that M is time-constant. The preconditioner can
therefore be factored a single time at the beginning of a simulation, with the preconditioning
operation consisting only of a solve step. This is quite significant, as a solve step for this
system is much less expensive than a factorization step, typically by a factor 10-100 for
the range of problem sizes considered in this work. To combat the sometimes excessive
storage demands associated with this approach single precision (SP) factorizations of M are
also considered (still to precondition A in double precision), thus reducing the storage by
roughly a factor of two.

4.6.2 ILUT preconditioner

As a lower-storage alternative to the full factorizations described in §4.6.1, incomplete factor-
izations of M in (4.12) or (4.13) will also be considered. For these purposes the well-known
ILUT factorization of Saad (1994a) is used. This software uses a dual-threshold dropping
strategy, and is freely available as part of the SPARSKIT package (Saad, 1994b). In earlier
testing (incremental) incomplete factorizations of A have also been considered. However,
the use of incomplete factorizations of the time-constant linear matrix has proven to be a
much more efficient alternative. Throughout this work a drop-tolerance of 0.005 is used,
combined with a maximum fill-in of 200 elements per row (in the factors), which have been
found to be good general parameters for this problem class.

4.6.3 Fourier space preconditioner

The linearized version of A, as discussed in §4.6.1, should provide an effective preconditioner
for this system. Unfortunately the high storage requirements for such complete factoriza-
tions can be quite limiting. In search of a more efficient means of applying this idea, we
also consider an equivalent operation in Fourier space. In the linear sense (i.e. neglecting
nonlinear terms), A relates the pseudo-velocities at ẑ to the horizontal velocities at z = 0.
According to Stokes’ first-order theory for constant h, the relationship between û and u0 is
given as

û =
cosh(k(h+ ẑ))

cosh kh
u0 = [cosh(−kẑ) + sinh(−kẑ) tanh(k(h+ ẑ))]−1 u0. (4.14)
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To gain an expression consistent with the embedded properties of the Boussinesq formulation,
the infinite operators must first be replaced by Taylor series expansions. Further Padé-
enhancement of the resultant expansions corresponds to transforming from û to the utility
velocities û∗. This procedure ultimately leads to the following replacement operations

cosh(−kẑ) ⇒ 1 + k2α2 + k4α4, (4.15)

sinh(−kẑ) ⇒ −kẑ + k3β3 + k5β5, (4.16)

tanh(k(h+ ẑ)) ⇒ kγ + 1
9
k3γ3 + 1

945
k5γ5

1 + 4
9
k2γ2 + 1

63
k4γ4

, (4.17)

where setting z = 0 in (2.42) gives α2 = 4ẑ2/9, α4 = ẑ4/63, β3 = −ẑ3/9, and β5 = −ẑ5/945,
with γ = (h + ẑ). Inserting (4.15)-(4.17) into (4.14) and setting ẑ = −h/2 gives the final
relationship

û∗ =

[

1 +
k2h2

9
+
k4h4

1008
+

(15, 120kh+ 420k3h3 + k5h5)2

907, 200(1008 + 112k2h2 + k4h4)

]−1

u0. (4.18)

The corresponding preconditioning operation consists of firstly transforming the compo-
nents of the preconditioning RHS w1, w2, and w3 into Fourier space (treating each as two-
dimensional arrays). For this operation two-dimensional combinations of fast sine and cosine
transforms are used as appropriate for Dirichlet and Neumann boundary conditions, respec-
tively. The preconditioning is applied entirely in Fourier space, which uses ∆kx = π

∆x(Nx−1)

and ∆ky = π
∆y(Ny−1)

, where Nx and Ny are the number of grid points in the x- and y-

directions, respectively. The complete operation is given in Algorithm 1, which is seen to
include the truncated relationship from (4.18). Note also that solutions for z3(i, j) are found
simply through spectral differentiation i.e. replacing ∂

∂x
and ∂

∂y
with ikx and iky, respectively

in the flat-bottom operators A01, A02, and B0. Once the loops are complete, the two-
dimensional arrays corresponding to z1, z2, and z3 are inverse-transformed back to physical
space, completing the preconditioning operation.

This preconditioner should essentially provide the same operation as the factored (irrota-
tional) linear matrix with constant h in (4.13). It is entirely matrix-free, however, thus any
additional storage requirements are negligible. This preconditioner requires a global value
for h to be applied in Fourier space. The hope was that simply taking an average value
over the domain would still be effective in preconditioning the system on a variable bottom.
Unfortunately this simple strategy does not appear to work, and it is not immediately clear
how to apply the idea on a variable depth. Therefore, throughout this thesis applications
of this preconditioner will be limited to cases having constant depth. Because this method
stems from potential theory it is also expected to be more effective in preconditioning the
irrotational system than the rotational system.
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Algorithm 1 Algorithm for the Fourier space preconditioning operation.

w1 = F{w1}; w2 = F{w2}; w3 = F{w3}
for j = 1 to Ny do
ky = (j − 1)∆ky

for i = 1 to Nx do
kx = (i− 1)∆kx; k =

√

k2
x + k2

y

ǫ =
(

1 + k2h2

9
+ k2h2

1008
+ (15,120kh+420k3h3+k5h5)2

907,200(1008+112k2h2+k4h4)

)−1

z1(i, j) = ǫw1(i, j); z2(i, j) = ǫw2(i, j)
Ǎ01 = kxh

30,240
(15, 120 + 420k2h2 + k4h4)

Ǎ02 = kyh

30,240
(15, 120 + 420k2h2 + k4h4)

B̌0 = 1 + k2h2

9
+ k4h4

1008

z3(i, j) = 1
B̌0

(w3(i, j) − Ǎ01z1(i, j) − Ǎ02z2(i, j))
end for

end for
z1 = F−1{z1}; z2 = F−1{z2}; z3 = F−1{z3}

4.6.4 Approximate Schur complement preconditioner

The derivation of an approximate Schur complement3 preconditioner shall begin with the
irrotational, flat-bottom system given by





A1 B11

A1 B12

A01 A02 B0



 .

The justification for neglecting the slope terms is that the formulation inherently includes a
mild slope assumption (see again Madsen et al., 2002, 2003). Thus, terms multiplied by hx

and hy in (4.6) and (4.8) should be of secondary importance. There is nothing preventing
the application of preconditioners based on this formulation on variable depth problems,
however. Note that in this version, the upper-left 2 × 2 system is block diagonal, with the
A1 operator on both diagonals. This rather unique structure will be taken advantage of in
the following. The Schur complement with respect to this upper left 2 × 2 system is

S = B0 − A01A
−1
1 B11 − A02A

−1
1 B12. (4.19)

It seems natural to first simplify S through multiplication by A1, which leaves

S0 = A1B0 − A01B11 − A02B12. (4.20)

This operation assumes commutivity for all the operators in S, which is strictly true only
when h is constant (i.e. on a flat bottom). However, experience has shown that it is still

3Named after the German mathematician Issai Schur, 1875–1941.
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reasonable for preconditioning purposes on mildly sloping bathymetries. In full form S0 is
the following 10th-order operator

S0 = 1 − 17h2∇2

36
+

16h4∇4

567
− h6∇6

2240
+

29h8∇8

15, 240, 960
− h10∇10

914, 457, 600
. (4.21)

At first glance inverting the discrete sub-matrix S0 might seem an insurmountable task (here
a sub-matrix refers to a matrix with order equal to the number of grid points N , i.e. 1/3
that of A); however it turns out, quite remarkably, that the operator can be factored into
five second-order modified Helmholtz operators i.e.

S0 =
5
∏

i=1

(1 − aih
2∇2), (4.22)

where a1 = 0.4052847276166189, a2 = 0.04500344115884187, a3 = 0.01558017599415051, a4

= 0.005675885605119240, and a5 = 0.0006779918474916520. Such a factorization can be
shown to exist by considering (4.21) as a polynomial in h2∇2, which can in-turn be shown
to have all real roots. Similarly, A1 can be factored as

A1 =

(

1 − h2∇2

4(14 −
√

133)

)(

1 − h2∇2

4(14 +
√

133)

)

. (4.23)

Thus, the preconditioning operation can be simplified to the quite-manageable task of in-
verting nine second-order sub-matrices and three sub-matrix-vector multiplications! The
preconditioner is given by

M =





A1

A1

A01 A02 S0A
−1
1



 , (4.24)

where S0 and the two upper-left A1 sub-matrices correspond to discrete forms of (4.22)
and (4.23), respectively. It should be stressed that the three A1 sub-matrices in (4.24) all
have different boundary conditions corresponding to their respective column position. It
is interesting to mention that the preconditioned (linear, irrotational, flat-bottom) system
(maintaining operator form) becomes

M−1A =





1 0 A−1
1 B11

0 1 A−1
1 B12

0 0 1



 . (4.25)

Thus, even though M−1 in no sense approximates A−1, it should still have a similar clustering
effect on the eigenvalues of A (the eigenvalues of an upper-triangular matrix are simply
the diagonals) . All sub-matrices in M are again time-constant, and can be built and (if
necessary) factored a single time at the beginning of a simulation. Second-order (five-point)
finite difference approximations for all Laplacian operators are used in practice as MA41 is
extremely effective in limiting fill-in in matrices having a single outer band. As a result,
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this preconditioner should have very low storage demands, and as no truncations have been
imposed, should not be limited by problem depth. It is again expected that this approach will
be more effective in preconditioning the irrotational matrix than the full rotational matrix,
however it shall be applied in either case.

Discussion on the use of Schur complement preconditioners on matrices with reasonably
similar (2 × 2) block structures is given in Ipsen (2001); Murphy et al. (2000). For other
applications see e.g. Loghin & Wathen (2002, 2003).

4.7 Comparison of Preconditioners

To compare the preconditioning strategies outlined in §4.6 nonlinear simulations using lin-
ear standing wave initial conditions (in two horizontal dimensions) given by (4.11) and
Ũ(x, y, 0) = 0, shall be used, with kx = ky = 2π m−1 (i.e. L = Lx = Ly = 1 m). This
provides a simple means for varying the nonlinearity, water depth, and discretization. For
ease of interpretation, all results will be reported in this section in terms of the dimension-
less variables kh, and either H/h or H/L for shallow- and deep-water cases, respectively.
As reference values, kh ≈ π is often taken as the practical deep-water limit, and (as noted
previously in §4.6.1) the maximum deep-water wave steepness physically possible for a pro-
gressive wave train (before wave breaking) is H/L ≈ 0.141. Similarly, at the shallow water
limit breaking occurs at H/h ≈ 0.8. All computations are performed on the 1.8 GHz pro-
cessor with 1 GB RAM, using the Absoft FORTRAN compiler (recall that the CPU times
reported here could likely be significantly reduced using the Intel compiler; see §3.8). All
iterative solutions use a relative residual error tolerance r = ||b − Ax||2/||b||2 of 10−6. This
tolerance is used throughout this thesis, unless otherwise noted. Within all simulations the
previously found solution vector x is used as the starting guess for each successive iterative
solution.

4.7.1 Performance versus relative water depth

Figure 4.3 demonstrates how the relative water depth, kh, affects the performance of the
various preconditioning strategies under a constant discretization. These simulations use a
33 × 33 grid, are for 101 time steps, with H/L = 0.05 m, ∆x = ∆y = 0.0625 m (i.e. 16
grid points per wavelength), and ∆t = 0.03365 s. The domain covers two wavelengths in
both horizontal directions. Table 4.1 also provides a summary of the simulations at both
the shallow and deep extremes, giving the range of iterations required with each method.
In quite shallow water it can be seen that preconditioning is perhaps not so critical, as even
the results with no preconditioning are reasonable. This is consistent with the expectations
from §4.3. As kh increases (even moderately), however, it is seen that some form of pre-
conditioning becomes absolutely necessary. The ILUT preconditioner works quite well in
shallow to intermediately deep water, however it rapidly loses effectiveness as the depth is
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Figure 4.3: CPU times (101 time steps, H/L = 0.05) under variable depth for solving (a)
the rotational system and (b) the irrotational system.

further increased. This trend is more exaggerated when solving rotational problems, but
the method eventually fails in either case. A somewhat similar loss in effectiveness is seen
with the Schur complement and (to some degree) with the Fourier space preconditioner for
the rotational matrix. The observed increase in CPU time is much more controlled in these
instances, however. Both provide noticeably more efficient solutions for irrotational sim-
ulations, which was expected from §4.6.3 and §4.6.4. Somewhat remarkably, many of the
preconditioners actually become more effective as the depth is increased. This can again
easily be explained physically by the fact that as h increases (η− ẑ) ≈ −ẑ. Put another way,
when the depth is large the variations of the water surface become relatively insignificant
with respect to the entire water column. These results will inevitably change under different
discretizations, nonlinearity, and problem size, however the trends seen here remain very
consistent. Experience has shown that the results in Figure 4.3 are quite representative.

It is finally mentioned that in Table 4.1 simulation times for the same problem using direct
solution methods for Ax = b are also reported. Here it is clearly seen that such methods are
uncompetitive with the best of the preconditioned iterative approaches, even for this rather
small problem.

4.7.2 Performance versus nonlinearity

Figure 4.4 provides a similar comparison of CPU times for simulations where the deep-water
nonlinearity (or wave steepness), H/L, is varied. These simulations are again on a 33 × 33
grid, for 101 time steps, with kh = 2π, ∆x = ∆y = 0.0625 m, and ∆t = 0.03365 s. As
Figure 4.3 has shown simulations with the ILUT preconditioner to be uncompetitive at this
depth, this preconditioner is not considered in the remainder of this section. As Figure 4.4
demonstrates, all of the preconditioning methods gradually lose some effectiveness as the
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Table 4.1: A summary of the simulations having the minimum and maximum kh values from
Figure 4.3. All simulations are on a 33×33 grid, for 101 time steps, with ∆x = ∆y = 0.0625
m, and ∆t = 0.03365 s. The description column corresponds to the entire list of simulations
to the right.

Rotational Irrotational
Description Preconditioner Iterations CPU [s] Iterations CPU [s]

Shallow water: Linear 3-12 80.5 3-13 83.2
kh = π/5 Linear (SP) 3-12 75.1 2-13 77.5
H/h = 0.7071 ILUT 3-14 61.2 3-16 60.3

Fourier 5-14 56.3 4-15 54.4
Schur 4-13 67.8 5-15 71.7
None 8-23 78.5 9-27 84.2

Deep water: Linear 2-9 64.9 2-9 62.7
kh = 2π Linear (SP) 2-10 57.3 2-9 55.6
H/L = 0.05 ILUT 14-40 309 7-21 128

Fourier 2-21 62.3 2-10 41.2
Schur 3-20 90.0 4-14 68.5
None 94-206 747 85-129 513

Direct method — — 269 — 268

nonlinearity is increased. This is expected, as the nonlinear terms have been neglected in
the preconditioners. The growth is very acceptable, however, and the simulation time grows
roughly linearly with the wave steepness. As can be seen, the preconditioners remain effective
even when the nonlinearity is quite high (results up to H/L = 0.12 are shown). Consistent
with previous observations, the Fourier space and Schur complement methods are more
sensitive to increases in nonlinearity when solving the rotational system, as characterized by
their steeper slopes.

4.7.3 Performance versus grid refinement

Figure 4.5 demonstrates how the preconditioning strategies perform when the mesh is refined
under a constant depth and nonlinearity. These simulations use kh = 2π, H/L = 0.08, and
a constant fraction ∆x/∆t = ∆y/∆t = 1.857 m/s. Each simulation uses a domain covering
a single wavelength in each horizontal direction, and covers the equivalent of a linear period
i.e. to t = 0.6730 s. The reported iterations are the average from each simulation. These
tests are quite demanding, as refinements in the mesh make A increasingly ill-conditioned.
Solutions for the rotational system using the Schur complement and linear (SP) precon-
ditioners can be seen to be rather sensitive to refinements in the mesh, as the number of
required iterations increases significantly. The linear (SP) preconditioner is fairly robust
with discretizations up to around 48 grid points per wavelength, however. The results for
the irrotational system are most impressive, as the required number of iterations actually
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Figure 4.4: CPU times (101 time steps, kh = 2π) under variable deep-water nonlinearity
when solving (a) the rotational system and (b) the irrotational system.
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Figure 4.5: Average number of iterations required over a linear period (kh = 2π, H/L = 0.08)
when solving (a) the rotational system and (b) the irrotational system. The domain in each
simulation covers a single wavelength in each horizontal direction, and the time step is varied
such that ∆x/∆t = ∆y/∆t = 1.857 m/s is constant. Note that the curves for both linear
preconditioners in (b) are visually indistinguishable from one another.

decreases as the mesh is refined. This decrease is simply due to the use of smaller time
steps as ∆x and ∆y are reduced, thus the starting guess for each iterative solution becomes
better as the mesh is refined. The results with both linear preconditioners are virtually
indistinguishable from one another in Figure 4.5 (b). Over this quite realistic discretization
range the convergence using each of the preconditioners for solving the irrotational system
appears to be mesh independent. The linear and (somewhat surprisingly) Fourier space
preconditioners seem to be the most robust when solving the rotational system. In practice
(see e.g. §6.2) solutions using as few as 15-20 grid points per wavelength have been found
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Table 4.2: Length of real storage allocated for the various preconditioners compared with
the matrix A for a wide range of problem sizes.

Grid N A Linear Fourier Schur

17 × 17 289 8.1 ×104 4.0 ×105 8.7 ×102 1.1 ×105

33 × 33 1089 3.3 ×105 2.3 ×106 3.3 ×103 4.9 ×105

65 × 65 4225 1.3 ×106 1.5 ×107 1.3 ×104 2.3 ×106

129 × 129 16,641 5.4 ×106 8.4 ×107 5.0 ×104 1.1 ×107

257 × 129 33,153 1.1 ×107 1.8 ×108 9.9 ×104 2.4 ×107

257 × 257 66,049 2.2 ×107 4.3 ×108 2.0 ×105 5.3 ×107

to give sufficient accuracy, perhaps making such fine discretizations unnecessary with this
model. Mesh independence is a very desirable property nonetheless, and is rarely achieved
with conventional (ILU or approximate inverse) preconditioning techniques (Benzi, 2002).
The use of complete factorizations within the greater iterative strategy seems to have made
this achievement possible.

4.7.4 Storage comparison

As hinted in §4.6, the storage required by each of the preconditioners varies significantly. To
illustrate this point, Table 4.2 shows the length of real storage that must be allocated for
each preconditioner for a variety of problem sizes. Also shown for comparison is the length of
the real array required to store A. The linear preconditioners can be seen to have quite large
storage demands, which are generally an order of magnitude more than for the matrix itself.
The use of single precision factorizations has proven to be an effective method for reducing
these demands, however even in this case the storage can be quite limiting. The Fourier
and Schur complement methods, on the other hand, have much lower storage requirements.
These results show that the additional storage required by the Fourier space preconditioner
is essentially negligible, while that of the Schur complement preconditioner is roughly double
that of A (for large problems), which is still very reasonable.

4.7.5 Breakdown of computational expenses

Given the large differences in the storage demands (and therefore in the corresponding num-
ber of required floating point operations per iteration), it might seem surprising that the
linear preconditioning methods are competitive at all with the Fourier and Schur comple-
ment approaches, as the required number of iterations do not differ nearly as significantly.
The explanation is apparent upon a profiling of the simulations, a sample of which is given
in Table 4.3. Here a breakdown of the computational expense of the major operations (in
percentages) is provided for solutions with each preconditioner. The results shown are from
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Table 4.3: Percentage CPU time spent in major operations during irrotational simulations
(101 time steps, kh = 2π, H/L = 0.05) on a 129×129 grid using the various preconditioners.
The numbers in parentheses correspond to the percentage of the preconditioning operation
spent in level 2 BLAS. The total CPU time for each simulation is also provided.

Operation Linear Linear (SP) Fourier Schur

Mat.-vec. prod. 19.8 24.6 50.5 40.3
Build A 12.3 15.1 28.4 15.3

Preconditioning 63.1 (89.0) 54.7 (88.7) 13.8 38.6 (25.1)
GMRES 1.2 1.8 3.7 2.9
Time int. 1.2 1.4 2.7 1.5

Misc. 2.4 2.4 0.9 1.4

Total CPU [s] 1587 1295 679 1268

irrotational simulations using 101 time steps on a 129×129 grid, with kh = 2π, H/L = 0.05,
∆x = ∆y = 0.0625 m, and ∆t = 0.03365 s. It is seen that the preconditioning operation
dominates the time spent in solutions using the linear preconditioners. Quite remarkably,
nearly 90 percent of this operation is spent inside level 2 BLAS routines. Thus, with these
preconditioning strategies a high flop rate more closely associated with direct methods is
achieved. Alternatively, the Fourier space preconditioning method is seen to be dominated
by the sparse matrix-vector product, which is an inherently slower operation. Solutions using
the Schur complement preconditioner require roughly the same time for the preconditioning
operation and the sparse matrix-vector product, with a much smaller portion of the precon-
ditioning operation spent in level 2 BLAS. Also noteworthy is the fairly small portion spent
inside GMRES (regardless of the preconditioner), which seemingly confirms the arguments
from §4.5. We stress that the information in Table 4.3 is only meant to provide a comparison
of the relative expense of the major operations for simulations using each preconditioner. To
obtain the overall expense of each operation, the percentages can be multiplied by the total
CPU time given at the bottom of the table.

4.7.6 Performance versus problem size

To gain insight into how solutions using the various preconditioning strategies scale with
problem size, Figure 4.6 shows the results of simulations where the number of grid points,
N , is continually increased. Note that the rank of A is actually 3N , as each grid point
houses velocity variables in three directions. All simulations are for 101 time steps, with
kh = 2π, H/L = 0.10, ∆x = ∆y = 0.0625 m, and ∆t = 0.03365 s. Results solving both
the rotational and irrotational systems are shown. Solutions with each preconditioner are
carried out roughly to the maximum problem size possible on this machine (with 1 GB
RAM). The average number of iterations required for each simulation is essentially identical
to that presented in Figure 4.4 for this nonlinearity. The degree of nonlinearity does not
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Figure 4.6: CPU time per grid point (101 time steps, kh = 2π, H/L = 0.10) for solving (a)
the rotational system, and (b) the irrotational system.

affect the general shape of the curves – it does, however, affect the relative solution times of
the various methods, as should also be expected from Figure 4.4. Perhaps the most impres-
sive of the methods considered is the Fourier space preconditioner, which gives a constant
solution time per grid point for virtually any size of problem. The relative expense of the
other preconditioning methods gradually flattens as the problem size is increased, which is
perhaps more typical. Also noteworthy is the performance of the Schur complement pre-
conditioner (especially in the irrotational simulations), which levels off much faster than
the linear preconditioners. Indeed, it is seen that although this method is slower for small
problems, it becomes the fastest of the variable-depth preconditioners for large potential
flow problems. As mentioned previously, the method is less effective in preconditioning the
rotational matrix, but for large variable depth problems (moderately deep, where the non-
linearity is not too large) it still seems to be a viable alternative. The linear preconditioners
are equally effective in preconditioning both the rotational and irrotational systems, making
them perhaps the most robust of the schemes devised.

4.7.7 Discussion

As demonstrated throughout this section, each of the preconditioning methods presented has
its own respective strengths and weaknesses. It is when viewed as complementary that they
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are seen to be very robust, as they efficiently cover the entire physical range of applicability
of the Boussinesq model. Interestingly, many of the methods also serve as quite modern
examples of the combined use of direct and iterative methods for sparse matrices, and as a
result are robust in situations where more conventional ILU-based methods fail. In short,
through combined physical and mathematical insight, the preconditioning methods success-
fully transform an extremely difficult problem to one ‘whose solution can be approximated
rapidly’ (Trefethen & Bau, 1997), even in the most physically demanding situations. This
is, of course, the very essence of preconditioning.

4.8 Conclusions

In this chapter it is shown that numerical solutions of the high-order Boussinesq formulation
in two horizontal dimensions require that an ill-conditioned sparse matrix arising from the
nonlinear system of PDEs be solved at each stage evaluation. Direct factorization methods
are found to be uncompetitive in terms of both time and storage demands, making iterative
solution strategies necessary. A number of different preconditioning strategies designed to
greatly accelerate iterative solutions for this problem are subsequently developed. These
include complete factorizations of the linearized matrix, ILU factorizations, a matrix-free
(Fourier space) method, and an approximate Schur complement approach. The precondi-
tioners are tested under a variety of physical situations (i.e. varying the depth, discretization,
and nonlinearity), as well as on both rotational and irrotational formulations.

With the exception of the ILU-based method, all preconditioners are found to be very effec-
tive in solving deep-water problems, which are by far the most difficult. In particular it is
shown that the factored linear preconditioners are perhaps the most robust of the methods
devised, as they are equally effective in solving both the rotational and irrotational systems.
Their high storage demands, however, can limit the problem size to some degree. Alter-
natively, the Fourier space preconditioner has essentially negligible storage demands, and
consistently produces the fastest solutions (for irrotational simulations) when it is applica-
ble. Unfortunately, it is seemingly limited to solving constant depth problems on regular
domains. Finally, the approximate Schur complement method has low storage demands,
and is particularly effective in solving large potential-flow problems. Mesh-independent con-
vergence is demonstrated with many of the preconditioners for solutions of the irrotational
formulation, and solutions using the Fourier space and approximate Schur complement pre-
conditioners are shown to require an overall computational effort that scales linearly with
the problem size (for large problems).

As is evident, each of the methods have their own respective strengths and weaknesses, and
should therefore be viewed as complementary. In general, the methods are quite robust, and
are effective for the full physical range of applicability of the model. The effectiveness of
the preconditioners developed in this chapter will be further demonstrated in numerous test
cases (involving both highly nonlinear waves and variable depths) throughout this thesis.
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Chapter 5

Linear & Nonlinear Stability Analysis

Chapter Summary

This chapter considers a method of lines stability analysis for finite difference discretizations
of the high-order Boussinesq method. The analysis demonstrates the near-equivalence of
classical linear Fourier (von Neumann) techniques with matrix-based methods for formula-
tions in both one and two horizontal dimensions. The matrix-based method is also extended
to show the local de-stabilizing effects of the nonlinear terms, as well as the stabilizing effects
of numerical dissipation. A comparison of the relative stability of rotational and irrotational
formulations in two horizontal dimensions provides evidence that the irrotational formula-
tion has significantly better stability properties when the deep-water nonlinearity is high,
particularly on refined grids. Computation of matrix pseudospectra shows that the system is
only moderately non-normal, suggesting that the eigenvalues are likely suitable for analysis
purposes. Numerical experiments demonstrate excellent agreement with the linear analysis,
and good qualitative agreement with the local nonlinear analysis. The various methods of
analysis combine to provide significant insight into into the numerical behavior of this rather
complicated system of nonlinear PDEs.

5.1 Introduction

In this chapter, we undertake a method of lines stability analysis for finite difference dis-
cretizations of the high-order Boussinesq formulation. Such an analysis is extremely impor-
tant in solving systems of PDEs, as it provides critical information e.g. for the maximum
time step possible for a formally convergent scheme. The method of lines approach has
been adopted, as it conveniently allows for combinations of multiple spatial and temporal
discretizations to be analyzed simultaneously.

45
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Herein, we consider the numerical stability of a number of finite difference discretizations of
the high-order Boussinesq formulation, as introduced in §3.2. The methods used include a
classical linear Fourier (von Neumann) analysis in a single horizontal dimension, as well as
a matrix-based method in two horizontal dimensions (for both rotational and irrotational
formulations), with all of the analyses providing similar results. While the rotational and
irrotational systems exhibit similar linear properties, experience has shown that their non-
linear behavior can be quite different. We therefore extend the matrix-based method to
include the temporally local effects of the nonlinear terms. As will be demonstrated, the
addition of the nonlinear terms tends to de-stabilize the the resulting eigenvalue distribu-
tions, while numerical dissipation is demonstrated to have a stabilizing effect. A comparison
of the two formulations provides clear evidence that the irrotational formulation has signifi-
cantly better stability properties in highly-nonlinear, deep-water situations, consistent with
observations. Computation of matrix pseudospectra also demonstrates that the system is
only moderately non-normal (with increased eigenvalue sensitivity for the rotational formu-
lation), giving confidence that the eigenvalues reasonably characterize the discrete systems.
To confirm the results from the analysis, a series of numerical experiments are conducted us-
ing explicit fourth-order, four stage Runge-Kutta time integration. The results demonstrate
excellent quantitative agreement with the linear analyses, and good qualitative agreement
with the local nonlinear analysis. This work serves as an example of the combined use of
many widely-applicable analysis techniques, with each providing significant insight into the
numerical behavior of this complicated system.

The outline of this chapter is as follows. The method of lines approach for numerical sta-
bility is briefly described in §5.2, and stability regions for numerous popular time stepping
schemes are provided in §5.3. In §5.4 a classical linear Fourier (von Neumann) stability ana-
lysis is undertaken in a single horizontal dimension for two separate sets of finite difference
approximations. An alternative matrix-based linear stability analysis is used in §5.5 in two
horizontal dimensions, which is further extended to include the temporally local effects of
the nonlinear terms in §5.6. This section also demonstrates the effects of numerical dissipa-
tion on the system, and includes a comparison of rotational and irrotational formulations.
Analysis of matrix pseudospectra is provided in §5.7. A series of numerical experiments with
both the linear and nonlinear models is detailed in §5.8. Conclusions are drawn in §5.9.

This work is published in a similar form by Fuhrman et al. (2004a).

5.2 Stability of the Method of Lines

A method of lines approach allows for separate consideration of the time integration scheme
and the spatial discretization. This has the advantage that stability criterion for any number
of time stepping schemes can be obtained simultaneously. The justification is widely known
and can be explained by considering a general system of linear differential equations having
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the form

∂y

∂t
= Jy, (5.1)

where y is a vector of time stepping variables, and J is the linear Jacobian matrix. Substi-
tuting the spectral factorization J = VΛV−1 (where V is a matrix whose columns contain
the eigenvectors of J, and Λ is a diagonal matrix of corresponding eigenvalues λi) into (5.1)
leads directly to ∂y

∂t
= VΛV−1y. Multiplying both sides by V−1 and considering that V is

time independent gives ∂
∂t

(V−1y) = Λ(V−1y). Finally, defining a new variable v = V−1y,
the system becomes ∂v

∂t
= Λz i.e. the original system (5.1) can identically be considered as

a number of independent scalar linear ordinary differential equations of the form

∂vi

∂t
= λivi. (5.2)

This diagonalized system can be interpreted as a representation of the original system (5.1)
in the basis of eigenvectors of J (Trefethen, 2000). As a result of this diagonalization the
semi-discrete system can be analyzed for stability based on the eigenvalues of J alone. When
applied to systems of PDEs, the eigenvalue spectrum of the matrix J thus fully characterizes
the discrete spatial representation.

5.3 Linear Stability Regions

By considering a single scalar linear test equation of the form (5.2), it can likewise be shown
(see e.g. Fornberg, 1998; Hirsch, 1988; Iserles, 1996; Trefethen, 1996, 2000) that for a given
time stepping scheme a region of absolute stability can be constructed – often simply called
its stability region. As a demonstration we will consider the explicit fourth-order, four-stage
Runge-Kutta scheme outlined in §3.4. Applied to a single equation of the form (5.2) the
algorithm can in fact be equivalently written as the following one-step method

vn+1 =

[

1 + ∆tλ+
(∆tλ)2

2
+

(∆tλ)3

6
+

(∆tλ)4

24

]

vn, (5.3)

where n is the time level. Clearly, the quantity in the brackets defines the amplification of
the variable v from one time step to the next, hence to prevent an exponential growth (i.e.
an instability) we must require that

∣

∣

∣

∣

1 + ∆tλ+
(∆tλ)2

2
+

(∆tλ)3

6
+

(∆tλ)4

24

∣

∣

∣

∣

≤ 1. (5.4)

This defines the stability region (in terms of ∆tλ) in the complex plane for this method.
Relating back to the original system (5.1), it follows that as a necessary condition for stability,
all eigenvalues of J, when amplified by the time step ∆t, must lie within the stability region
of the respective time stepping scheme.
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Figure 5.1: Stability regions for (a) explicit Adams-Bashforth schemes of order 1–4, (b) im-
plicit Adams-Moulton schemes of order 3–6, (c) implicit backward differentiation formulae
of order 1–6, (d) explicit Runge-Kutta methods of order 1–5 (the fifth-order method corre-
sponds to the six-stage scheme of Cash & Karp, 1990), and (e) Adams-Bashforth-Moulton
predictor corrector schemes of order 2–5. Figures (a)–(d) have been made using slightly
modified Matlab r© code from Trefethen (2000).
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Table 5.1: Real and imaginary limits for selected stability regions. The Runge-Kutta schemes
are assumed to be explicit and to have a number of stages equal to the order. The Adams-
Bashforth-Moulton schemes are assumed to use a predictor one order less than the corrector.

Time integration Order Imaginary limits Real limit

Adams-Bashforth 3 ±0.7236 -0.5455
4 ±0.4300 -0.3

Runge-Kutta 3 ±1.7321 -2.5128
4 ±2.8284 -2.7853

Adams-Bashforth-Moulton 3 ±1.2 -2.4
4 ±1.1785 -1.9346
5 ±0.9363 -1.4115

Stability regions for numerous popular time stepping schemes (including the fourth-order
Runge-Kutta method) are shown in Figure 5.1. As can be seen both implicit and explicit
methods are considered. With the exception of Figure 5.1 (c) the stability regions are the
interior of the plotted lines. Also, with the exception of Figure 5.1 (d) the regions generally
become smaller with increasing order (with the explicit Runge-Kutta methods the regions
become larger).

It is easy to show that a centrally discretized (linear) hyperbolic system will result in a Ja-
cobian matrix having purely imaginary eigenvalues (this is demonstrated for our particular
system in §5.4 and §5.5). By inspection of the various linear stability regions it can immedi-
ately be seen that such a scheme will only be conditionally stable under certain time stepping
schemes i.e. those whose stability region contains some portion of the imaginary axis. By
inspecting the stability regions in Figure 5.1 it can be seen that many of the implicit schemes
considered have far worse stability criterion than many of the explicit methods for systems
of this type! It should be stressed, however, that certain implicit schemes will in fact lead
to unconditional linear stability e.g. the trapezoidal rule or backward Euler methods. Due
to the complexity of this system of PDEs, however, implicit schemes are not felt to be very
attractive. The real and imaginary limits for some explicit time stepping schemes felt to be
best suited for this particular system are summarized in Table 5.1 (note that Fornberg, 1998,
p. 209, also discusses methods suitable for systems having purely imaginary eigenvalues).
The real limits become relevant with the introduction of numerical dissipation.

As was previously stated in Chapter 3, we will consider the classical explicit fourth-order,
four stage Runge-Kutta time stepping scheme throughout this work, and the analysis in this
chapter will concentrate on this particular method. We stress, however, that the analysis
herein can easily be applied to any number of time integration methods (both explicit and
implicit), simply by considering the eigenvalue spectra in the following sections with the
stability region of interest.
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5.4 Linear Fourier Analysis

The system of PDEs in the Boussinesq formulation will now be considered in its simplest form
i.e. considering linear wave propagation in a single horizontal dimension on a flat bottom.
The linearized kinematic and dynamic free surface conditions respectively read

∂η

∂t
= w0,

∂u0

∂t
= −g ∂η

∂x
. (5.5)

Here u0 and w0 are velocities at the still water level z = 0 in the x- and z-directions, respec-
tively. Similar to §4.2, w0 is found via a solution of the implicit (flat-bottom) relationship

[

A1 B11

A01 B0

] [

û∗

ŵ∗

]

=

[

u0

0

]

, (5.6)

combined with the expression

w0 = A1ŵ
∗ − B11û

∗. (5.7)

The operators in (5.6) and (5.7) are simply one-dimensional representations of those in
Appendix A, and contain up to fifth-order partial derivatives in x. Note that in this linearized
form, each operator arises from (2.40) and (2.41) applied at z = 0. It can be seen that û∗

and ŵ∗ can be eliminated by inserting the solution of (5.6) directly into (5.7), which gives
an expression for w0 in terms of u0

w0 =

(

A1A01 + B0B11

A01B11 − A1B0

)

u0. (5.8)

The Fourier (von Neumann) analysis begins by firstly considering each differential opera-
tor in discrete form, as stability is purely a property of the discretized equations. In this
analysis we consider two centered spatial discretizations. These are the use of second-order
finite-difference approximations for each derivative, as well as the use of high-order seven-
point approximations for each derivative (order ranging from two to six). Through further
substitution of individual Fourier components

η(j) ⇒ η̌eijθ, u0(j) ⇒ ǔ0e
ijθ, (5.9)

(where j is the grid point, and θ = 2π/N , with N the number of grid points per wavelength)
and by inserting (5.8) into w0 in (5.5) the system can be transformed to a semi-discrete form

∂

∂t

[

η̌
ǔ0

]

=

[

0 J12

J21 0

] [

η̌
ǔ0

]

. (5.10)

Note that in this form the time stepping variables have changed from η and u0 to their
respective Fourier amplitudes η̌ and ǔ0. It should also be mentioned that the insertion of
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the Fourier components (5.9) involves the assumption of periodic boundary conditions. This
is often interpreted simply as being applicable to the modeled regions which are sufficiently
far from the boundaries such that their effects are minimal (Hirsch, 1988). After invoking
the Eulerian identity

eiθ = cos θ + i sin θ, (5.11)

it can be shown that J21 = − ig sin θ
∆x

under discretization with second-order finite difference

approximations and J21 = − ig
∆x

(

3 sin θ
2

− 3 sin 2θ
10

+ sin 3θ
30

)

under discretization with high-order
(seven-point) finite difference approximations. These expressions are simply Fourier space
representations of the discrete −g ∂

∂x
operator. Under both discretizations the representation

of J12 is extremely long and will not be given here (it is in fact the Fourier space representation
of the discretized factor for u0 in (5.8)). Given the complexity of this term, the analysis is
only practical with a symbolic manipulator (the current analysis has been performed using
MathematicaTM). Note that (5.10) is precisely of the form (5.1), and thus it is the eigenvalues
of this matrix which will govern the linear stability. In the current analysis only integer values
for N are considered, which has been found to give reasonable results. As suggested earlier,
the eigenvalues are indeed purely imaginary and the maximum computed values are given
(non-dimensionalized) in Figure 5.2 for both discretizations for a wide range of kNh, where
kN = π/∆x is the Nyquist wavenumber. The eigenvalues have been non-dimensionalized
using the celerity of the Nyquist mode cN , which is computed using the embedded linear
dispersion relation given in Madsen et al. (2002, 2003) as

c =

√

g

k

(

sh(kh/2)ch(−kh/2) − ch(kh/2)sh(−kh/2)

ch(kh/2)ch(−kh/2) − sh(kh/2)sh(−kh/2)

)

, (5.12)

with

ch(ψ) =

(

1 +
4

9
ψ2 +

1

63
ψ4

)

, sh(ψ) =

(

ψ +
1

9
ψ3 +

1

945
ψ5

)

. (5.13)

Note that the y-axis of this figure could identically be replaced with λmax/ωN , where ωN is
the angular frequency of the Nyquist mode. This plot is given in terms of kN (rather than
e.g. just ∆x), to allow for a more direct comparison with the matrix-based analysis (in two
horizontal dimensions) in §5.5.

From the Fourier analysis it has been found that the maximum eigenvalue generally occurs
with θ = π/2 (i.e. a mode having four grid points per wavelength, or twice the Nyquist wave-
length, thus kcritical = kN/2). This has been found to be generally true under discretization
with second-order finite difference approximations, and true for kNh < 100 with high-order
finite difference approximations. For kNh > 100 under the high-order discretization the crit-
ical mode shifts to θ = 2π/3 i.e. one having three grid points per wavelength. The highest
frequency (Nyquist) mode actually results in a zero eigenvalue, and is thus always linearly
stable under these discretizations (this can readily be seen e.g. by inserting θ = π into the
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Figure 5.2: Non-dimensionalized maximum eigenvalues as a function of kNh from the Fourier
analysis in a single horizontal dimension. The top and bottom lines correspond to using high-
order (seven-point) and second-order finite difference approximations, respectively.

previously given expressions for J21). In general it is seen that the high-order spatial dis-
cretization results in larger eigenvalues, and will consequently have more restrictive stability
properties. These differences are more dramatic in very shallow water, and become less
pronounced (percentage-wise) as kNh increases, at least up to kNh ≈ 100. We stress that
as shown in §6.2, this does not necessarily result in greater overall efficiency, as the use of
the higher-order finite difference approximations can allow for significant reductions in the
number of grid points required for a desired accuracy.

Upon closer examination of Figure 5.2 some distinct regions can be observed. With kNh < 1
it is seen that the non-dimensionalized eigenvalue flattens, corresponding to the point where
the most critical mode becomes non-dispersive. Within the range 1 < kNh < 2π a transition
region is apparent, as the critical mode gradually moves from shallow water to the practical
deep-water limit. In the range 2π < kNh < 40 the curves again level, as the celerity of the
critical mode becomes insensitive to changes in the depth. Finally, at kNh > 40 the curves
again begin to rise, corresponding roughly to the point where the linear dispersive properties
of the critical mode begin to fail with respect to linear wave theory (cN becomes significantly
underestimated). Note that in most practical applications kNh > π i.e. at least the highest
resolved frequency mode is beyond the practical deep-water limit. Practical applications in
intermediate to very deep water are typically in the range 10 < kNh < 500.

The maximum time step ∆tmax that can be taken due to stability constraints is found as
follows: Given a spatial discretization, kN can readily be computed, as can cN from (5.12).
With kN and cN known, the maximum eigenvalue λmax can be obtained from Figure 5.2.
The (hyperbolic) Courant number is then

rh = λmax∆t. (5.14)

Thus, the maximum Courant number rh,max allowable for stability is simply the point where
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the stability region of the time stepping scheme of interest crosses the imaginary axis. Hence,
∆tmax can easily be computed from (5.14) i.e. ∆tmax =

rh,max

λmax
. From this section linear

stability criterion can be established for both finite difference discretizations considered in
combination with any number of time stepping methods.

5.5 Linear Matrix-Based Analysis

5.5.1 Description

As an alternative to the Fourier techniques used in §5.4 an entirely numerical, matrix-
based approach can be adopted – the actual Jacobian matrix J can be constructed and its
eigenvalues computed directly. This approach has the advantage of being very general e.g.
any effects from boundary conditions are inherently included in the analysis. It is even fairly
straight-forward to extend the analysis to include the effects of the nonlinear terms (at least
locally), which is the ultimate motivation here. Note that for the remainder of this chapter
combined Dirichlet and Neumann boundary conditions are used to create closed boundaries
on a rectangular domain, as described in §3.3. Although the approach in this section is
completely numerical, for convenience the differential operators are given in continuous form
in much of what follows.

To begin the linearized flat-bottom system in two horizontal dimensions will be considered.
The free surface conditions now consist of (5.5) combined with

∂v0

∂t
= −g∂η

∂y
. (5.15)

To form the Jacobian matrix J it is necessary to express the linearized free surface equations
explicitly in terms of the time stepping variables η, u0, and v0. With this system, however,
w0 is normally found via an implicit relationship i.e. a solution of the system Ax = b, where
xT = [û∗, v̂∗, ŵ∗] and bT = [u0,v0,0], combined with

w0 = A1ŵ
∗ − B11û

∗ − B12v̂
∗, (5.16)

which is simply the linearized form of (4.9). This can easily be converted into an explicit
expression, however, simply by taking Z = A−1, which leads obviously to x = Zb. Note
that here Z is a dense matrix. Considering Z in block form, this operation can be written as





û∗

v̂∗

ŵ∗



 =





Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33









u0

v0

0



 . (5.17)

Inserting (5.17) into (5.16) gives the following explicit expression for the determination of
w0 from u0 and v0

w0 = A1Z31u0 + A1Z32v0 − B11Z11u0 − B11Z12v0 − B12Z21u0 − B12Z22v0. (5.18)
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Thus, the linearized system can now indeed be written in a semi-discrete form as

∂

∂t





η
u0

v0



 =





0 ∂
∂u0

(

∂η
∂t

)

∂
∂v0

(

∂η
∂t

)

−g ∂
∂x

0 0
−g ∂

∂y
0 0









η
u0

v0



 , (5.19)

where substituting (5.18) into w0 from (5.5) leads to

∂

∂u0

(

∂η

∂t

)

= A1Z31 − B11Z11 − B12Z21, (5.20)

∂

∂v0

(

∂η

∂t

)

= A1Z32 − B11Z12 − B12Z22. (5.21)

Note that the 3 × 3 system in (5.19) (when discretized) is the Jacobian matrix J for this
system, and in this linearized form is time constant.

5.5.2 Comparison of rotational & irrotational formulations

As shown in §4.2, this Boussinesq method can be written in either rotational or irrotational
form in two horizontal dimensions, and both will be considered here. The analyses are quite
similar, however, with the only difference being in the form of the matrix A. Figure 5.3 plots
computed maximum (non-dimensionalized) eigenvalues (computed using the Matlab r©

eig
function) for both the rotational and irrotational formulations under all four finite difference
discretizations considered with the Boussinesq model in §3.2. These again include the use of
all second-order finite difference approximations, as well as stencils containing 25, 37, and 49
points, where each approximation is allowed to have the maximum formal accuracy possible
on each stencil. All computations use a 21×21 computational grid (giving a Jacobian matrix
of dimension 21 · 21 · 3 = 1323), which has been found in practice to be sufficiently large for
the purposes of this analysis. This grid provides three full stencil widths in both horizontal
directions, and comparisons with systems arising from larger grids have been found to result
in essentially the same spread of eigenvalues. In two horizontal dimensions kN is the modulus
of the Nyquist wavenumber vector kN = ( π

∆x
, π

∆y
), defined as

kN =

√

(

π

∆x

)2

+

(

π

∆y

)2

. (5.22)

Note that this two-dimensional modulus will tend to be larger than in a single dimension
for a given spatial discretization (for example, with ∆x = ∆y the two-dimensional kN will
always be larger than that from a single horizontal dimension with equivalent ∆x by a factor√

2). Again the high-order finite difference approximations are somewhat more restrictive
(i.e. result in larger eigenvalues) than are second-order finite difference approximations. The
differences between the other finite difference stencils, as well as in the two formulations
are relatively minor, with slight differences becoming apparent at higher values of kNh. The
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Figure 5.3: Non-dimensionalized maximum eigenvalues for the linear system (in two horizon-
tal dimensions) as a function of kNh for (a) the rotational formulation and (b) the irrotational
formulation.
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Figure 5.4: Eigenvalues of ∆tJ for the linear rotational formulation with kNh = 20π and (a)
rh = 1, (b) rh = 2, and (c) rh = 2.8284.

resulting figures (especially for the irrotational formulation) are remarkably similar to Figure
5.2, as the two-dimensionality and the closed boundary conditions seem to play a relatively
minor role as far as the overall numerical stability is concerned. Values for the eigenvalues
(and thus for the determination of rh) will be taken directly from Figure 5.3 for the remainder
of this chapter.

As examples from the linearized system Figure 5.4 shows the eigenvalue distributions for
three different values of rh arising from a rotational system using the 37-point finite difference



56 Chapter 5. Linear & Nonlinear Stability Analysis

stencil with kNh = 20π. From these plots it can once again be seen that the eigenvalues are
indeed purely imaginary, as discussed previously in §5.4. For demonstration purposes, the
stability region from the explicit fourth-order Runge-Kutta time stepping scheme is shown
(likewise on all remaining figures), and the maximum (and minimum) eigenvalues can be
seen to lie on the curve at the limiting rh = 2.8284. This stability limit is also confirmed
using the numerical model in §5.8.1.

5.6 Local Nonlinear Matrix-Based Analysis

While numerical experiments confirm the previous findings for the linearized system, ex-
perience with the nonlinear model has shown that in the absence of numerical dissipation,
simulations are generally unstable. Thus the linear analyses, perhaps unsurprisingly, do not
give a complete account of the nonlinear behavior. In other words, the linear constraints are
no doubt necessary, but by no means are they sufficient for the general stability of nonlinear
simulations. In an attempt to gain insight into this behavior, the matrix-based stability
analysis from §5.5 is extended to include the nonlinear terms in this section.

We begin by re-writing the dynamic and kinematic free surface conditions from (2.11) and
(2.13) in the scalar forms

∂Ũ

∂t
= −g ∂η

∂x
− 1

2

∂

∂x

(

Ũ2 + Ṽ 2 − w̃2

(

1 +

(

∂η

∂x

)2

+

(

∂η

∂y

)2
))

+D∇2Ũ , (5.23)

∂Ṽ

∂t
= −g∂η

∂y
− 1

2

∂

∂y

(

Ũ2 + Ṽ 2 − w̃2

(

1 +

(

∂η

∂x

)2

+

(

∂η

∂y

)2
))

+D∇2Ṽ , (5.24)

∂η

∂t
= w̃

(

1 +

(

∂η

∂x

)2

+

(

∂η

∂y

)2
)

− Ũ
∂η

∂x
− Ṽ

∂η

∂y
+D∇2η. (5.25)

Note that diffusive terms with diffusion coefficient D have been added to each of the free
surface equations (5.23)-(5.25). This serves as a convenient means of adding numerical dis-
sipation to the system, the effect of which will be demonstrated in §5.6.3. These diffusive
terms also necessitate an additional stability criterion based on the parabolic Courant num-
ber, defined here as

rp = δDk2
N∆t. (5.26)

This definition for rp is convenient, as it corresponds precisely to the (negative) real spread
of the linear eigenvalue spectrum. Calculations with the linearized system have shown that
reasonable values for the coefficient δ are 0.4053 and 0.6124 when using second-order and
higher-order finite difference approximations, respectively. Note that when rp = 0 the system
is free of any added dissipation.
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For nonlinear analysis purposes it is common to investigate the eigenvalues of the Jacobian
matrix using temporally local coefficients. Hence, we inherently assume that the local be-
havior of the system is modeled well by the variational equation ∂y

∂t
= ∂yn

∂t
+ Jn(y − yn),

where n is the local time level. The 3 × 3 Jacobian matrix J is now generally defined as

J =









∂
∂η

(

∂η
∂t

)

∂
∂Ũ

(

∂η
∂t

)

∂
∂Ṽ

(

∂η
∂t

)

∂
∂η

(

∂Ũ
∂t

)

∂
∂Ũ

(

∂Ũ
∂t

)

∂
∂Ṽ

(

∂Ũ
∂t

)

∂
∂η

(

∂Ṽ
∂t

)

∂
∂Ũ

(

∂Ṽ
∂t

)

∂
∂Ṽ

(

∂Ṽ
∂t

)









. (5.27)

The determination of the individual components of this matrix is rather complicated, and
is addressed in Appendix D. It should be stressed that such an extension of linear theory
to a nonlinear setting is far from an exact practice, and due care should be taken in the
interpretation of the results. Adding to the complication, it is impossible to examine every
possible physical situation. Despite these drawbacks, it is often possible to demonstrate
qualitative tendencies using such a local analysis, and this is the aim here.

All results in this section use linear standing wave initial conditions on a flat bottom with
waveheight H and wavelength (in both x- and y-directions) L = 1 m. This gives a linear
deep-water period T = 0.6730 s. Each simulation uses ∆x = ∆y = L/20 = 0.05 m, and ∆t =
T/20 = 0.03365 s, and the results shown are from the 22nd time step (frozen in time), which
has been chosen arbitrarily to provide conditions roughly in mid-cycle. Computations are
again on a 21×21 grid, and use the 37-point finite difference stencil. Results using the other
stencils, as well as at other time levels have been found to be qualitatively similar. All results
in this section will be given in terms of the dimensionless quantities kh (the relative depth of
the primary wave), eitherH/h orH/L (the shallow- or deep-water nonlinearity, respectively),
and kNh (the spatial discretization). As reference values, the practical deep water limit is
again conventionally kh = π, and upper limits for the respective nonlinearities (before wave
breaking) are H/h ≈ 0.8 and H/L ≈ 0.14 in shallow and deep water. Experience has shown
that the rotational and irrotational formulations behave somewhat differently in cases having
significant nonlinearity, particularly in deep water where the irrotational formulation has
been found to be much more stable. Both systems will therefore be analyzed independently
in what follows.

5.6.1 The presence of nonlinear instabilities

Figure 5.5 shows eigenvalue distributions from both the rotational and irrotational formu-
lations under a variety of physical situations (i.e. varying depth and nonlinearity) with
rh = 1.5 and rp = 0 (i.e. no added dissipation). Here it is clearly seen that the addition of
the nonlinear terms has produced scattered eigenvalues protruding into the right half of the
complex plane, indicating the presence of local exponentially growing modes. This suggests
that under these discretizations the system may indeed be susceptible to nonlinear instabil-
ities, which is in fact the case in practice. This analysis indicates that in both formulations
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Figure 5.5: Eigenvalues of ∆tJ with rh = 1.5 for the rotational (top) and irrotational
(bottom) formulations with (a),(d) kh = π/5, H/h = 0.7071, kNh = 2π; (b),(e) kh = 2π,
H/L = 0.05, kNh = 20π; and (c),(f) kh = 2π, H/L = 0.10, kNh = 20π.

the strength of the instabilities increases with nonlinearity, with the rotational system ex-
hibiting faster growth of the locally unstable modes (i.e. eigenvalues farther away from the
linear stability region) in deep water. Note also that the imaginary spread of eigenvalues
is somewhat greater than would be expected from the linear analysis, and that this trend
is amplified as the nonlinearity is increased. This is particularly apparent in Figures 5.5
(a),(c) and (d),(f), which have the strongest nonlinearity (recall that the hyperbolic Courant
number rh refers to the expected imaginary spread of eigenvalues from the linear analysis).
This trend is consistent with the amplitude dispersion characteristics of nonlinear waves –
nonlinear waves travel faster than linear waves having the same wavelength and water depth.
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Figure 5.6: Eigenvalues of ∆tJ with kh = 2π, H/L = 0.05, kNh = 20π, rh = 1.5, and
D = 0.002 m/s2 for (a) the rotational (rp = 0.6338) and (b) the irrotational formulation
(rp = 0.6934).

5.6.2 The effect of numerical dissipation

The eigenvalue distributions shown in Figure 5.5 for the nonlinear model indicate that sim-
ulations are locally unstable. In practice, however, we find that the addition of minor levels
of numerical dissipation will generally stabilize the nonlinear simulations. The effect of such
dissipation on the eigenvalue spectra is demonstrated in Figure 5.6, where now the diffusion
coefficient has been increased to D = 0.002 m2/s. These plots can be compared with Figures
5.5 (b) and (e) with D = 0 m2/s. Clearly (as should be expected) the diffusive terms tend
to move the eigenvalue distributions to the left half of the complex plane, stabilizing the
schemes (at least locally). The chosen value for D in Figure 5.6 is roughly the necessary
value to locally stabilize each of the distributions.

The use of similar dissipative interfaces is commonplace in the numerical modeling commu-
nity, and is discussed e.g. in Abbott & Minns (1998); Hirsch (1988). In general it is felt
that the effects shown in Figure 5.6 on the eigenvalue distributions are qualitatively repre-
sentative for any number of dissipative interfaces. Other methods for introducing numerical
dissipation include Fischer-type semi-discretization (Fischer, 1959), which has been consid-
ered in the numerical analysis of an alternative form of Boussinesq equations in Houwen
et al. (1991), as well as the application of Savitzky-Golay smoothing filters, which will be
used extensively throughout this thesis.

5.6.3 Comparison of rotational and irrotational formulations

As noted previously, rotational simulations having high deep-water nonlinearity have been
found in practice to be much more difficult to stabilize than those using the irrotational
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formulation. This is especially true on refined grids i.e. where kNh is relatively large. In an
attempt to provide insight into this observation Figure 5.7 shows eigenvalue distributions
for both formulations with kh = 4π, kNh = 40π, and H/L = 0.12. Clearly, both simulations
appear locally unstable in the absence of any numerical dissipation, as seen in Figures 5.7
(a) and (d), though this is much less pronounced for the irrotational system, Figure 5.7 (d).
Figures 5.7 (b)-(c) and (e)-(f) give quite dramatic evidence that the rotational system is
much more difficult to stabilize in these highly nonlinear, deep-water situations. Indeed, as
shown in Figures 5.7 (b)-(c), the rotational formulation still retains some locally unstable
eigenvalues at relatively high levels of dissipation i.e. up to D = 0.005 m2/s. Closer (visual)
inspection of the associated eigenvectors has revealed that these modes seemingly contain
somewhat lower frequencies, and thus are not as easily damped by the diffusive terms.
The irrotational formulation, on the other hand, is locally stabilized under much lower
values of D, as shown in Figures 5.7 (e)-(f). This analysis provides a possible explanation
for these difficulties with the rotational formulation, and shows at least locally that the
irrotational formulation is much more receptive to dissipation. Based on this analysis (as
well as experience) the irrotational formulation is seemingly preferable in simulations having
high deep-water nonlinearity, so long as the formulation is applicable. Remarkably, Figure 5.7
(f), with H/L = 0.12 and kh = 4π shows that the necessary value for the diffusion coefficient
in this example is roughly D = 5 · 10−4 m2/s – significantly less than the necessary value of
0.002 m2/s in Figure 5.6 (b) with H/L = 0.05 and kh = 2π. This suggests that the nonlinear
stability properties of the irrotational formulation actually improve with increasing kNh!

5.7 Analysis of Pseudospectra

In recent years the concept of the pseudospectra of a matrix has arisen as a tool to help
understand the behavior of non-normal matrices (i.e. matrices whose eigenvectors do not
form an orthogonal basis). This is important, as cases having severe non-normality can
result in behavior that is not always consistent with what is predicted by an analysis of
eigenvalues alone. If λ is an eigenvalue of J, then ||(λI−J)−1|| is conventionally regarded to
be infinite. This begs the question: What if ||(λǫI − J)−1||, λǫ 6= λ is finite, but very large?
This pattern of thinking leads to the following definition for the pseudospectra of a matrix
(Embree & Trefethen, 2004)

Λǫ(J) = {λǫ ∈ C : ||(λǫI − J)−1|| ≥ ǫ−1}. (5.28)

The pseudospectra of a matrix are thus useful in describing the sensitivity of the eigenval-
ues to minor perturbations in the original matrix. If a matrix is normal then its two-norm
ǫ-pseudospectrum consists of closed balls of radius ǫ surrounding the eigenvalues (Trefethen,
1997). As the non-normality increases, however, the pseudospectra may deviate far more
significantly from the eigenvalues, sometimes by many orders of magnitudes. Pseudospec-
tra have provided valuable insight into numerous issues e.g. that of hydrodynamic stability
(Baggett et al., 1995; Baggett & Trefethen, 1995; Trefethen et al., 1999, 1993). Issues con-
cerning their computation can be found e.g. in Wright (2002); Wright & Trefethen (2001).
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Figure 5.7: Eigenvalues of ∆tJ for the rotational (top) and irrotational (bottom) formulations
with kh = 4π, H/L = 0.12, kNh = 40π, rh = 1.5, and (a),(d) D = 0 m2/s; (b),(e) D = 0.001
m2/s (rp = 0.3327, 0.3561); (c) D = 0.005 m2/s (rp = 1.6636); and (f) D = 5 · 10−4 m2/s
(rp = 0.1780).

For more detailed discussions of pseudospectra as well as numerous examples see Embree &
Trefethen (2004); Trefethen (1997, 2000); Wright (2002).

This issue is explored for the current system using the EigTool package for Matlab r©. A de-
tailed description of this package can be found in Wright (2002); Wright & Trefethen (2001).
Pseudospectra from a number of matrices for both rotational and irrotational formulations
are shown in Figure 5.8. From these plots it can be seen that these matrices are only mod-
erately non-normal, which is itself comforting and useful information. This can be seen e.g.
by considering that the contours corresponding to ǫ = 10−1 deviate from the original spread
of eigenvalues typically by a length of 100 = 1, or roughly 10 times what would be expected
for a normal matrix. Pseudospectra from the linear models in quite deep water (Figures
5.8 (a) and (d) with kNh = 40π) show that the eigenvalues from the rotational system are
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Figure 5.8: Pseudospectra (rh = 1.5) of ∆tJ for the (top) rotational and (bottom) irro-
tational formulations for (a),(d) linear matrices with kNh = 4π; (b),(e) nonlinear matrices
with kh = 2π, H/L = 0.10, kNh = 20π, D = 0.002 m2/s (rp = 0.6338, 0.6934); and (c),(f)
nonlinear matrices with kh = 4π, H/L = 0.12, kNh = 40π, D = 0 m2/s. The values for the
colorbars correspond to the base-10 power of ǫ i.e. ǫ = 10−4, · · · , 10−1.

slightly more sensitive to perturbations than from the irrotational formulation, deviating
noticeably from the eigenvalues at much lower values of ǫ. Interestingly, the problematic
area in the (nonlinear) rotational spectrum seems to already be properly identified in the
linearized pseudospectrum in Figure 5.8 (a). In practice we do not observe deviations from
the eigenvalue analysis with either system, suggesting that the eigenvalues reasonably char-
acterize the discrete systems at this moderate level of non-normality. Figures 5.8 (b) and
(e) show pseudospectra arising from locally stabilized matrices in moderately deep water
(kh = 2π, kNh = 20π) with high nonlinearity (H/L = 0.10). The differences between the
two formulations are again not too severe, with the rotational formulation having a slightly
larger spread. Notably, while the eigenvalues from Figures 5.8 (a)-(b) and (d)-(e) lie within
the stability region, the pseudospectra protrude to the right half of the complex plane, at
least for the larger values of ǫ. However, as the non-normality of the systems in Figures 5.8
(b) and (e) is roughly equivalent to that from Figures 5.8 (a) and (d), we do not expect
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significant deviations from the eigenvalue analysis with these discretizations. More dramatic
differences become apparent when kNh is increased, as can be seen in a comparison of Fig-
ures 5.8 (c) and (f), with kNh = 40π, kh = 4π, H/L = 0.12. As Figure 5.8 (f) demonstrates,
the irrotational formulation exhibits virtually no dependence on increasing kNh, whereas the
rotational system, Figure 5.8 (c), demonstrates a significant increase in its non-normality
(the real pseudospectral radius roughly doubles). This suggests that the non-normality of
the rotational formulation may play an increasing role in de-stabilizing highly nonlinear
deep-water simulations as the grid is refined. However, as shown in §5.6.3 (Figure 5.7), the
eigenvalues already suggest stability problems in these instances.

5.8 Numerical Experiments

The previous findings from both the linear and nonlinear analyses will now be tested in a se-
ries of numerical experiments. All experiments in this section use linear standing wave initial
conditions, and results are again presented in terms of the previously introduced dimension-
less quantities. The experiments use a 21× 21 grid, and consider a single wavelength L = 1
m in both x- and y-directions, with ∆x = ∆y = L/20 = 0.05 m. All simulations use the
37-point finite difference stencil combined with the explicit fourth-order, four-stage Runge-
Kutta time stepping scheme. Results from Figure 5.3 are again used for the determination
of the hyperbolic Courant number rh.

5.8.1 Linear experiments

Table 5.2 provides a summary of a series of experiments with the linear model for both ro-
tational and irrotational formulations. Simulations are deemed ‘stable’ after running 10,000
time steps with no sign of instabilities. Recall that the necessary stability limits for this
scheme are rh < 2.8284 (corresponding to the imaginary limit) and rp < 2.7853 (corre-
sponding the the negative real limit), assuming the eigenvalues span either the imaginary or
(negative) real axes separately. This is controlled in these experiments through the choice of
time step ∆t and diffusion coefficient D i.e. when rh is varied rp = 0, and when rp is varied
rh is kept small. Here it can clearly be seen that the numerical results match extremely well
with the linear stability criterion outlined previously in §5.4 and §5.5 for both hyperbolic
and parabolic Courant numbers. Simulations with the same unstable Courant numbers for
both formulations can in fact be seen to go unstable at approximately the same time. These
models behave as predicted by the analysis, and the results are not discussed further.

5.8.2 Nonlinear experiments

Tables 5.3 and 5.4 provide results from a series of nonlinear simulations, where the depth and
nonlinearity are varied for both rotational and irrotational formulations, respectively. These
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Table 5.2: Summary of numerical experiments with the linear model. The column heading
S/U refers to the simulation being either stable/unstable. The variable nu refers to the time
step where the simulations go unstable (taken here as when a NaN is detected).

Rotational Irrotational
kNh rh rp S/U ∆t [s] D [m2/s] nu ∆t [s] D [m2/s] nu

2π 2.8 0 S 0.1304 0 — 0.1355 0 —
2π 2.9 0 U 0.1350 0 448 0.1403 0 456

20π 2.8 0 S 0.1223 0 — 0.1338 0 —
20π 2.9 0 U 0.1267 0 435 0.1386 0 430

40π 2.8 0 S 0.1284 0 — 0.1375 0 —
40π 2.9 0 U 0.1330 0 421 0.1424 0 420

20π 0.1 2.7 S 0.004369 0.1278 — 0.004780 0.1168 —
20π 0.1 2.9 U 0.004369 0.1373 461 0.004780 0.1255 461

simulations use an unrestarted GMRES (Saad & Schultz, 1986) algorithm for solutions of
Ax = b (preconditioned with the linearized matrix, as described in §4.6.1), with a relative
residual error tolerance r = ||b − Ax||2/||b||2 of 10−6. Simulations are deemed ‘stable’
after progressing 5000 time steps with no noticeable evidence of instabilities. For all of
the nonlinear experiments rh = 1.0 is used to prevent numerical dissipation from the time
stepping scheme (at approximately this level lobes from the stability region extend to the
right half of the complex plane, effectively resulting in a dissipative scheme).

From these experiments it can be seen that the results match qualitatively with the local
nonlinear analysis of §5.6. As predicted in §5.6.1, although linearly stable, the simulations
generally suffer from nonlinear instabilities in the absence of numerical dissipation. Con-
sistent with §5.6.2 (see Figure 5.6), simulations with either formulation require roughly the
same level of dissipation for stabilization in cases with moderate deep-water nonlinearity
(consider the cases with kh = 2π, H/L = 0.05). Consistent with §5.6.3, it is also shown that
the irrotational formulation is much easier to stabilize than is the rotational formulation
when the deep-water nonlinearity is high, particularly with large kNh. For example, the ir-
rotational simulations with kNh = 40π, kh = 4π surprisingly require no added dissipation to
maintain stability, while similar rotational simulations quickly go unstable. The numerical
experiments also indicate that the rotational formulation is somewhat easier to stabilize in
shallow water (consider the results with kh = π/5). Note that these shallow-water simula-
tions are actually very nonlinear, with H/h = 0.7071. This difference is not as severe as in
deep water, however, and was not detected in the local analysis. Further investigation of
Tables 5.3 and 5.4 confirms an important trend – the nonlinear stability properties of the
rotational formulation deteriorate with increasing kNh, whereas for the irrotational formu-
lation the stability properties actually improve! This was also suggested in §5.6.3. This is
quite significant, as many of the practical applications of this model involve highly nonlinear
waves in deep water.
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Table 5.3: Summary of numerical experiments with the nonlinear rotational model. All
simulations use rh = 1.0. The column headings are the same as used in Table 5.2. Here the
variable nu refers to first time step where a solution of Ax = b exceeds 200 iterations.

kNh kh H/L ∆t [s] D [m2/s] rp S/U nu

2π π/5 0.05 0.04655 0 0 U 2310
2π π/5 0.05 0.04655 10−6 2.25 · 10−4 U 2440
2π π/5 0.05 0.04655 10−5 2.25 · 10−3 S —

20π 2π 0.05 0.04369 0 0 U 2960
20π 2π 0.05 0.04369 10−5 2.11 · 10−3 U 3620
20π 2π 0.05 0.04369 10−4 2.11 · 10−2 S —

20π 2π 0.10 0.04369 0 0 U 510
20π 2π 0.10 0.04369 10−4 2.11 · 10−2 U 980
20π 2π 0.10 0.04369 10−3 2.11 · 10−1 S —

20π 2π 0.12 0.04369 0 0 U 360
20π 2π 0.12 0.04369 10−4 2.11 · 10−2 U 560
20π 2π 0.12 0.04369 10−3 2.11 · 10−1 S —

40π 4π 0.10 0.04587 0 0 U 650
40π 4π 0.10 0.04587 10−5 2.22 · 10−3 U 700
40π 4π 0.10 0.04587 10−4 2.22 · 10−2 S —

40π 4π 0.12 0.04587 0 0 U 230
40π 4π 0.12 0.04587 10−4 2.22 · 10−2 U 570
40π 4π 0.12 0.04587 10−3 2.22 · 10−1 S —

Table 5.4: Summary of numerical experiments with the nonlinear irrotational model. Col-
umn headings are as in Table 5.3.

kNh kh H/L ∆t [s] D [m2/s] rp S/U nu

2π π/5 0.05 0.04838 0 0 U 1030
2π π/5 0.05 0.04838 10−5 2.34 · 10−3 U 1180
2π π/5 0.05 0.04838 10−4 2.34 · 10−2 S —

20π 2π 0.05 0.04780 0 0 U 2270
20π 2π 0.05 0.04780 10−5 2.31 · 10−3 U 2520
20π 2π 0.05 0.04780 10−4 2.31 · 10−2 S —

20π 2π 0.10 0.04780 0 0 U 1030
20π 2π 0.10 0.04780 10−5 2.31 · 10−3 U 1100
20π 2π 0.10 0.04780 10−4 2.31 · 10−2 S —

20π 2π 0.12 0.04780 0 0 U 460
20π 2π 0.12 0.04780 10−4 2.31 · 10−2 U 830
20π 2π 0.12 0.04780 10−3 2.31 · 10−1 S —

40π 4π 0.10 0.04909 0 0 S —

40π 4π 0.12 0.04909 0 0 S —
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It can be seen from the experiments that the necessary values for the diffusion coefficient
D are typically O(10−5) – O(10−3) m2/s. These are often somewhat lower than the values
O(10−4) – O(10−3) m2/s that might be inferred from the local nonlinear analysis in §5.6. This
discrepancy is likely, at least in part, due to the dissipative nature of these simulations. The
diffusive terms inevitably result in an energy loss, thus the waveheight (and correspondingly
the degree of nonlinearity) continually decreases during a simulation. This occurs quite
rapidly e.g. with D = 10−3 m2/s, effectively making it impossible to test the performance
of high nonlinearity combined with larger diffusion coefficients for an extended time period.
This discrepancy with the local nonlinear analysis is not of great concern, given that the
original intent was to gain qualitative knowledge for this system. Note also that these
necessary values for D are one to three orders of magnitude larger than the kinematic
viscosity of water ν ≈ 10−6 m2/s. Thus, the numerical dissipation required for numerical
stability is in most cases significantly greater than what might be included for purely physical
reasons. The resulting values for rp are in all cases significantly lower (typically by orders
of magnitude) than the corresponding stability limit, perhaps making this limit of little
practical significance (at least for this particular time stepping scheme).

The general numerical stability for this nonlinear system is an extremely complicated issue,
and a full account has certainly not been presented here. These results should, however,
provide useful guidelines for future applications of the nonlinear model for the general study
of water waves.

5.9 Conclusions

This chapter investigates the numerical stability of method of lines discretizations of the
high-order Boussinesq formulation. It is shown through linear analyses that centered finite
difference schemes are conditionally stable for time stepping schemes whose stability regions
contain some portion of the imaginary axis. From the results presented here necessary stabil-
ity criterion can be established for numerous time integration schemes in combination with a
number of finite difference spatial discretizations. Linear analyses using conventional Fourier
(von Neumann) techniques in a single horizontal dimension and matrix-based methods in
two horizontal dimensions (for both rotational and irrotational formulations) give very simi-
lar results, with both indicating that the high-order discretizations result in more restrictive
stability constraints than do second-order finite difference approximations.

The matrix-based method is also extended to include the local effects of the nonlinear terms.
The general de-stabilizing effects of these terms are demonstrated, as are the stabilizing
effects of numerical dissipation. The analysis provides clear evidence that the numerical
model becomes increasingly unstable as the nonlinearity becomes stronger. Although the
linear analyses show only minor differences between the rotational and irrotational formu-
lations, much more dramatic differences are demonstrated in the local nonlinear analysis.
Specifically, it is shown (locally) that the eigenvalues from the rotational system are much
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less receptive to numerical dissipation than are those from the irrotational formulation when
high nonlinearity is combined with large water depths and/or refined grids (i.e. large kNh).
Alternatively, the analysis suggests that the stability properties of the irrotational formu-
lation actually improve with increasing kNh. Computation of matrix pseudospectra shows
that the system is generally only moderately non-normal, giving confidence that the eigen-
values reasonably characterize the discrete systems. Increased non-normality is, however,
demonstrated for the rotational formulation when high nonlinearity is combined with large
kNh, providing yet further evidence of deteriorating stability properties for this formulation
in these circumstances.

A series of numerical experiments demonstrates excellent agreement with the linear analy-
ses, and good qualitative agreement with the local nonlinear analysis. These experiments
provide further insight, indicating that the rotational formulation has slightly better stabil-
ity properties in highly nonlinear shallow-water situations. The experiments confirm that
the irrotational formulation has significantly better stability properties in cases having high
deep-water nonlinearity, particularly with large kNh. From this analysis it can confidently
be concluded that the irrotational formulation is preferable from a stability standpoint in
these circumstances. The experiments also demonstrate that the nonlinear stability proper-
ties of the irrotational formulation improve with increasing kNh, consistent with the local
nonlinear analysis. These conclusions are significant, as many of the practical applications
of this model involve highly nonlinear waves in deep water.

This work serves as an example of the combined use of many widely-applicable numerical
analysis techniques, with each providing valuable insight into the numerical behavior of this
complicated system of PDEs (including up to fifth-order spatial derivatives). Extension
beyond classical linear methods of analysis has proven essential for the understanding of
this system, as the behavior of the nonlinear model deviates significantly from what might
be expected from a strictly linear analysis. This work has proven essential in obtaining
convergent numerical solutions for this important high-order system of nonlinear PDEs.
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Chapter 6

Model Verification

Chapter Summary

This chapter describes the systematic verification of the Boussinesq model using simulations
of idealized test cases for which analytic solutions exists. Simulations involving linear stand-
ing waves, nonlinear standing waves, and linear shoaling are used to independently test the
basic linear terms, the nonlinear terms, and the variable bottom terms, respectively. In each
case a (nearly) perfect agreement with theoretical solutions confirms their correct imple-
mentation. Additionally, computed results involving nonlinear refraction and diffraction are
shown to compare well with experimental measurements, demonstrating the application of
the model in more realistic circumstances. A brief comparison of the computational costs
with a full three dimensional Navier-Stokes solution suggest that the use of the Boussinesq
model within its physical limitations is justified from an efficiency standpoint.

6.1 Introduction

In the development of any numerical model idealized test cases, for which analytical (or semi-
analytical) solutions exist, are invaluable. Without such test cases, verifying the correct
implementation of a numerical model and testing its performance is, at best, extremely
difficult. This is particularly true when solving complicated systems of PDEs, as in this
thesis, as the opportunities for making mistakes are abundant.

This chapter describes the verification of the Boussinesq model using such idealized test
cases. The cases have been selected so that the various terms within the model can be
systematically and independently tested. Specifically, simulations involving linear standing
waves, nonlinear standing waves, and linear shoaling are used to test the basic linear (in-
cluding mixed-derivative), nonlinear, and variable bottom terms, respectively. Computed

69
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Figure 6.1: The computed free surface of a linear standing wave at t = 6.730 = 10T .

results involving nonlinear refraction and diffraction also compare well with measurements,
highlighting the accuracy of the model in realistic circumstances. Simulations throughout
the chapter using the various preconditioners developed in Chapter 4 further demonstrate
their effectiveness on variable depth problems. A brief comparison of the computational
efficiency of the Boussinesq model compared to a full three-dimensional Navier-Stokes solu-
tion as well as a nonlinear shallow-water model is also provided. The results suggests that
applications of the Boussinesq model (within its physical limitations) are justified from an
efficiency standpoint.

This chapter is organized as follows. Model verification with respect to linear and nonlinear
standing waves is presented in §6.2 and §6.3, respectively. Verification with respect to linear
shoaling is presented in §6.4. Verification with respect to nonlinear refraction and diffraction
are presented in §6.5. A brief comparison of the computational efficiency when compared to
other modeling alternatives is presented in §6.6. Conclusions are briefly re-stated in §6.7.

6.2 Linear Standing Wave

As a first means of model verification we consider linear standing wave simulations, given
by the initial conditions

Ũ(x, y, 0) = 0, (6.1)

η(x, y, 0) =
H

2
cos kxx cos kyy, (6.2)

where H is the wave height, and kx and ky are components of the wavenumber vector
k = (kx, ky) = (2π/Lx, 2π/Ly) (where Lx and Ly are wavelengths in the x- and y-directions,
respectively). The initial free surface elevation is shown in Figure 6.1.

We will firstly consider the relative merits of each of the finite difference discretizations
introduced in §3.2. These are again (a) second-order approximations for each partial deriva-
tive, (b) a 25-point (diamond) finite difference stencil, (c) a 37-point (octagon) stencil, and
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Figure 6.2: Computed time series of free surface elevations (at the center-point) from linear
standing wave simulations using (a) second-order finite difference approximations, (b) a 25-
point stencil, (c) a 37-point stencil, and (d) a 49-point stencil.

(d) a 49-point (square) stencil (see Figure 3.1). For comparison we use simulations on a
21 × 21 computational grid, with H = 0.02 m, h = 0.7071 m, kx = ky = 2π m−1 (i.e.
Lx = Ly = L = 1 m, kh = 2π), and ∆x = ∆y = L/20 = 0.05 m. Using the linear dispersion
relation

ω2 = gk tanh(kh), (6.3)

gives a linear period T = 2π/ω = 0.6730 s, and the time step is taken to be ∆t = T/20 =
0.03365 s. Nonlinear terms are switched off for the simulations so that results should match
linear theory. Note that in the linear sense Ũ = u0, where u0 = (u0, v0) are again horizontal
velocity variables at z = 0. Resulting time series of surface elevations at the center-point
under each finite difference stencil are shown in Figure 6.2. Here particular attention
should be paid to the zero crossings, as these should theoretically correspond to a point from
the time series. In Figures 6.2 (a) and (b) the period is seen to be noticeably off, whereas
in (c) and (d) it is visually exact under this discretization. Table 6.1 gives quantitative
results of the root-mean-squared-error (RMSE) over the entire domain at t = 4.75T and at
t = 5T , where the free surface should theoretically be flat and back to its initial condition,
respectively. It is again seen that the 37- and 49-point stencils give a substantial reduction in
the accumulated error. Indeed, achieving similar accuracy with stencils (a) and (b) requires
roughly 15 and 4 times as many grid points, respectively! Note that as this case is in deep
water (kh = 2π) all of the spatial derivatives are important for this problem. In shallow
water this trend becomes even more exaggerated, as the leading order spatial derivatives
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Table 6.1: RMSE of computed free surface elevations (compared with linear theory) using
various finite difference approximations in linear standing wave simulations. The simulations
are on the 1.8 GHz machine, and use the factored linear preconditioner from §4.6.1 (thus
each solution of Ax = b requires a single iteration).

Stencil Grid t = 4.75T t = 5T CPU [s]

2nd-order 21 × 21 3.94 × 10−4 2.00 × 10−5 5.99
25-point 21 × 21 1.74 × 10−4 6.68 × 10−6 5.98
37-point 21 × 21 7.59 × 10−6 3.46 × 10−6 8.41
49-point 21 × 21 1.08 × 10−5 3.46 × 10−6 8.60

2nd-order 81 × 81 1.31 × 10−5 3.36 × 10−6 158
25-point 41 × 41 3.24 × 10−5 3.50 × 10−6 29.8
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Figure 6.3: Time series of surface elevations for a linear standing wave simulation covering
the first 20 periods.

are accurate to sixth-order with stencils (c) and (d), see again Appendix B. Due to the
inclusion of mixed fifth-order partial derivatives, this model inevitably requires a fairly large
finite difference stencil. Correspondingly, it rather naturally lends itself to higher-order finite
difference approximations (for lower-order terms), which can give significant reductions in
the overall computational expense (as well as the storage) required for a desired accuracy.
Because the 37-point stencil seems to provide essentially the same accuracy as the 49-point
stencil, it will be used exclusively in the remainder of this work.

The resulting time series from an extended simulation (covering 20 periods) using the 37-
point stencil is also shown in Figure 6.3. Here it can be seen that this discretization maintains
a visually (nearly) perfect match with the theoretical period over the entire duration. The
essentially perfect results presented in this section confirm the correct implementation of the
linear, flat-bottom terms, including mixed-derivative terms.
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Figure 6.4: The computed free surface from a nonlinear standing wave simulation at t = 9.5T
s. Note that the vertical scale in this figure is exaggerated 10 times.

6.3 Nonlinear Standing Wave

As a second means of model verification we simulate the eighth-order nonlinear standing
wave of Agnon & Glozman (1996) with H = 0.05 m, h = 2 m, and L = 2 m (H/L = 0.025,
kh = 2π). This problem in fact contains no variation in the y−direction, however it is
still useful to test the basic nonlinear terms. Using g = 9.82 m/s2 gives a nonlinear period
T = 1.1341 s. The problem is discretized using ∆x = ∆y = L/20 = 0.10 m on a 21 × 13
grid with ∆t = T/20 = .056704 s. The simulation was run for 1001 time steps (i.e. 50 full
periods) and was preconditioned using the factored linear preconditioner. The results shown
are from the irrotational formulation, however results from the irrotational formulation are
virtually identical. The simulation required between 1–8 iterations (with an average of 3.51),
and required 119 s on the 1.8 GHz machine (Absoft compiler).

The computed free surface after 9.5T is shown in Figure 6.4. A time series of the surface
elevation at the center point is also shown in Figure 6.5, covering the first 20 periods. Here
the nonlinear effects can clearly be seen, as the time series is no longer centered about z = 0
(as in Figure 6.3), but is rather shifted slightly upwards. In this figure a nearly perfect
match with the theoretical period is again observed (this can again be seen from the zero
crossings), confirming the correct implementation of the basic nonlinear terms.

6.4 Linear Shoaling

To test the variable bottom terms, we will now consider simulations involving linear shoaling
of waves over the bathymetry shown in Figure 6.6 (a), having depths ranging from h = 10
m to 0.2 m. The simulation uses sinusoidal incident waves at the deep water region with
wavelength L = 20 m and H = 0.002 m. Using g = 9.81 m/s2 gives a linear period T = 3.586
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Figure 6.5: Time series of surface elevations for a nonlinear standing wave simulation covering
the first 20 periods.

s. The simulation thus involves dimensionless depths ranging from kh = π to kh = 0.253
i.e. deep to quite shallow water. The time step is taken as ∆t = 0.15 s, and for the spatial
discretization we use ∆x = ∆y = 0.2 m (note that there is again no variation in the y-
direction). Nonlinear terms are switched off for this simulation. Results are shown from an
irrotational simulation using the Schur complement preconditioner. This case is interesting
in-part because it demonstrates the effectiveness of this preconditioner on a problem with
vastly different depths. A 1701 × 9 computational grid is used, and the simulation was run
for 2001 time steps, requiring 3.14 hr on a 2.26 GHz processor. The simulation required
between 4–9 iterations (with an average of 6.74). For stability purposes (necessary because
of the variable bottom), a sixth-order, 57-point smoothing filter was applied after each full
time step. For comparison a rotational simulation preconditioned with the factored linear
matrix required 1.14 hr, and gave virtually identical results. Note that this preconditioner
can be very efficient when solving small linear problems since then M = A, hence GMRES
always converges in a single iteration! Of course, direct solution methods are also efficient
in these cases.

The computed shoaling envelope is presented in Figure 6.6 (b). Also shown for comparison
is the envelope based on conservation of energy flux from linear theory (see e.g. Svendsen
& Jonsson, 1976). This is computed by solving

a(x)

a0

=





k(x)
(

1 + 2k0h0

sinh(2k0h0)

)

k0

(

1 + 2k(x)h(x)
sinh(2k(x)h(x))

)





0.5

, (6.4)

in combination with the linear dispersion relation, which must be satisfied for all x. Here
a0 and k0 are the amplitude and wavenumber of the incident wave. In Figure 6.6 (b) a
perfect match between the computed results and the theory is again observed, confirming
the correct implementation of the variable depth terms.
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Figure 6.6: Plots showing (a) the bathymetry, and (b) the computed (blue) and theoretical
(red) linear shoaling envelope.

6.5 Nonlinear Refraction & Diffraction

Having systematically confirmed the linear, nonlinear, and variable depth terms in the previ-
ous three sections, we will now consider their combined effects in simulating the experiments
of Whalin (1971) involving nonlinear refraction and diffraction. These simulations will hence
demonstrate the performance of the nonlinear model on a three-dimensional bathymetry.
The topography used connects deep and shallow regions with a semi-circular shoaling region
that acts as a focusing lens, and is described (in meters) by

h(x, y) =







0.4572 if 0 ≤ x ≤ 10.67 −G
0.4572 + 1

25
(10.67 −G− x) if 10.67 −G ≤ x ≤ 18.29 −G

0.1524 otherwise
(6.5)

where

G(y) =
√

y(6.096 − y). (6.6)

Gradients of h in both horizontal directions are calculated analytically. Because the bathymetry
is symmetric about the centerline (i.e. at y = 3.048 m) only half of the domain is modeled,
as shown in Figure 6.7.
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Figure 6.7: Bathymetry (−h in m) used when simulating the experiments of Whalin (1971).

Table 6.2: Description of the incident wave (at h = 0.4562 m) and model setup for the
simulations modeling the experiments of Whalin (1971).

T [s] H [m] L [m] kh Grid ∆x [m] ∆y [m] ∆t [s]

1.0 0.0390 1.50 1.92 467 × 21 0.0762 0.1524 0.03906
2.0 0.0150 3.91 0.73 276 × 21 0.1524 0.1524 0.03906
3.0 0.0136 6.14 0.47 291 × 21 0.1524 0.1524 0.03516

We consider three separate cases, having periods T = 1, 2, and 3 s. The model setup for
each of the cases is described in Table 6.2. Note that these same three cases have also
been considered e.g. in Madsen & Sørensen (1992). In each case stream function (Fenton,
1988) incident waves are used, with Stokes’ drift (or mean transport) velocity cs = 0, to
match the conditions of a closed flume. These incident waves are relaxed over a wavemaker
region (in the negative x-region) consisting of approximately a single wavelength. A second
relaxation zone having the same length is placed after the wavemaker region to absorb the
reflected wavefield (see §3.5). A sponge layer consisting of 50 grid points is also applied
for x > 30 m to absorb the outgoing wavefield. In each simulation a 10th-order, 109-point
(octagon) Savitzky-Golay smoothing filter is applied every 20 time steps, which is necessary
to remove high-frequency instabilities caused by the nonlinear and variable bottom terms
(the discretizations satisfy the linear stability criterion outlined in Chapter 5). The end
result is a very minor loss of accuracy. Each simulation was run for approximately 2000 time
steps, using the 1.8 GHz processor on code compiled with the Absoft FORTRAN compiler.

Specific attention will be paid to the physical processes involved in the deep water test case
(i.e. with T = 1 s). Figure 6.8 (a) shows the measured and computed harmonic amplitudes
along the centerline (i.e. at y = 3.048 m). The harmonic analysis has been made using a
linear least-squares fit from the final 500 time steps. Here a strong focusing effect is very
apparent behind the shoal, resulting in a major increase in amplitudes. At the wavemaker
the incident waves are nearly linear. During the shoal, however, there is a build up of bound
second harmonics due to nonlinear effects. After the shoal, when the depth is again constant,
there is a release of free second harmonics. Hence, in the shallow region the wavefield consists
of both bound and free second harmonics, which propagate not only with different speeds,
but also with different directions. This in turn causes the observed modulation in the second
harmonic amplitude behind the shoal. There is a considerable scattering in the data in
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Figure 6.8: Computed and measured harmonic amplitudes for simulations modeling the
experiments of Whalin (1971) with (a) T = 1 s, (b) T = 2 s, and (c) T = 3 s.

front of the shoal, but behind the shoal the agreement between the measured and computed
results is quite impressive. Indeed, even the modulations in the second harmonic seem to be
well modeled.

We will also use this case (again with T = 1 s), which is the most computationally demanding
of the three, to investigate the effectiveness of the various preconditioning methods devel-
oped in Chapter 4 on a more realistic problem. Table 6.3 provides a summary of simulations
using the various preconditioning strategies for both rotational and irrotational simulations.
As this problem is not extremely deep, all of the preconditioning methods are seen to be very
effective. Solutions of this problem are far from trivial, however, and some form of precon-
ditioning is necessary to achieve reasonable solution times. Notably, the Schur complement
preconditioner remains effective on this nonlinear variable-depth problem, even though it
has neglected both the nonlinear and bottom slope terms. Curiously, the results using the
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Table 6.3: Summary of simulations modeling the experiment of Whalin (1971) with T = 1
s.

Formulation Preconditioner Iterations CPU [h]

Rotational Linear 4-10 4.39
Rotational Linear (SP) 3-10 6.59
Rotational ILUT 4-10 4.57
Rotational Schur 6-17 5.13

Irrotational Linear 3-10 4.75
Irrotational Linear (SP) 3-10 6.39
Irrotational ILUT 4-10 4.16
Irrotational Schur 6-13 5.09

linear (single precision, SP) preconditioner are slower than with the double precision alter-
native, which contradicts previous findings. These simulations confirm the effectiveness of
each of these solution strategies on a realistic case involving both nonlinearity and variable
bathymetry.

Harmonic analyses are likewise shown in Figures 6.8 (b) and (c) for the additional cases
with T = 2 and 3 s. The agreement in both cases between the computed and measured
harmonic amplitudes is again most acceptable. The results from the three test cases compare
particularly well with others from the literature (see e.g. Chen & Liu, 1995; Li & Fleming,
1997; Liu & Tsay, 1984; Liu et al., 1985; Madsen et al., 1991; Madsen & Sørensen, 1992;
Rygg, 1988), further confirming the accuracy of the Boussinesq model.

6.6 A Brief Comparison of Computational Efficiency

The cases presented previously have all focused on the accuracy of the Boussinesq model
in some idealized cases, which is of course of the utmost importance. Also relevant in
terms of the validity of the model, however, is the relative computational efficiency when
compared to other water wave models. In this section we briefly compare the computational
demands of the Boussinesq model to those of a full three-dimensional model, as well as with
a shallow water model. The hope is, of course, that numerical solutions are significantly
cheaper than with a three-dimensional model, while perhaps being justifiably more costly
than a shallow water alternative. For simplicity we focus almost entirely on CPU demands
for a given problem size, and make very little effort at comparing accuracy, relying only on
discretizations used previously from the literature to gain some idea. Hence the comparison
is admittedly incomplete. A much more detailed (and perhaps proper) methodology for
the comparison of models can be found e.g. in Bredmøse (2002), who compared model
efficiencies (for frequency domain models vs. MIKE 21) for a given accuracy, measured with
respect to their own highly-converged results. Such comparisons are rather complicated
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and inevitably depend on a large number of parameters, particularly when variable-order
convergence rates are involved, inevitably making firm conclusions difficult. The intent of
this section is therefore not to provide a detailed comparison of the methods considered,
but rather only to gain a rough idea of the relative computational expenses required for the
various models on a grid point basis.

6.6.1 Comparison with NS3

For a comparison with a three-dimension model we use the NS3 model described e.g. in
Mayer et al. (1998); Nielsen (2003); Nielsen & Mayer (2004). This model solves the Navier-
Stokes1 equations using a volume of fluid (VOF) scheme, and is second-order accurate in both
space and time. For simplicity we consider simulations of plane stream function (Fenton,
1988) incident waves on a depth h = 0.8 m, with wavelength L = 0.8 m, and waveheight
H = 0.064 m (i.e. kh = 2π, H/L = 0.08). This yields a period T = 0.6968 s. With both
models ∆x = ∆y = L/30 = 0.0267 m is used, with a total of 400 points/cells taken in the
x-direction. Two- and three-dimensional problems are considered, with 24 points/cells taken
in the y-direction for the three-dimensional cases. Simulations in two and three dimensions
are run for 30T and 10T , respectively. For the NS3 simulations the built in adaptive time
stepping scheme is used, whereas with the Boussinesq model a constant ∆t = T/30 = 0.0232
s is used. The Boussinesq model is compiled with the Intel FORTRAN compiler, whereas the
NS3 code was pre-compiled using the gcc compiler. All simulations are run on the 1.8 GHz
machine. Solutions with the Boussinesq model (in two-horizontal dimensions) use the Schur
complement preconditioner of §4.6.4, whereas the NS3 simulations use multi-grid iterative
methods (see e.g. Briggs et al., 2000). For the NS3 simulations three different discretizations
in the vertical direction are considered i.e. 16, 32, and 64 cells. These simulations hopefully
give some indication of the relative expenses of solving shallow and deep water problems
with this model.

A summary of the CPU time and storage required for the various simulations is provided
in Table 6.4. For the two-dimensional simulations it can be seen that the Boussinesq model
is roughly two orders of magnitude faster than the corresponding NS3 simulations, with
approximately a single order of magnitude savings in storage. Alternatively, for the three-
dimensional simulations, the Boussinesq model is roughly a single order of magnitude more
efficient in terms of CPU times, with a factor of roughly 1–4 savings in storage. The reason
for the relative loss in efficiency when going from a single to two horizontal dimensions with
the Boussinesq model is simply because simulations in a single horizontal dimension only
require solutions of banded linear systems (involving far fewer non-zero elements, see Madsen
et al., 2002), which is a trivial task.

While we again refrain from directly comparing accuracy of the simulations, some idea of
the required resolution for the NS3 model can be obtained from the literature. In two-

1Named after the French engineer Claude Louis Marie Henri Navier, 1785–1836, and the Irish mathe-
matician George Gabriel Stokes, 1819–1903.
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Table 6.4: Summary of the comparison between Boussinesq and NS3 simulations. Each
computational domain uses Nx = 400 grid points/cells in the x-direction.

Model Ny Nz Nt CPU [s] ∆t Storage [MB]

NS3 1 16 1378 477 0.0152 11
NS3 1 32 2187 1078 0.00956 15
NS3 1 64 2499 1614 0.00837 23

Boussinesq 1 — 901 12.4 0.0232 2.2

NS3 24 16 728 12,715 0.00957 204
NS3 24 32 1094 37,555 0.006369 361
NS3 24 64 — — — 676

Boussinesq 24 — 301 1453 0.0232 174

dimensional simulations using the nonlinear standing wave of Agnon & Glozman (1996),
the NS3 model presented in Mayer et al. (1998) obtains reasonably similar results to those
presented here in §6.3 using a 64 × 32 grid (in the x- and z-directions), with roughly 100
time steps per period. Alternatively, in §6.3, visually perfect results were obtained using
20 points per wavelength and period. Nielsen & Mayer (2004) also demonstrate accurate
propagation of stream function incident waves using roughly 50 cells per wavelength. Thus,
at least at first glance the discretizations used in this section appear to be reasonable, and the
computational savings implied by Table 6.4 for the Boussinesq model are likely conservative
estimates for a given accuracy (since equivalent discretization in space for the two models
was used). Note that the larger time steps used by the Boussinesq model are warranted due
to the use of a fourth-order time stepping scheme, compared with the second-order accuracy
of the NS3 model. Similar arguments can also be made with regard to the savings in the
spatial discretization (see again the comparison in §6.2 using the different discretizations
with the Boussinesq model).

Based on this simple comparison, the use of the high-order Boussinesq model over a full three-
dimension solution seems justified for particular classes of problems. It must be stressed
that the NS3 model is capable of solving much more complicated problems, and has been
previously used to study e.g. wave breaking by Mayer & Madsen (2000), and green water
loads on ships by Nielsen (2003); Nielsen & Mayer (2004). The comparison here is in no way
meant to downplay the impressive achievements made using this approach, but merely to
justify the computational demands of the Boussinesq model for solving problems within its
own inherent physical limitations.

6.6.2 Comparison with MIKE 21

To get an idea of the relative computational efficiency with respect to a simpler model,
we will briefly compare with the well-known MIKE 21 model from DHI Water & Environ-
ment, Hørsholm, Denmark, capable of simulating nonlinear shallow water waves. This finite
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difference model solves two-dimensional variants of the Saint-Venant2 equations, using an
alternating direction implicit (ADI) algorithm, and is second-order accurate in both space
and time. The basic numerical algorithm is explained e.g. in Abbott & Minns (1998). Nu-
merous modules in addition to the basic hydrodynamic scheme have also been incorporated
into this model, see e.g. Babovic & Fuhrman (2002).

This basic model (with slight modifications) has been used recently by Madsen et al. (2004)
to simulate the fascinating tidal bore in Huangzhou Bay and Qiantang River in China,
which we will use for comparative purposes. Their model consists of 375,000 grid points,
55,000 of which are water points. They report that a simulation using 7600 time steps
required no more than 55 min (3300 s) on a 2.66 GHz Dell PC (i.e. the processors are
of reasonably similar speed). Dividing this time by the number of grid points and time
steps gives 3300/7600/55, 000 = 7.9 × 10−6 s per grid point per time step. Consider-
ing the Boussinesq simulation in two horizontal dimensions from Table 6.4 similarly gives
1453/301/24/400 = 5.0 × 10−4 s per grid point per time step. Hence, based on this simple
comparison, the MIKE 21 model would appear to be roughly two orders of magnitude more
efficient than the present Boussinesq model on a grid point basis. We note that due to the
use of higher-order space and time discretizations in the Boussinesq model, the differences
in practical simulations would likely be somewhat less; recall that our scheme is fourth-order
accurate in time, with the leading-order spatial derivatives accurate to sixth-order (in shal-
low water only the leading-order terms are important). Note also that in shallow water
preconditioning is generally not necessary, see again Chapter 4, though it was used in Table
6.4. In any event, despite these additional factors, the MIKE 21 model is (unsurprisingly)
significantly less computationally demanding than the Boussinesq model.

6.6.3 A mention of some other fully nonlinear models

This comparison is by no means exhaustive in terms of the models considered, as we restrict
attention to only the NS3 and MIKE 21 models from the previous two sub-sections. It is
felt that some other models at least merit a mention. In particular, the pseudo-spectral
methods of Dommermuth & Yue (1987) (see also Liu & Yue, 1998) and Smith (1998), based
on Fourier expansions, have demonstrated an ability to efficiently treat highly nonlinear
waves on variable bathymetries. See also the recently proposed Fourier-Boussinesq method
of Bingham & Agnon (2005), which uses a combined finite difference-FFT approach. The
fully nonlinear pseudo-spectral approaches of Craig & Sulem (1993) (extended recently to two
horizontal dimensions by Bateman, Swan & Taylor, 2001) and Clamond & Grue (1995) are
also attractive for the study of highly nonlinear water waves, though applications on variable
depth problems have yet to be demonstrated with these methods. Future comparisons with
these various models would certainly be of interest.

2So-named after the French engineer Adhémar Jean Claude Barré de Saint-Venant, 1797–1886.
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6.7 Conclusions

This chapter presents numerical simulations of some preliminary test cases designed to sys-
tematically verify the implementation of the high-order Boussinesq model. Firstly, results
using a simple linear standing wave in two horizontal dimensions are presented, and visually
perfect results are achieved using a discretization of 20 points per wavelength and period.
Using this test case it is also demonstrated that significant savings in grid points required
for a given accuracy can be achieved by using the larger finite difference stencils presented
earlier in §3.2, as opposed to using e.g. all second-order accurate approximations, despite
some additional overhead. Correct implementation of the nonlinear terms is also demon-
strated through a similar simulation of a nonlinear standing wave. The variable bottom
terms are likewise verified through a linear shoaling test case, where a perfect match with
linear theory is again achieved. Good agreement with experimental measurements involving
nonlinear refraction and diffraction are also presented, demonstrating quantitative accuracy
with a first realistic application in two horizontal dimensions.

The issue of computational efficiency is also briefly addressed via comparisons with a three-
dimensional Navier-Stokes VOF model, NS3, as well as with the nonlinear shallow water
model, MIKE 21, from DHI Water & Environment. Computational savings (in terms of CPU
times) of roughly two and one orders of magnitude are demonstrated with the Boussinesq
model when solving problems in one and two horizontal dimensions, respectively, when
compared with similar NS3 solutions. MIKE 21 simulations are also expectedly much faster
than with the Boussinesq model on a grid point basis. We expect the comparison to be even
more favorable if accuracy were taken into account, though this is not demonstrated here.
From this comparison, applications of the Boussinesq model within its physical limitations
seem warranted from an efficiency standpoint, confirming the adequacy of the numerical
solution methods presented in Chapter 4. For shallow water (or weakly dispersive) problems,
there are clearly cheaper alternatives.



Chapter 7

Modeling of Short-Crested Waves

Chapter Summary

This chapter details a study of short-crested wave patterns, created by the nonlinear interac-
tion of wave fronts at symmetric incident angles. These interactions are considered in both
shallow and deep water, which respectively result in characteristic hexagonal and rectangular
wave forms. In shallow water it is confirmed that the interaction is strong/weak when the
incident angle is small/large. For the study of the rectangular forms an identical setup as
with some recent physical experiments is considered, and the computed results share many
common features with the observations. Among these, the most pronounced feature is a
curious modulation in the direction of propagation. It is explained, for the first time, that
this is due to the release of parasitic free first harmonics, which are the result of third-order
discrepancies in the three-dimensional wavemaker conditions.

7.1 Introduction

Some of the most fundamental three-dimensional water wave patterns occur due to the
oblique interaction of wave fronts, which lead to perhaps the simplest short-crested wave
forms. These nonlinear interactions are known to create quite spectacular hexagonal and
rectangular patterns in shallow and deep water, respectively. Extensive research has been
performed in the study of these patterns, historically as well as very recently.

The phenomena of oblique interaction of wave fronts in finite depth has been studied experi-
mentally by e.g. Hammack et al. (1995, 1989); and Kimmoun et al. (1999) (see also Hammack
et al., 1991), analytically by e.g. Hsu et al. (1979); Kimmoun et al. (1999); Segur & Finkel
(1985), and numerically by e.g. Chen & Liu (1995); Craig & Nicholls (2002); Nicholls (1998,
2001). Such hexagonal patterns have also been observed in nature, see e.g. the photographs
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in Hammack et al. (1995). The related rectangular deep water patterns have also received
much attention. These have been studied experimentally by e.g. Hammack & Henderson
(2002, 2003) and Hammack, Henderson & Segur (2005), analytically by e.g. Bryant (1985)
and Roberts (1983), and numerically by e.g. Nicholls (2001) and Craig & Nicholls (2002).
Proofs of existence theorems for capillary gravity water waves in three dimensions have also
recently been put forth by Craig & Nicholls (2000). As can be seen, much of this work is
quite recent, and is still ongoing.

In the present chapter we add to the investigations of these short-crested wave patterns, both
in shallow and deep water, which provide an interesting medium to demonstrate applications
of the Boussinesq model over a wide range of water depth. In shallow water we repeat earlier
simulations of Chen & Liu (1995), who studied the effects of the incident angle on interacting
cnoidal waves. Alternatively, in deep water we repeat numerically a series of experiment
from Hammack & Henderson (2002, 2003) and Hammack et al. (2005). Our simulations
share a number of common features with their physical experiments, and we provide a new
explanation of the root cause of many of these features.

This chapter is organized as follows. Simulations involving the interaction of wave fronts at
oblique incident angles in shallow water, resulting in hexagonal surface patterns are presented
in §7.2. Similarly, simulations of their deep-water analogue, resulting in rectangular forms
are presented and discussed in §7.3. Conclusions are provided in §7.4.

Parts of this chapter can be found in Fuhrman et al. (2004b) and Fuhrman et al. (2004c).

7.2 Hexagonal Surface Patterns

We begin by studying the influence of the directed wave angle on the oblique interaction
of identical wave fronts propagating over a slope connecting two constant depths. For our
study, we use a similar model setup as in Chen & Liu (1995), with depth defined by

h(x) =







0.3 x ≤ 0,
0.3 − 0.015x 0 < x ≤ 12,
0.12 x > 12,

(7.1)

where x = 0 is here defined as at the end of the second relaxation zone (each consisting of 25
points), which is again used to absorb the reflected wave field, see §3.5. A 50-point sponge
layer is used at the end of the domain to absorb the outgoing wave field. Rather than use
cnoidal waves as in Chen & Liu (1995), we simply impose two stream function (Fenton, 1988)
waves at incident angles in the wavemaker region, each having period T = 2.55 s, waveheight
H = 0.02 m, and wavelength L = 4.25 m. Two different incident angles (between the front
and the y-axis) are considered, θ0 = 22.5◦ and 45◦, which represent small and large directed
wave angles, respectively. We use a 381 × 33 computational grid, in each case covering
a full wavelength in the y-direction. For the spatial discretization we use ∆x = 0.1 m,
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Figure 7.1: Mach stem interactions at an incident angle of 22.5◦ for (a) a linear and (b) a
nonlinear simulation. In (b) the vertical scale is exaggerated 20 times.

Figure 7.2: Mach stem interactions at an incident angle of 45◦ for (a) a linear and (b) a
nonlinear simulation. In (b) the vertical scale is exaggerated 20 times.
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and ∆y = 0.347 m and 0.188 m with θ0 = 22.5◦ and 45◦, respectively. For the temporal
discretization we set ∆t = 0.085 s, and simulations are run for 1000 time steps. A 10th-order,
85-point Savitzky-Golay smoothing filter is applied every 15 time steps.

Linear and nonlinear simulations near the end state are shown in Figure 7.1 for the case
with θ0 = 22.5◦, and in Figure 7.2 for the case with θ0 = 45◦. In the deep regions, before the
shoaling takes place, the differences between the linear and nonlinear simulations are rather
small. On the other hand, large differences can be seen in the short-crested patterns after
the step, when the waves have steepened. The case with θ0 = 22.5◦, Figure 7.1 (b), shows
a strong interaction between the wavefronts, resulting in significantly increased transversal
crest lengths. This results in the characteristic hexagonal surface patterns. The interaction
is much weaker with θ0 = 45◦, though it is still apparent. The free surface in Figure 7.2
(b) is reasonably similar to the superposition of two cnoidal wave trains, and is distinctly
different than the linear simulation, Figure 7.2 (a).

In his study of Mach reflection of a cnoidal wave from a vertical wall, Kirby (1990) showed
that if the angle of incidence is small, a Mach stem1 (Wiegel, 1964) evolves along the reflected
wall. In contrast, when the angle of incidence is about 45◦, the wave field exhibits an almost
regular (i.e. superimposed) reflection pattern. This is consistent with our results, as well as
with others. Figures 7.1 (b) and 7.2 (b) compare very well with similar plots in Chen & Liu
(1995), see their Figure 8.

7.3 Rectangular Surface Patterns

We will now turn our attention to the deep water analogue to the hexagonal forms presented
in the previous section, which result in surface patterns of a rectangular form. In the following
we repeat numerically a series of physical experiments from Hammack et al. (2005) (see also
Hammack & Henderson, 2002, 2003).

7.3.1 Model setup

For the simulations we simply use the superposition of two linear waves at incident angles
with the free surface given as

η(x, y, t) =
a

2
cos(ωt− kxx− kyy) +

a

2
cos(ωt− kxx+ kyy). (7.2)

1The phrase Mach stem has its origin in the field of explosives. It can be defined as the front formed by
the fusion of the incident and reflected shocks from an explosion. The term is generally used with reference
to a blast wave, propagated in the air, and reflected at the surface of the Earth. In the ideal case, the Mach
stem is perpendicular to the reflecting surface and slightly convex (forward). The analogue within water
waves arises from the nonlinear interaction between wave fronts at oblique incident angles, resulting in the
extended crests apparent e.g. in Figure 7.1 (b).
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Table 7.1: Parameters for the experiments of Hammack & Henderson (2002, 2003) for vari-
able nonlinearity. Note: These simulations use the Fourier space preconditioner and have
been run on a 2.26 GHz processor with the Absoft compiler.

Experiment a [m] ak H/L CPU [hr] Avg. Iterations

C9 0.0024 0.15 0.048 5.85 5.79
C10 0.0032 0.20 0.064 6.17 6.41
C11 0.0039 0.24 0.078 6.58 7.05
C12 0.0047 0.29 0.094 7.23 8.21
C13 0.0055 0.34 0.110 8.25 9.92
C14 0.0063 0.39 0.126 9.48 11.95

This may be equivalently written as

η(x, y, t) = a cos(kyy) cos(ωt− kxx). (7.3)

Hence a = H/2 is the total amplitude of the incident wavefield, which consists of a stationary
standing mode in the y-direction, and is progressive in the x-direction. The corresponding
horizontal velocities are then

u0(x, y, t) =
aωkx

k

cosh kh

sinh kh
cos(kyy) cos(ωt− kxx), (7.4)

v0(x, y, t) =
aωky

k

cosh kh

sinh kh
sin(kyy) sin(ωt− kxx). (7.5)

In nonlinear simulations we use Ũ = u0, hence the the wavemaker conditions satisfy the fully
nonlinear water wave problem to first order, and are exact progressive solutions at the limit
of small amplitudes. These incident conditions are particularly warranted, as they precisely
match the experimental setup used by Hammack et al. (2005). Hence the simulations should
be useful in explaining some of their observations.

Hammack et al. (2005) performed a number of physical experiments varying both the incident
angle and wave steepness. A typical free surface from their experiments is shown in Figure
7.3, demonstrating the spectacular characteristic doubly (nearly) periodic rectangular forms.
Note that from the image the patterns may actually appear hexagonal in shape, however time
series measurements have confirmed that they are indeed rectangular in form, see Hammack
et al. (2005). In this chapter we will only consider their experiments C9–C14, which use a
constant incident angle with variable nonlinearity, though other simulations have also been
made. The experimental setup for each case is summarized in Table 7.1. The simulations use
h = L = 0.10 m (i.e. k = 20π, kh = 2π), which gives a linear period of T = 0.253 s (ω = 3.953
s−1). The wavenumbers in the two horizontal directions are chosen as kx = 62.03 m−1 and
ky = 10.00 m−1 (i.e. Lx = 0.1013 m, Ly = 0.6280 m). Thus each wave front has an incident
angle with the y-axis of θ0 = tan−1(ky/kx) = 9.166◦. For each simulation a 513 × 33 grid is
used with the spatial discretization ∆x = Lx/32 = 0.003165 m, ∆y = Ly/32 = 0.01963 m,



88 Chapter 7. Modeling of Short-Crested Waves

Figure 7.3: Typical free surface from the physical experiments of Hammack et al. (2005).
Photograph courtesy of Diane Henderson.

and the temporal discretization ∆t = 0.005 s. Simulations C9-C11 use a 10th-order, 109-
point smoothing filter applied every 50 time steps, while it is applied every 10 and 5 time
steps for simulations C12-C13 and C14, respectively. Simulations begin with an initially
flat free surface, and are run for 3501 time steps (roughly 69.2 periods) which is more than
enough to reach an equilibrium. In each case the incident wave is ramped over a single
period at the beginning of the simulation, and a 100-point sponge layer is used to absorb
the outgoing wavefield. As the simulations are on a flat bottom, the matrix-free Fourier
space preconditioner is used. Details on the required CPU times and average iterations for
each simulation are also given in Table 7.1. This series of simulations is yet another clear
demonstration on the effectiveness of this preconditioner, even in highly nonlinear, deep
water situations.

7.3.2 Numerical results

Before discussing the nonlinear simulations, we will first demonstrate a simulation with the
linearized model. The developed free surface after equilibrium is reached is shown in Figure
7.4. Here a doubly periodic wavefield propagating in a constant form for the entire length
of the domain can be seen, as should be expected from linear theory. This is in contrast to
the nonlinear simulations presented in what follows.

Computed free surface elevations from nonlinear simulations of cases C9, C11, and C13 are
alternatively shown in Figure 7.5. A computed free surface from case C14 (at two viewing
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Figure 7.4: Computed water surface from a linear simulation.

angles), which is the most nonlinear case considered, is also shown in Figure 7.6. From
these figures, it can be seen that the basic wave patterns are indeed rectangular in nature,
consistent with known previous observations. This is characterized by the essentially flat
and straight nodal regions along the channel, in contrast to the hexagonal patterns from
§7.2. The rectangular patterns are also persistent i.e. they hold their basic form for the full
length of the domain, consistent with the experiments.

From Figures 7.5 and 7.6 some interesting features can be seen. Namely, at various positions
we can see both a curving and flattening of the crest-lines in the y-direction, as well as dips
along the centerline. It is also clear that the waves no longer propagate in a constant form,
but rather seem to modulate regularly along the x-direction of propagation. These features
can most clearly be seen in Figure 7.6 (b), and become less pronounced as the wave steepness
is decreased. Each of these features were also observed in the experiments of Hammack et al.
(2005), see their Table 6.

To more clearly demonstrate the modulation in the x-direction, computed surface envelopes
along the tank centerline are shown in Figure 7.7 for cases C9, C11, and C14. The first three
corresponding harmonic amplitudes are also shown in Figure 7.8, which clearly shows that
the long modulation is curiously due to variations in the first harmonic amplitude. We can
also see a much shorter beat in the second and third harmonic amplitudes. For comparison
with the experiments a time series taken from a gauge traversing along the centerline (at a
velocity of 0.1059 m/s) from experiment C14 is also shown in Figure 7.9, which also clearly
shows the modulating behavior in the physical experiments. From this plot the modulation
takes between 6–7 s, corresponding to a length of roughly 0.64–0.74 m, which is reasonably
close to what is observed in Figure 7.7. This modulating behavior of our simulations, as well
as from the experiments of Hammack et al. (2005), is in contrast to the purely progressive
(but similar) nonlinear forms computed by e.g. Craig & Nicholls (2002), as well as in the
linear simulation from Figure 7.4.
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Figure 7.5: Computed water surfaces at the end of each simulation (t = 17.48 s). Figures
(a)-(c) correspond to tests C9, C11, and C13, respectively. The vertical scale is exaggerated
10 times in these figures, and similarly for the remaining surface plots in this chapter.

7.3.3 Physical explanation

Using simple analysis concepts we will now explain the dominant features observed from the
previously presented simulations, many of which have not been previously explained. We
will start by considering the modulation of the second harmonic amplitude, as seen in Figure
7.8. The beat of the second harmonic is in fact a well-known artifact of using first-order
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Figure 7.6: Computed free surface for experiment C14 at the end of the simulation (t = 17.48
s). Figures (a) and (b) show the same free surface at two different viewing angles.

incident waves in nonlinear simulations/experiments, which also occurs in a single horizontal
dimension. This phenomenon has been studied experimentally by e.g. Boczar-Karakiewicz
(1972); Buhr-Hansen & Svendsen (1974); and Chapalain et al. (1992); theoretically by e.g.
Bryant (1973); Mei & Ünlüata (1972); and Mei (1983); and numerically by e.g. Madsen &
Sørensen (1993). We will review the mechanism here, as it is somewhat more complicated
when two horizontal dimensions are considered.

The second order problem can be fully characterized simply by taking a quadratic nonlin-
earity of the incident wave (7.3), which results in terms having the following form

η(x, y, t)2

O(a2)
= cos2(kyy) + cos(2ωt− 2kxx) + cos(2kyy) cos(2ωt− 2kxx). (7.6)

Here the first term represents a set-up, which is constant in x as well as in time, while
the second and third terms represent bound second harmonics. The second term is a plane
wave traveling in the pure x-direction, while the third term has the same directionality as the
incident wave. If these last two terms are absent in the prescribed incident wave (as is the case
here, as well as in the physical experiments), the model will respond by releasing parasitic
higher harmonics, which will propagate as free wave components. These will have equal
amplitude but opposite phase compared to the bound waves at the wavemaker boundary.
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Figure 7.7: Envelope of free surface elevations along the centerline for experiments (a) C9,
(b) C11, and (c) C14. The wavemaker covers the negative x region.

The free waves will match the frequency and transversal wavenumbers of the corresponding
bound waves, with an adjustment to the x-wavenumber component. The second-order free
wavefield will thus be of the form

η2f (x, y, t) = cos(2ωt− 2k21xx) + cos(2kyy) cos(2ωt− 2k22xx). (7.7)

As a first estimate we can assume that the free waves satisfy the linear dispersion relation,
which ultimately yields k21x = 251.3 m−1 and k22x = 248.1 m−1. Note that k21xh ≈ 25 i.e.
these free waves are near the upper dispersive limit of the Boussinesq model. Using simple
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Figure 7.8: Evolution of the first three harmonic amplitudes along the centerline for experi-
ments (a) C9, (b) C11, and (c) C14.

superposition arguments, this particular model setup in principle yields three second har-
monic beat lengths. The first two are due to the difference in the x-wavenumber components
of the bound and the free waves, which can be estimated as

λB21 =
2π

2kx − k21x

= 0.0494 m, λB22 =
2π

2kx − k22x

= 0.0497 m. (7.8)

These are almost identical, and correspond to roughly half the incident x-wavelength. The
third is potentially due to the difference between the free wave components, giving

λB23 =
2π

k22x − k21x

= 7.88 m, (7.9)
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Time, t [s]

Figure 7.9: Measured surface elevation time series (in cm) from (physical) experiment C14
from a centerline traverse (taken from Hammack et al., 2005). The measurements were taken
from a gauge moving in the x-direction along the centerline at 0.01059 m/s.

which is much longer, spanning more than 77 x-wavelengths. The short beat in the second
harmonic can clearly be seen in Figure 7.8, especially near the wavemaker. As should be
expected, the beat length from the weakly nonlinear case C9, Figure 7.8 (a), nearly matches
the estimates from (7.8). As λB21 ≈ λB22 it is not possible to distinguish their difference in
the present simulations. It is difficult to notice the effects of the long beat in the current
setup, in part due to the relatively short length of the domain. Similar simulations with
a longer domain have revealed that the discretization in the x-direction is not sufficient to
properly discretize the short wavelengths of the free second harmonics (e.g. 2π/k21x/∆x ≈ 7.9
grid points per wavelength). As a result, the beat gradually decreases along the length of
the channel, apparently due to numerical dissipation of the free waves (the bound harmonic
persists). Direct confirmation of the longer beat will require additional future effort.

This does not, however, explain the modulation of the first harmonic, which is in many
ways a much more pronounced feature of these experiments, seemingly driving many of
the previously mentioned features of the wave crests. Note that Hammack et al. (2005)
speculated that this modulation is due to a Benjamin & Feir (1967) type instability, though
we do not believe this to be the case. To explain this modulation we must look to third
order, which can similarly be characterized by taking a cubic nonlinearity of (7.3), yielding
terms of the form

η(x, y, t)3

O(a3)
= cos(kyy) cos(ωt− kxx)+

cos(3kyy) cos(3ωt− 3kxx) + cos(kyy) cos(3ωt− 3kxx)+

cos(3kyy) cos(ωt− kxx). (7.10)

Here the first term satisfies the linear dispersion relation, and hence leads to secular terms
(this particular component is in fact responsible for amplitude dispersion). This will be
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discarded in the following, as it is not necessary to explain the phenomena of interest. The
final three terms again represent bound waves. Similar to before, neglecting the last three
terms in the wave generation (as we have done) will lead to the release of three corresponding
free waves. These will again match the frequencies and y-wavenumbers of the corresponding
bound waves, but with adjusted x-wavenumber components. Those stemming from the
neglect of the second and third terms in the incident conditions will result in modulations
of the third harmonic, which we will not discuss further for brevity (these free waves will in
fact have kh too large for the Boussinesq model). Free waves stemming from the last term
in (7.10) are more interesting, however, and will be of the form

η3f = cos(3ky) cos(ωt− k31xx). (7.11)

Hence, these will indeed lead to a modulation of the first harmonic, potentially explaining
the behavior seen in Figure 7.8.

To quantify the effects we will estimate the beat length for the particular model setup
used in this section, again assuming that the linear dispersion relation is valid. Because
these particular free waves share the incident frequency they will have identical wavenumber
modulus k = 20π. The x-wavenumber component from the free wave can then be estimated
directly by

k31x =
√

k2 − (3ky)2 = 55.2 m−1. (7.12)

The beat length of the first harmonic will be due to the difference in x-wavenumber compo-
nents of the incident and free waves, which is due solely (at least to first order) to differences
in their directionality i.e.

λB31 =
2π

kx − k31x

= 0.920 m. (7.13)

Thus, this beat is due to the three dimensionality of the problem, and will disappear at the
plane wave limit (i.e. when θ0 = 0). From Figure 7.8 (a) we measure a beat length of the
first harmonic of λB31 = 0.912 m, a nearly perfect match. This confirms our explanation of
this phenomenon.

Although these modulational effects have apparently been observed e.g. by Hammack et al.
(2005), and perhaps by others, to the author’s knowledge this is the first proper explanation
as to their cause. Hammack et al. (2005) correctly predict that many of the features are
indeed third-order in nature, but did not account for the release of free first harmonics as
a consequence of using first-order wavemaker conditions. As can be seen from Figures 7.7
(b)–(c), 7.8 (b)–(c), and 7.9 the effects due to this third-order contribution can in fact be
quite pronounced (in some cases even dominant), particularly when the wave steepness be-
comes moderately large. Generally, the effects on the first harmonic appear to be much more
pronounced than e.g. the beat of the third harmonic, indicating that these three-dimensional
effects are more important than corresponding two-dimensional third-order effects. That it
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affects the primary frequency and results in long modulations are also particularly trouble-
some from an experimental viewpoint. Hammack et al. (2005) list (in their Table 6) a large
number of features observed in their experiments, the most important of which have also
been mentioned here. With the exception of their observed persistence, rectangular cell ge-
ometry, small-scale wave effects (probably due to surface tension), and perhaps oscillations
in the nodal region (perhaps due to minor experimental error), it seems likely that most of
these additional features can be attributed in some way to these artifacts.

The implications are in fact rather important. The recognition and understanding of the
modulating phenomenon is of fundamental importance to experimentalists and modelers
alike. Based on our numerical results (which are likewise supported by the physical ex-
periments), it is seemingly impossible to generate steady progressive short-crested waves
(of even moderate steepness) without taking into account third-order effects in the incident
wavefield. This is again a direct consequence of the three-dimensionality of the problem, and
the modulating effects on the first harmonic will disappear at the limit where the incident
waves become plane in the y-direction. This work makes apparent the need for a complete
third-order (three-dimensional) wavemaker theory, before the phenomena of truly progres-
sive finite-amplitude short-crested waves can be properly studied in experimental wavetanks.
Currently, wavemaker theory has only been developed to second-order (see e.g. Schäffer,
1996; Schäffer & Steenberg, 2003), which is already rather complicated. On this topic, it
should finally be mentioned that Hammack et al. (2005) also describe an additional series
of experiments using a Jacobi elliptic sine function in the transversal direction, which seems
to reduce, but not eliminate these modulations in the x-direction.

7.4 Conclusions

In this chapter short-crested waves, created by superimposing two wavetrains at symmetric
incident angles, are studied in both shallow and deep water. These respectively result in
characteristic hexagonal and rectangular forms. Simulations in shallow water compare well
with those from Chen & Liu (1995), demonstrating the ability of the Boussinesq model to
treat this phenomena. In particular we confirm that the interaction of cnoidal wave fronts
is strong/weak when the angle of incidence is small/large.

Deep water rectangular patterns are studied by repeating numerically a series of physical
experiments from Hammack & Henderson (2002, 2003) and Hammack et al. (2005). A
number of features observed in the experiments are very apparent in the simulations. In
addition to the general persistent nature of the rectangular patterns, we clearly demonstrate
both curving (forwards as well as backwards) and flattening crest-lines in the y-direction,
as well as dips along the centerline, all consistent with experimental observations. These
features are apparently driven by a previously unexplained modulation along the (traveling)
x-direction, which our analysis clearly shows is from a corresponding modulation in the first
harmonic amplitude.
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The most important finding of this chapter is the new explanation that this modulation of
the first harmonic is in fact an artifact of neglected third-order effects in the wave generation.
At second order there is a release of parasitic free waves, causing a well-known beat of the
second harmonic amplitude, which we have explained for the three-dimensional case. At
third-order there is a similar release of free waves which will create modulations in both the
third as well as the first harmonic. The first harmonic modulation has not been previously
explained to the author’s knowledge, and is likely responsible for a large number of the
observed experimental features. This modulation will only occur when the generation is three
dimensional, and disappears at the plane wave limit. The recognition of this phenomenon
allows for a much more complete understanding of the previous physical experiments. This
work also points to inadequacies of current wavemaking practice, and makes clear the need
for a third-order (three-dimensional) wavemaker theory. We believe this to be necessary
before (reasonably) steady progressive short-crested waves with moderate to large steepness
can be produced in experimental wavetanks.
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Chapter 8

A Numerical Study of Crescent Waves

Chapter Summary

In this chapter the high-order Boussinesq model is used to conduct a systematic numerical
study of crescent (or horseshoe) water wave patterns in a tank, arising from the instability of
steep deep-water waves to three-dimensional disturbances. The most unstable phase-locked
(L2) crescent patterns are firstly investigated, and comparisons with experimental measure-
ments confirm the quantitative accuracy of the model. The unstable growth rate is also
investigated, as are the effects of variable nonlinearity. The dominant physical mechanism
is clearly demonstrated (through time and space series analysis) to be the established quin-
tet resonant interaction, involving the primary wave with a pair of symmetric satellites. A
numerical investigation into oscillating crescent patterns is also included, and a detailed ac-
count of the complicated oscillation cycle is presented. These patterns are shown to arise
from quintet resonant interactions involving the primary wave with two unsymmetric satel-
lite pairs. Pre-existing methods for analyzing the stability of steep deep-water plane waves
subject to three-dimensional perturbations are extended to provide accurate quantitative
estimates for the oscillation period. A possible explanation for their selection in experiments
is also provided. Finally, the model is used to conduct a series of experiments involving
competition between various unstable modes. The results generally show that multiple in-
stabilities can grow simultaneously, provided that they are of roughly equivalent strength.
Results using random perturbations also match observations in physical experiments both in
the form (i.e. two- or three-dimensional), as well as the location of the initial instability. The
computational results further demonstrate applications of the model for the study of highly
nonlinear (to the breaking point), deep-water waves in two horizontal dimensions. The effi-
ciency of the model has allowed for a quantitative study of these phenomena at significantly
larger spatial and temporal scales than have been demonstrated previously, providing new
insight into the complicated physical processes involved.
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8.1 Introduction

This chapter presents a numerical study of the fascinating phenomenon of ‘crescent’ or
‘horseshoe’ water wave patterns, which occur readily on the sea surface e.g. from the action
of a fresh wind (examples in nature can be seen in the photographs from Shrira, Badulin &
Kharif, 1996). Such patterns have been observed experimentally in wave tanks in the ab-
sence of wind in Melville (1982), Su et al. (1982), and Su (1982), as well as in its presence in
Kusaba & Mitsuyasu (1986) and Collard & Caulliez (1999). These patterns are of interest for
more than purely academic purposes. As noted in Annenkov & Shrira (1999), the patterns
are very important from the ocean science perspective, since they modify the airflow above
the surface and thus affect the air-sea momentum transfer, while also changing in a specific
way radar scattering from the sea surface (Shrira, Badulin & Voronovich, 2000). Further-
more, conceptually new models for statistically describing wind-wave field dynamics become
necessary in their presence (Shrira et al., 1996). Such patterns are of additional interest from
the nonlinear science perspective (Annenkov & Shrira, 1999). They are also important from
an engineering standpoint, as they are part of the natural evolution of steep deep-water wave
trains, which are commonly used as design waves for ships and other offshore structures.

These spectacular patterns have drawn the attention of numerous scientists in recent years.
The inception mechanism is generally acknowledged to be the class II (three-dimensional)
instability of McLean (1982b) (see also McLean et al., 1981), who numerically analyzed
the stability of steep deep-water wave trains subject to periodic disturbances. The domi-
nant physical processes have also been recently confirmed as quintet resonant interactions
using the qualitative model of Shrira et al. (1996), based on a modified Zakharov equa-
tion. An investigation using the model of Dommermuth & Yue (1987) can also be found
in Skandrani (1997). Additional qualitative studies into the long-term sporadic nature of
crescent waves can be found in Annenkov & Shrira (1999, 2001). While the two-dimensional
(Benjamin & Feir, 1967), class I instability is well understood, quantitative investigations
into the three-dimensional class II instability are rare. This is likely a consequence of the
high computational costs associated with the three-dimensional nature of the patterns in
combination with the high nonlinearity at which they occur. Recent numerical simulations
with a boundary element model in Xue et al. (2001) have, however, demonstrated quantita-
tively accurate crescent forms, arising naturally from the nonlinear evolution of a perturbed
plane incident wave. This ground-breaking investigation is unfortunately limited to rela-
tively small domains and short time scales, making detailed investigations into the physical
processes rather difficult.

Largely inspired by this work, the purpose of the present chapter is to perform a more
extensive fully nonlinear numerical study of the class II instabilities leading to crescent wave
patterns on the free surface. For this purpose the previously described numerical model based
on the fully nonlinear and highly dispersive Boussinesq formulation of Madsen, Bingham
& Liu (2002) and Madsen, Bingham & Schäffer (2003) is used, as described in Chapter
2. We consider significantly larger spatial and temporal scales than in Xue et al. (2001),
paying particular attention to the complicated physical processes involved in each of the
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simulations presented. Firstly, we investigate the most common phase-locked L2 patterns
(as denoted in Su, 1982; Su et al., 1982). The model is verified both qualitatively and
quantitatively through comparison with experimental measurements. Detailed investigations
into the unstable growth rate, the effects of nonlinearity, as well as the physical processes
involved during the crescent wave evolution to breaking are also provided. Secondly, we
present a detailed numerical investigation into the more recently observed oscillating crescent
wave patterns. Through direct numerical simulation we obtain excellent qualitative and
quantitative agreement with the oscillating forms observed by Collard & Caulliez (1999),
while also demonstrating distinct L3 and L4 crescent patterns noted in Su et al. (1982) and
Su (1982). Furthermore, the stability analysis of McLean (1982b) is extended, resulting in a
quantitative explanation for each of the oscillating cases considered. A possible explanation
for their selection in the experiments is also provided. Finally, we present a series of numerical
experiments involving the competition of various unstable modes during their initial growth
to the breaking point. These include competition between isolated symmetric (phase-locked)
and unsymmetric (oscillating) class II modes, between isolated class I and II modes, as well
as with random (white noise) disturbances.

The remainder of the chapter is organized as follows. The periodic perturbation of steady
plane waves used to generate the crescent patterns is described in §8.2. The dominant (L2)
phase-locked crescent patterns are investigated both qualitatively and quantitatively in §8.3.
The different, but related oscillating patterns are investigated in §8.4. A series of numerical
experiments involving the competition of various unstable modes is presented in §8.5. The
issue of computational efficiency is addressed in §8.6. Finally, conclusions are drawn in §8.7.

This chapter is published in a similar form in Fuhrman, Madsen & Bingham (2004d). Some
of the results are also presented in Madsen & Fuhrman (2004).

8.2 Crescent Wave Generation

Crescent waves are generated in this chapter by superimposing the following three-dimensional
perturbations

η′ =
ǫH

2
sin(k′xx− ω′t+ β) cos(k′yy), (8.1)

Ũ′ = ũ′ + w̃′∇η, (8.2)

where

ũ′ =
ǫ
√
gHk′x

2
(

k′2x + k′2y
)1/4

sin(k′xx− ω′t+ β) cos(k′yy) exp(
√

k′2x + k′2y η), (8.3)

ṽ′ =
ǫ
√
gHk′y

2
(

k′2x + k′2y
)1/4

cos(k′xx− ω′t+ β) sin(k′yy) exp(
√

k′2x + k′2y η), (8.4)
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w̃′ = −ǫ
√
gH

2

(

k′2x + k′2y
)1/4

cos(k′xx− ω′t+ β) cos(k′yy) exp(
√

k′2x + k′2y η), (8.5)

over a stream function solution (Fenton, 1988) for a plane wave traveling in the +x-direction,
having a peak at x = 0 at t = 0. For the stream function solution we set Stokes’ drift (or
mean fluid transport) velocity to cs = 0, to match the conditions of a closed flume. This
plane incident wave has wavenumber k0 and angular frequency ω0, with celerity c = ω0/k0.
In the preceding a prime superscript corresponds to a perturbation of the previously defined
base variables, with Ũ′ = (Ũ ′, Ṽ ′) and ũ′ = (ũ′, ṽ′). The values (k′x, k

′
y) are the wavenumbers

of the three-dimensional perturbation. The perturbations correspond to two superimposed
traveling components with equal k′x and opposite k′y (resulting in a stationary standing wave
structure in the y-direction). Unless otherwise noted, the generated perturbation is assumed
to be bound to the unperturbed wave, having angular frequency

ω′ =
k′x
k0

ω0. (8.6)

This satisfies that the wavemaker region is repeated every
(

k′

x

k0
− 1
)−1

basic periods.

This method of generation has been inspired by Xue et al. (2001), who used similar per-
turbations of the free surface and velocity potential over an exact plane Stokes wave in a
boundary element model. Their simulations used doubly periodic boundary conditions, thus
the perturbations were applied only as initial conditions. Equations (8.1)–(8.5) generalize
this idea to our particular time stepping variables and time-variant wavemaker. In all sim-
ulations the initial conditions are set to be this perturbed incident wave across the entire
computational domain. Xue et al. (2001) found that the phase shift β had no significant
effect on the overall crescent development. We have confirmed this finding (provided that ǫ
is sufficiently small), and throughout this chapter we set β = 0.

8.3 Phase-Locked Crescent Patterns

8.3.1 Model discretizations

We begin the study of crescent waves by generating the common phase-locked (L2) patterns
observed by Su et al. (1982), Su (1982), Melville (1982), Collard & Caulliez (1999), and
others. The base incident wave throughout this chapter corresponds to a stream function
solution with k0 = 1 m−1 (i.e. with wavelength L = 2π/k0 = 2π m). The spatial discretiza-
tion in the x-direction is taken to be ∆x = L/40 = 0.1571 m. For the water depth we use
h = L = 2π m, giving an incident wave having k0h = 2π, i.e. well beyond the practical deep-
water limit. The resulting discretizations for a number of nonlinearities used in this chapter
are given in Table 8.1. Each case listed corresponds to the most unstable transversal class
II mode according to McLean (1982b) for the respective nonlinearities, and discretizations
use ∆t = T/40 (where T is the basic period) and ∆y = Ly/32. All simulations for a given



8.3 Phase-Locked Crescent Patterns 103

Table 8.1: Discretizations used for crescent wave simulations with variable nonlinearity.

H [m] H/L T [s] ω0 [s−1] ∆t [s] k′
y [m−1] ∆y [m]

0.4021 0.064 1.972 3.186 0.04930 1.54 0.1275
0.5969 0.095 1.931 3.254 0.04828 1.33 0.1476
0.6032 0.096 1.929 3.257 0.04824 1.32 0.1488
0.6600 0.105 1.914 3.283 0.04786 1.23 0.1596
0.6974 0.111 1.903 3.302 0.04759 1.15 0.1707
0.7980 0.127 1.873 3.355 0.04682 0.79 0.2485
0.8231 0.131 1.865 3.369 0.04663 0.65 0.3021

nonlinearity throughout this chapter use the parameters from Table 8.1. We stress that each
of the discretizations satisfy linear stability criterion (see the analysis in Chapter 5, as well
as Fuhrman et al., 2004a), with ∆t small enough to avoid potential dissipative effects from
the time stepping scheme. Throughout §8.3 k′x = 1.5k0 is used for the perturbation, with
ω′ = 1.5ω0.

8.3.2 The effects of smoothing filters on the growth rate

Crescent waves are a highly nonlinear phenomena, and though the discretizations used are
linearly stable, some form of a dissipative interface is still generally necessary to maintain
numerical stability. The resulting numerical instabilities (usually occurring as sawtooths at
the wave crests) are due to the nonlinear terms, which tend to shift some eigenvalues of
the discrete Jacobian matrix to the right half of the complex plane, as demonstrated locally
in the numerical stability analysis of Fuhrman et al. (2004a), also presented in Chapter 5.
There it is also shown that the system can be stabilized through the addition of relatively
minor amounts of dissipation. Throughout this chapter we apply Savitzky & Golay (1964)
smoothing filters (see also Press et al., 1992) for this purpose, which have been used success-
fully in a number of other water wave studies (see e.g. Fuhrman & Bingham, 2004; Madsen
et al., 2002; Xue et al., 2001). Fourier analysis of some of these filters is again provided in
§3.6.

Although their use is commonplace, investigations into the relative effects of such smoothing
filters are rarely presented. Our experience has shown, however, that it is important to
recognize these effects, as they can have a profound influence on the solution, particularly on
any higher harmonics which inevitably become important in nonlinear simulations. Here we
present one such investigation on the effects on the growth rate of the instability, ultimately
leading to crescent wave formation. We consider waves with steepness H/L = 0.105 on
a 513 × 17 grid, with ǫ = 0.16. Because the crescent patterns are symmetric about their
centerline, it is only necessary to include half of a crescent width in the computational
domain. Following Longuet-Higgins & Cokelet (1978) and Xue et al. (2001), we present
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results in the form of a growth curve, where a root-mean-square growth rate R(t) is defined
as

R(t) =

[
∫ ∫

η′(x, y, t)2dxdy
∫ ∫

η′(x, y, 0)2dxdy

]1/2

. (8.7)

We consider the use of filters with polynomial order two, four, six, and eight; having 13,
37, 57, and 81 grid points, respectively (note that the second-order filter has a diamond
shaped stencil, while the others have an octagon shaped stencil). In all simulations the filter
is applied at every time step. Fourier analysis of various order filters (see again §3.6) has
shown that the higher-order smoothing filters (order greater than two) have a much less
pronounced effect on high frequency modes (discretized roughly with 10 or fewer grid points
per wavelength), thus they provide the cleanest evolution based solely on the system of
nonlinear PDEs. For each test a domain covering half a crescent width in y (17 grid points)
and two full incident wavelengths in x (81 grid points) is used for the determination of R(t),
starting at x = 7L. Values for η′ are obtained by subtracting the computed values for η
in each simulation from those from a similar simulation using unperturbed stream function
incident waves.

The resulting growth curves are presented in Figure 8.1 for the first 7T , as is the theoretical
curve based on the linear stability analysis of McLean (1982b). Xue et al. (2001) present a
similar growth curve from a simulation with the same nonlinearity and ǫ using a second-order,
13-point filter (applied intermittently), which matches the theoretical curve very well. Figure
8.1 confirms their finding, demonstrating an excellent match for the first 4T . Interesting
deviations occur at later stages of growth, however. A comparison of the various smoothing
filters clearly shows that the second-order smoothing filter hampers the long-term growth of
the instability. This can be remedied to some degree by applying the filter intermittently e.g.
at every other time step, however our experience has shown that the use of higher-order filters
results in less interference. As demonstrated by the simulations with the higher-order filters,
when the fully nonlinear evolution of these patterns is uninhibited (or nearly so) we obtain
an accelerated growth rate for t ≥ 4T , which significantly exceeds that predicted by the
linear analysis. We remark that there is no fundamental reason to expect the fully nonlinear
growth to precisely follow the theoretical linear curve after the onset of the instability, as
the growth itself is due to nonlinear interactions. The very sudden appearance of these
patterns as described in physical experiments supports this contention. Such an acceleration
is even stated in Su et al. (1982), though it is doubtful that this observation is based on
any quantitative information. Based on our results, we consider such an acceleration of
the growth likely in the fully nonlinear evolution of these patterns. The results of all the
filters with polynomial order four or higher are reasonably similar, and have a much less
pronounced influence on the growth rate than does the second-order filter. We therefore
adopt the fourth-order filter for the remainder of this section, unless otherwise noted. A
more complete investigation of the physical processes can be found in §8.3.5, where we
investigate the growth into a developed crescent wave field.
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Figure 8.1: Growth rate R(t) of the initial disturbance for simulations using smoothing filters
with polynomial order ranging from two to eight. Also shown is is the theoretical curve from
the linear stability analysis of McLean (1982b), given by e0.0316

√
gk0t.

8.3.3 Characteristics of the L2 crescent patterns

In this section the characteristics of the phase-locked L2 crescent pattern are investigated.
All results again use H/L = 0.105 with the fourth-order smoothing filter applied at every
time step. Figure 8.2 shows computed surface elevations from simulations using ǫ = 0.05 and
0.16 near their final state (i.e. t = 11.45T and 7.45T , respectively). Multiple widths of the
computed free surface are obtained throughout simply by repeatedly reflecting the results
over the y-axis. The perturbed incident waves develop very rapidly into crescent-shaped
patterns, particularly with ǫ = 0.16. The main effect of smaller ǫ is simply to slow the
crescent growth (similar findings are discussed in Xue et al., 2001). Other differences are also
apparent, however. Notably, the crescents with ǫ = 0.16 develop a much flatter face than do
those with ǫ = 0.05. Slightly after the states shown in Figure 8.2 the waves become extremely
steep, and the simulations break down, almost certainly due to wave breaking. This process
is consistent with the observations of Su et al. (1982), who repeatedly refer to the crescent
patterns as ‘spilling breakers’. Throughout this chapter these computational breakdowns are
characterized by a significant increase in the number of iterations required for solutions of
Ax = b, and simulations are stopped after 200 iterations are reached without convergence.
Figure 8.3 also shows a smaller portion of the final L2 pattern in more detail from the case
with ǫ = 0.05. From these figures many of the distinguishable features described by Su et al.
(1982) and Su (1982) can clearly be seen: The waves have noticeable front-back asymmetry
– with the steepest part of the wave occurring on the front face, the crests are shifted by
one-half the width of the crescents on successive rows (i.e. the L2 pattern), deep troughs
appear in front of the crescent face, and flattened troughs are evident directly behind the
crests.

Figure 8.4 shows contour plots at two locations from the simulation with ǫ = 0.16. The
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Figure 8.2: Computed free surfaces (to scale) for L2 crescent waves with H/L = 0.105 for
(a) ǫ = 0.05 at t = 11.45T , and (b) ǫ = 0.16 at t = 7.45T .

Figure 8.3: Computed free surface (to scale) for L2 crescent waves with H/L = 0.105 and
ǫ = 0.05 at t = 11.45T .

flattened troughs behind each crescent, and the deep troughs in front of each crescent face
are again very apparent. Figure 8.4 (a) demonstrates some additional interesting features –
namely a steepening of the crescent ‘shoulders’, and a rising ‘Delta’ region in front of the
crescent face. Similar features were also observed in the simulations of Xue et al. (2001),
just prior to breaking, and this figure compares qualitatively quite well with their Figure
12. These features have disappeared in the state shown in Figure 8.4 (b), however, with the
steepest part of the wave occurring along the crescent center. This is consistent with the
description of Su et al. (1982), who clearly report spilling breakers over the front (central)
face of the wave. Contour plots from the simulation with ǫ = 0.05 are similar to Figure 8.4
(b), again having a less flattened face, with the steepest part of the wave at the center.

Having established that the model results are qualitatively similar to those observed in
physical experiments and in previous computations, we now attempt to validate the model in
a more quantitative manner. As noted in Shrira et al. (1996), despite their seemingly common
character and easiness of observation, quantitative experimental information available for
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Figure 8.4: Contour plots from simulations with H/L = 0.105 and ǫ = 0.16 at t = 7.45T
beginning at (a) x = 4.125L and (b) x = 8.125L. Note that in (b) the contour interval varies
for η > 0.2 (it is constant between each labeled contour).

such patterns is rather meager. Su (1982), however, does give some characteristic ratios for
a typical L2 crescent wave generated using an incident wave of this nonlinearity. Note that
there is seemingly a mistake in the definition for h12 in Su (1982), Figure 12. We adopt
the measures used in Su et al. (1982) and Xue et al. (2001) for comparison here, which are
shown in Figure 8.5 (a) along y = Ly/2. Also shown in Figure 8.5 (b) is the free surface
along y = Ly/4, which is qualitatively similar in form to a plane Stokes wave and compares
well with similar plots in Su (1982) and Xue et al. (2001).

Table 8.2 gives a quantitative comparison of the characteristic ratios from Figure 8.5 (a)
with those reported in Su (1982) for both simulations, i.e. with ǫ = 0.05 and 0.16. As we
have shown, our simulations result in continually developing patterns, thus measurements
are taken at full-period intervals for comparison. As can be seen in Table 8.2, the results from
both simulations compare with the experimental measurements quite well. The computed
results are similar in quality to those obtained from the boundary element model of Xue
et al. (2001). Notable exceptions are the results for λ2/λ1, which match the experiments
better than those of Xue et al. (2001), who attributed this to possible lower accuracy in the
measurements (another possible explanation is their use of periodic boundaries in x, which
do not allow for free adjustment of the lengths in this direction). The computed results
for the maximum slope of the water surface smax (calculated here using a centered second-
order finite difference approximation) initially match quite well with the first (lower) value
of smax = 0.65 given by Su (1982) (as well as those obtained in Xue et al., 2001). As the
simulations progress the waves steepen significantly, and surface slopes closer to the second
(and significantly higher) reported value of smax = 1.02 are obtained. A precise indication of
where breaking occurs is unfortunately beyond the capabilities of the present model, though
we speculate that it roughly corresponds to the point of computational breakdown. In
general the computed results are quite acceptable, and give confidence that the Boussinesq
model is capable of reproducing this deep-water, highly nonlinear phenomenon accurately.
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Figure 8.5: Computed free surface elevations at t = 10T with H/L = 0.105 and ǫ = 0.05
along (a) the crescent centerline y = Ly/2 and (b) y = Ly/4.

Table 8.2: Characteristic ratios for measured and computed phase-locked L2 crescent wave
patterns with H/L = 0.105 (at full-period intervals).

ǫ = 0.05 ǫ = 0.16
Su (1982) t/T = 8 9 10 11 4 5 6 7

λ2/λ1 1.28 1.16 1.16 1.22 1.29 1.22 1.26 1.16 1.22
h11/h12 1.10 1.11 1.11 1.18 1.19 1.13 1.23 1.15 1.30
h21/h22 0.88 0.89 0.86 0.78 0.74 0.86 0.77 0.81 0.67
h11/h21 1.66 1.36 1.55 1.80 2.05 1.44 1.62 1.79 2.11

smax 0.65, 1.02 0.51 0.66 0.79 1.42 0.62 0.59 0.83 0.92

8.3.4 The effects of nonlinearity

We will now use the model to demonstrate the effects of variable nonlinearity on the general
features of the phase-locked L2 class of crescent pattern. We consider cases with H/L =
0.096, 0.111, 0.127, and 0.131. The simulation with H/L = 0.096 uses ǫ = 0.16, while the
others use ǫ = 0.05. Each simulation uses the spatial and temporal discretizations from Table
8.1, again corresponding to the most unstable transversal class II mode for each nonlinearity
according to McLean (1982b). Such a demonstration is quite demanding given the high
wave steepness of even the incident carrier waves, and a model with excellent nonlinear
characteristics in deep water is essential for this task.

Figure 8.6 shows computed free surface elevations near the end of each simulation (with the
exception of the case with H/L = 0.096, due to severe steepening of the wave fronts). We
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Figure 8.6: Computed free surfaces (to scale) for phase-locked L2 crescent wave patterns
with (a) H/L = 0.096, t = 50T ; (b) H/L = 0.111, t = 8.7T ; (c) H/L = 0.127, t = 4.2T ; and
(d) H/L = 0.131, t = 3.95T .
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Figure 8.7: Computed Fourier amplitudes from an L2 crescent wave simulation (H/L =
0.096, ǫ = 0.16) from a time series at (x, y) = (5L,Ly/2) using time steps 1001-5001.

mention that this point is reached very quickly with simulations having H/L = 0.127 and
0.131, after 4.2T and 3.95T , respectively. The results with H/L = 0.096 are noticeably less
defined than the others, presumably due to the relative weakness of the instability at this
nonlinearity. Interestingly, the rising crescent shoulders noted previously in §8.3.3 are again
apparent in this simulation. The results with H/L = 0.111 are quite similar to the previously
shown results in Figure 8.3 (with H/L = 0.105). As the nonlinearity is further increased
the dominant instability significantly increases its length in the y-direction (as predicted
by McLean, 1982b, and indicated in Table 8.1), resulting in much wider patterns with less
pronounced crescent tails, as can be seen in Figures 8.6 (c) and (d). The deepened trough
regions in front of the crescent faces are also nearly absent in these patterns. This may
simply be due to a lack of overall development before computational breakdown, however.

8.3.5 Discussion of physical processes

To provide an indication of the physical processes involved in the phase-locked L2 crescent
patterns, computed Fourier amplitudes from the simulation with H/L = 0.096 and ǫ = 0.16
are shown in Figure 8.7. We mention that, as pointed out by McLean (1982b), the three-
dimensional class II instability does not become dominant until H/L ≈ 0.10. However, the
nonlinearity used here is close enough to this value to be physically relevant. Moreover, this
simulation is quite useful, as it does not result in a computational breakdown within the
model domain. Hence, enough data is available to perform an accurate time series analysis,
providing insight into the dominant physical processes involved. The current simulation is
stopped after 5000 time steps (i.e. 125T ). As seen in Figure 8.7, in addition to the primary
wave and its higher (bound) harmonics (ω/ω0 = 1, 2, 3), the figure shows very clear spikes
at ω/ω0 = 0.5, 1.5, 2.5, and 3.5, with the amplitude at ω = 1.5ω0 being by far the largest.
This provides very strong evidence that the dominant physical process for the modeled L2
crescent patterns is indeed the established quintet resonant condition identified in Shrira
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et al. (1996). This condition satisfies

k′
1 + k′

2 = 3k0, ω′
1 + ω′

2 = 3ω0, (8.8)

where k0 = (k0, 0). In the general L2 case this corresponds to a symmetric pair of satellites,
i.e. k′

1 = (1.5k0, k
′
y) and k′

2 = (1.5k0,−k′y), with ω′
1 = ω′

2 = 1.5ω0. Additional triad inter-
actions between the primary wave and the ω = 1.5ω0 and 2.5ω0 harmonics, as well as with
the ω = 2.5ω0 and 3.5ω0 harmonics are also apparent. These interactions are of secondary
importance, however they likely become more significant as the evolution progresses and the
waves steepen. Figure 8.7 compares particularly well with the spectrum given in Collard &
Caulliez (1999) (also those from Su, 1982) for an experimentally observed L2 pattern, giv-
ing further confidence in the Boussinesq model. Fourier amplitudes from other x-locations
have been found to be very similar. Also noteworthy is the relative insignificance of the
ω = 0.5ω0 subharmonic. This is consistent with triad interactions in deep water for which
the subharmonic energy transfer is less than the superharmonic transfer.

To gain even further insight, Figure 8.8 shows computed harmonic amplitudes and the free
surface at the end state from a simulation using H/L = 0.105 and ǫ = 0.01 on a 1025 × 17
computational grid, again with the fourth-order smoothing filter. The small value for ǫ likely
provides a development more in line with a truly infinitesimal disturbance. This simulation
lasts for 17.95T , and the harmonic analysis uses a linear-least-squares fit from data covering
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the final 2T to give an indication of the final evolved state. We stress that by analyzing the
evolution at the end of the simulation rather than at the beginning (as was in part done in
§8.3.2), we are now demonstrating the nonlinear growth into an existing wave field, which
results in some rather interesting behavior.

In Figure 8.8 (a) an initial exponential growth along the channel for each of the higher
harmonics is clearly demonstrated for 0 < x < 7L. The close match with the exponential
curve for the ω = 1.5ω0 harmonic suggests a fully nonlinear growth rate near the end of the
simulation of roughly 1.15 times larger than that predicted by the linear analysis of McLean
(1982b). This is consistent with the accelerated growth at the later stages in Figure 8.1.
It should be mentioned that the stability analysis corresponds specifically to infinitesimal
perturbations of a plane progressive wave train, thus the deviation presented here (involving
progression into a developed wave field) may not be altogether surprising. The development
in these circumstances is equally important, however, as it corresponds to the state most
often observed in wave tank experiments. Note that the growth of the ω = 1.5ω0 harmonic
for x < 4L follows the theoretical growth quite closely, thus we can still confirm growth rates
near the inception similar to the theoretical value of 0.0316

√
gk0 (see Table 8.3 in §8.4.3).

Similar harmonic analyses using data from earlier time spans have shown that the ω = 1.5ω0

harmonic gradually climbs the exponential curve along x at a rate approximately equal to
the deep-water group velocity cg = c/2, i.e. roughly matching the curve up to x = cgt as
time progresses. The strength of the harmonic effectively levels downstream of this location.
For example, in the present simulation this suggests a deviation from the exponential curve
at the end state at x ≈ cg17.95T ≈ 9L. As mentioned previously, the deviation in Figure
8.8 begins at x ≈ 7L, the difference being precisely the equivalent length of the time span
used in the harmonic analysis. Just after the point shown in Figure 8.8 (b) the wave front
at x ≈ 12L steepens, and the simulation breaks down.

Figure 8.8 also provides interesting insight into the harmonic composition of the crescent
waves at various stages in their development. In Figure 8.8 (b) crescent patterns have clearly
emerged at x ≈ 7L, but they are not so well defined. For 7L < x < 12L the higher har-
monics maintain a slowed evolution, sharpening the characteristics of the crescent patterns.
From Figure 8.8 (a) the fully nonlinear physical process is again seen to be a complicated
combination of resonant quintet interactions, with quadratic nonlinearities forcing additional
ω = 2.5ω0 and 3.5ω0 harmonics. The basic quintet interaction results in the characteristic
crescent patterns, while the higher harmonics add definition to the observed forms. Com-
puted Fourier amplitudes from a space series of free surface elevations are also shown in
Figure 8.9 along y = Ly/2. Spikes are again apparent at k = 1.5k0, 2.5k0, and 3.5k0, clearly
indicating that each of the higher harmonics is bound to the carrier wave (i.e. each having
the same celerity ω/k′x = ω0/k0).

We finally remark, that there is some contention in the literature on the role of dissipa-
tion in the formation of crescent wave patterns. Shrira et al. (1996) concluded that, within
the framework of their Hamiltonian system, it is not possible to explain the emergence of
any long-lived three-dimensional patterns. In a re-appraisal of their system, however, Craig
(2001) found that three-dimensional crescent-shaped waves indeed occur, and that these
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Figure 8.9: Computed Fourier amplitudes from an L2 crescent wave simulation with H/L =
0.105, and ǫ = 0.01 from a space series at t = 17.95T , along y = Ly/2. The analysis uses
grid points 126–925.

solutions are of permanent form, without the presence of breaking or other mechanisms of
dissipation. Xue et al. (2001) also argue that crescent patterns arise naturally from nonlinear
wave evolutions, which in our view seems quite logical given that they are initiated by the
class II instability (which assumes no dissipation). In the present numerical study (as well
as in Xue et al., 2001), we do add light numerical smoothing to prolong our simulations in
these highly nonlinear circumstances, therefore one may argue that we can hardly discrim-
inate between conservative and dissipative cases. We have, however, also made simulations
without smoothing, which lead to essentially similar crescent patterns (albeit noisy and less
developed). Hence, we are convinced that the smoothing plays a relatively minor role in
the developments presented here (in line with §8.3.2), and agree with Xue et al. (2001) and
Craig (2001), that crescent waves can indeed develop without dissipation. In none of our
simulations do they take a permanent form, however. The present model suggests a com-
plicated evolution of the crescent waves, consisting of three distinct periods: (1) An initial
linear growth (initiated by the class II instability), (2) an accelerated nonlinear growth fu-
eled by resonant quintet interactions, and (3) a breaking stage. Thus, we feel it is likely
the dissipation due to breaking that ultimately counteracts the unstable growth, resulting
in waves of relatively constant form as observed e.g. in Su et al. (1982).

8.4 Oscillating Crescent Patterns

Having examined the phase-locked crescent wave patterns, we now turn our attention to
those with an oscillating nature – where well-defined crescents no longer propagate in a
quasi-steady form, but emerge and disappear repeatedly, shifting by a half-width in the
y-direction with each successive emergence. Such oscillating patterns have been recently
observed in a wave tank in a very pure form by Collard & Caulliez (1999). Deviations
from the ‘standard’ L2 pattern were also reported in the experiments of Melville (1982), as
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well as in Su et al. (1982) and Su (1982) (i.e. the L3 and L4 patterns). In this section we
investigate the long-term evolution of crescent wave forms initiated by a double perturbation.
All simulations in this section use a 513 × 17 computational grid.

8.4.1 Transition from (k′

x1, k
′

x2) = (4
3 ,

5
3)k0 to (1, 2)k0

For the generation of oscillating crescent waves we first consider a simulation using a double
perturbation (both as described in §8.2), with k′x1 = 4

3
k0, k

′
x2 = 5

3
k0, and k′y1 = k′y2 = 1.32k0,

superimposed over stream function incident waves with H/L = 0.096. Such a perturbation
initially excites quintet resonant interactions involving the primary wave and two sets of un-
symmetric satellites. Recall that the perturbation in §8.2 is equivalent to the superposition
of two traveling components with ±k′y, thus two sets of resonant conditions are indeed satis-
fied. For both perturbations ǫ = 0.08 is used, and the corresponding frequencies are defined
according to (8.6), i.e. ω′

1 = 4
3
ω0 and ω′

2 = 5
3
ω0, which again assumes bound perturbations.

The perturbation wavenumbers define the initial conditions throughout the computational
domain, while the frequency perturbations are only imposed at the wavemaker. Thus, if
the two do not satisfy a naturally occurring quintet resonant interaction we can expect a
transition to occur. We wish to investigate the long-term nature of this generation, thus we
use an extended simulation run for 5000 time steps (i.e. 125T ). The fourth-order smoothing
filter is again applied at each time step.

Computed free surfaces are shown in Figure 8.10 at six instants, which give a good indication
of the overall model development. Consistent with the observations from a reasonably similar
simulation in Xue et al. (2001) (lasting for slightly more than 4T ), our simulations indicate
that unlike the L2 case (with k′x = 1.5k0), the initial patterns are no longer bound to the
carrier waves. Rather, the individual crescents oscillate. Figures 8.10 (a) and (b) show
typical free surfaces early in the simulation (at t = 4.1T and 8.8T , respectively), which
compare reasonably well to Figure 19 in Xue et al. (2001). Note that at this point in the
simulation the pattern at the downstream end of the domain is repeated every 3L, as specified
by the initial conditions with (k′x1, k

′
x2) = (4

3
, 5

3
)k0. By following the marked carrier wave

from Figure 8.10 (a) to (b) it is seen that half of a complete oscillation cycle takes roughly
4.7T , implying a full oscillation period of T ∗ ≈ 9.4T . An explanation of the wavenumber
and frequency combinations involved in the oscillating patterns is provided at the end of the
current section.

Figure 8.10 (c) shows a slightly more evolved state (at t = 14.2T ), where the model is in a
transitional period i.e. the pattern generated from the initial conditions is indeed transition-
ing to one forced from the frequency disturbance at the wavemaker. Near the wavemaker
region in Figure 8.10 (c) the crescent patterns are repeated roughly every carrier wavelength,
and are beginning to oscillate in phase with one another. Near the end of the domain a dis-
tinct L3 pattern having the high-high-low (HHL) structure reported in Su et al. (1982) and
Su (1982) is apparent. This is the first clear computation of such a pattern to the authors’
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Figure 8.10: Evolution of oscillating crescent waves (transitioning from (k ′x1, k
′
x2) = (4

3
, 5

3
)k0

to (1, 2)k0) at (a) t = 4.1T , (b) t = 8.8T , (c) t = 14.2T , (d) t = 30.3T , (e) t = 31.8T , and
(f) t = 33.3T . The vertical scale is exaggerated two times.
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knowledge. We stress that this formation occurs momentarily, and does not progress as a
constant form.

As time evolves further the initial conditions become washed out of the computational do-
main, and the structured oscillations prevail throughout the computational region, as shown
in Figure 8.10 (d). At this point the resulting patterns are strikingly similar to the recently
observed oscillating crescent patterns of Collard & Caulliez (1999), which have a similar
arrangement, and are reported to oscillate with a period of T ∗ ≈ 3T . This resemblance
could in fact be expected, as the perturbation frequencies at the wavemaker are reasonably
close to the measured values from Collard & Caulliez (1999) of 1.36ω0 and 1.64ω0. Com-
puted free surfaces are shown again 1.5T later during the next clear instance of crescent
formation in Figure 8.10 (e). Here the crescents have shifted by one-half a crescent width in
the y-direction from the formation in Figure 8.10 (d), in agreement with the description of
Collard & Caulliez. Finally, Figure 8.10 (f) shows the computed free surface after another
1.5T , where the crescents have shifted back to their original position shown in Figure 8.10
(d). This type of oscillating pattern prevails for the remainder of the simulation. A complete
oscillation cycle as seen from Figures 8.10 (d) to (e) to (f) is indeed T ∗ ≈ 3T – in excellent
agreement with the physical experiments.

Each crescent in the oscillating formation follows a complicated modulation pattern, which
has not been previously detailed. In an attempt to fill this gap, the modulation of a single
crescent wave is provided in Figure 8.11, beginning at x = 5.25L and t = 33T . At this
point in time the initial conditions are completely washed out of the computational domain,
and the model is clearly in a repeating state of dynamic equilibrium. Figure 8.11 (a) begins
just after the formation of a newly developed crescent, having peaks at y = 0, Ly, and 2Ly.
Notably, at this point in the evolution – where the crescent is near its most developed state
– the deepened trough regions in front of and behind the crests are nearly absent. The waves
pass through this state very quickly, providing a good means for a more precise estimation
of the oscillation period. Soon after this state the crescent tails rise slightly and the crests
begin to flatten, as shown in Figure 8.11 (b). Note that here deepened troughs are beginning
to emerge following the crescent tails. The crests continue to flatten, until becoming nearly
level, as shown in Figure 8.11 (c). At roughly this point the troughs following the crescent
tails are at their most defined state. The crests continue to flatten until becoming nearly
straight, as shown in Figure 8.11 (d). The tails then begin to push forward, fueling small
spikes emerging from the wave crests, as shown in Figure 8.11 (e). The tails continue their
collapse and the spikes enlarge, eventually forming entirely new crescents, as seen in Figure
8.11 (f). The trough regions following the crescent tails are again nearly absent in this figure,
as was the case in Figure 8.11 (a). Note also that the crescent forms in Figure 8.11 (f) have
shifted one-half a crescent width in the y-direction from the beginning form seen in Figure
8.11 (a).

From the point shown in Figure 8.11 (f), the waves follow a similar process, eventually
arriving back to a state resembling that shown in Figure 8.11 (a). This can be seen in
the evolution from Figure 8.11 (f) to (j). From Figure 8.11, this particular cycle in fact
takes slightly longer than the previously mentioned 3T . Our results indicate that this figure
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Figure 8.11: The evolution of an oscillating crescent wave starting at t0 = 33T and x = 5.25L.
The vertical scale is exaggerated 1.5 times.
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Figure 8.12: Computed Fourier amplitudes based on a time series from the oscillating cres-
cent simulation from §8.4.1 at (x, y) = (8L,Ly/2). The analysis uses time steps 1001-5001.

is closer to 3.6T , though estimates vary slightly depending on the precise location where
they are measured. Specifically, estimates ranging from T ∗ = 3.1T near the left of the
computational domain to the illustrated 3.6T near the right end have been measured (the
latter is shown, as these are the most defined). These are still quite similar to the estimated
3T of Collard & Caulliez (1999) (note also that they do not specify a value for H/L).

To gain knowledge of the physical processes involved in the modeled oscillating crescent wave
patterns, computed Fourier amplitudes from a time series taken at (x, y) = (8L,Ly/2) are
shown in Figure 8.12. The analysis uses time steps 1001-5001, when the initial conditions
are completely washed out of the computational domain. Plots from other x-positions have
been found to be qualitatively similar. After the primary wave, two significant spikes can
be observed in the spectrum at ω = 1.33ω0 and 1.67ω0. As expected, these correspond
precisely to the frequencies imposed at the wavemaker region. Additional higher harmonics
are also clearly present. As the patterns at the end of the simulation are repeated roughly
every primary wavelength, the corresponding wavenumbers can be estimated as k ′x1 ≈ k0 and
k′x2 ≈ 2k0, as discussed by Collard & Caulliez. These are clearly different from the initial
conditions. The y wavenumbers can obviously be obtained from the transversal width of
the computational domain. This combination clearly satisfies the quintet resonant condition
(8.8) with two unsymmetric satellite pairs. This condition is illustrated graphically (for
the wavenumbers) in Figure 8.13 for both symmetric and unsymmetric cases. For clarity,
the first quintet resonant interaction involves k′

1a = (k0, k
′
y) and k′

2a = (2k0,−k′y), while
the second involves k′

1b = (2k0, k
′
y) and k′

2b = (k0,−k′y). The corresponding frequencies are
ω′

1a = ω′
2b = 4

3
ω0 and ω′

1b = ω′
2a = 5

3
ω0.

The relationship between the oscillation period and the combination of satellite frequencies
and wavenumbers can be explained using simple linear superposition arguments. Consider a
linear uni-directional carrier wave η = a cos(ω0t−k0x) subject to the sinusoidal perturbation
η′ = ǫ cos(ω′t− k′xx− k′yy). In a frame of reference moving with the carrier wave i.e. letting
x = x∗ + ω0

k0
t and y = y∗ (where x∗ and y∗ are the coordinates measured from this moving
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Figure 8.13: Resonant wavevector quintets for the phase-locked L2 (dashed) and the oscil-
lating crescent (solid) patterns. A similar figure can be found in Collard & Caulliez (1999).

reference frame), the perturbation wave reads

η′ = ǫ cos

((

ω′

ω0

− k′x
k0

)

ω0t− k′xx
∗ − k′yy

∗
)

. (8.9)

Hence, the oscillation period can be expressed as

T ∗

T
=

∣

∣

∣

∣

ω′

ω0

− k′x
k0

∣

∣

∣

∣

−1

. (8.10)

Using the observed T ∗ ≈ 9.4T , from Figures 8.10 (a) and (b), in combination with the
initial perturbation wavenumbers k′x1 = 4

3
k0 and k′x2 = 5

3
k0 yields estimates for the initial

satellite frequencies of ω′
1 ≈ 1.44ω0 and ω′

2 ≈ 1.56ω0. As expected, these are entirely different
from those imposed at the wavemaker. Similarly (after the transition), using the observed
T ∗ ≈ 3.1T and the known frequencies ω′

1 = 4
3
ω0 and ω′

2 = 5
3
ω0 yields satellite wavenumbers

k′x1 ≈ 1.01k0 and k′x2 ≈ 1.99k0, in almost perfect agreement with the previous estimations.
These values will be re-confirmed in §8.4.3.

8.4.2 Transition from (k′

x1, k
′

x2) = (5
4 ,

7
4)k0 to (3

4 ,
9
4)k0

We now turn our attention to another simulation resulting in oscillating crescent patterns
which are not so distinctly arranged. This simulation uses the same model setup as in §8.4.1
(i.e. H/L = 0.096, ǫ = 0.08, k′y = 1.32), but with k′x1 = 5

4
k0 and k′x2 = 7

4
k0. The perturbation

frequencies at the wavemaker are again obtained from (8.6), i.e. ω ′
1 = 5

4
ω0 and ω′

2 = 7
4
ω0.

Figure 8.14 shows six computed free surfaces, which give a good account of the overall
development. The evolution of this system is initially similar to that described in §8.4.1.
Figures 8.14 (a) and (b) show computed free surfaces relatively early in the simulation.
Following the marked carrier wave from Figures 8.14 (a) to (b) reveals an initial half-cycle
of roughly 3.1T , implying an oscillation period of T ∗ ≈ 6.2T . From (8.10) this yields initial
perturbation frequencies of ω′

1 = 1.41ω0 and ω′
2 = 1.59ω0, which will also be confirmed

in §8.4.3. Figure 8.14 (c) shows the computed free surface during the transition from the
incident cycle to that imposed by the frequency disturbance at the wavemaker. At this
instant a distinct L4 pattern is apparent, having the high-high-low-low (HHLL) structure
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Figure 8.14: Evolution of oscillating crescent waves (transitioning from (k ′x1, k
′
x2) = (5

4
, 7

4
)k0

to (3
4
, 9

4
)k0) at (a) t = 3T , (b) t = 6.1T , (c) t = 12.2T , (d) t = 40.9T , (e) t = 41.9T , and (f)

t = 42.9T . The vertical scale is exaggerated two times.
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Figure 8.15: Computed Fourier amplitudes from the oscillating crescent wave simulation
from §8.4.2 from a time series at (x, y) = (7L,Ly/2). The analysis uses time steps 1001–
5001.
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Figure 8.16: Computed Fourier amplitudes from an oscillating crescent wave simulation (as
shown in §8.4.2 but using a second-order smoothing filter) from a space series at t = 48T ,
y = Ly/2. The analysis uses grid points 101-420.

described by Su et al. (1982) and Su (1982). This is the first computation of such a pattern
to the authors’ knowledge. As the model continues to evolve the initial conditions become
completely washed out of the computational domain, and the patterns again adopt an entirely
different oscillation period. Following the marked carrier wave in Figures 8.14 (d) to (e) to
(f), a complete oscillation cycle is now seen to be T ∗ ≈ 2T . This cycle persists for the
remainder of the simulation. Contrary to §8.4.1, these oscillating crescent patterns do not
become aligned in straight rows.

To demonstrate the physical processes involved in the final evolved patterns shown in Figures
8.14 (d)-(f), we first present computed Fourier amplitudes from a time series in Figures 8.15.
This figure again clearly shows the presence of those frequencies imposed at the wavemaker
region, i.e. ω′

1 = 5
4
ω0 and ω′

2 = 7
4
ω0. The wavenumbers associated with the oscillating process
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in Figures 8.14 (d)–(f) can be estimated from (8.10) using the known satellite frequencies in
combination with the observed T ∗ ≈ 2T . This yields k′x1 = 3

4
k0 and k′x2 = 9

4
k0. Computed

Fourier amplitudes from a space series along y = Ly/2 are shown in Figure 8.16 (from a
similar simulation using a second-order smoothing filter). This does not allow for a precise
estimation of the wavenumbers, however it does clearly show spikes at roughly the estimated
values, which suffices as confirmation.

This simulation thus illustrates a quite general oscillating crescent wave pattern i.e. where
the crescents do not become aligned in straight rows as seen in §8.4.1. The patterns arranged
in straight rows in §8.4.1 are merely a special case (visually), owing their aligned nature to
the fact that k′x1 ≈ k0, and k′x2 ≈ 2k0.

8.4.3 A quantitative explanation

We now pose the question: Is it possible to predict the oscillation period given only a set
of perturbation wavenumbers satisfying the quintet resonant condition? Such a method
for quantitatively explaining the oscillating crescent wave forms has not been previously
presented to the authors’ knowledge. The explanation essentially requires a means for esti-
mating the satellite frequencies corresponding to the unstable perturbation wavenumbers i.e.
a dispersion relation of sorts. Note that Collard & Caulliez (1999) use the linear dispersion
relation as a rough estimate. When the incident wave has high steepness, however, this is not
very useful in providing accurate quantitative estimations. It turns out that the required
information is embedded in the stability analysis of McLean (1982b). Unfortunately, his
analysis concentrates primarily on the dominant class II instability (resulting in the phase-
locked L2 patterns), giving little quantitative information for those interactions involving
unsymmetric satellite pairs.

We therefore undertake a similar analysis, analyzing numerically the stability of deep-water
carrier waves generated from the stream function solution of Fenton (1988) to infinitesimal
periodic disturbances resolved on an equidistant spatial grid. To allow for direct comparison
with the values of McLean (1982b) (who used g and k0 equal to unity) we present eigenvalues
σ which are non-dimensionalized with respect to

√
gk0. The analyses use up to 30 Fourier

modes for the stream function solution, with the resulting wave discretized with up to 60
equidistant points in space for the corresponding stability analysis. The result is a generalized
eigenvalue problem (see McLean, 1982b, for details). In the present analysis this is first
converted to a standard eigenvalue problem before solving. Details on the analysis can be
found in Appendix E. Specific attention is paid to those eigenvalues with non-zero imaginary
part as these correspond to exponential growth of the unstable modes. The imaginary part
determines the growth rate of the initial disturbance, while the real part corresponds to the
frequency of the perturbation as seen from a moving frame of reference traveling with the
unperturbed wave. A purely imaginary eigenvalue thus indicates an exponentially growing
perturbation bound to the carrier wave, as in the general L2 case. Note that in this analysis
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Table 8.3: Computed unstable class I and II eigenvalues having maximum imaginary part.
Also shown for comparison are those from McLean (1982b).

Class I Class II
H/L p q σ McLean (1982b) p q σ McLean (1982b)

0.032 0.18 0 −0.088 + 0.00412i −0.086 + 0.00409i 0.5 1.64 0 + 0.00059i 0 + 0.0006i
0.064 0.32 0 −0.146 + 0.0134i −0.146 + 0.0133i 0.5 1.54 0 + 0.00531i 0 + 0.00523i
0.095 0.47 0 −0.189 + 0.0225i −0.189 + 0.0226i 0.5 1.33 0 + 0.0210i 0 + 0.0215i
0.096 0.47 0 −0.188 + 0.0227i — 0.5 1.32 0 + 0.0219i —
0.105 0.54 0 −0.204 + 0.0236i — 0.5 1.23 0 + 0.0316i —
0.111 0.60 0 −0.215 + 0.0228i −0.214 + 0.0227i 0.5 1.15 0 + 0.0406i 0 + 0.0413i
0.127 0.84 0 −0.229 + 0.0119i Stable 0.5 0.79 0 + 0.0875i 0 + 0.0888i
0.131 0.90 0 −0.206 + 0.0073i Stable 0.5 0.65 0 + 0.11i 0 + 0.11i
0.131 — — — — 0.5 0 0 + 0.079i 0 + 0.067i

Table 8.4: Computed unstable class II eigenvalues corresponding to the modeled oscillating
crescent wave patterns.

§ H/L p q σ T ∗/T ω′
1/ω0 ω′

2/ω0

8.4.1 0.096 0.667 1.32 −0.111 + 0.0213i 9.37 1.56 1.44
8.4.1 0.096 1.0 1.32 −0.335 + 0.0171i 3.10 1.68 1.32
8.4.2 0.096 0.75 1.32 −0.166 + 0.0205i 6.26 1.59 1.41
8.4.2 0.096 1.25 1.32 −0.509 + 0.0117i 2.04 1.76 1.24

the perturbation wavenumbers correspond to k′
1 = (p+1, q)k0 and k′

2 = (1−p,−q)k0 for the
class I instabilities, and k′

1 = (p+ 1, q)k0 and k′
2 = (2− p,−q)k0 for the class II instabilities.

Computed eigenvalues for the most unstable class I and II instabilities are shown in Table
8.3, as are those from McLean (1982b) for comparison. As can be seen the two analyses
generally compare well with one another, giving confidence in the computed values. In
contrast to McLean (1982b), however, we detect class I instabilities for H/L ≥ 0.127. This
is consistent with the analysis of Kharif & Ramamonjiarisoa (1988, 1990), who found that
the class I instability is not stabilized until H/L > 0.137. For H/L < 0.127 the values
shown are converged to at least the three digits shown, while for the higher nonlinearities
the convergence becomes somewhat more erratic.

Table 8.4 shows computed eigenvalues corresponding to the initial and final stages of the
two oscillating crescent wave simulations in §8.4.1 and §8.4.2. As the real part of σ is
non-zero in these cases, the corresponding perturbations will no longer be bound as in the
L2 case, explaining the oscillatory nature of the patterns. This information can thus be
used to provide an estimate for the oscillation period. Recall that the eigenvalues are non-
dimensional, and must thus be multiplied by

√
gk0 to gain physical relevance for the present
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simulations. The resulting oscillating period can hence be estimated as

T ∗

T0

=
ω0√

gk0|ℜσ|
. (8.11)

These values are also tabulated in Table 8.4. In each case it is seen that the predicted
oscillation period matches extremely well with the numerical simulations. In particular we
note that the case with p = 1.0 predicts T ∗ = 3.10T , which is very close to the estimation
of 3T given by Collard & Caulliez (1999). The prediction is also in essentially perfect
agreement with the previously mentioned estimate from the model of 3.1T occurring nearest
the wavemaker (i.e. before the perturbations reach significant amplitude). We mention that
the frequencies corresponding to the perturbation wavenumbers can be obtained from

ω′
1

ω0

=
k′x1

k0

+

√
gk0ℜσ
ω0

,
ω′

2

ω0

=
k′x2

k0

−
√
gk0ℜσ
ω0

. (8.12)

These values are also tabulated in Table 8.4. The cases having H/L = 0.096 with p = 1.0
and p = 1.25 result in perturbation frequencies very close to those imposed at the wavemaker
regions in §8.4.1 and §8.4.2, respectively. The other values (with p = 0.667 and 0.75) also
confirm the predicted frequencies using (8.10) in §8.4.1 and §8.4.2. This analysis has proven
to be a very useful means for quantitatively explaining the modeled oscillating crescent wave
patterns.

We also mention that a simulation using H/L = 0.096, k′x1 = 2k0 and k′x2 = k0 with
ω′

1 = 1.68ω0 and ω′
2 = 1.32ω0 (as suggested in Table 8.4) indeed results in the development

of oscillating crescent patterns aligned in straight rows from the very beginning of the sim-
ulation, which then persist indefinitely (within the computational domain). The resulting
patterns are essentially the same as those in Figure 8.10 (d)–(f), thus they are not shown
here. This simulation further confirms the accuracy of the stability analysis in quantitatively
explaining these oscillating crescent wave patterns.

8.4.4 On the selection of the Collard & Caulliez (1999)
oscillating crescents

While the previous subsection provides a quantitative explanation of the physics involved in
the oscillating crescent wave phenomenon, it does not explain the selection of the specific
unsymmetric satellite pair observed in the experiments of Collard & Caulliez (1999), again
resulting in the striking alignment of the crescents in straight rows. In the following we
propose that the selection of the observed satellites could in part be an artifact of the tank
width, combined with a possible suppression of the class I instability.

Collard & Caulliez (1999) demonstrate their oscillating crescent waves at a carrier frequency
f = 1.3 Hz (T = 1/f = 0.769 s, ω0 = 8.17 s−1) in a tank with depth h = 0.9 m and width
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w = 2.6 m. They report an estimated value of q = |k′y/k0| = 1.32, but unfortunately they
do not provide the specific waveheight in the experiment. In an attempt to explain their
observations we choose the waveheight of the carrier wave to be H = 0.0682 m. A stream
function solution then yields the wavelength L = 0.963 m (H/L = 0.0708, k0 = 6.52 m−1,
k0h = 5.87). Due to the tank width, we will assume that the transversal wavenumbers are
limited to the discrete possibilities

|k′y| =
πn

w
, (8.13)

where n is an integer specifying the number of half transverse wavelengths spanning the width
of the tank. Of these we consider n = 7 and 8, giving |k′y| = 8.46 m−1, q = |k′y/k0| = 1.30,
and |k′y| = 9.67 m−1, q = |k′y/k0| = 1.48, respectively, which are the values closest to the
reported q = 1.32. Using the stability analysis from §8.4.3, setting (p, q) = (1, 1.30) does
not result in an instability. Alternatively, setting (p, q) = (1, 1.48), yields the unstable
eigenvalue σ = −0.363 + 0.00587i, which is in fact the dominant class II instability, again
provided that q is limited to the discrete values. This results in an oscillating period from
(8.11) of T ∗ = 2.82T , and perturbation frequencies from (8.12) of ω ′

1 = 1.64ω0 and ω′
2 =

1.36ω0, which are in very good agreement with the values T ∗ = 3T , ω′
1 = 1.64ω0, and

ω′
2 = 1.36ω0 from the experiments. At this nonlinearity a symmetric class II instability (i.e.

with p = 0.5) does exist, but is not dominant; setting (p, q) = (0.5, 1.48) yields σ = 0.00433i.
Hence, for a small range of parameters (again considering discrete q), it is possible for
the dominant class II instability to result in oscillating crescent patterns similar to those
observed in the experiments, which may help explain their selection. Although we have not
been able to explain the emergence of oscillating patterns with exactly the same combination
of parameters as reported by Collard & Caulliez (1999) (q = 1.48 versus q = 1.32), the values
are reasonably close. We find it particularly encouraging that the perturbation frequencies
match so closely with the experiments.

This does not, however, account for the lack of the class I instability in the experiments.
At this nonlinearity, the dominant class I instability corresponds to (p, q) = (0.35, 0), with
σ = −0.157 + 0.0156i, which is clearly stronger than the previously mentioned class II
mode. It therefore seems that the class I instability may somehow be suppressed in the
experiments (or alternatively, the class II instability artificially excited). The most obvious
explanation for such a suppression is the use of a plastic film on the water surface. Collard &
Caulliez (1999) indeed report that, in addition to preventing wave breaking, the film damps
longitudinal wave modulations (also that it is used to ‘isolate the three-dimensional wave
pattern formation’). Bliven, Huang & Long (1986) also provide experimental evidence that
the class I instability is suppressed by wind, which was also used in the experiments. As
evidence of such a suppression, whatever the cause, we note that Collard & Caulliez (1999)
report observing phase-locked L2 crescent patterns for waves exceeding a critical steepness
H/L = 0.16/π ≈ 0.051, far below where the class II instability is theoretically dominant.
It is not clear why such a plastic film and/or the wind would suppress the class I modes
more than their class II counterparts, though the experimental results seem to support this
contention.
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While this explanation is inevitably speculative, we do demonstrate a plausible scenario
where class II instabilities resulting in oscillating crescent patterns similar to those observed
in the experiments of Collard & Caulliez (1999) would indeed be likely to appear, while still
working within the framework of existing theories. Additional experiments to gain a better
understanding of the effects of the plastic film, as well as the wind, are probably necessary
for a more complete understanding of the selection mechanism in the experiments.

For additional details on the potential dominance of oscillating crescent waves see Fuhrman
& Madsen (2005).

8.5 Competition Between Unstable Modes

We now investigate the initial competition up to the breaking point between various resonant
interactions. Each simulation in this section uses the fourth-order smoothing filter applied
at each time step, to have a minimal effect on the growth of the respective modes. Each
simulation is run to the point of breakdown due to steepening of one or more wave fronts
caused by the resulting instabilities. All harmonic analyses in this section use data from the
final 4T , to give an indication of the final evolved state.

8.5.1 Competition between isolated class II modes

We first investigate the direct competition between the dominant (symmetric) class II modes
(covered in §8.3) with the unsymmetric satellites (covered in §8.4). We consider a simulation
with carrier waves having H/L = 0.096 on a 1025 × 17 computational grid. The simulation
uses a double perturbation with k′x1 = 1.5k0, ω

′
1 = 1.5ω0 and k′x2 = k0, ω

′
2 = 1.32ω0. Both

perturbations use k′y = 1.32k0 and ǫ = 0.01. Note that the second perturbation excites only
one mode from each of the (oscillating) unsymmetric pairs (the others i.e. with k ′x = 2k0

and ω′ = 1.68ω0, are free to evolve via the resonant quintet interactions). Both processes
are excited with equivalent strength, however, and in the absence of the other perturbation
simulations have shown that they develop to the expected patterns.

Figure 8.17 (a) shows harmonic amplitudes corresponding to the various frequencies involved
in the quintet resonant interactions. Clearly, both of the instabilities exhibit an initial
growth, and as the strengths of the instabilities are nearly equivalent (see Tables 8.3 and
8.4), neither dominates the other. Figure 8.17 (b) shows the computed free surface at the
end of the simulation involving the competing modes, where both instabilities are apparent.
The overall pattern resembles the L2 pattern of §8.3, however clear deviations are noticeable
at every other wave front. Recall that the resonant interaction with the unsymmetric pairs
results in oscillating crescents aligned in straight rows. These in turn cause an oscillating
increase and decrease in the steepness of successive wave fronts – the L2 waves having the
same momentary arrangement are steepened, while those having opposite arrangement are
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Figure 8.17: Computed (a) harmonic amplitudes and (b) free surface at t = 24.4T for
the simulation involving competition between symmetric (phase-locked) and unsymmetric
(oscillating) class II instabilities with H/L = 0.096. In (b) the vertical scale is exaggerated
two times.

diminished. This experiment demonstrates that multiple class II instabilities can develop
simultaneously, with both contributing to the eventual breaking of the crescent waves. This
is consistent with the findings of Annenkov & Shrira (1999, 2001), who also show the initial
development of multiple class II instabilities.

8.5.2 Competition between isolated class I and II modes

We now use the model to investigate competition between isolated dominant class I and
II instabilities. Three simulations are considered with incident waves having H/L = 0.064,
0.095, and 0.111. For each simulation the dominant high-frequency component for both class
I and II instabilities (see Table 8.3) is excited with strength ǫ. The class II perturbations
use the k′y values from Table 8.1, while the class I perturbations use k′y = 0. The case with
H/L = 0.064 uses ǫ = 0.05 while the other two simulations use ǫ = 0.01, all on a 1025 × 17
computational grid. The simulations with H/L = 0.064, 0.095, and 0.111 last for roughly
45T , 21.25T , and 13T , respectively.

Figure 8.18 shows harmonic amplitudes along y = Ly/2 for the dominant frequencies involved
in both the class I (quartet) and II (quintet) resonant interactions, while Figure 8.19 shows
computed free surfaces near the final state of each simulation. Figure 8.18 (a) shows the
case with H/L = 0.064, where the class I instability clearly dominates the class II instability,
consistent with the expectation from the stability analysis of McLean (1982b) (as well as our
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own analysis). In this case the dominant lower class I side-band actually grows to roughly
the same strength as the primary wave before eventually leading to breaking. Although the
class II mode does develop, it never reaches the considerable amplitudes of the class I modes.
The free surface near the final model state is shown in Figure 8.19 (a), where the observed
instability is only slightly three-dimensional. From Table 8.3, this class I instability involves
wavenumbers k′x1 = 1.32k0 and k′x2 = 0.68k0. Using simple superposition arguments, we can
expect that the pattern will repeat itself with a length of ≈ 3L, which matches that seen
in Figure 8.19 (a) (upon close examination roughly every third wave near the end of the
domain is steepened).

The case with H/L = 0.095 is noticeably different. From Table 8.3, the strength of the class
I and II instabilities is similar at this nonlinearity. From the harmonic analysis in Figure
8.18 (b) it is seen that both instabilities grow in strength to roughly equivalent magnitudes.
As might be expected, neither process dominates the other. The resulting free surface is
shown in Figure 8.19 (b), where both two- and three-dimensional effects are apparent. The
three-dimensional class II instability is instantly recognizable from the crescent forms. The
two-dimensional class I instability can be distinguished, as it steepens roughly every other
wave front near the end of the domain. This is again consistent with the expectations from
the wavenumbers involved k′x1 = 1.47k0, k

′
x2 = 0.53k0.

The case with H/L = 0.111 demonstrates relative dominance of the class II instability. The
peak class I harmonic amplitudes shown in Figure 8.18 (c) are significantly lower than those
of the class II mode, though they too certainly develop. The computed free surface at the end
of the simulation is shown in Figure 8.19 (c), where the resulting pattern is predominantly
three-dimensional in nature, closely resembling the previous plot in Figure 8.6 (b) having
the same nonlinearity. Minor two-dimensional effects are also apparent, steepening roughly
every other wave front near the end of the domain. These are of secondary importance, and
are noticeably less pronounced than in Figure 8.19 (b).

8.5.3 Competition of random disturbances

All of the previously modeled crescent patterns have been generated using very deliberate
two- and three-dimensional perturbations, as described in §8.2. These have proven to be
a very efficient means for generating isolated instabilities, however it is perhaps not very
representative of natural (or even laboratory) conditions resulting in such patterns. In this
section we therefore consider the nonlinear evolution of randomly perturbed plane incident
waves. Hence, the incident stream function solution values for the time stepping variables
η, Ũ , and Ṽ are multiplied individually at each grid point by a factor (1 + ǫµ), where µ is
a uniformly distributed random number between -1 and 1. We consider simulations using
three nonlinearities H/L = 0.095, 0.111, and 0.127. Each simulation uses a 1025 × 33
computational grid (i.e. a full wavelength of the dominant transversal class II mode), with
ǫ = 0.02. Discretizations are again taken from Table 8.1.
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Figure 8.18: Computed harmonic amplitudes along y = Ly/2 for simulations with competing
class I and II instabilities for (a) H/L = 0.064, (b) H/L = 0.095, and (c) H/L = 0.111.
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Figure 8.19: Computed free surfaces near the end state for simulations with competing class
I and II instabilities for (a) H/L = 0.064 at t = 43.75T , (b) H/L = 0.095 at t = 21.25T ,
and (c) H/L = 0.111 at t = 13T . The vertical scale is exaggerated two times.

Figure 8.20: Computed wave patterns generated from simulations with random disturbances
(ǫ = 0.02) with (a) H/L = 0.095, t = 34T , (b) H/L = 0.111, t = 23.75T , and (c) H/L =
0.127, t = 15.75T . The vertical scale is exaggerated two times.

Computed free surfaces near the end of each simulation are shown in Figure 8.20. Figure 8.20
(a) shows the case with H/L = 0.095, which demonstrates a predominantly two-dimensional
instability near the end of the computational domain. Minor three-dimensional effects are
also apparent. Note that the class I instability does have a slightly larger linear growth rate
than the corresponding class II instability at this nonlinearity (see McLean, 1982b, as well
as Table 8.3). Interestingly, the resulting free surface is much less three-dimensional than
in Figure 8.19 (b) having the same nonlinearity. This could suggest that that the class II
instability is suppressed more by the randomness than is the class I instability, at least at
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this nonlinearity (the suppression of the class I instability by randomness is demonstrated
in Alber, 1978). A more in-depth investigation would certainly be necessary before making
any firm conclusions on this matter, however.

Figure 8.20 (b) shows the case with H/L = 0.111, which results in a predominantly three-
dimensional steepening of the wave, again consistent with expectations from Table 8.3. Both
Su et al. (1982) and Melville (1982) report dominance of the three-dimensional instability
at H/L ≈ 0.10, thus this is consistent with their observations. Two-dimensional effects
are also clearly present, as every other wavefront around the crescent is slightly steepened.
We also note that the emergence of the crescent at x ≈ 15L compares quite well with the
observations of Melville (1982), who reports strong three-dimensional effects at x ≈ 10L, as
well as with Su et al. (1982), who report a first stage of wave evolution at x ≈ 19L (both with
H/L ≈ 0.10). We speculate that a continued evolution of the model beyond the breaking
point might lead to clearer dominance of the class II instability at this nonlinearity.

Figure 8.20 (c) shows the case with H/L = 0.127. Here, multiple L2-like patterns emerge
starting at x ≈ 7L. There is no noticeable indication of two-dimensional instabilities. We
also call attention to the series of wave fronts starting at x ≈ 15L in Figure 8.20 (c), with
successive fronts having minor peaks at y = 0, Ly, and 2Ly. Such an arrangement deviates
from the standard L2 pattern, and may be the beginnings of potential L3- or L4-like patterns,
as observed in Su et al. (1982) and Su (1982) (Melville, 1982, also reports such deviations).

We finally mention a number of interesting experiments involving the competition of various
modes in Annenkov & Shrira (1999, 2001) using a weakly-nonlinear model based on the
Zakharov equation. Their experiments demonstrate sporadically occurring crescent patterns,
occurring over long-term (i.e. O(1000T )) evolutions, whereas the experiments described
here consider only the initial development to breaking, at significantly higher nonlinearities.
Nevertheless, the experiments share some common tendencies. The results of Annenkov &
Shrira (1999, 2001) also indicate the initial growth of multiple instabilities (as mentioned
in §8.5.1), as well as a tendency for significantly stronger modes to exhibit dominance over
weaker instabilities. The vast difference in both time scales and nonlinearity make a more
meaningful comparison difficult, however. The onset of breaking in each of the experiments
presented here will most likely change the long-term evolution of the waves dramatically,
making such sporadic patterns unlikely at the nonlinearities where the class II instability
is dominant. For example, Su et al. (1982) report observing spilling crescent breakers for
roughly 10L, after which the wave trains return to a more or less two-dimensional form.
This process is later followed by a frequency downshift in the spectrum. The long-term fully
nonlinear evolution of crescent waves remains relatively unstudied.

8.6 Computational Efficiency

In this section the issue of computational efficiency is briefly addressed. All previously
described simulations have been run on a single 2.26 GHz processor, making use of the Intel
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FORTRAN compiler. A summary of computational results for selected simulations is given
in Table 8.5. Here N refers to the number of spatial grid points, Nt is the number of time
steps, and

E =
CPU

NNt

(8.14)

is a measure of relative computational expense in terms of CPU time per grid point per time
step (allowing for easy comparison of the various simulations). From this table it can be seen
that the numerical solutions for Ax = b (which are the dominant computational expense) in
the Boussinesq model are robust, even in the most nonlinear situations. Modeling crescent
waves is in fact quite demanding, as simulations are inevitably in deep water, require fairly
refined grids, and are highly nonlinear – all factors contributing to the ill-conditioning of
the matrix A. Recall that the matrix-free Fourier space preconditioning method from §4.6.3
is limited to solving flat bottom problems, due to the assumption of constant coefficients
in Fourier space. Therefore some results using the generally applicable approximate Schur
complement preconditioner developed in §4.6.4 (see also Fuhrman & Bingham, 2004) are
also included. These solutions can be seen to be somewhat less efficient (roughly by a factor
of three), but are still very acceptable. Consistent with the results shown in Chapter 4,
the solutions for the Boussinesq model scale roughly linearly with N in these simulations.
This study further confirms that the Boussinesq model is an efficient method for the study
of highly nonlinear water waves at reasonably large space and time scales – the simulations
presented here take hours, not days, on a modern processor. This efficiency has allowed for
a quantitative study of crescent wave patterns at significantly larger spatial and temporal
scales than have been previously presented.

8.7 Conclusions

This chapter presents a detailed numerical study of crescent (or horseshoe) water wave pat-
terns using the fully nonlinear and highly dispersive Boussinesq model (again based on the
formulation of Madsen et al., 2002, 2003). The numerical model utilizes the efficient solution
strategies developed in Chapter 4 (see also Fuhrman & Bingham, 2004). Herein, it is shown
that the computed results for the most unstable phase-locked L2 crescent wave patterns
compare both qualitatively and quantitatively well with observations, giving confidence in
the model. The growth rate of the instability is shown to match closely with that predicted
by the linear analysis of McLean (1982b) near the inception. At later stages of the evolu-
tion, however, the growth is significantly accelerated when uninhibited by dissipation. The
model results suggest that it is the dissipative effects due to wave breaking that ultimately
counteract the unstable growth, leading to the relatively steady forms described in physical
experiments. We also use the model to investigate the effects of variable nonlinearity on
these patterns. We demonstrate that increases in the nonlinearity generally result in wider
crescent patterns (as predicted by McLean, 1982b) with less pronounced tails. Through
Fourier analysis of both time and space series, we confirm the quintet resonant interaction
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Table 8.5: Computational summary of selected crescent wave simulations. The reported
iterations are the average in each simulation for solutions of Ax = b.

Simulation § H/L ǫ N Nt Prec. Iterations CPU [hr] E · 107 [hr]

L2 8.3.5 0.096 0.16 8721 5000 Fourier 12.7 4.45 1.02
L2 8.3.3 0.105 0.16 8721 310 Fourier 12.4 0.32 1.18
L2 8.3.3 0.105 0.16 8721 260 Schur 21.9 0.63 2.78
L2 8.3.5 0.105 0.01 17,425 720 Fourier 7.9 1.13 0.90
L2 8.3.5 0.105 0.01 17,425 720 Schur 16.9 3.03 2.42
L2 8.3.5 0.131 0.05 8721 160 Fourier 14.2 0.20 1.43

Oscillating 8.4.1 0.096 2 × 0.08 8721 5000 Fourier 12.6 4.39 1.01
Oscillating 8.4.2 0.096 2 × 0.08 8721 5000 Fourier 12.0 4.30 0.99

Competition 8.5.2 0.064 2 × 0.05 17,425 1800 Fourier 8.1 2.65 0.84
Competition 8.5.2 0.111 2 × 0.01 17,425 530 Fourier 8.5 0.94 1.02
Competition 8.5.3 0.095 0.02 33,825 1370 Fourier 7.3 3.66 0.79
Competition 8.5.3 0.111 0.02 33,825 970 Fourier 8.4 2.89 0.88
Competition 8.5.3 0.111 0.02 33,825 970 Schur 17.9 8.99 2.74
Competition 8.5.3 0.127 0.02 33,825 640 Fourier 10.3 2.41 1.11
Competition 8.5.3 0.127 0.02 33,825 640 Schur 22.4 7.77 3.59

as the dominant physical process, involving the primary wave with a pair of symmetric
satellites. A series of quadratic nonlinearities also force additional bound higher harmonics,
giving definition to the crescent forms.

A numerical investigation of oscillating crescent waves, observed recently by Collard &
Caulliez (1999), is also presented. The computed results provide a very close match with
the oscillation period observed in the physical experiments, and a detailed account of the
rather complicated oscillation cycle is presented. Through direct numerical simulation we
also demonstrate distinct occurrences of L3 and L4 crescent patterns observed by Su et al.
(1982) and Su (1982). These occur momentarily when the model is transitioning between
various resonant interactions. The dominant physical processes in the oscillating crescent
patterns are again demonstrated to be resonant quintet interactions, involving the primary
wave with two unsymmetric satellite pairs. The arrangement of the patterns in straight rows
as observed by Collard & Caulliez (1999) is further shown to be merely a special case (visu-
ally) of these oscillating crescent waves, which in general do not have such an arrangement.
A re-investigation into the stability analysis of McLean (1982b) is undertaken, resulting in
a quantitative explanation (including accurate predictions of the oscillation period) for each
of the cases considered. A possible explanation of the selection of the oscillating patterns
observed in the experiments is also provided.

Finally, the model is used to conduct a series of numerical experiments involving the com-
petition of various unstable modes during the initial growth toward wave breaking. These
include competition between isolated class II modes, between isolated class I and II modes, as
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well as with random (white noise) disturbances. The results show that multiple instabilities
can grow simultaneously, provided that they are of similar strength, with each contributing
to the eventual breaking of the waves. The computed results involving the random distur-
bances compare well with observations in wave tank experiments both in the form (i.e. two-
or three-dimensional) and location of the initial instability. Deviations from the dominant
L2 pattern also arise naturally, consistent with observations.

The computations presented in this chapter are further demonstrations of deep-water, highly
nonlinear (to the point of breaking), three-dimensional wave modeling with the high-order
Boussinesq model. The model is shown to be an efficient computational method for the
general study of highly nonlinear water waves at reasonably large space and time scales.



Chapter 9

Nonlinear Wave-Structure

Interactions

Chapter Summary

This chapter describes the extension of the finite difference Boussinesq model to include
domains having arbitrary piecewise-rectangular bottom-mounted structures. The resulting
linearized system is analyzed for stability on a structurally divided domain, and it is shown
that exterior corner points pose potential stability problems, as well as other numerical
difficulties. These are mainly due to the discretization of high-order mixed-derivative terms
near these points, where the velocity field is theoretically singular. Fortunately, the system
is receptive to dissipation, and these problems can be overcome in practice using high-order
filtering techniques. The resulting model is verified through numerical simulations involving
classical linear wave diffraction around a semi-infinite breakwater, linear and nonlinear gap
diffraction, and highly nonlinear deep water wave run-up on a vertical plate. These cases
demonstrate the applicability of the model over a wide range of water depth and nonlinearity.

9.1 Introduction

This chapter describes the extension of the finite difference Boussinesq model to allow do-
mains with arbitrary piecewise-rectangular bottom-mounted structures. Such an extension
is conceptually trivial, but introduces several practical problems concerning the implemen-
tation, stability, and accuracy of the numerical scheme. Many of these difficulties owe to the
considerable complexity of the underlying system of PDEs, which include numerous (up to
fifth-order) mixed-derivative terms. This chapter therefore pays particular attention to these
details. The method of discretization will be described in depth, and the numerical stability
of this discretization is examined (on a structurally divided domain), revealing potential
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negative effects due to high-order terms at exterior corner points (about which the velocity
field is known to be theoretically singular). These details are felt to be widely-relevant, as
the PDE system considered here readily simplifies to a number of other Boussinesq-type
formulations in the literature when certain terms are neglected and/or certain coefficients
are changed (see Madsen & Agnon, 2003). The resulting numerical model is verified using
three test cases. These involve classical linear diffraction around a semi-infinite breakwa-
ter, linear and nonlinear gap diffraction, and highly nonlinear deep water wave run-up on
a vertical plate. These demonstrate the applicability of the model over a wide range of
both water depth and wave nonlinearity. The resulting simulations are demonstrated to be
suitably accurate for modern engineering applications, even in very physically demanding
circumstances.

The outline of the chapter is as follows. The method used for the discretization around
structures is described in §9.2. The effects of structural corner points on the numerical
stability are analyzed and discussed in §9.3. Numerical results for linear diffraction around a
semi-infinite breakwater are provided in §9.4, for linear and nonlinear gap diffraction in §9.5,
and for highly nonlinear deep water run-up (and diffraction) on a vertical bottom-mounted
plate in §9.6. Conclusions are drawn in §9.7.

This chapter can be found in a similar form in Fuhrman, Bingham & Madsen (2005) (see
also Bingham et al., 2004; Fuhrman et al., 2004c).

9.2 Discretization Around Structures

In this section we provide details on the extension of the basic finite difference model (on a
rectangular domain) to include arbitrary piecewise-rectangular bottom-mounted structures.
Structures are incorporated into the model by simply flagging (through an input file) those
grid points immediately surrounding the desired structural boundary, as well as the points
within the structure. For this purpose, we have identified 13 different point-types: four walls
(facing up, down, left, or right in plan), four interior corners, four exterior corners, and ‘land’
points (i.e. points outside the fluid domain). Using these simple components it is possible
to define quite arbitrary piecewise-rectangular structures within a basic rectangular region.
To avoid direct discretization of exterior corner singularities, all structural walls are defined
halfway between the existing grid points. Also, to avoid excessive book-keeping, our current
implementation limits horizontal walls running in the x- and y-directions to minimum lengths
of 3∆x and 3∆y, respectively, corresponding to half the span of the finite difference stencil.

Due to the large number of (up to fifth-order) mixed-derivatives which must be approximated
in the current model, we find it convenient to maintain the same basic finite difference struc-
ture throughout the domain, rather than e.g. changing to one-sided differences around the
structures. Boundary conditions around the structures are thus again imposed by reflect-
ing the coefficients across the structural boundaries, in a similar fashion as for the exterior
domain. This is straight-forward, except for around exterior corner points.
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Around exterior corner points, e.g. the one considered in Figure 9.1, the resulting finite
difference approximations for mixed-derivatives depend on the order in which the various
derivatives are conceptually taken. For example x-derivatives can be approximated at all
stencil points lying along the centerline in y, with the remaining y-derivative then operating
on these values; or the reverse. Examples of the discretizations used in our implementation
are depicted in Figure 9.1. We first consider taking an arbitrary mixed-derivative at a point
adjacent to a wall, as in Figure 9.1 (a). In this case the derivatives in the direction parallel
to the wall are conceptually taken first (at points moving outward from the wall), with the
remaining derivative (in the direction perpendicular to the wall) operating on these values.
By adopting this strategy, derivatives on either side of a corner are approximated using
only grid points lying on the same side of the wall, which intuitively seems advantageous.
Analogous discretizations are used at all points adjacent to walls.

For points that are not adjacent to a wall, e.g. as shown in Figures 9.1 (b) and (c), we use
a combination of the two possibilities. Depending on the order in which the derivatives are
conceptually taken (i.e. whether x- or y-derivatives are taken first) the coefficients within
the structure will be reflected across opposing walls, as illustrated in Figures 9.1 (b) and
(c). Both approximations are formally consistent with the original continuous operator.
However, as there is no reason to favor one over the other for these points, we simply take
their average

∂j+k

∂xj∂yk
=

1

2

∂k

∂yk

(

∂j

∂xj

)

+
1

2

∂j

∂xj

(

∂k

∂yk

)

. (9.1)

Thus, for the center-point considered in Figures 9.1 (b) and (c), the finite difference coeffi-
cients within the structure would be reflected across both walls (with sign still depending on
the type of boundary condition) with a factor 0.5. Analogous discretizations are used for all
center-points not adjacent to a wall having a finite difference stencil overlapping an exterior
corner. This implementation conveniently leads to discretizations that are symmetric about
the corner.

As an initial verification, linear deep water standing waves have been separately tested
on L-shaped domains with each of the four exterior-type corners placed at the point of
symmetry (i.e. the antinode). Hence, the problem becomes mathematically equivalent to
using no structure at all. Inspection of the resulting time series at points near the corner
results in visually perfect matches with the theoretical period, very similar to the previous
demonstration without structures in §6.2. Hence, at least in ideal cases (i.e. where there are
not steep velocity gradients about the corner), we obtain similar convergence as in the basic
finite difference model.

9.3 Linear Stability Analysis

In this section we present a method of lines-type stability analysis to demonstrate the poten-
tial effects of discretizations around structures, particularly involving exterior corner points.
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(a) (b) (c)

Figure 9.1: A demonstration of the treatment of mixed derivatives near an exterior corner.
The shaded region is the structure, • are the center-points, · represent coefficients reflected
across the walls to the ⊙ points. Figure (a) shows the resulting stencil when conceptually
taking the y-derivatives first for a center-point adjacent to a vertical (in plan) wall. Figures
(b) and (c) show potential stencils for a center-point not adjacent to a wall, when first taking
the x- and y-derivatives, respectively.

Analysis on even relatively simple, but irregular domains is in fact quite rare, since commonly
used Fourier techniques are no longer applicable. By working directly with matrices, how-
ever, it is relatively straight-forward to perform such an analysis. Following Chapter 5 (see
also Fuhrman et al., 2004a), we consider the linearized system of PDEs in the semi-discrete
form

∂y

∂t
= Jy. (9.2)

Here y is a vector of the discrete time stepping variables, which for the linearized system are
η and u0 = (u0, v0), representing horizontal velocities taken at the still-water level z = 0.
The determination of the linear Jacobian matrix J for this system is somewhat involved, and
complete details can again be found in Chapter 5, where the linear and nonlinear stability
properties of the basic finite difference model are investigated (see also Appendix D). A
necessary condition for the stability of such a system is, again, that the resulting eigenvalues
λ of J, when scaled by the time step ∆t, lie within the stability region for the time-stepping
scheme of interest. This approach is standard; for details see e.g. Fornberg (1998), Hirsch
(1988), Iserles (1996), and Trefethen (2000), as well as Chapter 5. In the following we
take a fairly general approach, not stressing any particular time stepping scheme. For com-
pleteness, however, we again mention that the explicit fourth-order, four-stage Runge-Kutta
scheme used throughout this thesis has a stability region spanning the imaginary interval
(−2

√
2i, 2

√
2i), see Table 5.1. From a general stability standpoint it is desirable that no

eigenvalues of the matrix J lie to the right-half of the complex plane, as these correspond
analytically to exponentially growing (i.e. unstable) modes for the semi-discrete system (9.2).

Figure 9.2 demonstrates computed scaled eigenvalue spectra for a series of systematically
varied discretizations. All results use a 21×21 computational grid, with ∆x = ∆y = 0.05 m.
In each case the time step ∆t has been selected to result in a spread along the imaginary axis
of (−i, i) based on the previous analysis in Chapter 5. Figure 9.2 (a) shows the computed
spectrum for the basic system on this domain (i.e. without structures) for a typical shallow



9.3 Linear Stability Analysis 139

−1 0 1

x 10
−8

−1

−0.5

0

0.5

1

ℜ (∆t λ)

ℑ
(∆

t 
λ)

(a)

−2 0 2

x 10
−4

−1

−0.5

0

0.5

1

ℜ (∆t λ)

(b)

−2 0 2

x 10
−3

−1

−0.5

0

0.5

1

ℜ (∆t λ)

(c)

−0.02 0

−1

−0.5

0

0.5

1

ℜ (∆t λ)

(d)

Figure 9.2: Computed eigenvalues of ∆tJ for (a) a square domain with kNh = 2π, ∆t =
0.0484 s, D = 0; (b) as in (a) but for a structurally divided domain including an exterior
corner point; (c) as in (b) but with kNh = 20π, ∆t = 0.0478 s; and (d) as in (c) but with
diffusion coefficient D = 8 · 10−5 m2/s.

water discretization with kNh = 2π, where kN =
√

(π/∆x)2 + (π/∆y)2 is the modulus
of the Nyquist wavenumber vector. The dimensionless parameter kNh is important, as it
governs the numerical significance of the high-order (Boussinesq-type) terms. Consistent
with previous analyses, the eigenvalues are purely imaginary, and therefore do not suggest
stability problems beyond those already described in Chapter 5. This is the case regardless of
the parameter kNh. Figure 9.2 (b) shows the computed spectrum for an otherwise identical
problem, but where a simple structure has been added by placing an exterior corner at
(x, y) = (0.5025, 0.5025) m connecting thin walls extending positively in both x- and y-
directions to the edge of the domain (thus the domain is now divided into separate L-
and square-shaped sections). As can be seen, this discretization results in a single pair
of analytically unstable eigenvalues. Likewise, Figure 9.2 (c) shows the spectrum for a
typical deep water discretization on the same domain, now with kNh = 20π, which results
in numerous analytically unstable eigenvalues. The spread of the spectrum along the real
axis is also seen to increase roughly linearly with kNh.

Further inspection has shown that these potential instabilities arise from the discretization
around exterior corner points when third-order or higher derivatives are included. Discretiza-
tions including only up to second-order derivatives or involving structures without exterior
corners result in spectra similar to Figure 9.2 (a), regardless of the depth. The eigenvalues in
the right-half of the complex plane are of course undesirable. However, additional analyses
for this system have shown similar de-stabilizing effects arising from the nonlinear terms
(locally demonstrated in §5.6), as well as variable depths. Thus, this effect is perhaps not
altogether surprising, particularly given that the flow at these corners is theoretically singu-
lar. The spread along the real axis is typically many orders of magnitude smaller than along
the imaginary axis, indicating that the instabilities are generally weak, even when kNh is
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rather large. Fortunately, experience has shown that the system can generally be stabilized
via the introduction of numerical dissipation. This is illustrated qualitatively in Figure 9.2
(d), where a diffusive term with diffusion coefficient D = 8 · 10−5 m2/s has been added to
each of the linearized free-surface conditions. The discrete system is clearly receptive to
these effects, and all eigenvalues now lie to the left-half of the complex plane. We stress
that these diffusive terms are only used for demonstration purposes in this analysis, whereas
more advanced filtering techniques are used in simulations, to be described in what follows.

On a related issue, simulations involving exterior corner points typically result in steep ve-
locity gradients in the neighborhood of the corner, leading to numerical inaccuracies and
convergence problems. Convergence difficulties due to corner singularities are also reported
e.g. in Huang & Seymour (2000). The end result in our simulations is often high-frequency
noise in the vicinity of the corner, even for schemes which are formally linearly stable. This
can also quickly excite nonlinear instabilities, as well as pollute the rest of the domain.
Furthermore, steep free surface gradients (e.g. those computed from a noisy water surface)
create a local un-physical importance of the nonlinear terms, which can in turn lead to severe
convergence difficulties for iterative solutions of Ax = b (particularly since the precondi-
tioning methods designed in Chapter 4 are based on the linearized formulation). As might
be expected from Figure 9.2, all of these problems are compounded as kNh increases (i.e. as
the depth becomes large or the grid is refined), and the high-derivative terms become more
important. The sensitivity likewise increases with nonlinearity.

To combat these various de-stabilizing effects and numerical difficulties we employ a sixth-
order, 57-point (octagon shaped) Savitzky & Golay (1964)-type smoothing filter throughout
this chapter. For most of the domain this is applied incrementally, and only after full
time steps. Alternatively, around structures (i.e. at points where the full filter overlaps a
structural boundary) we use a simpler line-version (summing the coefficients first along an
x-, and then a y-line), applied after each Runge-Kutta stage, often repeatedly. The resulting
nine-point filter is given by the stencil

[−0.0043 0.0342 − 0.120 0.239 0.701 0.239 − 0.120 0.0342 − 0.0043].

An amplification portrait (created using standard Fourier analysis techniques described in
Appendix C) for multiple applications of this filter is shown in Figure 9.3, where ns refers
to the number of successive smoothing applications. Also shown for comparison is the
portrait for a single application of the classical three-point filter described e.g. in Abbott &
Minns (1998) (p. 229), given by the stencil [0.25 0.5 0.25]. The differences between these
two filters are quite dramatic. Multiple applications of the high-order filter effectively zero a
wider range of poorly resolved modes, after which the amplification factor quickly approaches
unity (i.e. no damping). Alternatively, the three-point filter damps a much broader portion
of the wavenumber spectrum. Indeed, even after 100 applications of the high-order filter, the
damping of lower wavenumber modes is still significantly less than with a single application
of the three-point filter! This has also been confirmed in simulations.
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Figure 9.3: Amplification portrait for the nine-point filter (arising when the coefficients from
the sixth-order, 57-point Savitzky-Golay smoothing filter are summed for an x- or a y-line)
applied ns times. Also shown for comparison is the portrait for a single application of the
classical three-point filter.

We stress that the purpose of this analysis is merely to demonstrate that seemingly excessive
applications of the high-order filter will not necessarily destroy modes of physical interest
(and in fact will be less damaging than other commonly used lower-order filters). Other
filtering techniques could also be used, and we adopt this particular strategy mainly out of
convenience. As a reference value, we typically use a discretization of 20 points per primary
wavelength (thus e.g. a bound second-harmonic would have 10 grid points per wavelength,
and so on). As the repeated applications are only at points in the neighborhood of the
structure, even seemingly large repetitions are insignificant with respect to the overall com-
putational cost. Furthermore, the contact of a given wave with the structure is typically
short, hence any added dissipation when compared to the rest of the domain is kept rea-
sonable. While the necessity of such smoothing is of course not ideal, it has enabled us to
compute wave structure interactions using the present model even in rather extreme physical
situations (in particular see §9.6).

9.4 Linear Breakwater Diffraction

As a first means of model verification, we consider the classical problem of linear wave
diffraction around a semi-infinite breakwater. We use linear incident waves with wavelength
L = 1 m (i.e. wavenumber k = 2π/L = 2π m−1) propagating in the +y-direction. We
consider two depths h = 0.25 m (kh = π/2, with period T = 0.835 s, ∆t = T/20 = 0.0417
s) and h = 1 m (kh = 2π, T = 0.800 s, ∆t = T/20 = 0.0400 s). Both cases use a
spatial discretization of ∆x = ∆y = L/20 = 0.05 m on a 400 × 221 grid, resulting in
the computational domain shown in Figure 9.4. As described in §3.5, in all simulations
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Figure 9.4: Model setup for linear breakwater diffraction simulations. The light shaded
regions represent relaxation zones (wavemaker and sponge layer), the arrows indicate the
incident wave direction, and the dark shaded region is the structure.

described in this chapter a wavemaker region relaxed over a single wavelength in the direction
of propagation is used for wave generation, with a similar relaxation zone placed at the
opposing end to absorb the outgoing wave-field. To mimic a semi-infinite breakwater, a
rectangular structure covering the entire right half (positive x) of the wavemaker region is
used, extending half a grid point beyond the region in y, with the exterior (diffracting) corner
serving as the origin (see Figure 9.4). The smoothing filter is applied after every full time
step for most of the domain, whereas around the structural boundary line applications are
used after each stage evaluation (as described in §9.3), with ns = 1 and ns = 20 for the
shallow and deep cases, respectively. As there are four stage evaluations per full time step,
around the structure the filter is actually applied 4ns times per time step. Simulations for
400 time steps required approximately 4.3 and 9.5 hr, respectively. Note that throughout
this chapter the Intel compiler is used, and simulations are on a 2.26 GHz processor.

Diffraction diagrams for both simulations are presented in Figure 9.5. Also shown for
comparison is the theoretical solution from Penny & Price (1952), based on the solution of
Sommerfeld (1896). We note that relaxation zones are not used at the lateral boundaries,
and we choose instead simply to take measurements before reflections off of these walls
develop (this is done in part to demonstrate simulations on larger domains). As can be
seen the numerical effects of the water depth create a varied response in the model. The
shallow water simulation, Figure 9.5 (a), underestimates the waveheights in the shadow zone,
but provides excellent results in the negative x region. Madsen & Warren (1984) found a
similar under-estimation in the shadow zone with a lower-order Boussinesq model, thus this
behavior is not unprecedented. Alternatively, the deep water simulation, Figure 9.5 (b),
provides much improved results in the shadow zone, at the expense of minor errors in the
negative x region. Numerical disturbances are much more apparent in this simulation, as
can be seen in Figure 9.5 (b), just above the exterior corner.

To view these results in another light, computed and theoretical free surface envelopes are
plotted in Figure 9.6 for both cases along y = L. The previously mentioned numerical distur-
bances are again evident for the deep water case in Figure 9.6 (b), causing an over-estimation
of the modulations in the negative x-direction. Although not perfect, the results from both



9.5 Linear & Nonlinear Gap Diffraction 143

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

y
 /

 L

(a)

0
.1

0
.2

0
.3

0
.5

0
.8

1
1

1

1

1
1
.1

0
.2

0
.2

0
.3

0
.3

0
.5

0
.5

0
.8

0
.8

1

1

1

1

1

1

1

1

1

11

1

1

1
.1

1
.1

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

x / L

y
 /

 L

(b)

0.1

0
.2

0
.3

0
.5

0
.8

1

1

11

1

1

1
.1

0
.2

0
.2

0
.3

0
.3

0
.5

0
.5

0
.8

0
.8

1

1

1

1

1 1

1

1
1

1

1

1

1

1

1
.1

1
.1

1
.1

Figure 9.5: Computed (solid) and theoretical (dashed) linear diffraction diagrams with (a)
kh = π/2 and (b) kh = 2π.

cases are seemingly acceptable for engineering purposes. These simulations demonstrate
that the numerical difficulties described in §9.3 can be overcome over a wide range of water
depths to produce reasonable results.

9.5 Linear & Nonlinear Gap Diffraction

As a second means of model verification we will consider linear and nonlinear gap diffraction.
We use the setup from the symmetric gap diffraction experiment of Pos (1985), using incident
waves with period T = 0.67 s and waveheight H = 0.055 m on a depth h = 0.125 m (H/h =
0.444). These waves diffract around a gap with width 0.99 m. For the linear simulation
we use sinusoidal incident waves with wavelength L = 0.604 m (from the linear dispersion
relation). For the nonlinear simulation we use stream function (Fenton, 1988) incident waves
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Figure 9.6: Computed and theoretical envelopes for linear diffraction around a breakwater
along y = L with (a) kh = π/2 and (b) kh = 2π. Here a = H/2 is the incident wave
amplitude.

propagating in the +x-direction with Stokes’ drift (or mean transport) velocity cs = 0 to
match conditions of a closed flume, yielding a wavelength L = 0.630 m (kh = 1.25). Clearly
these waves are nonlinear. For the discretization we use ∆x = ∆y = 0.03 m ≈ L/20 and
∆t = T/20 = 0.0335 s on a 201 × 221 computational grid. Due to symmetry only the
lower half (in plan) of the physical domain is modeled. We match the gap width of the
experiments and place the corner at the origin, just after the wavemaker region, as in §9.4.
In both simulations the smoothing filter is applied after every five time steps throughout most
of the domain. Around the structure line-smoothing is applied after each stage evaluation,
with ns = 1 for the linear simulation, and ns = 20 for the nonlinear simulation. Both
simulations were run for 300 time steps, taking roughly 1.0 and 3.9 hr, respectively.

Diffraction diagrams for this test case are presented in Figure 9.7. Figure 9.7 (a) shows
computed results from the linear simulation as well as the theoretical results from Penny
& Price (1952) for comparison. As might be expected from §9.4, the waveheights in the
shadow zone are again under-predicted. The match in the far-field (only a few wavelengths
away from the structure) is quite good, however. This figure is useful for comparison with
the nonlinear simulation, described in the following.

Figures 9.7 (b) and (c) show the measured diffraction diagram of Pos (1985) and the com-
puted results from the nonlinear simulation, respectively. The diffraction coefficients for the
nonlinear simulation are calculated using the difference between maximum and minimum
surface elevations at each grid point over a complete period, similar to what was done in
the experiments. The computed free surface from the nonlinear simulation is also shown



9.5 Linear & Nonlinear Gap Diffraction 145

0 0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

2

y
 [

m
]

(a)

0
.1

0
.1

0.
1

0.1

0.1

0.2

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5

0.5

0.6

0.6
0.6

0.7

0.7

0.7

0
.8

0.8

0.8

0
.9

0.9

1

1
1.1

1.1

1.2
1.3

0.2

0.2

0.2

0.3 0.3

0.3

0.4

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.70.7

0.8
0.8

0.
9

0.9

1 1
1.1

(b)

y
 [

m
]

0 0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

2

x [m]

y
 [

m
]

(c)

0.1

0
.1

0
.1

0.
2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.5

0.6

0.6

0
.6

0.7

0
.7

0
.8 0.8

0
.9

0.9
1

1

1.1 1

Figure 9.7: Gap diffraction diagrams (t ≈ 12T ) from (a) a linear simulation (solid) with
linear theory (dashed), (b) the measurements of Pos (1985), and (c) a nonlinear simulation.
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Figure 9.8: Computed free surface from the nonlinear gap diffraction simulation. The vertical
scale is exaggerated 10 times.

in Figure 9.8. From Figure 9.7 (b) and (c), the waveheights in the shadow zone are again
under-predicted. For the majority of the domain, however, the results match the measure-
ments noticeably better than in the linear simulation, confirming the importance of nonlinear
effects in this problem. In particular we note the focusing region directly behind the gap
around (x, y) = (0.6, 0), where the match is significantly improved. Other interesting fea-
tures are qualitatively consistent with the experiments. For example, the weaving patterns
of the 0.5–0.6 contours from the simulation are clearly present, though less exaggerated than
in the measurements. Both the measured and computed 0.6–0.9 contours also demonstrate
a clear tendency to turn upward (in plan) much earlier than predicted by linear theory, indi-
cating reduced waveheights land-ward of the gap (there a general increase in the diffraction
due to nonlinear effects). There is also a clear divide between contours turning upwards and
running lengthwise in both diffraction diagrams. This is evident between the 0.4 and 0.5
contours in the measurements and between the 0.5 and 0.6 contours from the simulation.
The extent of the 0.1 contour at x ≈ 2 m even resembles the measurements rather closely.

We finally note that Abohadima & Isobe (1999) also simulated this case using a model based
on weakly nonlinear time dependent mild slope equations. Their results (see their Figure 6)
match the experiments better than those presented here in the extreme shadow zone. The
present results are noticeably better in the far-field, however, likely due to the fully nonlinear
capabilities of the current model.

9.6 Nonlinear Wave Run-Up on a Vertical Plate

As a final test case we consider a series of physical experiments presented by Molin et al.
(2004, 2003, 2005) involving highly nonlinear deep water wave run-up on a vertical bottom-
mounted plate. We consider the experiments with plane incident waves having period T =
0.88 s and waveheights H = 0.038, 0.046, and 0.058 m on a depth h = 3 m. Using the linear
dispersion relation this results in L = 1.21 m and kh = 15.6. The wavetank is 16 m wide,
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Figure 9.9: Model setup for the plate run-up simulations. The shaded regions are the same
as in Figure 9.4. Figure (a) shows the entire domain, while (b) shows the approximate
measurement locations around the plate.

with a 1.2 m plate (with thickness b = 0.05 m) extended perpendicularly from the bottom
(in plan) sidewall 19.3 m from the wavemaker. By geometric symmetry this is equivalent to
a 2.4 m wide plate in the middle of a 32 m tank. Time series measurements in front of the
plate were recorded at y = 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 m and behind the plate at y = 0.13
m, where the side-wall runs along y = 0.

The full computational domain used is shown in Figure 9.9 (a), with the approximate mea-
surement locations around the plate shown in Figure 9.9 (b). For the numerical simulations
we reduce the depth to h = 0.6 m, hence kh ≈ π. Thus, we still solve a deep water problem,
while easing the previously described numerical difficulties associated with large depths and
nonlinearities. We use plane incident waves propagating in the +x-direction computed from
the stream function solution of Fenton (1988), giving wavelengths L = 1.212, 1.216, and
1.223 m (with incident steepness H/L = 0.0314, 0.0378, and 0.0474, respectively). For the
discretization we use ∆x = 0.06 m ≈ L/20, ∆y = 0.0615 m, and ∆t = T/20 = 0.044s on
a 383 × 201 computational grid. A 1.2 × 0.18 m plate (the width is again limited to 3∆x)
is extended outward from y = 0 with the front face at x = 19.29 m, nearly matching the
physical setup. To ease the computational burden, the width of the computational domain
(12.3 m) is not quite large as in the physical experiments, but has been found to have neg-
ligible effects on the wave run-up near the plate. We also use a single precision variant of
the Schur complement preconditioner from §4.6.4 for this problem. In each of the simula-
tions the smoothing filter is applied every 5 full time steps throughout most of the domain.
Line-smoothing is applied around the plate after each stage evaluation with ns = 20 for the
first two cases and ns = 100 for the case with H = 0.058 m. As a reference, the simulation
with H = 0.046 m was run for 1500 time steps, requiring roughly 20 hr. We are confident
that similar results could be obtained using a significantly smaller model domain, however
we present these simulations as demonstrations of the nonlinear model on a rather large
computational domain.

For comparison we consider the time frame 55 < t < 60 s for the first two cases and
50 < t < 55 s for the case withH = 0.058 m (due to a breakdown from extreme nonlinearities
at the end of the simulation). These windows correspond roughly to the time after the group
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Table 9.1: Summary of maximum wave steepness, surface elevation, and elevation amplifica-
tion factor (estimated as 2ηmax/H) from the envelopes in front of the plate and along y = 0
for the plate run-up simulations.

Incident Plate envelope y = 0 envelope
H [m] H/L H/Lmax ηmax [m] Factor H/Lmax ηmax [m] Factor

Linear — — 2.32 — — 2.37
0.038 0.0314 0.085 0.0569 2.99 0.093 0.0629 3.31
0.046 0.0378 0.109 0.0755 3.28 0.131 0.0926 4.03
0.058 0.0474 0.173 0.128 4.41 0.203 0.1525 5.26

velocity has traveled to the plate and back to the wavemaker. In both the experiments and
the simulations a clear peak is observed when the initial wave front reaches the plate, and
for comparison purposes the measured time series have been shifted to coordinate this event
at a single location.

Measured and computed free surface envelopes along the front of the plate are shown in
Figure 9.10 for all three cases. The match with the experiments in each case is impressive.
Both the model and experiments demonstrate a clear migration of the maximum surface
elevation from roughly the middle of the plate to the plate-wall corner (at y = 0) as the
nonlinearity is increased. The simulations also confirm the significant increase in the surface
elevations due to the nonlinear effects involved in the run-up. The computed free surface
near the plate from the simulation with H = 0.058 m is also shown in Figure 9.11.

To illustrate the run-up more clearly, and to further demonstrate the extreme nonlinearity
involved in these simulations, we present computed envelopes from the wavemaker to the
plate along y = 0 in Figure 9.12. From a comparison with the wavemaker regions (negative
x), it is clear that the reflected wave has traveled all the way back to the wavemaker in
Figures 9.12 (a) and (b), while this is nearly the case in (c). Note that in these simulations
we are not using a second relaxation zone after the wavemaker, to match the experimental
conditions. From these figures, it is seen that the maximum surface elevation actually occurs
at a distance of ≈ L/2 in front of the plate in each case, resulting in extremely steep nearly-
standing waves.

The maximum wave steepness, surface elevation, and surface elevation amplification observed
in Figures 9.10 and 9.12 are quantified in Table 9.1 for each of the cases. Also shown
for comparison are the amplification results from a linear simulation. A very significant
amplification is once again observed as the nonlinearity increases, consistent with the earlier
observations (see Figure 9.10). In the most extreme case, the incident waves are amplified
by a factor greater than 5 slightly in front of the plate, resulting in a local wave steepness
exceeding H/L = 0.2! Slightly lower values are found at the plate. These observations
support the contention of Molin et al. (2004, 2003), that the observed run-up involves (at
least) third-order effects in the wave steepness.

To demonstrate that the relative phase is also correct about the plate, a comparison of
selected time series measurements with the computed results for the case with H = 0.046
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Figure 9.10: Computed and measured free surface envelopes in front of the plate for (a)
H = 0.038 m, (b) H = 0.046 m, and (c) H = 0.058 m.
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Figure 9.11: Computed free surface near the plate for the simulation with incident waves
having H = 0.058 m. The vertical scale is exaggerated five times.

m is provided in Figure 9.13. As can be seen, during this time frame both experiments and
simulation are near a steady state. The match between the computed and measured time
series is again excellent. Indeed, even behind the plate the match is quite satisfactory, as
seen in Figure 9.13 (d), confirming reasonable diffraction properties in this case. Note that
at this location the computed solution has been shifted by a time of (b− 3∆x)/c = −0.094
s (where c = L/T is the wave celerity) to compensate for the extra width of the plate. Time
series comparisons at the other locations, as well as from the other cases are of similar quality
as those presented in Figure 9.13.

This test case demonstrates an interesting and realistic situation where the interaction of
moderately nonlinear incident waves with a structure results in rather extreme nonlinearities.
The excellent nonlinear and dispersive properties of the present model have clearly been put
to the test in this section. This case in particular represents a challenging physical situation
which would likely be unamenable with most other Boussinesq-type models.

9.7 Conclusions

This chapter describes the extension of the basic finite difference model based on the high-
order Boussinesq formulation of Madsen et al. (2002, 2003) to allow domains with arbitrary
piecewise-rectangular bottom-mounted structures. While conceptually this is trivial, the
practical difficulties are considerable. Due mainly to the necessity of discretizing high- (up
to fifth-) order mixed derivative terms at theoretically singular exterior corner points, the
model is prone to potential stability and convergence problems. These generally become more
pronounced as the numerical importance of the high-derivative (Boussinesq-type) terms is
increased (i.e. large water depths or refined grids). Fortunately, as we have demonstrated
through analysis and direct numerical simulations, the system is receptive to dissipation.
Repeated local applications of a high-order smoothing filter provide a simple and effective
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Figure 9.12: Computed free surface envelopes along y = 0 for (a)H = 0.038 m, (b)H = 0.046
m, and (c) H = 0.058 m.

means for managing these problems in practical situations, while minimizing damage to
modes of physical interest.

The numerical model is verified using three different test cases. These involve classical
linear diffraction around a semi-infinite breakwater (in both shallow and deep water), linear
and nonlinear (shallow water) gap diffraction, and highly nonlinear deep water run-up on a
vertical bottom-mounted plate. From the diffraction cases, there is unfortunately a tendency
for an under-estimation of the waveheights in the extreme shadow zone. This is particularly
apparent in the shallow water simulations presented herein, though our experience has shown



152 Chapter 9. Nonlinear Wave-Structure Interactions

55 55.5 56 56.5 57 57.5 58 58.5 59 59.5 60
−0.1

−0.05

0

0.05

0.1

η 
[m

]

(a)

Measured
Computed

55 55.5 56 56.5 57 57.5 58 58.5 59 59.5 60
−0.1

−0.05

0

0.05

0.1

η 
[m

]

(b)

55 55.5 56 56.5 57 57.5 58 58.5 59 59.5 60
−0.1

−0.05

0

0.05

0.1

η 
[m

]

(c)

55 55.5 56 56.5 57 57.5 58 58.5 59 59.5 60
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

η 
[m

]

(d)

Time, t [s]

Figure 9.13: Measured and computed time series of surface elevations (H = 0.046 m) in
front of the plate near (a) y = 1 m, (b) y = 0.4 m, and (c) y = 0.1 m; and (d) behind the
plate near (d) y = 0.13 m.
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that this tendency is reasonably wide-spread. The match in the far field is generally much
better. Despite these acknowledged difficulties, the model has proven to be reasonably
accurate in cases involving diffraction over a wide range of depth and nonlinearity.

The most impressive results presented are those involving the highly nonlinear deep water
wave run-up on a vertical plate in §9.6. For the full range of incident wave steepness tested,
the comparison with measurements proved to be excellent. The extreme nonlinearity in
combination with the depth for these cases results in problems which would be difficult, if
not impossible, for other Boussinesq-type models in the literature. The present model seems
ideally suited for problems of this type.

While other, simpler, models (e.g. those based on the mild-slope equation of Berkhoff, 1972)
would undoubtedly be better suited for simulations where the physics are not too extreme,
the potentially wide applications of the present model (in terms of both water depth and
nonlinearity) make it attractive for solving some extremely difficult, yet seemingly common,
problems involving wave-structure interactions arising in the fields of coastal and offshore
engineering.
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Chapter 10

Extension to Rapidly Varying

Bathymetry

Chapter Summary

New Boussinesq-type equations are given for fully nonlinear and highly dispersive water
waves interacting with a rapidly varying bathymetry. The system is an extension of the
high-order formulation used previously, which is limited to mildly sloping bottoms. The new
formulation is again based on a series expansion from an arbitrary, spatially varying z-level
z = ẑ(x, y). Under the assumption that ẑ is slowly varying in space, i.e. ẑ = ẑ(δx, δy), where
δ ≪ 1, the exact velocity expressions are simplified to include up to low-order derivatives
of ẑ. On the other hand, no mild-slope assumptions about the variation of the sea bottom
h(x, y) are made. The choice of the expansion level ẑ is an important key to the successful use
of the model: For rapidly varying bathymetries it is necessary to smooth ẑ in order to reduce
the magnitude of e.g. ∇ẑ and ẑ∇2ẑ terms. In this process local deviations from the optimal
ẑ = −h/2 are generally acceptable, as long as this ratio is within the interval 0.2 ≤ σ ≤ 0.55,
where σ = −ẑ/h. Numerical results are given for linear shoaling, confirming that the
excellent embedded properties of the original formulation are retained. Simulations involving
the linear reflection from a plane shelf are also included, which clearly demonstrate the
superiority of the new formulation in cases involving partial reflection from rapid bathymetric
changes. Furthermore, linear class I and II Bragg scattering from an undular sea bottom is
simulated. The computations are verified against measurements, theoretical solutions, and
numerical models from the literature. Finally, a detailed investigation of nonlinear class III
Bragg scattering is made, and new results are given for the subharmonic and superharmonic
interactions with the sea bed.
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10.1 Introduction

One of the investigations made by Madsen, Bingham & Schäffer (2003), leading to the Boussi-
nesq formulation presented in Chapter 2, addressed the importance of the first derivatives
of ẑ appearing in the velocity formulation. They made a Fourier analysis of the linearized
equations on a mildly sloping bottom and found that the terms proportional to ∇ẑ had no
influence on linear shoaling of the wave amplitude, but merely a local (minor) influence on
the velocity profile, leading to a phase shift relative to the surface elevation. This conclusion
was found to be valid for the case of infinite series expansions, as well as for the Boussinesq
formulation using truncated expansions. On this basis Madsen et al. (2003) concluded that
these terms could be ignored for most practical purposes. The highly accurate numerical
results for nonlinear shoaling on a slope of 1/35 presented by Madsen, Bingham & Liu (2002)
confirmed this conclusion.

Unfortunately, recent investigations have proven that in general the ∇ẑ terms should not be
left out. One classical example demonstrating the shortcomings of the original model is the
partial reflection from a constant slope, which was originally investigated by Booij (1983)
with the objective of checking the validity of the approximations in the mild-slope wave
equation of Berkhoff (1972). We have recently simulated this case and found that without
the explicit ∇ẑ terms in the velocity formulation, the computed reflection coefficients are
significantly off, even when the slope is relatively mild. Other cases such as steep shelfs, steep
trenches , and undular sea bottoms call for further attention, as any mild slope approximation
is violated for such rapidly varying bathymetries.

This is the motivation for the present chapter, in which we present a new high-order
Boussinesq-type formulation for fully nonlinear waves interacting with a rapidly varying
bathymetry. The derivation is similar to that presented in Chapter 2 (for full details see
Madsen, Fuhrman & Wang, 2005). However, for the first time, this derivation has been made
without invoking mild-slope approximations. In the final formulation we assume that the
spatial variation of the expansion level ẑ(x, y) is moderately varying so that higher derivatives
of ẑ can be ignored. The resulting velocity formulation again includes up to fifth derivatives
of the velocity variables. On this basis the kinematic condition at the sea bottom is also
derived.

The remainder of this chapter is organized as follows. The extension of the basic Boussinesq
formulation to be valid for rapidly varying bathymetries is described in §10.2. A linear
Fourier analysis of the embedded dispersive properties is presented in §10.3. The results of
numerical simulations involving linear shoaling are presented in §10.4, and for linear reflection
from a plane shelf in §10.5. Finally, numerical simulations involving linear class I and II,
and nonlinear class III Bragg scattering are presented in §10.6. Conclusions are formulated
in §10.7.

The subject matter from this chapter can be found in a more extensive form in Madsen,
Fuhrman & Wang (2005). There a rigorous derivation and analysis is presented, as are
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numerous additional computational results. Some results are also presented in Madsen &
Fuhrman (2004).

10.2 Extension to Rapidly Varying Bathymetry

The velocity formulation of Madsen et al. (2003) (see also Chapter 2) uses an expansion from
an arbitrary z-level, which is assumed to be a constant fraction of the sea bed measured from
the still water level, namely ẑ = −h/2. On an uneven bottom the resulting untruncated
expressions in fact contain infinitely high derivatives of ẑ. Madsen et al. (2003) made a
mild-slope approximation and finally ignored all spatial derivatives of ẑ, as was presented
in Chapter 2. In order to allow for more dramatic bathymetric variations, we extend their
derivation to a more flexible variation of ẑ, while keeping low-order derivatives of ẑ in this
section.

By following a similar procedure as outlined in Chapter 2, but by assuming that ẑ is a
mildly sloping function in space i.e. ẑ = ẑ(δx, δy), Madsen et al. (2005) arrived at the
general velocity formulation

u(x, y, z, t) = JI û
∗ + JIIŵ

∗, (10.1)

w(x, y, z, t) = JIŵ
∗ − JII û

∗, (10.2)

where

JI = J01 + δ∇ẑJ11 + δ2∇2ẑJ21 + δ2(∇ẑ)2J31 +O(δ3), (10.3)

JII = J02 + δ∇ẑJ12 + δ2∇2ẑJ22 + δ2(∇ẑ)2J32 +O(δ3), (10.4)
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− ẑψ3

18
+
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and ψ = (z − ẑ). The J21, J22, J31, and J32 operators can also be found in Madsen et al.
(2005), however, as they are not used in the present chapter they are left out for brevity.
Note that by setting δ = 0 in (10.3) and (10.4), (10.1) and (10.2) become equivalent to the
original expressions (2.40) and (2.41).

By inserting (10.1) and (10.2) into (2.14), the kinematic bottom condition then becomes
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− ẑ2ψ2

b

36
+
ψ4

b

24

)

∇4

)
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û∗
]

+

δ2∇2ẑΓ1 + δ2∇ẑ · ∇ẑΓ2 + δ2∇ẑ · ∇hΓ3 = O(δ3), (10.9)

where ψb = −(h+ ẑ). The O(δ2) terms can again be found in Madsen et al. (2005), but are
left out here for brevity. Note that here the β-coefficients are left as free parameters, similar
to §2.6. By optimizing with respect to the liner shoaling gradient (with ẑ = −h/2), Madsen
et al. (2005) recommend setting

β12 = 0.95583, β14 = 0.51637, β13 = 0.72885, β15 = 0.28478, (10.10)

which can be shown to provide highly-accurate shoaling properties out to kh ≈ 30. This will
be verified through direct numerical simulation in §10.4. Note that a similar optimization
procedure was applied by e.g. Agnon et al. (1999); Madsen et al. (2002, 2003); Madsen &
Schäffer (1998).

Thus the new fully nonlinear formulation now consists of (2.11) and (2.13), combined with
(10.1), (10.2), and (10.9). The new expressions can be seen to be somewhat more lengthy
than those originally used from Chapter 2. The terms involved are of essentially identical
form, however, thus the implementation of this new formulation is not significantly more
complicated than before.
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10.3 Fourier Analysis of Linear Dispersion

By analyzing the linearized flat-bottom system, following the procedure described previ-
ously in §2.7, Madsen et al. (2005) arrived at the following embedded dispersion relation for
arbitrary ẑ

ω2
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This should be compared to Stokes’ reference solution from (2.48). A contour plot showing
the percentage error in the ratio (c2 − c2Stokes)/c

2
Stokes is shown in Figure 10.1 as a function

of kh and σ = −ẑ/h. From this we conclude that less than 2.5% errors are observed for
kh < 15 with 0.20 ≤ σ ≤ 0.55. This flexibility is useful for cases involving rapidly varying
bathymetries, where smoothing the expansion level ẑ (but not h) leads to local deviations
from the optimal choice of σ = 0.5. Note that with σ = 0.5 the embedded linear dispersive
properties are the same as shown previously in Figure 2.1.

It is important to emphasize that singularities in (10.11) start to develop within the range
0.524 < σ < 0.6832. The roots kRh of the denominator of (10.11) are shown (as open
circles) in Figure 10.2. Within this interval instabilities can in principle be triggered in the
numerical model, if the highest resolved dimensionless wavenumber kNh exceeds kRh. This
conclusion, however, is only indicative, and to investigate the exact numerical aspects of
this matter we make a matrix based stability analysis of the linearized system (similar to
§5.5) in a single horizontal dimension. Thus, we express the linearized system in the semi-
discrete form (5.1). We keep the depth constant, and for a particular σ gradually increase the
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Nyquist wavenumber kN = π/∆x until an eigenvalue with a positive real part is encountered,
corresponding to a numerical instability (recall from Chapter 5 that the eigenvalues of the
linearized system are normally purely imaginary). The Nyquist wavenumbers just prior to
an instability are also shown in Figure 10.2. They confirm the trend of the analytical poles
at kRh, while also allowing slightly more flexibility for applications of the model (i.e. the
numerical curve lies slightly above the analytical curve). We can conclude that to completely
avoid the possibility of singularities, we should choose σ < 0.524, but in practice it is possible
to accept local values perhaps as high as σ ≈ 0.57 as long as the grid size is not too fine. In
general we recommend staying within the interval 0.20 ≤ σ ≤ 0.55 for most practical cases.
The stability analysis has been confirmed through testing with the numerical model.

10.4 Linear Shoaling

As the first test case of the new model we consider linear shoaling on a mildly sloping beach,
similar to §6.4. The objective is to confirm that the numerical model follows the theoretical
shoaling analysis made by Madsen et al. (2005). Contrary to results presented elsewhere in
this thesis, all numerical results in the present chapter use a single horizontal dimension,
using a numerical algorithm similar to that presented in Madsen et al. (2002).

We simulate the transformation of monochromatic linear waves running up a plane slope of
1/20. We use a wave period of T = 1.13 s, with depths ranging from h = 9.55 m at the
deep water entrance to 0.036 m at the shallow end. The simulation covers a transition from
kh = 30 to kh = 0.35, which is an extreme range of wavenumbers. The shoaling analysis
made in Madsen et al. (2005) indicates that it is feasible, however, when the optimized
shoaling coefficients defined by (10.10) are used (as opposed to the default values of unity).
For the discretization we use ∆x = 0.04 m and ∆t = 0.03 s.

The computed result is shown in Figure 10.3, and we notice a perfect agreement with the
linear shoaling theory, which is shown as the full lines in the envelope. In contrast, when
the non-optimized shoaling coefficients are applied, the result is very erroneous (not shown).
We emphasize that the same accuracy can be achieved using the formulation by Madsen
et al. (2002) (i.e. the formulation from Chapter 2) although only the J01, J02 operators
were included in the velocity formulation. This case hence demonstrates that the excellent
embedded properties of the original formulation are retained in the new extended version
presented in this chapter.

10.5 Reflection from a Plane Shelf

The next case deals with wave reflection from a plane shelf. We consider the classical
benchmark originally suggested by Booij (1983). The topography, shown in Figure 10.4 (a),
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Figure 10.3: Linear shoaling on a 1:20 slope covering the range 0.35 < kh < 30. The dashed
line is the computed surface elevation, while the full line is the shoaling envelope based on
linear theory.

consists of a plane slope connecting two constant depth regions, with an incoming depth of
0.6 m and a final depth of 0.2 m. The width of the plane slope b0 is varied from case to case
within the interval 6.4 m ≥ b0 ≥ 0.4 m, corresponding to slopes of 1/16 to 1.0. We study
the reflection of monochromatic linear waves with a period T = 2.0 s, which means that kh
varies between 0.9 and 0.4 i.e. fairly shallow water. To resolve the steepest case we use a
grid size of ∆x = 0.02 m and a time step ∆t = 0.025 s. For all but the steepest slopes we use
ẑ = −0.5h. For the slopes higher than 0.2, the upper and lower corners of ẑ are smoothed
slightly using a Savitzky-Golay filter, to reduce detrimental effects caused by discontinuities
in ẑ at the abrupt corner.

Two sets of simulations are made with the Boussinesq model. Firstly, we use the original
Boussinesq model of Chapter 2 (also of Madsen et al., 2002, 2003) i.e. excluding the O(δ)
terms in (10.1) and (10.2). The results are shown in Figure 10.4 (b) (as open circles). In
comparison with the reference solutions of Suh et al. (1997) using both a finite element
method and an extended linear mild-slope equation, this result is clearly disappointing for
steep as well as for mild bottom slopes. This poor result is in strong contrast to excellent
results achieved for linear shoaling, which are essentially identical to those presented in
§10.4, as well as the earlier variable bottom results from §6.4 and §6.5. Consequently, we
can conclude that partial reflection is sensitive to the local phase differences between the
velocity profile and the surface elevation, which are not correctly accounted for without the
O(δ) terms. Secondly, we redo the simulations using the velocity formulation presented in
§10.2 i.e. including the O(δ) terms. The result is also shown (as filled circles) in Figure 10.4
(b), and we notice a remarkable improvement of the reflection coefficients.

This case demonstrates the clear superiority of the new formulation presented in this chapter
for cases involving rapidly varying bathymetry. A number of additional cases are also con-
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Booij (1983) involving reflection from a plane shelf and (b) comparison of computed results
with previous simulations.
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sidered in Madsen et al. (2005). These include reflection from a plane shelf in intermediate
depths, as well as from both Gaussian shaped and symmetric trenches with sloped transi-
tions (following cases from Bender & Dean, 2003). For details of these additional simulations
the reader is referred to Madsen et al. (2005).

10.6 Bragg Scattering

In this section we study wave reflection and transmission in connection with surface waves
propagating over a sea bottom with a patch of periodic undulations (ripples). When the
wavenumbers of the bottom ripples and the incident waves satisfy certain conditions, the
scattered waves will be significantly amplified. The mechanism of the wave-ripple interaction
is in many ways analogous to the mechanism of nonlinear wave-wave interaction for surface
waves traveling over a uniform depth. As first shown by Phillips (1960), resonance conditions
for wave-wave interactions read

k1 ± k2 ± · · · ± kM+1 = 0, ω1 ± ω2 ± · · · ± ωM+1, (10.14)

where M ≥ 2, and where ωj,kj satisfy the linear dispersion relation. Similarly, resonance
conditions for wave-ripple interactions are called Bragg conditions, and they are obtained
by replacing one or more of the free surface wave components in (10.14) by periodic bottom
components with corresponding ripple wavenumbers, but with zero frequencies as the ripples
are fixed in time.

The phenomenon of Bragg scattering goes back to Sir William Henry Bragg and his son
William Lawrence Bragg, who were both awarded the Nobel Prize in 1915 for their pioneering
work ‘X-rays and Crystal Structures’. However, in the context of water waves Davies (1982)
was one of the first to develop a theoretical solution for backscattering from an undular
sea-bed, while Davies & Heathershaw (1984) presented a detailed experimental study. Since
then the problem has drawn considerable attention, and today the literature on this topic is
quite rich. Recently, Liu & Yue (1998) discussed three different classes of Bragg scattering
in one and two horizontal dimensions. In the following, we shall study examples of these
three classes, but our work will be limited to a single horizontal dimension.

As a general approach to the problem, we define a bedform consisting of a sequence of
sinusoidal ripples on an otherwise flat bathymetry, i.e.

h = h0 +
J
∑

j=1

dj sinKjx, (10.15)

where h0 is the mean depth relative to the still water datum, dj are the ripple amplitudes, and
Kj are the ripple wavenumbers. Undular bottom variations are often rapidly varying, with
bottom wave numbers being of the same order of magnitude as the surface wave numbers,
meaning that any spatial derivative of h can be significant. This makes it impossible for
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us to directly relate the expansion level ẑ to the rapidly varying bottom h, and instead we
generally use a constant ẑ = σ0h0, where h0 is a spatially averaged depth, with σ0 ≤ 0.5. In
the examples studied in the following subsections, we assume a constant h0, but in general
it may also be slowly varying in space.

10.6.1 Class I Bragg resonance

Class I Bragg resonance defines the second-order triad interaction involving a single bot-
tom wavenumber K and two surface waves having wavenumber k1 (incoming wave) and k2

(reflected wave). For this case (10.14) simplifies to

k1 ± k2 ± K = 0, ω1 ± ω2 = 0. (10.16)

In a single horizontal dimension (i.e. for normal incidence) this condition is satisfied with

k1 = −k2 =
K

2
, ω1 = ω2, (10.17)

i.e. the reflected wave (subscript 2) has the same wavenumber and frequency as the incoming
wave (subscript 1). This is the classical linear Bragg resonance, which has been studied
extensively in the literature: Experimentally by e.g. Davies (1982); Davies & Heathershaw
(1984); Hara & Mei (1987); Heathershaw & Davies (1985); theoretically by e.g. Kirby (1986);
Mei (1985); Mei et al. (1988); and numerically by e.g. Chamberlain & Porter (1995); Suh
et al. (1997), to mention a few.

Davies & Heathershaw (1984) made experiments with three different ripple patches consisting
of two, four, and 10 ripples. Of their experiments, the most demanding is the 10 ripple patch
with Kd = 0.31 and d/h = 0.16. For this test case we use ẑ = −0.44h0, which makes the
ratio σ = −ẑ/h vary between 0.379 and 0.524, which is acceptable for stability as well as
accuracy. As the test case is linear, we solve the linearized surface conditions instead of the
fully nonlinear set, as in the preceding sections. Simulations are made with ∆t = 0.0589 s
and ∆x = 0.162 m, corresponding to a resolution of 20 points per bottom wave length. We
determine the reflection coefficients for a range of wave periods corresponding to the interval
0.5 ≤ 2k1/K ≤ 2.5.

The results are shown in Figure 10.5, where a very good agreement between our computations
and the measurements of Davies & Heathershaw (1984) can be observed. There is obviously
a strong reflection near the theoretical point of resonance at 2k1/K = 1. Actually, the peak
occurs for 2k1/K slightly less than one. As discussed by Liu & Yue (1998), this downshift
can be explained by taking into account that k1 is spatially varying due to the finite bottom
variations. They used a perturbation analysis of the linear dispersion relation to demonstrate
that the spatially averaged wavenumber on the undular bottom is slightly larger than the
wavenumber corresponding to the averaged water depth h0. This explains a downshift of the
peak Bragg reflection when it is represented in terms of the averaged depth wavenumber.
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Figure 10.5: Results for class I Bragg scattering.

In Figure 10.5 we also notice an almost symmetrical tail of reflection peaks on both sides of
the resonance point. We emphasize that the (potential) response at 2k1/K = 2 is actually
a class II Bragg resonance as it occurs at the second harmonic of the bottom wavenumber
K. However, the computed as well as the measured reflection is seen to be very small at
this location. In general our linear Bragg results are almost identical to what was achieved
by Kirby (1986) and Suh et al. (1997) solving their extended versions of the mild-slope
equations. In contrast, the results of Chamberlain & Porter (1995) deviate slightly in two
ways: Firstly, their tail of reflection peaks is less symmetrical around the resonance peak,
and secondly they predict a more pronounced response at 2k1/K = 2.

10.6.2 Class II Bragg resonance

Class II Bragg resonance concerns higher-order Bragg effects arising from large amplitude (or
slope) bottom undulations. It defines a third-order quartet wave-ripple interaction involving
two different bottom wavenumbers K1 and K2, and two surface wave numbers k1 (incoming
wave) and k2 (reflected wave). In this case (10.14) simplifies to

k1 ± k2 ± K1 ± K2 = 0, ω1 ± ω2 = 0. (10.18)

In a single horizontal dimension (normal incidence), this condition is satisfied with

k1 = −k2 =
K1 ±K2

2
, ω1 = ω2. (10.19)

Again the reflected wave (subscript 2) has the same wavenumber and frequency as the
incoming wave (subscript 1), but this time the resonance involves the bottom superharmonics
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Figure 10.6: Results for class II Bragg scattering.

K1 +K2, 2K1, 2K2 and the bottom subharmonic K1 −K2. This problem has been studied
experimentally and numerically by Guazzelli et al. (1992); O’Hare & Davies (1993); and
numerically e.g. by Athanassoulis & Belibassakis (1999); Chamberlain & Porter (1995); Liu
& Yue (1998); Suh et al. (1997).

We study the following case from Guazzelli et al. (1992): A doubly sinusoidal sea-bed with a
mean depth h0 = 2.5 cm, a ripple patch with length 48 cm, ripple amplitudes d1 = d2 = 0.5
cm, and ripple wavenumbers of K1 = π/3, K2 = π/2. In this case we apply the expansion
level ẑ = −0.275h0, which makes the ratio σ fluctuate between the limits of 0.2 and 0.43.
The case is nonlinear in bottom amplitude but linear in surface amplitude, so we again apply
the linear surface conditions. Simulations are made with ∆t = 0.0005 s and ∆x = 0.002,
corresponding to a resolution of 20 points per minimum bottom wave length.

Figure 10.6 shows a fairly good agreement between our computations and the measurements
of Guazzelli et al. (1992). First, we notice the distinct peaks occurring near the two class I
resonance frequencies at f1 = 3.35 Hz and f1 = 4.33 Hz corresponding to k1 = 0.5K1 and
k1 = 0.5K2, respectively. Second, we notice the peak near the subharmonic class II resonance
frequency f1 = 1.93 Hz corresponding to the wavenumber k1 = (K1−K2)/2. Guazzelli et al.
(1992), in their Figure 6, present numerical computations (using the successive-application-
matrix method, SAMM) with and without evanescent modes. For comparison, we have
included their results with evanescent modes in Figure 10.6, and the agreement with our
results is generally very good. In contrast, the results of Guazzelli et al. (1992) excluding
the evanescent modes (not shown here) tend to significantly underestimate the subharmonic
peak and to reduce the class I peaks to some extent. Similar underestimations were obtained
by Suh et al. (1997) on the basis of the modified mild-slope equations (their Figure 8b).
Obviously, we have done nothing to specifically account for the effect of evanescent modes in
our approach, but our results turn out to be very similar to the best of Guazzelli et al. (1992).
The likely explanation is that there is no need for evanescent modes as long as the exact
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bottom condition is solved in combination with velocity profiles which directly incorporate
the uneven bottom.

10.6.3 Class III Bragg resonance

Liu & Yue (1998) were the first to discuss and analyze the class III Bragg resonance, which
occurs when nonlinear surface waves interact with an undular sea bottom. This class defines
a third-order quartet wave-ripple interaction involving one bottom wavenumber K and three
surface wavenumbers k1, k2, k3., in which case the resonance condition (10.14) reads

k1 ± k2 ± k3 ± K = 0, ω1 + ω2 + ω3 = 0. (10.20)

As discussed by Liu & Yue (1998), this condition can be satisfied by accounting for the
incident wave twice i.e. with k1 = k2, in which case (10.20) leads to a reflected subharmonic
k3 = 2k1 −K or a transmitted superharmonic k3 = 2k1 +K, both generated at frequency
ω3 = 2ω1. In a single horizontal dimension (normal incidence), this resonance condition
simplifies to

k3 = 2k1 ±K, ω3 = 2ω1. (10.21)

Further simplifications were introduced by Liu & Yue (1998), as they invoked the linear
dispersion relation to obtain the approximations

ω3 ≈
√

gk3 tanh(k3h0), ω1 ≈
√

gk1 tanh(k1h0). (10.22)

Now (10.21) and (10.22) can be solved with respect to the surface wavenumbers k1, k3

for a given bottom wavenumber K and a given mean depth h0. As an example Liu &
Yue (1998) consider a patch of 36 sinusoidal ripples on an otherwise flat bottom, with
ripples defined by Kd = 0.25 and Kh0 = 2.642. In this case (10.21) and (10.22) predict a
subharmonic reflection at k3/K = 0.546 for an incident wavenumber of k1/K = 0.227, and a
superharmonic transmission at k3/K = 2.195 for an incident wavenumber of k1/K = 0.598.

We simulate this example by invoking the fully nonlinear surface conditions and by applying
the stream function theory of Fenton (1988) to describe the incident wave at the wavemaker.
The expansion level is chosen to be ẑ = −0.5h0, which makes the ratio σ fluctuate between
0.46 and 0.55, which is acceptable from a stability and accuracy point of view. Simulations
are generally made with h0 = 1 m, ∆t = 0.1 s, and ∆x = 0.12 m, corresponding to a
resolution of 20 points per bottom wavelength.

Firstly, we concentrate on the reflected class III subharmonic. Figure 10.7 (a) shows the
computed reflection coefficient defined by H3/H1 in the vicinity of k1/K = 0.227 for three
sets of incoming wave steepness k1H1 = 0.0609, 0.1272, and 0.18, respectively. Note that
the first two of these values correspond to k1a1 = 0.03 and 0.06, respectively, where a1 is
the amplitude of the first harmonic in the stream function solution. These are the two test
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cases simulated by Liu & Yue (1998), who extended the high-order spectral (HOS) method of
Dommermuth & Yue (1987) to the case of an uneven bottom. Their results are also included
in Figure 10.7 (a), and are seen to agree very well with our results, although a slight shift in
the resonance location can be observed. With increasing nonlinearity two obvious trends can
be observed from Figure 10.7 (a): 1) A gradual increase in the peak reflection coefficient,
and 2) a gradual downshift of the location of the peak resonance. The first part of this
observation is explained by the perturbation theory of Liu & Yue (1998), which predicts a
linear growth rate of the reflection coefficient with peaks of 0.22, 0.42, and 0.54 for the three
steepnesses considered in Figure 10.7 (a). As expected, the perturbation theory is quite
accurate for weak nonlinearities, while it severely overestimates the reflection coefficient for
stronger nonlinearity. With respect to the second observation, Liu & Yue (1998) did not
provide an explanation. Madsen et al. (2005) explain and accurately predict this downshift
of resonance, which will briefly be discussed at the end of this section.

Secondly, we concentrate on the transmitted class III superharmonic. In this particular case
we reduce the time step to ∆t = 0.04 s and the grid size to ∆x = 0.06 m, as the waves
involved in this process are shorter than experienced in connection with the subharmonic
reflection. Figure 10.7 (b) shows the computed transmission coefficient defined by H3/H1

in the vicinity of k1/K = 0.598 for four sets of incoming wave steepness k1H1 = 0.06, 0.12,
0.18, and 0.24. With increasing nonlinearity two obvious trends can be observed from Figure
10.7 (b): 1) A gradual increase in the peak transmission coefficient, and 2) a gradual upshift
of the location of the peak resonance. Again, the first part of this observation is explained
by the perturbation theory of Liu & Yue (1998), which predicts a linear growth rate of the
transmission coefficient with peaks of 0.074, 0.147, 0.22, and 0.29 for the four nonlinearities
considered in Figure 10.7 (b). This time the perturbation theory is surprisingly accurate,
even for the highly nonlinear cases.

Thirdly, we re-investigate the class I Bragg resonance, which is expected to occur in the
vicinity of k1/K = 0.5. In contrast to Figure 10.5, which was based on linear waves and
linear wavenumbers, Figure 10.7 (c) shows the computed reflection coefficients as a function
of the nonlinear wavenumber k1 determined from stream function theory. We notice a slight
downshift of the peak resonance for increasing nonlinearity, but the differences are actually
quite small.

The remaining open question concerning the class III Bragg scattering is: Why does the
reflection lead to a downshift and the transmission to an upshift of the resonance relative
to the predictions provided by (10.21) and (10.22)? Not surprisingly, the explanation turns
out to be amplitude dispersion in the interacting waves, and to quantify this effect we have
developed a third-order theory for bichromatic waves on arbitrary depth. The resulting
analysis is presented in Madsen et al. (2005) for the particular cases considered in this
subsection, which predict the behavior observed in Figures 10.7 (a) and (b) quite accurately.
For brevity, we do not present details of the analysis here. We mention that earlier work in
this direction was made by Hogan et al. (1988); Longuet-Higgins & Phillips (1962); Zhang &
Chen (1999), however their theories are limited to deep water waves and hence not applicable
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Figure 10.7: Results for class III Bragg scattering. Figure (a) shows the subharmonic reflec-
tion with 1–3: k1H1 = 0.0609, 0.1272, 0.18. Figure (b) shows the superharmonic transmission
with 1–4: k1H1 = 0.06, 0.12, 0.18, 0.24. Figure (c) shows the reflection coefficient for nonlin-
ear class I Bragg scattering with 1: Linear, 2–4: k1H1 = 0.06, 0.12, 0.18.
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to the present investigation. Full details on the third-order theory can be found in Madsen
& Fuhrman (2005); Madsen et al. (2005).

10.7 Conclusions

In this chapter new Boussinesq-type equations are presented for fully nonlinear and highly
dispersive water waves interacting with a potentially rapidly varying bathymetry. The deriva-
tion is an extension/generalization of the original Boussinesq formulation from Chapter 2,
which is valid on a mildly sloping bottom. The resulting formulation involves the assump-
tion that the expansion level ẑ(x, y) is slowly varying in space. On the other hand, for the
first time no mild-slope assumption about the variation of the sea bottom h(x, y) is invoked.
The final velocity expressions contain low-order derivatives of ẑ and up to fifth derivatives
of the velocity variables. For a constant depth the new formulation simplifies to the original
formulation of Madsen et al. (2002, 2003).

The choice of the expansion level ẑ is an important key to the successful use of the model.
Madsen & Agnon (2003); Madsen et al. (2002, 2003) concluded that on a constant depth the
best accuracy of the velocity profile, the linear dispersion relation and of nonlinear wave-wave
interactions is obtained when ẑ = −0.5h. On an uneven bottom this condition is obviously
generalized to ẑ = −0.5h(x, y), and this choice also leads to the best accuracy for linear
and nonlinear shoaling on a mildly sloping beach. Hence, this is the natural starting point
for most applications. However, on a rapidly varying bathymetry this condition will violate
the assumption of a slowly varying ẑ. As a result it becomes necessary to smooth ẑ so that
its higher derivatives and products of derivatives rapidly become insignificant. Undular sea
bottoms, in principle offer the most challenging situation, as the bottom wavenumbers are
often of the same order of magnitude as the surface wavenumbers. In this case it is typically
not feasible to relate ẑ to the rapidly varying bottom contours. Instead we use ẑ = −σ0h0

with σ0 ≤ 0.5, where h0 is a spatially averaged depth (in all cases presented herein this
corresponds to using a constant ẑ level).

As a consequence of smoothing ẑ for rapidly varying bathymetries, the ratio σ = −ẑ/h will
locally deviate from the optimal choice of 0.5. Fortunately, the formulation is relatively
robust, and errors in the linear dispersion relation will be limited to less than 2.5% for
kh < 15 when 0.20 ≤ σ ≤ 0.55. These bounds should generally not be violated, however. If
the upper bound is exceeded singularities appear in the dispersion relation, and these may
lead to numerical instabilities if the Nyquist wavenumber is sufficiently large. Alternatively,
relatively large dispersive errors will occur in quite shallow water if the lower bound is
violated.

The resulting numerical model is verified on a wide range of test cases, only some of which
are presented here. Firstly, a linear shoaling case involving the range of dimensionless depths
0.35 ≤ kh ≤ 30 is considered, and the perfect match with linear theory confirms that the
new formulation maintains the excellent properties of the original formulation. Secondly,
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we consider reflection from a plane shelf in shallow water with slopes varying from 1/16 to
1.0. Numerical results are compared to Suh et al. (1997), and we conclude that accurate
results can be obtained for slopes up to 1.0. This case has also been used to show the clear
superiority of the new formulation (retaining ∇ẑ terms) in cases involving partial reflection
from rapid changes in bathymetry. We also simulate cases involving linear class I and II
Bragg scattering. The computed results compare very well with the measurements of Davies
& Heathershaw (1984), and the previous computations of Guazzelli et al. (1992), respectively.

Finally, we make fully nonlinear computations of class III Bragg scattering, recently dis-
covered and discussed by Liu & Yue (1998). New results are given for the subharmonic
and superharmonic interactions with the sea bed leading to reflection and transmission, re-
spectively. We observe a clear downshift/upshift of the peak reflection/transmission with
increasing nonlinearity, which can be explained from the third-order amplitude dispersion in
the resulting bichromatic wavefield.

It is the author’s opinion that the new (extended) system of equation presented in this chapter
should be the basis of future applications of this high-order Boussinesq formulation. It
contains embedded properties of equal quality to the original system presented in Chapter 2,
while also extending the range of applications to cases involving rapidly varying bathymetries,
at minimal added computational expense.



Chapter 11

Conclusions & Recommendations

As a wide number of topics have been touched upon, ranging from sparse matrix precon-
ditioning, to stability analyses (both numerical and physical), to various nonlinear wave
phenomena, the conclusions from this thesis are many. The most important of these are
highlighted in §11.1, with some additional reflections also provided. Particular attention
is paid here to new advancements/achievements in this thesis. Some recommendations for
further research are also provided in §11.2.

11.1 Conclusions

First and foremost, it has been established through initial testing, and (more importantly)
further applications, that the new and somewhat complicated high-order Boussinesq formu-
lation of Madsen et al. (2002, 2003) can indeed be solved efficiently and scalably in two
horizontal dimensions using the largely case-specific preconditioned iterative strategies de-
veloped in Chapter 4. This accomplishment alone is no small feat, as methods for efficiently
solving this (or reasonably similar) systems of PDEs seem to be lacking in the literature.
This issue was in fact a source of major concern for roughly the first half of the (three year)
project, as idea after idea (most not covered in the thesis for brevity) failed quite miserably
in deep water. This sparse matrix problem, for which efficient solutions were crucial for the
overall success of the project, finally fell with the development of the matrix free Fourier
space preconditioner in §4.6.3 (limited to solving flat-bottom problems or regular domains)
and the generally applicable approximate Schur complement preconditioner in §4.6.4. These
two methods in particular have proven their robustness throughout this thesis, and were
well worth their considerable time investment. Most notably, these methods provide an
elusive combination of robustness, efficiency, scalability, and reasonable storage demands,
which are essential elements for large scale applications. It is important to stress that, as
shown throughout Chapter 4, these methods are particularly adept at solving the irrotational
version of the equations (see §4.2).

173
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Secondly, the discrete system of PDEs has been thoroughly analyzed for numerical stability
in both one and two horizontal dimensions in Chapter 5. A first analysis of the linearized
system has provided a simple means for obtaining the fundamentally important time step
limitations for a given discretization. Linear analysis alone was found to not adequately
explain our experience with the nonlinear model, however, and the matrix-based analysis is
subsequently extended to include the local effects of the nonlinear terms in §5.6. While such
an approach is reasonably common (though certainly not standard) for simple nonlinear
systems, such an extension for the present high-order Boussinesq formulation is again a
non-trivial task. Despite this complexity, the local nonlinear analysis was able to show
distinct differences in the numerical stability of the rotational and irrotational formulations;
namely that the irrotational formulation has much better stability properties when high
nonlinearity is combined with large depths or refined grids, confirming our own general
experience. This is an important conclusion, as many of the practical applications of the
model involve highly nonlinear waves in deep water. Given that the rotational system was
also significantly more difficult to precondition, it can be concluded that the irrotational
version seems most attractive for applications of the numerical model, and has consequently
been used throughout most of this work.

With efficient and numerically stable solution strategies firmly in place, and after a thorough
validation procedure described in Chapter 6, it was finally possible to realize the true ob-
jective of this project: To simulate various two and (especially) three-dimensional nonlinear
water wave phenomena, with the added hope of providing further insight into the compli-
cated physical processes involved. This work begins by considering the nonlinear interaction
of symmetric wave fronts at oblique incident angles in Chapter 7, resulting in various short-
crested wave patterns. Here simulations in both shallow and deep water are considered,
resulting in the characteristic hexagonal and rectangular shapes observed in experiments
as well as in previous computations. Simulations of the deep water (rectangular) surface
patterns demonstrate a number of interesting phenomena. Notably, there is a modulation
along the propagating direction, resulting in crest forms varying from peaked (at the center)
to flat, to having dips along the centerline. This behavior was also observed in physical
experiments, but not properly explained. It is demonstrated that these modulations are in
fact third-order artifacts of using first-order wavemaker conditions, resulting in a parasitic
release of free first harmonics. These effects are due to the three-dimensionality of the prob-
lem, and disappear at the plane wave limit. This new explanation makes apparent the need
for a third-order (three-dimensional) wavemaker theory before steady short-crested waves of
moderate to large wave steepness can be produced experimentally.

Applications of the numerical model are continued in Chapter 8 where an extensive fully
nonlinear numerical study of the fascinating phenomenon of crescent (or horseshoe) waves
is undertaken. These occur on the water surface due to the (class II, see McLean, 1982b) in-
stability of steep Stokes waves to three-dimensional periodic perturbations, corresponding to
a five-wave resonant interaction. The most unstable (phase-locked) L2 crescent patterns are
firstly studied, where, among other things, the growth rate of the instability is investigated.
The simulations suggest that accelerated growth rates (compared to the linear theory) are
possible at later stages of crescent development, as well as during the evolution into a pre-
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existing crescent wave train. The model is also used to demonstrate the effects of variable
nonlinearity on these patterns.

Secondly, the related oscillating crescent patterns, observed recently by Collard & Caulliez
(1999), are studied. The simulations match their observations well both qualitatively and
quantitatively. Furthermore, the original analysis of McLean (1982b) is extended to cases
involving unsymmetric (unstable) satellite pairs, and it is demonstrated that this analysis
is useful in providing accurate quantitative estimates of the observed oscillation periods.
Further investigation with this analysis also leads to a possible explanation for the inception
mechanism of the oscillating patterns in the experiments, which has not been previously
explained. It is demonstrated that for a certain space of parameters it is possible for the
dominant class II instability to result in oscillating patterns similar to those observed in
the experiments. The new explanation suggests that the observed patterns were in part an
artifact of the tank width combined with a suppression of the class I (Benjamin & Feir, 1967)
instability. Computed L3 and L4 patterns (as denoted in Su, 1982) are also demonstrated,
which occur momentarily during model transitional states.

Finally, the model is used to conduct a number of experiments involving the initial compe-
tition of various unstable modes to the breaking point. These generally demonstrate that
multiple unstable modes can grow simultaneously, consistent with previous findings. Simu-
lations involving random disturbances also show good agreement with physical experiments,
both in the form (i.e. two or three dimensional) as well as in the location of the initial insta-
bility. Deviations from the standard L2 crescent pattern also arise naturally, consistent with
observations. Chapter 8, in the author’s opinion, represents a significant step forward in the
study of these phenomena. With the exception of Xue et al. (2001), whose simulations were
limited to small domains and short time scales, all previous numerical studies were limited
to weakly nonlinear simulations. It will be interesting in the future to hopefully see other
fully nonlinear studies on these phenomena, which build further on our results.

Chapter 9 tackles the challenging task of implementing piecewise-rectangular bottom-mounted
structures into the basic finite difference model. While conceptually this task is trivial, the
practical difficulties are considerable. This is mainly due to the necessity of discretizing high
(up to fifth-) order derivatives around theoretically singular exterior corner points, result-
ing in potential stability and convergence problems. Fortunately, the system is receptive
to dissipation, and repeated local applications of high-order smoothing filters are a simple
yet effective means for managing these difficulties in practice, while minimizing damage to
modes of physical interest. The model is used to provide reasonably accurate (though not
perfect) results involving both linear and nonlinear diffraction. The most impressive of the
results are those involving highly nonlinear deep water wave run-up on a vertical bottom-
mounted plate, previously studied experimentally and analytically by Molin et al. (2004,
2003). For the entire range of incident wave steepness considered the match with experi-
mental measurements is demonstrated to be excellent, resulting in wave amplifications much
greater than predicted from linear theory. In the most extreme case a local wave steepness
of H/L > 0.20 is observed in front of the plate, presenting physical situations beyond the
capabilities of most (if not all) previous Boussinesq-type formulations.
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Finally, the original Boussinesq formulation described in Chapter 2 is extended and gener-
alized in Chapter 10 to allow for applications with rapidly varying bathymetry. Simulations
involving linear shoaling, reflection from a plane shelf, and class I and II Bragg scattering
demonstrate the accuracy of the new formulation in its linearized form. Nonlinear simu-
lations involving class III Bragg scattering are also shown, and new results extending the
previous simulations of Liu & Yue (1998) are presented. These simulations demonstrate a
clear downshift/upshift for the reflected/transmitted class III Bragg resonance. These obser-
vations can be attributed to the third-order interaction between the incoming and reflected
wavefields. This new formulation contains linear and nonlinear properties equal in quality
to the original formulation, while extending the range of applicability to cases with rapidly
varying bathymetry, at a minimal increase in the computational expense. Therefore, in
the author’s opinion this new formulation should be the focus of future research with this
high-order Boussinesq model.

This thesis establishes the high-order Boussinesq-type approach of Madsen et al. (2002,
2003) as an attractive method for the study of highly nonlinear and dispersive water waves
in two horizontal dimensions. The developed model is capable of efficiently treating three-
dimensional fully nonlinear waves over a large range of (now rapidly) varying water depths,
including on piecewise rectangular domains. The wide variety of nonlinear wave phenomena
investigated herein is a testament to the versatility of this approach. Numerical simula-
tions with the model, in combination with ever-important analysis, have led to a deeper
understanding of many complicated physical processes within the field of nonlinear wave
hydrodynamics.

11.2 Recommendations

It finally seems appropriate to provide some recommendations for further research in the
areas touched upon in this thesis. The author can truly think of a large number of interesting
directions to turn, furthering the work presented here. Below are some ideas for future
research, which the author finds particularly stimulating.

Firstly, given that the irrotational version seems to be more attractive numerically than
the rotational version, it seems logical to replace the horizontal velocities with a velocity
potential, hence reducing the number of unknowns. Based on the number of nonzeros in
the resulting matrix this might be expected to require a work load of only 4/9 (i.e. roughly
half) of the current implementation. It should be stressed, however, that this figure does not
account for any loss of numerical accuracy, which might be expected due to an increase in
the order of derivatives that must be taken (a similar velocity potential model would require
a sixth-derivative).

From the numerical side of things, it seems doubtful that the preconditioning methods de-
veloped in Chapter 4 can be significantly improved in terms of their robustness and iteration
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counts. However, it would be interesting in the future to investigate parallel solution strate-
gies, particularly for the Schur complement preconditioner, which would allow for even larger
domains than those presented in this work. This would essentially require parallel imple-
mentations of the sparse matrix-vector product and the direct factorization methods. These
components are known to be parallelizable, and can be found in various software packages.

It would also be interesting to pursue various alternative spatial discretizations, to further
reduce the required resolution for a given problem, which is especially important when two
horizontal dimensions are considered. Spectral discretizations using Fast Fourier Transforms
might be of interest, which would also directly incorporate periodic boundary conditions,
which are beneficial for certain types of problems.

Similarly, higher-order finite difference discretizations might also be attractive. In particular,
it should be possible to implement a corresponding high-order sparse matrix-vector product
without actually constructing the matrix, which would also significantly reduce the storage
demands. Furthermore, each of the high-order mixed derivatives could be built up using
successive line applications of pure x- and y-derivatives, generally simplifying the implemen-
tation. Such a matrix-free method is particularly attractive in combination with the Fourier
space preconditioner (i.e. on flat bottom problems), which should then allow for very large
domains to be simulated with very low (perhaps negligible) storage requirements. Indeed,
the only remaining (potential) storage burden would be that from the GMRES algorithm. In
cases where this were limiting, preliminary testing has already shown that the BiCGSTAB
algorithm of van der Vorst (1992), which has minimal storage demands, requires only slightly
more matrix-vector products for convergence.

There are also many obvious extensions of the nonlinear simulations treated within this
thesis, which involve a number of interesting nonlinear wave phenomena. Extending the work
of Chapter 7, it would certainly be of interest to simulate truly steady three dimensional
short-crested waves. This should be possible using any of the various perturbation theories
from the literature (e.g. Hogan et al., 1988; Hsu et al., 1979) as incident waves, and would
provide further verification that the observed phenomena are indeed artifacts of the first-
order wavemaker conditions used here, though the author does not consider this to be in
question. Given the demonstrated inadequacies of current wavemaking practice for these
patterns, as pointed out in this thesis, numerical investigations into these phenomena seem
to currently be the best method for studying these particular steady forms.

While the numerical study of crescent waves in Chapter 8 is rather extensive, there is still
an additional need to study the long term evolution of these patterns, beyond the initial
breaking point. This would of course, also require a breaking model, which is currently
being developed.

Furthering the work of Chapter 9, where bottom-mounted structures were incorporated, it
would be interesting to investigate other discretization strategies around the exterior corner
points, with the hope of improving the general numerical stability. This might best be
pursued in the context of a previously mentioned velocity potential formulation. This work
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is currently under investigation by researchers at the Hydrodynamics Department, Ecole
Supérieure d’Ingénieurs de Marseille, France; see e.g. Jamois et al. (2004). Incorporating
floating bodies into the model might also be interesting.

There are indeed numerous additional nonlinear water wave phenomena which still need to
be studied. An area currently receiving much attention is that of freak waves: extremely
large waves appearing on the sea surface, often from nowhere; see e.g. the recent review of
Kharif & Pelinovsky (2003). Given the fully nonlinear capabilities of the the present high-
order Boussinesq model, in combination with its demonstrated computational efficiency,
this seems like a natural area to pursue. It is expected that the Boussinesq model could be
quite useful in studying these phenomena, especially in combination with some of the other
improvements discussed in this section.
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Madsen, P. A., Sørensen, O. R. & Schäffer, H. A. 1997a Surf zone dynamics
simulated by a Boussinesq type model. Part 1: Model description and cross-shore motion
of regular waves. Coast. Eng. 32, 255–283.

Madsen, P. A., Sørensen, O. R. & Schäffer, H. A. 1997b Surf zone dynamics
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Appendix A

Differential Operators

This section includes the various operators in the system of PDEs denoted herein as A. The
enhanced free surface operators from the rotational system (4.6) are

A1 = 1 − α2

(

∂2

∂x2
+

∂2

∂y2

)

+ α4

(

∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4

)

, (A.1)

A11 = 1 − α2

(

∂2

∂x2

)

+ α4

(

∂4

∂x4
+

∂4

∂x2∂y2

)

, (A.2)

A2 = −α2

(

∂2

∂x∂y

)

+ α4

(

∂4

∂x3∂y
+

∂4

∂x∂y3

)

, (A.3)

B11 = (η − ẑ)

(

∂

∂x

)

− β3

(

∂3

∂x3
+

∂3

∂x∂y2
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+ β5

(

∂5

∂x5
+ 2

∂5

∂x3∂y2
+

∂5

∂x∂y4

)

, (A.4)

A22 = 1 − α2

(

∂2

∂y2

)

+ α4

(

∂4

∂x2∂y2
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∂4

∂y4
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, (A.5)
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, (A.6)

with the α and β coefficients in (2.42) applied at z = η. The basic bottom operators are

A01 = (h+ẑ)
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(h+ẑ)3

(

∂3

∂x2∂y
+

∂3

∂y3

)

+
1

945
(h+ẑ)5
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(A.8)
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B0 = 1 − 4
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. (A.9)

The bottom slope operators (in the x-direction) are

C11 = 1 − c2(h+ ẑ)2
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and in the y-direction

C21 = C12, (A.13)
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(

∂4

∂x2∂y2
+

∂4

∂y4

)

, (A.14)

C23 = (h+ ẑ)
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The additional bottom slope operator used in the irrotational system (4.8) is

C1 = 1 − c2(h+ ẑ)2
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Appendix B

Finite Difference Approximations

This appendix provides the various finite difference approximations used in the Boussinesq
model, as introduced in §3.2.

B.1 One-Dimensional Derivative Approximations

Second-order accurate finite difference approximations for the first five pure x-derivatives
are:

∂f

∂x
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2
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)

+O(∆x2), (B.1)
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∂3f
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2
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)

+O(∆x2). (B.5)

Similarly, seven-point approximations for the first five derivatives are
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Finite difference approximations for pure y-derivatives are analogous to those listed previ-
ously.

B.2 Mixed Derivative Approximations

For the remainder of this appendix finite difference approximations for mixed derivative
terms are given with the following stencil notation

∂m+n

∂xm∂yn
≈ 1

∆xm∆yn
Fm,n. (B.11)

Here the truncation error will be written under the assumption that O(χ) ≡ O(∆x) ≡ O(∆y)
for simplicity. Second-order mixed finite difference approximations are
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]
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Note that finite difference approximations for ∂3

∂x∂y2 ,
∂4

∂x∂y3 ,
∂5

∂x∂y4 , and ∂5

∂x2∂y3 derivatives can

readily be found using (B.11) combined with the identity Fm,n = FT
n,m, and are thus not

explicitly given here.

With the full 25-point (diamond) stencil the following finite difference approximations change
to
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−1/12 1/6 1/12



+O(χ4). (B.20)

Mixed finite difference approximations for the 37-point (octagon) stencil are

∂2

∂x∂y
=

1

∆x∆y











−1/120 0 1/120
−1/144 4/45 0 −4/45 1/144

−1/120 4/45 −19/36 0 19/36 −4/45 1/120
0 0 0 0 0 0 0

1/120 −4/45 19/36 0 −19/36 4/45 −1/120
1/144 −4/45 0 4/45 −1/144

1/120 0 −1/120











+O(χ6), (B.21)

∂3

∂x2∂y
=

1

∆x2∆y











1/60 −1/30 1/60
1/144 −8/45 41/120 −8/45 1/144

1/180 −4/45 19/18 −35/18 19/18 −4/45 1/180
0 0 0 0 0 0 0

−1/180 4/45 −19/18 35/18 −19/18 4/45 −1/180
−1/144 8/45 −41/120 8/45 −1/144

−1/60 1/30 −1/60











+O(χ6), (B.22)

∂4

∂x2∂y2
=

1

∆x2∆y2











1/90 −1/45 1/90
1/144 −8/45 41/120 −8/45 1/144

1/90 −8/45 19/9 −35/9 19/9 −8/45 1/90
−1/45 41/120 −35/9 257/36 −35/9 41/120 −1/45
1/90 −8/45 19/9 −35/9 19/9 −8/45 1/90

1/144 −8/45 41/120 −8/45 1/144
1/90 −1/45 1/90











+O(χ6), (B.23)

∂4

∂x3∂y
=

1

∆x3∆y





1/24 −1/12 0 1/12 −1/24
1/16 −7/12 47/48 0 −47/48 7/12 −1/16

0 0 0 0 0 0 0
−1/16 7/12 −47/48 0 47/48 −7/12 1/16

−1/24 1/12 0 −1/12 1/24



+O(χ4), (B.24)

∂5

∂x4∂y
=

1

∆x4∆y





−1/12 1/3 −1/2 1/3 −1/12
−1/12 7/6 −47/12 17/13 −47/12 7/6 −1/12

0 0 0 0 0 0 0
1/12 −7/6 47/12 −17/13 47/12 −7/6 1/12

1/12 −1/3 1/2 −1/3 1/12



+O(χ4), (B.25)
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∂5

∂x3∂y2
=

1

∆x3∆y2





1/24 −1/12 0 1/12 −1/24
1/8 −7/6 47/24 0 −47/24 7/6 −1/8
−1/4 9/4 −15/4 0 15/4 −9/4 1/4
1/8 −7/6 47/24 0 −47/24 7/6 −1/8

1/24 −1/12 0 1/12 −1/24



+O(χ4). (B.26)

Finally, mixed finite difference approximations for the 49-point (square) stencil are

∂2

∂x∂y
=

1

∆x∆y











1/3600 −1/400 1/80 0 −1/80 1/400 −1/3600
−1/400 9/400 −9/80 0 9/80 −9/400 1/400
1/80 −9/80 9/16 0 −9/16 9/80 −1/80

0 0 0 0 0 0 0
−1/80 9/80 −9/16 0 9/16 −9/80 1/80
1/400 −9/400 9/80 0 −9/80 9/400 −1/400

−1/3600 1/400 −1/80 0 1/80 −1/400 1/3600











+O(χ6), (B.27)

∂3

∂x2∂y
=

1

∆x2∆y











1/5400 1/400 −1/40 49/1080 −1/40 1/400 −1/5400
1/600 −9/400 9/40 −49/120 9/40 −9/400 1/600
−1/120 9/80 −9/8 49/24 −9/8 9/80 −1/120

0 0 0 0 0 0 0
1/120 −9/80 9/8 −49/24 9/8 −9/80 1/120
−1/600 9/400 −9/40 49/120 −9/40 9/400 −1/600
−1/5400 −1/400 1/40 −49/1080 1/40 −1/400 1/5400











+O(χ6), (B.28)

∂4

∂x2∂y2
=

1

∆x2∆y2











1/8100 −1/600 1/60 −49/1620 1/60 −1/600 1/8100
−1/600 9/400 −9/40 49/120 −9/40 9/400 −1/600
1/60 −9/40 9/4 −49/12 9/4 −9/40 1/60

−49/1620 49/120 −49/12 2401/324 −49/12 49/120 −49/1620
1/60 −9/40 9/4 −49/12 9/4 −9/40 1/60

−1/600 9/400 −9/40 49/120 −9/40 9/400 −1/600
1/8100 −1/600 1/60 −49/1620 1/60 −1/600 1/8100











+O(χ6),

(B.29)

∂4

∂x3∂y
=

1

∆x3∆y











−1/480 1/60 −13/480 0 13/480 −1/60 1/480
3/160 −3/20 39/160 0 −39/160 3/20 −3/160
−3/32 3/4 −39/32 0 39/32 −3/4 3/32

0 0 0 0 0 0 0
3/32 −3/4 39/32 0 −39/32 3/4 −3/32

−3/160 3/20 −39/160 0 39/160 −3/20 3/160
1/480 −1/60 13/480 0 −13/480 1/60 −1/480











+O(χ4), (B.30)

∂5

∂x4∂y
=

1

∆x4∆y











1/360 −1/30 13/120 −7/45 13/120 −1/30 1/360
−1/40 3/10 −39/40 7/5 −39/40 3/10 −1/40
1/8 −3/2 39/8 −7 39/8 −3/2 1/8
0 0 0 0 0 0 0

−1/8 3/2 −39/8 7 −39/8 3/2 −1/8
1/40 −3/10 39/40 −7/5 39/40 −3/10 1/40

−1/360 1/30 −13/120 7/45 −13/120 1/30 −1/360











+O(χ4), (B.31)

∂5

∂x3∂y2
=

1

∆x3∆y2











1/720 −1/90 13/720 0 −13/720 1/90 −1/720
−3/160 3/20 −39/160 0 39/160 −3/20 3/160
3/16 −3/2 39/16 0 −39/16 3/2 −3/16

−49/144 49/18 −637/144 0 637/144 −49/18 49/144
3/16 −3/2 39/16 0 −39/16 3/2 −3/16

−3/160 3/20 −39/160 0 39/160 −3/20 3/160
1/720 −1/90 13/720 0 −13/720 1/90 −1/720











+O(χ4). (B.32)



Appendix C

Fourier Analysis of Savitzky-Golay

Smoothing Filters

This appendix provides details for the standard Fourier analysis of the various Savitzky-
Golay smoothing filters in §3.6 (see also §9.3). Note that the method described is similarly
valid for the analysis of any operation that constitutes a convolution in a single dimension.
Summing the rows (or columns) of a given two-dimensional filter is firstly used to simplify
the problem to a single dimension, as described e.g. in §3.6. A single application of such a
one-dimensional smoothing filter s spanning 2α + 1 grid points centered about grid point j
can be written as

f ∗(j) =

j+α
∑

q=j−α

sq−jf(q), (C.1)

where si refers to the coefficient of the smoothing filter at index i, where −α ≤ i ≤ α.
Here the ∗ superscript refers to the function value after the smoothing filter is applied on
the original discrete function f . This operation can be analyzed in Fourier space simply by
inserting the individual Fourier components

f(j) ⇒ f̌ eijθ, f ∗(j) ⇒ f̌ ∗eijθ, (C.2)

where θ = 2π/N , with N = L/∆x the number of grid points per wavelength, and where f̌
and f̌ ∗ represent the respective Fourier amplitudes. This leads directly to

f̌ ∗eijθ =

j+α
∑

q=j−α

sq−j f̌ e
iqθ. (C.3)

By arbitrarily setting j = 0, dividing both sides by f̌ , and taking the absolute value, this
can be written in terms of the amplification factor |A| as

|A| =

∣

∣

∣

∣

f̌ ∗

f̌

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

α
∑

q=−α

sqe
iqθ

∣

∣

∣

∣

∣

, (C.4)
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which describes the relative amplification of a given mode discretized with N grid points
per wavelength resulting from a single application of the filter s. The resulting expression
for a given filter can often be simplified further, however this general form can easily be
evaluated e.g. in Matlab r© or MathematicaTM. Using (C.4) it is straight-forward to produce
amplification portraits for the various smoothing filters, e.g. as shown in Figure 3.3, simply
by varying N .

Note that if the effects of multiple applications are desired, e.g. as in Figure 9.3, the value
for |A| in (C.4) should simply be raised to the power ns, the number of successive smoothing
applications.



Appendix D

The Jacobian Matrix

This appendix provides a complete description for the computation of the individual com-
ponents of the Jacobian matrix from (5.27), which is used in the local nonlinear stability
analysis in §5.6. Direct differentiation of (5.23)-(5.25) as implied by the elements in (5.27)
leads to

∂

∂η

(

∂η

∂t

)

= −Ũ ∂

∂x
− Ṽ

∂

∂y
+ 2w̃

(

∂η

∂x

∂

∂x
+
∂η

∂y

∂

∂y

)

+D∇2, (D.1)

∂

∂Ũ

(

∂η

∂t

)

= −∂η
∂x

+

(

1 +

(

∂η

∂x

)2

+

(

∂η

∂y

)2
)

∂w̃

∂Ũ
, (D.2)

∂

∂Ṽ

(

∂η

∂t

)

= −∂η
∂y

+

(

1 +

(

∂η

∂x

)2

+

(

∂η

∂y

)2
)

∂w̃

∂Ṽ
, (D.3)

∂

∂η

(

∂Ũ

∂t

)

= −g ∂
∂x

+ 2w̃
∂w̃

∂x

(

∂η

∂x

∂

∂x
+
∂η

∂y

∂

∂y

)

+

w̃2

(

∂2η

∂x∂y

∂

∂y
+
∂η

∂y

∂2

∂x∂y
+
∂2η

∂x2

∂

∂x
+
∂η

∂x

∂2

∂x2

)

, (D.4)

∂

∂Ũ

(

∂Ũ

∂t

)

= −∂Ũ
∂x

− Ũ
∂

∂x
+

(

1 +

(

∂η

∂x

)2

+

(

∂η

∂y

)2
)

(

∂w̃

∂x

∂w̃

∂Ũ
+ w̃

∂

∂Ũ

(

∂w̃

∂x

))

+

2w̃

(

∂η

∂y

∂2η

∂x∂y
+
∂η

∂x

∂2η

∂x2

)

∂w̃

∂Ũ
+D∇2, (D.5)

∂

∂Ṽ

(

∂Ũ

∂t

)

= −∂Ṽ
∂x

− Ṽ
∂

∂x
+

(

1 +

(

∂η

∂x

)2

+

(

∂η

∂y

)2
)

(

∂w̃

∂x

∂w̃

∂Ṽ
+ w̃

∂

∂Ṽ

(

∂w̃

∂x

))

+

2w̃

(

∂η

∂y

∂2η

∂x∂y
+
∂η

∂x

∂2η

∂x2

)

∂w̃

∂Ṽ
, (D.6)
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∂

∂η

(

∂Ṽ

∂t

)

= −g ∂
∂y

+ 2w̃
∂w̃

∂y

(

∂η

∂x

∂

∂x
+
∂η

∂y

∂

∂y

)

+

w̃2

(

∂2η

∂y2

∂

∂y
+
∂η

∂y

∂2

∂y2
+

∂2η

∂x∂y

∂

∂x
+
∂η

∂x

∂2

∂x∂y

)

, (D.7)

∂

∂Ũ

(

∂Ṽ

∂t

)

= −∂Ũ
∂y

− Ũ
∂

∂y
+

(

1 +

(

∂η

∂x

)2

+

(

∂η

∂y

)2
)

(

∂w̃

∂y

∂w̃

∂Ũ
+ w̃

∂

∂Ũ

(

∂w̃

∂y

))

+

2w̃

(

∂η

∂y

∂2η

∂y2
+
∂η

∂x

∂2η

∂x∂y

)

∂w̃

∂Ũ
, (D.8)

∂

∂Ṽ

(

∂Ṽ

∂t

)

= −∂Ṽ
∂y

− Ṽ
∂

∂y
+

(

1 +

(

∂η

∂x

)2

+

(

∂η

∂y

)2
)

(

∂w̃

∂y

∂w̃

∂Ṽ
+ w̃

∂

∂Ṽ

(

∂w̃

∂y

))

+

2w̃

(

∂η

∂y

∂2η

∂y2
+
∂η

∂x

∂2η

∂x∂y

)

∂w̃

∂Ṽ
+D∇2, (D.9)

where (similar to §5.5)

w̃ = A1Z31Ũ + A1Z32Ṽ − B11Z11Ũ − B11Z12Ṽ − B12Z21Ũ − B12Z22Ṽ , (D.10)

∂w̃

∂Ũ
= A1Z31 − B11Z11 − B12Z21, (D.11)

∂w̃

∂Ṽ
= A1Z32 − B11Z12 − B12Z22. (D.12)

Note that while η is included (via the operators Ai, Bi, and Zi) in the local determination
for w̃ in (D.10), there are formally ∂w̃

∂η
terms missing in (D.1), (D.4), and (D.7). The neglect

of these terms is justified by the weak dependence of the operators on η (particularly in deep
water), and by the extreme complexity of doing otherwise.

Finally, it is again implied that to form the actual Jacobian matrix J the continuous operators
specified in this appendix must be considered respectively in their discrete forms.



Appendix E

Stability Analysis of Finite Amplitude

Deep Water Waves

This appendix describes the stability analysis of plane finite amplitude deep water waves
to three-dimensional periodic perturbations. The analysis follows closely the original work
of McLean (1982b) (note also the similar work of McLean, 1982a, for finite depth gravity
waves). Results from this analysis can be found throughout Chapter 8, especially in Tables
8.3 and 8.4 from §8.4.3. The analysis is also used in §8.4.4.

E.1 Governing Equations

Consider surface gravity waves on an inviscid, irrotational, incompressible fluid of great
depth. In a frame of reference moving with constant speed c (taken to be the speed of the
unperturbed wave η̄, here assumed to be periodic in x and plane in y), the basic equations
are (McLean, 1982b)

∇2φ = 0, −∞ < z < η
φ ∼ −cx, z → −∞,

}

, (E.1)

φt + η + 1
2

(

φ2
x + φ2

y + φ2
z

)

= 1
2
c2

ηt + φxηx + φyηy − φz = 0

}

z = η. (E.2)

Following McLean (1982b), without loss of generality, we have here taken the gravitational
acceleration g to be unity. We consider the stability of two-dimensional steady waves to an
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infinitesimal three-dimensional disturbance. Let

η = η̄ + ǫη′, φ = φ̄+ ǫφ′, (E.3)

where it is assumed that ǫ ≪ 1. Inserting (E.3) into (E.2) and neglecting terms of O(ǫ2)
gives

η̄ + 1
2
(φ̄2

x + 1
2
φ̄2

z) + ǫ(φ′
t + η′ + φ̄xφ

′
x + φ̄zφ

′
z) = 1

2
c2

φ̄xη̄x − φ̄z + ǫ(η′t + φ̄xη
′
x + φ′

xη̄x − φ′
z) = 0

}

z = η. (E.4)

We wish to express the equations at z = η̄ rather than at z = η. This can be achieved via
the use of the following Taylor series expansions

φ̄z|z=η = φ̄z + ǫη′φ̄zz|z=η̄ +O(ǫ2), φ̄x|z=η = φ̄x + ǫη′φ̄xz|z=η̄ +O(ǫ2). (E.5)

Inserting (E.5) into (E.4), and collecting terms of O(ǫ) gives

φ′
t + η′ + φ̄xφ

′
x + φ̄zφ

′
z + (φ̄xφ̄xz + φ̄zφ̄zz) = 0

η′t + φ̄xη
′
x + φ′

xη̄x + (φ̄xzη̄x − φ̄zz)η
′ − φ′

z) = 0

}

z = η̄. (E.6)

Similarly, inserting (E.3) into (E.1) and collecting the O(ǫ) term leads directly to

∇2φ′ = 0, −∞ < z < η̄, (E.7)

which is again just the Laplace equation for φ′.

E.2 The Eigenvalue Problem

We will now describe the formulation of an eigenvalue problem for analyzing the stability of
the unperturbed wave η̄ subject to the infinitesimal perturbation η ′. We look for non-trivial
solutions to (E.6) and (E.7) of the form

η′ = e−iσtei(px+qy)

∞
∑

j=−∞
aje

ijx, (E.8)
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φ′ = e−iσtei(px+qy)

∞
∑

j=−∞
bje

ijxeγz, (E.9)

where p and q are arbitrary real numbers and γ =
√

(p+ j)2 + q2. The physical disturbance
corresponds to the real part of (E.8) and (E.9). Substituting (E.8) and (E.9) into (E.6) gives

(1 + φ̄xφ̄xz + φ̄zφ̄zz)
∞
∑

j=−∞
aje

ijx +
∞
∑

j=−∞
(ρφ̄x + γφ̄z) · bjeijxeγη̄ = iσ

∞
∑

j=−∞
bje

ijxeγη̄, (E.10)

∞
∑

j=−∞
(φ̄xzη̄x − φ̄zz + ρφ̄x)aje

ijx +
∞
∑

j=−∞
(η̄x − γ) · bjeijxeγη̄ = iσ

∞
∑

j=−∞
aje

ijx, (E.11)

where ρ = i(p+ j). Note that the left hand sides of (E.10) and (E.11) arise from the spatial
derivative terms in (E.6), while the right hand sides arise from the time derivative terms.

The analysis proceeds by firstly calculating the unperturbed wave η̄, φ̄, which is assumed
here to have a wavenumber k0 of unity, with wavelength L = 2π. Truncating (E.8) and
(E.9) at M modes, and applying (E.10) and (E.11) at 2M +1 equidistant grid points within
0 ≤ x ≤ L then yields a generalized eigenvalue problem of order 4M + 2 of the form

(A − σB)u = 0, (E.12)

where the eigenvector is u = {a−M , · · · , aM , b−M , · · · , bM}. The present analysis is made
using MathematicaTM, which unfortunately does not have a generalized eigenvalue solver.
Therefore (E.12) is first converted to the standard eigenvalue problem

(Z − Iσ)u = 0, (E.13)

where Z = B−1A, before solving.

E.3 Analysis of Linear Waves

For a linear carrier wave η̄ = 0, φ̄ = −x, and c = 1. The system comprised of (E.10) and
(E.11) can be written in the form (E.12) with

A =

[

eijx −ρeijx

−ρeijx −j − p

]

, B =

[

0 ieijx

ieijx 0

]

, (E.14)

giving

Z = B−1A =

[

−2 − p iγ
−i −2 − p

]

. (E.15)
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Figure E.1: An example of an eigenvector corresponding to a stable eigenvalue from an
analysis of a linear (infinitesimal) unperturbed wave.

This gives the eigenvalues

σj = −(p+ j) ± ((p+ j)2 + q2)0.25, (E.16)

for each integer j. These correspond to infinitesimal modes with wavenumber k′ = (k′x, k
′
y) =

(p + j, q) and frequencies σj = −k′x ± |k′|0.5. This is in fact just the (deep water) linear

dispersion relation in a frame of reference moving with speed c =
√

g/k = 1, which should
be expected.

We may use this linear result as an initial test for the numerical eigenvalue solver for a
specific value of p and q. We set the discrete free surface to be flat i.e. η̄ = 0 with φ̄ = −x
everywhere. As an example, with p = 0.5, q = 1, and M = 2 the computed j = 1 eigenvalues
are σ = {−2.8427,−0.1573}, in perfect agreement with (E.16). As the eigenvalues are real,
the linear carrier wave is stable to this perturbation. The absolute values of the aj coefficients
from the eigenvector corresponding to the second eigenvalue is given in Figure E.1. As should
be expected, this has a peak at j = 1, with all other components equal to zero. This indicates
that there is no interaction between the various modes, which should also be expected in the
linear case.

E.4 Analysis of Finite Amplitude Waves

We will now describe the analysis of finite amplitude steady waves. For the unperturbed
wave we use the stream function solution of Fenton (1988), with kh = 4π (i.e. very deep), and
with Stokes’ drift velocity cs = 0. The solution is typically truncated at M Fourier modes,
matching the earlier truncations of (E.8) and (E.9). Once the matrices are constructed
and the eigenvalues computed, we can restrict our attention to those eigenvalues having
non-zero imaginary part, as these correspond to a physical instability. This can readily
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Figure E.2: Computed class I eigenvector components (H/L = 0.064, M = 10, p = 0.32,
q = 0) corresponding to (a) an unconverged eigenvalue and (b) a converged class I eigenvalue.

be seen e.g. by considering the assumed form of the perturbations (E.8) and (E.9). The
analysis is more complicated than simply choosing the ‘most unstable’ eigenvalue (i.e. with
the largest imaginary part), however. The eigenvector must also be used to interpret the
physical significance of each eigenvalue.

As an example, we consider a case with H/L = 0.064, M = 10, p = 0.32, and q = 0
(hence these perturbations are two-dimensional). The analysis yields two unstable eigenval-
ues: −0.207 + 3.504i and −0.146 + 0.0134i, with the first eigenvalue having a significantly
larger imaginary part than the second. Eigenvector components for each case are plotted
in Figure E.2. In Figure E.2 (a) eigenvector components corresponding to the first eigen-
value are shown. Clearly this does not represent a converging expansion, as the expansion
coefficients aj are actually growing as |j| becomes larger. Furthermore, the peaks of the
shown eigenvector are at j = ±10, which suggests an interaction between modes having
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Figure E.3: Converged class II eigenvector components from a case with H/L = 0.064,
M = 10, p = 0.5, and q = 1.54.

wavenumbers k′
1 = (p+ 10, q) and k2 = (10 − p,−q) i.e. large wavenumbers, implying poor

resolution. Hence the first eigenvalue is physically meaningless, and can be discarded. Al-
ternatively, the eigenvector components in Figure E.2 (b) indicate a converged expansion,
thus the second eigenvalue is physically significant. The eigenvector has peaks at j = ±1,
indicating a resonant interaction involving wavenumbers k′

1 = (p+1, q) and k′
2 = (1−p,−q).

Seen in the fixed frame of reference, and requiring the angular frequencies ωi to be positive,
the resonance conditions may generally be written as

nk0 = k′
1 + k′

2, nω0 = ω′
1 + ω′

2, (E.17)

which is a generalization of (8.8), corresponding to a (n+ 2)-wave resonant interaction. For
this example (E.17) is clearly satisfied with n = 2. Hence this corresponds to a four-wave
resonant interaction, and is thus a typical example of a class I Benjamin & Feir (1967)-type
instability. Note that McLean (1982b) suggests that the last eigenvector component can be
used to determine the convergence of the detected instabilities, which we find is a useful
strategy for narrowing the investigation to those eigenvalues which are physically relevant.

As a demonstration of a class II instability we will consider a case withH/L = 0.064, M = 10,
p = 0.5, and q = 1.54. Note that with q 6= 0, the perturbation is now three-dimensional. This
also yields two unstable eigenvalues, the first of which is again clearly unconverged, and will
not be considered for brevity. The second is σ = 0.00531i, with corresponding eigenvector
components shown in Figure E.3. This has peaks at j = 1 and −2, indicating a resonant
interaction between wavenumbers k′

1 = (p+ 1, q) and k′
2 = (2− p,−q). This clearly satisfies

(E.17) with n = 3, corresponding to a five-wave resonant interaction. This is a typical
example of a class II instability, responsible for the various crescent wave patterns studied
throughout Chapter 8. Note that as the eigenvalue in this example is purely imaginary, this
represents modes that are bound to the unperturbed wave, and would therefore result in a
phase-locked L2 crescent pattern. Note that for p 6= 0.5 this is generally not the case.

Finally, recall that in the present analysis we have assumed k0 = g = 1, following McLean
(1982b). From the deep water linear dispersion relation this yields the angular frequency
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ω =
√
gk = 1, on which the perturbation frequencies σ are relative. Equivalently, the

unstable perturbation frequencies σ from this analysis may be considered as dimensionless,
requiring a scaling of

√
gk (using the actual dimensional values) to gain physical relevance,

which is the view taken throughout Chapter 8 for consistency.
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Appendix F

Linear Accuracy Analysis

This appendix provides a Fourier-based accuracy analysis of the discrete linearized flat-
bottom Boussinesq formulation in a single horizontal dimension. As shown in §5.4, the
system can be expressed in the form

∂

∂t

[

η
u0

]

=

[

0 A1A01+B0B11

A01B11−A1B0

D1 0

] [

η
u0

]

, (F.1)

where D1 = −g ∂
∂x

, and the Ai,Bi operators are one-dimensional representations of those
given in Appendix A. The eigenvalues of this system are symbolically

λ = ±
√

D1(A01A1 + B0B11)

A01B11 − A1B0

. (F.2)

The analysis follows closely that from §5.4, and proceeds by replacing each of the continuous
derivative operators in (F.2) with their discrete Fourier representations. For a given physical
water depth kh and spatial resolution N = L/∆x (i.e. the number of grid points per wave-
length) the corresponding eigenvalues can be computed, which are again purely imaginary
conjugates for the centered spatial discretizations considered in this work. After amplifying
the eigenvalues by the chosen time step ∆t, we can insert these into the polynomial

ρ(∆tλ) ≡ 1 + ∆tλ+
(∆tλ)2

2
+

(∆tλ)3

6
+

(∆tλ)4

24
, (F.3)

which from (5.3) defines the evolution in the eigenvector basis for a single time step with
the explicit fourth-order, four stage Runge-Kutta method described in §3.4. This will result
in a relative amplification, given by |ρ(∆tλ)|, as well as a change in phase, given by φ =
arg(ρ(∆tλ)). Note that for numerical stability we formally require that |ρ(∆tλ)| ≤ 1. We
here define the amplification factor A as the relative change in amplitude over a period,
which gives

A ≡ |ρ(∆tλ)|Nt , Nt =
T

∆t
. (F.4)
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A full period, of course, involves a rotation of 2π radians, hence the actual numerical period
is given by Tnum = 2π∆t/φ. This corresponds to a mode having wavelength L = N∆x, thus
the numerical celerity is

cnum ≡ L

Tnum

=
∆xφ

θ∆t
, θ =

2π

N
. (F.5)

The relative phase speed Q then simplifies to

Q ≡ cnum

c
=

∆xφ

θ∆tc
=

φ

θCr
, (F.6)

where c is the embedded celerity of the Boussinesq formulation, as indicated e.g. in (5.12),
and Cr = c∆t

∆x
is the Courant number. Hence, for a given Courant number Cr, dimensionless

depth kh, and spatial resolution N it is possible to determine both A and Q. In this
appendix finite difference approximations are considered with each derivative accurate to
second order, along with stencils having seven and nine points. For the seven- and nine-
point stencils, each approximation again has the maximum possible formal accuracy for the
given number of points, as before.

A number of so-called amplification and phase portraits are shown in Figure F.1, which
demonstrate the general effects of varying the spatial finite difference approximations, the
Courant number Cr, and depth kh. The top pair demonstrates the effects of varying the
finite difference stencil with constant Cr = 0.5 and kh = 6. From the amplification portrait
(left) it is seen that the larger stencils generally result in more dissipation for poorly resolved
modes, after-which each of the discretizations converge reasonably similarly. The dispersion
portrait (right) shows much more dramatic differences between the strictly second-order
approximations and the higher-order stencils. Clearly, the larger stencils are much more
adept in achieving high dispersive accuracy. This is consistent with the linear standing wave
results shown e.g. in §6.2, Figure 6.2, which show little dissipation, but large dispersive errors
e.g. with the strictly second-order scheme (i.e. the period is visually off). The differences
between the seven- and nine-point stencils do not appear to be so pronounced from Figure
F.1, and consequently the seven-point stencil is used on the remaining figures. It is also
interesting to note that with these schemes the Nyquist mode (with N = 2) is always
undamped, but has cnum = 0 (i.e. it remains stationary!).

The second (middle) pair in Figure F.1 demonstrates the effects of variable Cr with constant
kh = 6. Here the use of larger Cr expectedly results, rather generally, in larger dissipation
of the wavenumber spectrum. There are also differences in the relative phase speed Q, with
lower Cr resulting in noticeably better accuracy for a given N .

The third (bottom) pair in Figure F.1 demonstrates the effects of variable kh with a constant
Cr = 0.5. The accuracy is (somewhat surprisingly) rather unsensitive to these depth varia-
tions. The most notable difference is apparent for the largest depth considered (kh = 20),
where the relative celerity is seen to converge more slowly, though the error is clearly con-
verged to a relative accuracy better than 0.01 in the shown dispersion portrait. This is
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Figure F.1: Amplification (left) and phase portraits (right) for (top) variable finite difference
approximations with Cr = 0.5, kh = 6; (middle) variable Cr with seven-point approximations
and kh = 6; and (bottom) variable kh with seven-point approximations and Cr = 0.5.

therefore not of great concern, as the embedded dispersive properties of the Boussinesq
formulation likewise become rather inaccurate in this range (e.g. at kh = 20 the relative
embedded dispersive error is (1 − c/cStokes) ≈ 0.003, while kh = 25 gives roughly 0.008).
The results in these figures of course vary somewhat depending on the precise combination
of parameters used, however the trends seen throughout Figure F.1 are representative and
remain consistent.

To present results from this analysis in another light, Table F.1 provides the resolution N
required to give amplitude/dispersive errors below a given error threshold ǫ, which should
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Table F.1: Number of grid points per wavelength N = L/∆x necessary to achieve a desired
relative error tolerance ǫ with respect to dissipation and dispersion for two values of Cr with
kh = 6.

Dissipation Dispersion
Cr ǫ 2nd-order 7-pt 9-pt 2nd-order 7-pt 9-pt

0.5 0.01 2 3.9 4.1 18.2 5.2 4.4
0.001 5.8 6.6 6.6 57.5 8.0 6.4
0.0001 10.2 10.6 10.6 182 12.6 9.9

1.0 0.01 7.7 8.3 8.3 18.3 6.1 5.5
0.001 13.0 13.3 13.3 57.5 10.8 10.4
0.0001 20.9 21.1 21.1 182 19.2 18.8

serve as a useful guide for discretizing various cases. The results use constant kh = 6,
however results e.g. with kh = 12 have been found to be very similar, consistent with
expectations from Figure F.1. Note that within the field of coastal engineering it is stan-
dard practice to use the (three-digit) approximation g = 9.81 m/s2, rather than e.g. the
more precise worldwide-averaged value g = 9.80665 m/s2 (local values may deviate even
more). Hence the modeled wave celerity is typically only accurate within the relative bound
(1 −

√

9.80665/9.81) ≈ 0.0002 due to inherent uncertainties/inaccuracies in the assumed
gravitational acceleration g. This threshold then serves as a lower limit for the relative dis-
persive error which can justifiably be sought from a practical perspective. (This argument
is, of course, moot in the non-dimensional sense.) In Table F.1 relative accuracy down to
ǫ = 0.0001 is considered, which in any event is highly accurate, corresponding e.g. to a 1%
phase error after 100 periods. This table again demonstrates the significant improvement
with the seven-point stencil over the strictly second-order discretization. The additional
improvements with the nine-point stencil are again rather modest, and would not appear
to justify its added computational expense (and other potential complexities). The spatial
discretizations used throughout this thesis therefore seem most appropriate.

Table F.1 also suggests that lowering Cr (i.e. reducing the time step ∆t) can be effective in
reducing the spatial resolution required for a desired accuracy, which would in turn lead to
significant savings in terms of the required storage. Recall that throughout much of this thesis
Cr = 1 has been used. This is further demonstrated in Figure F.2, which shows the relative
dissipative error (1 − A) for seven-point discretizations versus the spatial resolution N for
Courant numbers ranging within 0.25 ≤ Cr ≤ 1.5. Analysis has shown that the amplification
error is practically independent of the depth kh, thus this figure may be globally used to
estimate the level of dissipation.

Finally, the relative dispersive error |1 − Q| for spatial resolutions N = 10, 20, and 40 is
shown as a function of kh for Cr = 0.5 and 1.0 in Figure F.3. Also shown is the relative
embedded dispersive error of the Boussinesq formulation with respect to Stoke’s first-order
theory. As already discussed, this curve is relevant since even a perfectly converged numerical
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Figure F.2: Relative amplitude error (1−A) for seven-point discretizations versus the spatial
resolution N for various Courant number Cr.

model will be no more accurate physically than the underlying system of PDEs on which
it is based. It should be noted that the poles in the curves in Figure F.3 correspond to
locations where the numerical celerity transitions from being under to over estimated. Thus,
for a certain resolution N and depth kh, the numerical scheme will in fact provide the
exact embedded celerity, which has been confirmed directly through numerical simulations.
Generally speaking, the discretizations hold their accuracy surprisingly well versus increases
in kh, with a resolution of N = 20 seeming to provide acceptable accuracy for most practical
circumstances.

The accuracy analysis presented in this appendix should allow for intelligent discretizations
to be made with the Boussinesq model, while also generally confirming the adequacy of those
used throughout this thesis.
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Figure F.3: Relative dispersive error |1 − Q| for seven-point discretizations versus kh for
resolutions N = 10, 20, and 40; with (a) Cr = 0.5 and (b) Cr = 1.0. Also shown (bold
dashed lines) is the embedded relative dispersive error of the Boussinesq formulation (with
respect to Stoke’s first-order theory).
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