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Abstract

The main aim of this paper is to present a comparative study of modified analytical

technique based on auxiliary parameters and residual power series method (RPSM)

for Newell–Whitehead–Segel (NWS) equations of arbitrary order. The NWS equation is

well defined and a famous nonlinear physical model, which is characterized by the

presence of the strip patterns in two-dimensional systems and application in many

areas such as mechanics, chemistry, and bioengineering. In this paper, we implement

a modified analytical method based on auxiliary parameters and residual power series

techniques to obtain quick and accurate solutions of the time-fractional NWS

equations. Comparison of the obtained solutions with the present solutions reveal

that both powerful analytical techniques are productive, fruitful, and adequate in

solving any kind of nonlinear partial differential equations arising in several physical

phenomena. We addressed L2 and L∞ norms in both cases. Through error analysis

and numerical simulation, we have compared approximate solutions obtained by

two present aforesaid methods and noted excellent agreement. In this study, we use

the fractional operators in Caputo sense.
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Keywords: Homotopy analysis transform method (HATM); Homotopy polynomial
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1 Introduction

Differential equations of nonlinear nature are a practically very useful device for recitation

of different physical phenomena, particularly when it is fractional in character. In support

of illustration, these equations are gradually more applied to the problems related to di-

verse branches of engineering [1–4]. An enormous attempt has been taken throughout the

previously years to get healthy and proficient arithmetical and logical methods for solv-

ing nonlinear fractional differential equations (FDEs) [5–14]. This work emphasized that

the NSW equation is taken to find the solutions using aforesaid methods. The modified

homotopy analysis transformmethod (MHATM)method is a combination of the Laplace

transform and homotopy analysis methods with HP [15–18]. The RPSM is constructed

from the generalized Taylor series, which is a prevailing technique for solving nonlinear

FDEs [19–24]. The advantage of the RPSM method is that it is not affected by computa-

tional round-off errors and also does not require large computer memory and extensive
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time. Moreover, this method computes the coefficients of the power series by a chain of

equations with one or more variables, which indicates a better convergence of the RPSM.

Recently, the NWS equation gained more attention because NWS plays a vital part in

nonlinear systems. The NWS equation describes the appearance of the stripe pattern in

two-dimensional systems. Moreover, as this is an important model in the field of fluid dy-

namics, it has numerous applications in fluid dynamics such as traveling wave patterns in

binary fluids. A new approach usingADM to evaluate the numerical solution of TFNWS is

mentioned in [25]. In [26] the authors analyzed the fractional NWS equation for Riemann

fractional space–time, space, and time derivatives. Two methods, Laplace decomposition

and finite difference, to solve the numerical approximation of NWS equations are given in

[27]. Investigations related to the mathematical biological model in connection with the

NWS equation are presented by Korkmaz [28]. Approximate solutions of the NWS using

a new iterative method are given in [29]. In [30] the authors gave a comparative study on

the reduced transform method and ADM insight of NWS equation, and in [31] a com-

bined form of ADM and Elzaki method is used to solve the NWS equations. Numerous

papers studied the solutions of NWS equation by applying different approaches. In [32]

the tanh function technique is used to get the exact solution of generalized NWS, and in

[33] the HPM is used to solve the nonlinear NWS differential equations. To approximate

the solutions of NWS equation from fluidmechanics,Macías-Díaz and Ruiz-Ramírez [34]

proposed a method called the finite-difference method. The class of NWS equations with

Lie and “nonclassical” symmetry points of view was studied in [35]. Some papers used

the variational iteration method (VIM) or modified VIM to solve the NWS equations [36,

37]. Graham [38] studied the two-dimensional NWS equations (also see [39]. Kumar and

Sharma [40] combined the HAM and Sumudu transform (ST) to solve the NWS equation.

The linear and nonlinear NWS equations are evaluated in [41] with the help of HPM and

a hybrid of the Fourier transform and ADM. The NWS amplitude equation and algebraic

traveling wave NWS equation were studied in [42] and [43], respectively. For more de-

tail on fractional-order NWS equations in diverse points of view, we refer the interesting

readers to the recent papers [44, 45].

We consider the fractional model of NWS equation [30] in the operator form

Dλ
t ξ (η, t) = kD2

ηξ (η, t) + aξ (η, t) – bξ c(η, t), 0 < λ ≤ 1, (1.1)

with initial condition

ξ (η, 0) = f (η), (1.2)

where c is positive integer, k, a, and b ∈R (real numbers) with k > 0, and Dλ is the Caputo

derivative of order λ. The first termD = ∂ξ

∂η
represents the variation of ξ (η, t) with time and

fixed location. The termD2 = ∂2ξ

∂η2
denotes the variation with variable η at a particular time,

and the remaining term aξ – bξ c signifies the effect of the source term. Various methods

are applied to solve different types of NWS equations in physics [31, 46–49].

Theorem 1.1 Let f be a function represented by a fractional power series (FPS) at t = t0

∞
∑

k=0

m–1
∑

l=0

dkl(η)(t – t0)
kλ+l, 0≤ m – 1 < λ ≤ m, t0 ≤ t < t0 +R.
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If Dkλ+lf (t) are continuous on (t0, t0 +R), k = 0, 1, 2, . . . , then the coefficients dkl are given by

dkl =
Dkλ+lf (t0)

Γ (kλ + l + 1)
, k = 0, 1, 2, . . . ,

where Dkλ =Dλ, Dλ, . . . ,Dλ (k times), and the radius of convergence is R.

2 Basic idea of MHATM

2.1 The analytical procedure

The fundamental scheme of the MHATM is illustrated by taking common appearance of

FDEs:

Dλ
t ξ (η, t) +K[η]ξ (η, t) +M[η]ξ (η, t) =Q(η, t), t > 0,η ∈R, 0 < λ ≤ 1, (2.1)

where K[η] and M[η] are linear and nonlinear terms, respectively, and Q(η, t) and ξ (η, t)

are continuous and unknown functions, respectively. For clearness, we neglect all condi-

tions.

Now the methodology consists of first applying the Laplace transform to both sides of

equation (2.1):

L
[

Dλ
t ξ (η, t) +K[η]ξ (η, t) +M[η]ξ (η, t)

]

= L
[

Q(η, t)
]

. (2.2)

Next, using the differentiation property of the Laplace transform, we have

L
[

ξ (η, t)
]

–
1

sλ

n–1
∑

k=0

sλ–k–1ξ k(η, 0) +
1

sλ
L
(

K[η]ξ (η, t) +M[η]ξ (η, t) –Q(η, t)
)

= 0. (2.3)

We define the nonlinear operator

N
[

ℵ(r, t; z)
]

= L
[

ℵ(η, t; z)
]

–
1

sλ

n–1
∑

k=0

sλ–k–1ξ k(η, 0)

+
1

sλ
L
(

K[η]ξ (η, t) +M[η]ξ (η, t) –Q(η, t)
)

, (2.4)

where z ∈ [0, 1] is an embedding parameter, and ℵ(η, t; z) is a real function of η, t, and z.

Generalizing the traditional homotopy analysismethods [50], we construct the zero-order

deformation equation

(1 – z)L
[

ℵ(η, t; z) – ξ0(η, t)
]

= �zH(η, t)N
[

ℵ(η, t; z)
]

, (2.5)

where � is a nonzero auxiliary parameter, which helps us to increase the convergence,

H(η, t) is an auxiliary function, ξ0(η, t) is an initial guess of ξ (η, t), and ℵ(η, t; z) is an un-

known function.
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Consequently, we obtain themth-order deformation equation

ξm(η, t) = (χm + �)ξm–1 – �(1 – χm)

j–1
∑

i=0

tiξ (i–1)(0)

+ �L–1

(

1

sλ
L

(

Km–1[t]ξm–1(t) +

m–1
∑

k=0

Pk(ξ0, ξ1, . . . , ξm) –Q(η, t)

))

, (2.6)

where Pk is the HP given by [15].

For the expediency point of view, the appearance of nonlinear operator form has been

customized in HATM, that is, the nonlinear termM[η, t]ξ (η, t) is stretched in the form of

HP as

M
[

ξ (η, t)
]

=M

(

m–1
∑

k=0

ξm(η, t)

)

=

∞
∑

m=0

Pmξm. (2.7)

The innovation of our planned algorithm is to construct and escalate the nonlinear ex-

pression as a sequence of HP in equation (2.6). Next, from equation (2.6) we can compute

different values of ξm(η, t) for m ≥ 1. Consequently, we find the whole series solution of

equation (2.1) as

ξ (η, t) = ξ0(η, t) +

∞
∑

m=1

ξm(η, t). (2.8)

To illustrate the efficiency and accuracy of the MHATM, we consider two examples.

Example 1 Taking the constant values k = –1, a = –2, and b = 0 in Eq. (1.1). Therefore

Eq. (1.1) is reduced to the linear TFNWS equation [30]

Dλ
t ξ (η, t) =D2

ηξ (η, t) – 2ξ (η, t), 0 < λ ≤ 1, (2.9)

with initial condition ξ (η, 0) = eη and exact solution ξexact(η, t) = eη–t , respectively [30].

Taking the Laplace transform of both sides of equation (2.9), we get

sλL
[

ξ (η, t)
]

– sλ–1ξ (η, 0) – L
[

D2
ηξ – 2ξ

]

= 0. (2.10)

In this case the nonlinear operator defined as

N
[

ℵ(η, t; z)
]

= L
[

ℵ(η, t; z)
]

–
1

s
eη – s–λL

[

D2
ηℵ(η, t; z) – 2ℵ(η, t; z)

]

. (2.11)

Thus we obtain themth-order deformation equation

L
[

ξ (η, t) – χmξm–1(η, t)
]

= �Rm(�ηm–1,η, t). (2.12)

Taking the inverse Laplace transform of both sides in equation (2.12), we get

ξ (η, t) = χmξm–1(η, t) + �L–1
[

Rm(�ηm–1,η, t)
]

, (2.13)
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where

Rm(�ηm–1,η, t) = L[ξm–1] –
1 – χm

s
eη – s–λL

[

D2
ηξ – 2ξ

]

, m ≥ 1. (2.14)

Now the solution of themth-order deformation equation is

ξm(η, t) = (χm + �)ξm–1(η, t) – �(1 – χm)e
η – �L–1

[

s–λL
[

D2
ηξ – 2ξ

]]

. (2.15)

With means of ξ0(η, t) = ξ (η, 0) = eη and equation (2.15) we obtain

ξ1(η, t) =
�eηtλ

Γ (λ + 1)
,

ξ2(η, t) =
�(1 + �)eηtλ

Γ (λ + 1)
+

�
2eηt2λ

Γ (2λ + 1)
,

ξ3(η, t) =
�(1 + �)2eηtλ

Γ (λ + 1)
+ 2

�
2(1 + �)eηt2λ

Γ (2λ + 1)
+

�
3eηt3λ

Γ (3λ + 1)
,

ξ4(η, t) =
�(1 + �)3eηtλ

Γ (λ + 1)
+ 3

�
2(1 + �)2eηt2λ

Γ (2λ + 1)
+ 3

�
3(1 + �)eηt3λ

Γ (3λ + 1)
+

�
4eηt4λ

Γ (4λ + 1)
, . . . .

With the help ofMathematica-7 software, the rest of the components ξn(η, t) for n≥ 5 can

be completely obtained. Hence, the solution of equation (2.9) is given as

ξ (η, t) = ξ0(η, t) + ξ1(η, t) + ξ2(η, t) + ξ3(η, t) + · · · . (2.16)

If we choose � = –1, then

ξm(η, t) = eη

(

1 +
(–tλ)

Γ (λ + 1)
+

(–tλ)2

Γ (2λ + 1)
+

(–tλ)3

Γ (3λ + 1)
+

(–tλ)4

Γ (4λ + 1)
+ · · ·

)

= eη

∞
∑

k=0

(–tλ)k

Γ (kλ + 1)

= eηEλ

(

–tλ
)

.

If we choose λ = 1, then we evidently find that
∑∞

m=0 ξm(η, t) converges to the exact solu-

tion ξ (η, t) = eη–t . Also, this outcome is entirely conform to Saravanan and Magesh [30].

Example 2 Here taking the constant values k = 1, a = 2, b = 3, and c = 2 in Eq. (1.1), we

get the nonlinear TFNSW equation [30]

Dλ
t ξ (η, t) =D2

ηξ (η, t) + 2ξ (η, t) – 3ξ 2(η, t), 0 < λ ≤ 1, (2.17)

with initial condition ξ (η, 0) = β and exact solution ξexact(t) =
–2
3 βe2t

–2
3 +β–βe2t

, respectively [30].

Now, applying the technique as in Example 1, in this case the nonlinear operator is

N
[

ℵ(η, t; z)
]

= L
[

ℵ(η, t; z)
]

–
1

s
β – s–λL

[

D2
ηℵ(η, t; z) + 2ℵ(η, t; z) – 3ℵ2(η, t; z)

]

. (2.18)
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Consequently, we get the solution ofmth-order deformation equation:

ξm(η, t) = (χm + �)ξm–1(η, t) – �(1 – χm)β – �L–1
[

s–λL
[

D2
ηξm–1 + 2ξm–1 – 3Pk

]]

, (2.19)

where Pk is the HP given by

Pk =
1

Γ (m + 1)

[

∂m

∂qm
N

[(

qφ(η, t;q)
)(

qφ(η, t;q)
)

η

]

]

q=0

. (2.20)

Using ξ0(η, t) = ξ (η, 0) = β , we obtain the following values:

ξ1(η, t) = –
β(2 – 3β)�tλ

Γ (λ + 1)
,

ξ2(η, t) = –
β(2 – 3β)�(1 + �)tλ

Γ (λ + 1)
+
(2β(2 – 9β) + 18β3)�2t2λ

Γ (2λ + 1)
,

ξ3(η, t) = –
β(2 – 3β)�(1 + �)2tλ

Γ (λ + 1)
+
4β(2 – 9β + 9β2)�2(1 + �)t2λ

Γ (2λ + 1)

–
4β(2 – 3β)(1 – 3β)2�3t3λ

Γ (3λ + 1)
, . . . .

With the help ofMathematica-7 software we can obtain the remaining terms of ξn(η, t) for

n≥ 4.

2.2 Convergence analysis

Theorem 2.1 The obtained series solution (2.8) converges if

+∞
∑

m=0

Rm(�ξm–1,η, t) = 0. (2.21)

Proof Since the series (2.8), that is, ξ (η, t) = ξ0(η, t)+
∑∞

m=1 ξm(η, t), converges, we canwrite

S(t) =
∑∞

m=0 ξm(η, t), and by the necessary condition for the convergence of the series we

have that limm→+∞ ξm(η, t) = 0.

Now themth-order deforming equation is

L
[

ξm(η, t) – χmξm–1(η, t)
]

= �Rm(�ξm–1,η, t). (2.22)

Summing both sides fromm = 1 to +∞, we get

+∞
∑

m=1

L
[

ξm(η, t) – χmξm–1(η, t)
]

=

+∞
∑

m=1

�Rm(�ξm–1,η, t), (2.23)

which becomes

L

[

lim
m→+∞

ξm(η, t)
]

=

+∞
∑

m=1

�Rm(�ξm–1,η, t) (2.24)

⇒

+∞
∑

m=1

�Rm(�ξm–1,η, t) = 0. (2.25)
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Since � 
= 0, we have

+∞
∑

m=0

Rm(�ξm–1,η, t) = 0. (2.26)
�

Theorem 2.2 If the series solution (2.8) converges, then it is a solution of equation (2.1).

Proof Let µ(η, t;q) =N[φ(η, t;q)] denote the residual error of equation (2.1). The residual

error at q = 1 can be extended by a Taylor formula at q = 0:

µ(η, t;q = 1) =

+∞
∑

m=0

1

m!

∂mN[φ(η, t;q)]

∂qm

∣

∣

∣

∣

q=0

=

+∞
∑

m=0

Rm(η, t)

= 0.

Thus the series solution (2.8) converges and so is a solution of equation (2.1). �

3 Basic idea of residual power series method

3.1 The analytical procedure

The method is discussed through the FDEs

Dλ
t ξ (η, t) +K[η]ξ (η, t) +M[η]ξ (η, t) =Q(η, t), t > 0,η ∈R,n – 1 < nλ ≤ n, (3.1)

where K[η],M[η], and Q(η, t) are defined as before. Let

f0(η) = ξ (η, 0) = f (η), fn–1(η) =Dt
(n–1)λξ (η, 0) = h(η). (3.2)

The final solution for equation (3.1) can be written as

ξ (η, t) =

∞
∑

k=0

m–1
∑

l=0

fkl(η)
(t – t0)

kλ+l

Γ (kλ + l + 1)
, m – 1 < λ ≤ m,η ∈R, 0≤ t <R, (3.3)

where

ξ(0,m–1)(η, t) =

m–1
∑

l=0

φl(η)

l!
(t – t0)

l, η ∈R, t0 ≤ t < t0 +R. (3.4)

By equation (3.4) we can write equation (3.3) as

ξ (η, t) =

m–1
∑

l=0

φl(η)

l!
(t – t0)

l +

∞
∑

k=1

m–1
∑

l=0

fkl(η)
(t – t0)

kλ+l

Γ (kλ + l + 1)
, η ∈R, t0 ≤ t < t0 +R. (3.5)
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By the procedure described in [19–21] we get the following (a,b)-truncated residual func-

tion:

Res(a,b)(η, t) =Dnλ
t ξ(a,b)(η, t) +K[η]ξ(a,b)(η, t)

+m[η]ξ(a,b)(η, t) –Q(η, t), η ∈R, t ≥ t0. (3.6)

By the procedure described in [19–21] we get the following equation:

D
(k–1)λ
t Dl

tRes(η, t) =D
(k–1)λ
t Dl

tRes(k,l)(η, t) = 0, η ∈ R,

k = 1, 2, 3, . . . ,a, l = 0, 1, 2, . . . ,b. (3.7)

An iterative process is taken until the random order coefficients of the multiple FPS solu-

tion are obtained. Finally, a complete solution of equation (3.1) can be found fromequation

(3.3).

We consider the following problems for the applications of the RPS technique.

Example 3 Consider equation (2.9). According to RPSM technique, by taking φ0(η) = eη

the series solution of equation (2.9) can be written as

ξ (η, t) = f (η) +

∞
∑

k=1

fk0(η)
(t)kλ

Γ (kλ + 1)
, (3.8)

where ξ0,0(η, t) = f (η) is the initial value. Next, the (a,b)-truncated residual function of

equation (2.9) is

ξ(a,b)(η, t) = f (η) +

∞
∑

k=1

fk0(η)
(t)kλ

Γ (kλ + 1)
, a = 1, 2, 3, . . . ,b = 0, (3.9)

Res(a,b)(η, t) =Dλ
t ξ(a,b) –Dxxξ(a,b) – 2ξ(a,b), a = 1, 2, 3, . . . ,b = 0. (3.10)

Now according to the methodology of [19], in case of (k, l) = (1, 0), putting t = 0, we get

the first coefficient

f10(η) = –eη. (3.11)

Therefore the (1, 0)-truncated series of (2.9) is

ξ(1,0)(η, t) = eη – eη

(

tλ

Γ (1 + λ)

)

. (3.12)

In a similar fashion, we get the remaining terms of fk0(x) for k ≥ 2: f20(η) = eη , f30(η) = –eη ,

f40(η) = eη, . . . . Therefore the complete solution of (2.9) is

ξ (η, t) = eη – eη tλ

Γ (1 + λ)
+ eη t2λ

Γ (1 + 2λ)
– eη t3λ

Γ (1 + 3λ)
+ eη t4λ

Γ (1 + 4λ)
+ · · ·

= eη

(

1 –
tλ

Γ (1 + λ)
+

t2λ

Γ (1 + 2λ)
–

t3λ

Γ (1 + 3λ)
+

t4λ

Γ (1 + 4λ)
+ · · ·

)

. (3.13)

For λ = 1, we get ξ (η, t) = eη–t , which is an exact solution [30].
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Example 4 Consider equation (2.17), According to RPSM technique by taking φ0(η) = β ,

we similarly get

ξ(a,b)(η, t) = f (η) +

∞
∑

k=1

fk0(η)
(t)kλ

Γ (kλ + 1)
, a = 1, 2, 3, . . . ,b = 0, (3.14)

Res(a,b)(η, t) =Dλ
t ξ(a,b) –Dηηξ(a,b) + 2ξ(a,b) – 3ξ 2

(a,b), a = 1, 2, 3, . . . , b = 0. (3.15)

Now from the results of RPSM, in case of (k, l) = (1, 0), putting t = 0, we get

f10(η) = 2β – 3β2. (3.16)

Hence, the first solution of equation (2.17) is

ξ(1,0)(η, t) = β –
(

2β – 3β2
)

(

tλ

Γ (1 + λ)

)

. (3.17)

In a similar fashion, for the remaining terms fk0(x) for k ≥ 2, we get f20(η) = 2β(2 – 3β)(1 –

3β), f30(η) = 2β(2 – 3β)(27β2 – 18β + 2), . . . .

Therefore the complete solution of equation (2.17) is

ξ (η, t) = β +
(

2β – 3β2
) tλ

Γ (1 + λ)
+ 2β(2 – 3β)(1 – 3β)

t2λ

Γ (1 + 2λ)

+ 2β(2 – 3β)
(

27β2 – 18β + 2
) t3λ

Γ (1 + 3λ)
+ · · · . (3.18)

For λ = 1, we find ξ (η, t) =
–2
3 βe2t

–2
3 +β–βe2t

, which is an exact one.

3.2 Convergence analysis

Theorem 3.1 (Convergence Theorem) Suppose that fkl(η) has an FPS representation of

the form fkl(η) =
∑∞

k=0

∑m–1
l=0 ckl(η)t

l+kλ, 0 ≤ m – 1 < λ ≤ m, with radius of convergence

ℜ(> 0). Then the series uniformly converges on [–s, s], where 0 < s < ℜ.

Proof Let ξkl(η) = ckl(η)t
l+kλ. Since ℜ is the radius of convergence of the FPS, the series

absolutely converges for all t such that |t| <ℜ.

Hence the series is absolute convergent for all t such that |t| ≤ s < ℜ (as 0 < s <ℜ).

Therefore the series
∑∞

k=0

∑m–1
l=0 ckl(η)s

l+kλ converges.

Now |ξkl(η)| = |ckl(η)t
l+kλ| ≤ |ckl(η)|s

l+kλ for all t such that |t| ≤ s.

LetMkl = |ckl(η)|s
l+kλ for k, l,λ ∈N.

Then
∑∞

k=0

∑m–1
l=0 Mkl is a convergent series of positive real numbers, and for all k, l,λ ∈

N, |ξkl(η)| ≤ Mkl for all t ∈ [–s, s].

By Weierstrass’M test the series
∑∞

k=0

∑m–1
l=0 ξkl(η) uniformly converges on [–s, s].

Consequently, the fractional power series
∑∞

k=0

∑m–1
l=0 ckl(η)t

l+kλ uniformly converges on

[–s, s]. �
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Figure 1 The 4th-order approximate solution of the TFNWS equation: (a) η4(x, t) when β = 1. (b) η4(x, t)

when β = 0.75. (c) η4(x, t) when β = 0.5. (d) η4(x, t) when β = 0.25. (e) Exact solution u(x, t) when β = 1

4 Numerical output and discussion

In this subsection, we discuss the obtained results through the different three-dimensional

and two-dimensional figures.

Figure 1 reflects the assessment among the exact solution and 4th-order estimated solu-

tion bymeans of the proposedMHATMmethod, whereas Fig. 2 shows the corresponding

two-dimensional case.

To confirm the effectiveness and correctness of theMHATM for solvingNWS equation,

absolute error curves are given in Figs. 3–5. All figures show that our method converges

quickly to the original solution only at the 4th-order approximation. Figures 3–5 illustrate

that for � = –1, the convergence is optimal.

Figure 6 reflects the performance of the estimated solution ξapp(η, t). Here we find that

solution gradually decreases when η = 1 and � = –1.

Figure 7 shows the �-curve of TFNSW Eq. (1.1) for different values of λ. We see that the

adequate range of � is –1.9 ≤ � < 0.
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Figure 2 Comparison of the 4th term MHATM solution and the exact solution of the TFNWS equation when

x = 1

Figure 3 Plot of the absolute error of TFNWS equation when � = –1. (a) E4(η) = |η(x, t) – η4(x, t)|. (b) The

corresponding E4(η) when t = 1

Figure 4 Plot of the absolute error of TFNWS equation when � = –1.2. (a) E4(η) = |η(x, t) – η4(x, t)|. (b) The

corresponding E4(η) when t = 1
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Figure 5 Plot of the absolute error of TFNWS equation when � = –0.8. (a) E4(η) = |η(x, t) – η4(x, t)|. (b) The

corresponding E4(η) when t = 1

Figure 6 Plot of η4(x, t) vs. time t at x = 1 and different values of β

Table 1 L2 and L∞ error norm when β = 1

x L2 error norm L∞ error norm

0.1 1.90588× 10–14 4.55191× 10–15

0.2 1.47661× 10–14 5.66214× 10–15

0.3 7.91959× 10–15 8.88178× 10–15

Table 2 L2 and L∞ error norm when β = 1

λ L2 error norm L∞ error norm

0.1 2.67902× 10–6 7.07209× 10–6

0.2 2.51277× 10–6 7.67880× 10–6

0.3 2.93262× 10–7 7.75736× 10–7
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Figure 7 Plot of �-curve for different values of β

Figure 8 Comparison of the 4th term MHATM solution and the exact solution of the TFNWS equation when

λ = 1

Figure 8 shows the two-dimensional assessment among the exact and estimated solu-

tions obtained by MHATM. At the same time, Figs. 9, 10, and 11 show the absolute error

curve for � = –1, � = –1.2, and � = –0.8, respectively.
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Figure 9 Plot of the absolute error of TFNWS equation when � = –1 and λ = 1

Figure 10 Plot of the absolute error of TFNWS equation when � = –1.2 and λ = 1

Figure 11 Plot of the absolute error of TFNWS equation when � = –0.8 and λ = 1
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Figure 12 Plot of η4(x, t) vs. time t at x = 1 and different value of β

Figure 13 Plot of �-curve for different values of β

Figure 12 reflects the performance of the estimated solution ξ (η, t) for different values

of λ.

Nexture, in Fig. 13, the �-curve is given, which is also known as converging manage

parameter. In this case, we can select that parameter in the range of –1.6 < � < –0.4.
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Figure 14 The surfaces show (a) the numerical approximate solution of η4(x, t) by MHATM when λ = 1,

(b) the numerical approximate solution of η4(x, t) by RPSM when λ = 1, (c) the exact solution η(x, t) when

λ = 1

4.1 Comparison study

In this subsection, we discuss the comparison between the results obtained by MHATM

and RPSM. Figure 14 shows for comparison of the results of Example 1, whereas Fig. 15

shows comparison of results of Example 2. From Figs. 14–15 we can see that the solutions

obtained by the MHATM and RPSMmethods coincide with the exact solution, and both

methods are consistent and efficient for solving fractional NSW equations.

5 Concluding remarks

In this study, we proposed two powerful analytical methods for the solution of fractional

Newell–Whitehead–Segel equations, which have the potential applications in bioengi-

neering. To obtain the estimated solutions of the time-fractional Newell–Whitehead–

Segel equations, we successfully applied the MHATM and RPSM. The accuracy and effi-

ciency of the MHATM and RPSM are explained by examples. Moreover, the convergence

analysis of both methods is discussed in detail. The results obtained for MHATM and

RPSM are compared and plotted. From the figures we observe that the solution obtained

by the MHATM and RPSM methods coincide with the exact solution, and both meth-

ods are consistent and efficient for solving fractional Newell–Whitehead–Segal equations.

The fast convergence to the exact solutions ofMHATMandRPSM shows that thesemeth-

ods are very suitable to solve FDEs. We conclude that the MHATM and RPSM methods

are very effective and accurate techniques in the field of fractional-order differential equa-

tions. As a future work, we can implement the HAM to estimate the analytical solutions

of fractional partial differential equations arising in engineering science by replacing the
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Figure 15 The surfaces show (a) the numerical approximate solution of η4(x, t) by MHATM when λ = 1,

(b) the numerical approximate solution of η4(x, t) by RPSM when λ = 1, (c) the exact solution η(x, t) when

λ = 1

Laplace transform by a natural transform and the Caputo fractional operator by new frac-

tional operators.
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