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SUMMARY

This paper presents a numerical strategy that allows to lower the costs associated to the prediction of the
value of homogenized tensors in elliptic problems. This is done by solving a coupled problem, in which the
complex microstructure is confined to a small region and surrounded by a tentative homogenized medium.
The characteristics of this homogenized medium are updated using a self-consistent approach and are shown
to converge to the actual solution. The main feature of the coupling strategy is that it really couples the
random microstructure with the deterministic homogenized model, and not one (deterministic) realization
of the random medium with a homogenized model. The advantages of doing so are twofold: (a) the influence
of the boundary conditions is significantly mitigated, and (b) the ergodicity of the random medium can be
used in full through appropriate definition of the coupling operator. Both of these advantages imply that the
resulting coupled problem is less expensive to solve, for a given bias, than the computation of homogenized
tensor using classical approaches. Examples of 1D and 2D problems with continuous properties, as well as
a 2D matrix-inclusion problem, illustrate the effectiveness and potential of the method. Copyright c© 2013
John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Homogenization; Random material; Arlequin method; self-consistent model; Numerical
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1. INTRODUCTION

There exist to date fewer theoretical results on the homogenization of random media than of

periodic media. Nevertheless, some results, in the case of linear elliptic partial differential equations

for example, have shown that one can find a uniform deterministic tensor that produces an

accurate approximation of the original solution obtained with the fluctuating stochastic tensor.

Such convergence results have been made possible by using the energy method [1] of Tartar [2],

by considering the direct construction of the so-called correctors [3], by resorting to strong G-

convergence of operators in a general stochastic setting [4], or by using the Γ-convergence [5].

Convergence was obtained either in a mean-square sense (for example, in [6, 7] or [1]) or in an

almost-sure sense (for example in [3]). Later on, more complex equations were also treated, and

weaker hypotheses on the random fields introduced (see for instance [8, 9, 10, 11, 12]).

However, the actual computation of the value of this effective tensor is not always a simple

task, besides some particular cases for which analytical (1D problems in particular) or specific

numerical solutions are available (see for instance [13, 14] in a random quasi-periodic setting).
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2 R. COTTEREAU

Indeed, the prediction of the effective tensor involves the solution of a corrector problem which

is a priori posed on a domain of infinite size. In order to approximate the effective tensor through

numerical simulations, the domain therefore has to be truncated at some finite distance and boundary

conditions to be introduced. For these bounded domains, the estimated tensor is then a random

variable, the variance of which goes to zero when the size of the domain is increased. It has been

proved [8, 15] that, whatever the choice of boundary conditions, the limit of the estimated tensors

was indeed the effective tensor. However, convergence with respect to the size of the domain may be

very slow. Alternatively, it is also possible (see [8, 16]) to use a smaller domain and perform averages

over several realizations of the random medium. Several authors have followed this path (see for

instance [17, 18, 19, 20]), even putting up schemes to accelerate convergence (through angular

averaging in [21] among others, or through the use of antithetic variables in [22]). However, it has

been observed that, even though these schemes converge, they do so to biased values. Further, these

biases only cancel when the size of the domain becomes very large (with respect to the correlation

length).

This paper presents a numerical strategy to identify the homogenized tensor of a random medium.

It allows to extend the size of the domain in a cost-effective manner and to play simultaneously

with the size of the domain and the discretization along the random dimension (number of

Monte Carlo samples) to yield the effective tensor. This is achieved through the coupling of the

random microstructure with a homogenized macrostructure, the characteristics of which are updated

iteratively using a self-consistent approach. Using this coupled approach, the size of the complex

microstructure is limited, while the boundary conditions are pushed away and their influence limited

through the tentative homogenized medium. The main feature of the coupling strategy is that it

really couples the random microstructure with the deterministic homogenized model, and not each

(deterministic) realization of the random medium with a homogenized model, in a fully independent

manner. Hence, the ergodicity of the random medium can be used in full to accelerate convergence

and minimize the bias introduced by the finite size of the domain.

The idea of coupling the microstructure to a homogenized medium to limit the influence of the

boundary conditions was already developed in [23] and [24], but with three major differences:

(1) the microstructure is here random, while it was deterministic (and heterogeneous) in the previous

papers, (2) the coupling is here made over a volume rather than along a surface, and (3) the approach

is coupled to an iterative scheme in order to identify the value of the effective tensor, while it was

previously only used to perform direct computations, for a given value of the homogenized tensor.

In Section 2 of the paper, the random medium and model equation that we consider are described

in detail, and the classical Dirichlet and Neumann homogenization schemes are presented. In

Section 3, we briefly recall the main ingredient of our approach, which is the deterministic-stochastic

coupling scheme, previously described in [25, 26]. Section 4 concentrates on the main novelty of

this paper, which is the iterative technique to derive the homogenized tensor. Finally, the last section

presents a series of 1D and 2D experiments to demonstrate the effectiveness and potential of the

proposed approach. Concluding remarks are provided in Section 6.

Throughout the paper, we will use bold characters for random quantities, lowercase characters for

scalars and vectors, and uppercase characters for matrices and tensors.

2. HOMOGENIZATION OF A RANDOM MICROSTRUCTURE

In this section, we describe the random medium for which we intend to find the homogenized

effective properties. We also recall some definitions related to the homogenization of the heat

equation.

2.1. Definition of the model and hypotheses on the random field

Let us introduce a domain D ∈ R
d, with a typical length scale L, a (deterministic) loading field

f(x) and a field u(x) governed by the heat equation: find u(x) ∈ L2(Θ,H1(D)) such that, ∀x ∈ D,

almost surely:

−∇ · (k(x)∇u(x)) = f(x), (1)

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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NUMERICAL HOMOGENIZATION OF RANDOM MATERIALS 3

for a random field k(x) fluctuating over a length scale ℓc (usually defined through the correlation

length), and with appropriate boundary conditions. Here, (Θ,F , P ) is a complete probability space,

with Θ a set of outcomes, F a σ-algebra of events in Θ, and P : F → [0, 1] a probability measure.

In order to obtain a homogenized material, the random parameter field k(x) is required to verify

certain hypotheses. In particular, it is assumed to be bounded and uniformly coercive, that is to say

∃ κm, κM ∈ (0,+∞), such that

0 < κm ≤ k(x) ≤ κM <∞, ∀x ∈ D, almost surely. (2)

Also, it is required to be stationary and ergodic.

2.2. Definition of homogenization

Homogenization deals with cases when the ratio ǫ = ℓc/L is small. We then scale the fluctuations

of the microstructure by 1/ǫ, and look at the fluctuations of the solution u(x) at the original scale.

The following sequence of problems is therefore considered: find uǫ(x) ∈ L2(Θ,L2(D)) such that,

∀x ∈ D, almost surely:

−∇ · (kǫ(x)∇uǫ(x)) = f(x), (3)

where kǫ(x) = k(x/ǫ), and with appropriate boundary conditions, for instance uǫ(x) = 0, ∀x ∈ ∂D
(see Subsection 2.3 for the definition of Dirichlet and Neumann approximations of the homogenized

coefficients). Under suitable hypotheses, in particular on the random field kǫ(x) (described in the

previous Subsection 2.1), each of these problems admits a unique solution.

f(x)

D

L

lc

f(x)

D

L

Figure 1. Description of one realization of the random medium (left), with fluctuating coefficient kǫ(x), and
corresponding effective medium (right), with constant deterministic effective tensor K∗.

Using different sets of hypotheses and with different methods, many authors (see the references

provided in the introduction) have shown that, independently of the load f(x), the sequence of

solutions uǫ(x) converges when ǫ→ 0 to the solution u∗(x) of the following deterministic problem:

find u∗(x) such that, ∀x ∈ D:

−∇ · (K∗∇u∗(x)) = f(x), (4)

with corresponding boundary conditions. A priori, the effective coefficientK∗ is a full second-order

tensor, meaning that the homogenized material potentially exhibits anisotropy.

The constructive definition of the effective tensor requires the solution of the so-called corrector

problem, which states: find wǫ(x) such that, ∀x ∈ D, almost surely:

−∇ · (kǫ(x) (I +∇wǫ(x))) = 0. (5)

As wǫ is a vector, ∇wǫ(x) is a tensor, and this equation is a d-dimensional equation. The tensor I
is the identity tensor in R

d ×R
d. The homogenized tensor is then defined as:

K∗ = lim
ǫ→0

E
[

(I +∇wǫ(x))
T
kǫ(x) (I +∇wǫ(x))

]

. (6)

Note that, in the limit when ǫ→ 0, the tensor K∗ does not depend on the position.

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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4 R. COTTEREAU

2.3. Numerical estimation of homogenized tensor

For ǫ→ 0, the corrector equation (5) is either set in a domain of infinite size or with infinitely

small details. Also, the mathematical expectation E[·] in equation (6) is an integral operator over

an infinite-dimensional space. Approximations of K∗ are then constructed by performing at the

same time a truncation of D (hence bounding ǫ to a finite value), introducing particular boundary

conditions at the boundary ∂D of the domain, and replacing the mathematical expectation in the

evaluation of the homogenized tensor by a sum over a finite number of Monte Carlo samples.

The Kinematic Uniform Boundary Conditions (KUBC) approach consists in using homogeneous

Dirichlet boundary conditions at the boundary (wǫ = 0, ∀x ∈ ∂D, almost surely), and

approximating the homogenized tensor, hereafter denoted Ǩǫ

N
, by

Ǩǫ

N
=

1

N |D|

N
∑

i=1

∫

D

(

I +∇wi

ǫ
(x)

)T

ki
ǫ
(x)

(

I +∇wi

ǫ
(x)

)

dx, (7)

where |D| =
∫

D
dx, the ki

ǫ
(x) are realizations of the stochastic field kǫ(x) and the wi

ǫ
(x) are the

solution of the corresponding (deterministic) corrector problems, posed over the truncated domain

D with finite ǫ, and with the chosen set of boundary conditions. More details on the derivation of

this formula can be found in [16, Eq. (16)] or [27, Eq. (5.8)].

The Static Uniform Boundary Conditions (SUBC) approach consists in using Neumann

boundary conditions (kǫ(x)(I +∇wǫ) · n = I · n, ∀x ∈ ∂D, almost surely), and approximating the

homogenized tensor, hereafter denoted K̂ǫ

N
, by

K̂ǫ

N
=

[

1

N |D|

N
∑

i=1

∫

D

(

I +∇wi

ǫ
(x)

)T

ki
ǫ
(x)

(

I +∇wi

ǫ
(x)

)

dx

]−1

. (8)

More details on the derivation of this formula can be found in [16, Eq. (16)] or [27, Eq. (5.9)].

A very efficient alternative to these two techniques consists in using periodic boundary conditions

(see for instance [28] for mathematical details, or [29] for an efficient FFT implementation of this

technique). This method works very well, but it requires, on the other hand, that the microstructure

be itself periodic. Its application in the context of random media therefore requires some hypotheses

on the correlation structure, or a modification of the distribution for periodization. Comparison of

periodic, SUBC and KUBC estimates to the method that we propose in this paper will be made in

the applications (see in particular Section 5.3).

Note that the tensors Ǩǫ

N
and K̂ǫ

N
(as well as any other obtained through a similar approach with

other boundary conditions) depend obviously on both the number N of Monte Carlo samples that

are used to approximate the mathematical expectation and on the value of ǫ. They also depend on

the boundary conditions that were used to approximate the corrector problems and are therefore a

priori different one from the other. For elliptic equations, the influence of these boundary conditions

disappears for ǫ→ 0 (see the proof for the KUBC, SUBC, and periodic boundary conditions in [15]),

but may become extremely important for small domains (see the examples in Section 5).

2.4. Particular case in 1D

The 1D case is very particular, in the sense that the corrector problem can be solved analytically,

whatever the choice of probability law for kǫ. The homogenized tensor (in that case a scalar) is then:

K∗ = E[k−1
ǫ

]−1 = lim
ǫ→0

(
∫

D

(kǫ(x))
−1
dx

)−1

. (9)

It is interesting to note that the KUBC and SUBC approximates can also be computed for any

ratio ǫ. Indeed, simple algebraic manipulation yields

Ǩǫ

∞ = E [KD] , (10)

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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NUMERICAL HOMOGENIZATION OF RANDOM MATERIALS 5

where KD = |D|/
∫

D
k
−1
ǫ

(x)dx and

K̂ǫ

∞ = E[K−1

D
]−1 = K∗. (11)

When ǫ→∞ the random field kǫ(x) becomes, at the scale of the domain D, a random variable

(with no fluctuation in space). Hence, we have KD = kǫ, and Ǩ∞
∞ = E[kǫ], and this quantity does

not depend on the position x thanks to the hypothesis of stationarity of the field. When ǫ→ 0, the

ergodicity hypothesis on the random field and the definition of KD yield the expected result of

equation (9) Ǩ0
∞ = K∗. In general, when ǫ 6= 0, we have Ǩǫ

∞ 6= K∗. This means that the KUBC

estimate is different from the homogenized coefficient, even though an infinite number of Monte

Carlo trials is considered. In this paper, we will refer to this misfit by the word ”bias”.

It is interesting to note that in 1D, whatever the value of ǫ, the SUBC approach yields the exact

value of the homogenized tensor (when N →∞). In the words defined above, the SUBC estimate

in 1D is therefore unbiased. Note, however, that this property is very specific to the one-dimensional

case, and is not true in higher dimensions.

2.5. Particular case in 2D

We discuss in this section a very particular type of 2D medium that has a specific kind a duality

property: the random field kǫ(x) is statistically equivalent to the random field c/kǫ(x), where c is

a scalar constant. As noted in [30, chapter 3] (see a proof in the book in a more general setting,

and references therein for original contributions to that result), the homogenized coefficient of this

random medium is then necessarily equal to

K∗ =
√
cI2, (12)

where I2 is the two-dimensional identity tensor.

Note that, in the two-dimensional case, there is no analytic result for the value of the KUBC

and SUBC homogenized approximates at finite ǫ. However, the following bounds always hold true

(see [27] for example):

K̂ǫ

∞ ≤ K∗ ≤ Ǩǫ

∞. (13)

Further, as we will be illustrated in the examples at the end of this paper, both the KUBC and SUBC

are biased for finite ǫ (see Section 5).

3. COUPLING OF A RANDOM MICROSTRUCTURE WITH AN EFFECTIVE MODEL

In the previous section, we have introduced classical numerical techniques to obtain estimates of

the homogenized tensors. These estimates are widely developed and used in the literature, but are

unfortunately biased in the general case. In this paper, we propose a novel technique for obtaining

such estimates. This technique will be presented in Section 4 and relies heavily on a stochastic-

deterministic coupling approach originally introduced in [25, 26]. The objective of this section is to

recall the main features of this coupling method, without too much emphasis on technical details

(those can be found in particular in [26]).

It is important to stress from the start that this method is very different from an approach where

a sequence of realizations of the random medium would be coupled each to an exterior effective

model. In such an approach, the displacement fields in the effective model would be different for

each realization of the random medium. Contrarily, in our approach, the coupling is really posed

in a stochastic setting and couples the entire set of realizations of the random medium to a single

effective model.

This coupling strategy is based on the introduction and superposition of two models and three

domains (see figure 2): the (stochastic) microstructure is defined over a domain D with a stochastic

parameter field kǫ(x), and the (deterministic) effective model is defined over a domain D, with a

constant parameter K
ǫ
. The supports of the two models are such that D ⊂ D, and the two models

communicate through a coupling volume Dc, with Dc ⊂ D and Dc ⊂ D. These definitions mean

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
Prepared using nmeauth.cls DOI: 10.1002/nme



6 R. COTTEREAU

that there is part of the domain where only the effective model is defined, part of the domain where

both models are defined and over which they are coupled, and part of the domain where both models

are defined but over which they do not communicate.

Figure 2. Section (left) and perspective view (right) of a 2D Arlequin problem where an effective model,
defined over domain D, and several realizations of a random model, defined over D, are coupled through
a coupling domain Dc. On the overlap outside of Dc: (D ∩D)\Dc, both models are defined but behave

independently.

The coupling problem is set in the general Arlequin framework (see in particular [31, 32, 33, 34]

for details on the Arlequin framework in a deterministic setting and [25, 26] for the stochastic case),

and reads: find (u
ǫ
,uǫ,Φ) ∈ V ×W ×Wc such that











aǫ(uǫ, v) + C(Φ, v) = ℓ(v), ∀v ∈ V
Aǫ(uǫ,v)− C(Φ,v) = L(v), ∀v ∈ W
C(Ψ, u

ǫ
− uǫ) = 0, ∀Ψ ∈ Wc

, (14)

where the forms aǫ and ℓ, on the one hand, and Aǫ and L, on the other hand, are the forms

appearing in the weak formulations corresponding to equations (4) and (1), respectively, weighted

by a function that enforces the conservation of the global energy, by appropriate partitioning among

the two available models. More specifically, these forms are:

aǫ(u, v) =

∫

D

α1(x)Kǫ
∇u · ∇v dx, (15)

ℓ(v) =

∫

D

α1(x)f(x)vdx, (16)

Aǫ(u,v) = E

[
∫

D

α2(x)kǫ(x) ∇u · ∇v dx
]

, (17)

and

L(v) =
∫

D

α2(x)f(x) E[v] dx. (18)

These weight functions mainly mean to split appropriately the total energy among the two models.

Therefore, they verify the following constraints: α1(x) + α2(x) = 1 in D ∩D and α1(x) = 1 in

D\D. Further, they allow to put emphasis on one or the other of the two models. Hence, where the

stochastic (fine scale) model is defined (and outside of the coupling area), the weight function α2(x)
is given a value close to one (and α1(x) a value close to zero).

The coupling operator C enforces weakly the equality of the two fields u and u in the coupling

area Dc. It is defined by:

C(u,v) = E

[
∫

Dc

(κ0uv + κ1∇u · ∇v) dx
]

. (19)

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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NUMERICAL HOMOGENIZATION OF RANDOM MATERIALS 7

In this definition, the constant parameters κ0 and κ1 are introduced to weight relatively the L2 and

H1 parts of the scalar product, and the solution of the Arlequin coupled problem is very robust

with respect to their choice (see [34]). Note that, in the last line of Equation (14), the second input

of the coupling operator is u
ǫ
− uǫ, which is formally the subtraction between elements of two

different functional spaces V andW . We actually consider here that H1(Dc) is naturally embedded

in L2(Θ,H1(Dc), so that, over Dc this subtraction makes sense. For more complex cases where the

models are not related in such a simple manner, projection operators have to be introduced (see for

example [35]).

The functional spaces are V = H1
0(D) (with straightforward modifications for other boundary

conditions than homogeneous Dirichlet aroundD),W = L2(Θ,H1(D)) (assuming thatD is strictly

embedded in D), and

Wc = H1(Dc)⊕ L2(Θ,R) (20)

=
{

ψ(x) + θIc(x)|ψ ∈ H1(Dc),θ ∈ L2(Θ,R)
}

. (21)

The indicator function I(x) is such that Ic(x ∈ Dc) = 1 and Ic(x /∈ Dc) = 0. Hence the mediator

space Wc can be seen as composed of functions with a spatially-varying ensemble average and

perfectly spatially-correlated randomness. The random part is actually the generator of the kernel

of the acoustic operator we are considering here. If we were to consider a vector equation, the

definition of the mediator space would be the superposition of a space-fluctuating average (as here),

and six rigid-body movements with random coefficients.

Note that, thanks to the specific structure of the space Wc, the last equality of the system (14)

can be written equivalently, ∀Ψ = ψ(x) + θIc(x) ∈ Wc, or otherwise said, ∀ψ ∈ H1(Dc) and

∀θ ∈ L2(Θ,R),

0 = C(Ψ, u
ǫ
− uǫ) (22)

= E

[
∫

Ωc

(κ0(ψ + θIc)(uǫ − uǫ) + κ1∇ψ · ∇(uǫ − uǫ)) dx

]

(23)

= C(E [Ψ] , u
ǫ
− E [uǫ])− E

[

θ

∫

Ωc

(uǫ − E [uǫ]) dx

]

. (24)

Therefore, this condition imposes that, in each space point x ∈ Dc, the (ensemble) average of the

random field E[uǫ(x)] should be equal to the field u
ǫ
(x), and that the variability of the space-

averaged random variable
∫

Ωc

(uǫ − E [uǫ])dx should cancel.

The stability of the coupled problem (14) was proved in [26], and its solution can be provided

either by Monte Carlo sampling of the random space, or by a spectral approach.

4. A NEW METHOD FOR THE DETERMINATION OF THE HOMOGENIZED TENSOR

In the previous two sections, we have described classical approaches to the numerical

homogenization of random structures (Section 2) and a new coupling method between stochastic

and deterministic models (Section 3). Although these two sections may have seemed very weakly

related, we will show here how the latter method can be used for the design of a novel numerical

homogenization technique for random media.

4.1. Principle of the method

The general motivation for the design of this technique lies in the observation that the biases

observed in the SUBC and KUBC estimates of the homogenized coefficients originate from the

boundary conditions chosen for each realization of the random corrector problems. Somehow, in

order to obtain good estimates of the homogenized coefficients, these boundary conditions have to

be taken away (by reducing ǫ), in order to minimize their influence.

Some authors (see [23, 24]) have intended to do so by intercalating between the heterogeneous

model of interest and the boundary conditions a homogeneous medium, with the appropriate

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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8 R. COTTEREAU

homogenized tensor. As the properties of the medium do not vary in space, the corresponding mesh

does not need to be heavily refined, and the boundary conditions can therefore be pushed away in a

cost-effective manner. If the tentative medium is indeed the homogenized medium corresponding to

the heterogeneous fine scale model, then it is expected that the influence of the boundary conditions

will be reduced. However, this is not so, because an impedance mismatch has been created at

the interface between the two models. Indeed, on this interface, the two models do not have the

same mechanical parameters, and this mismatch acts somehow as a new set of virtual boundary

conditions. In particular, on one side of the interface, the properties fluctuate, while they are constant

on the other side.

The approach that we propose here builds on this initial idea. However, it brings down the

above issue by considering a volume coupling, which is much smoother than an interface-based

one. Further, it allows to perform the coupling between the entire set of realizations of the

random medium and the tentative homogenized medium through the coupling operator described in

equation (19).

Apart from this idea of computing a coupled problem, we also introduce an optimization scheme

to gather the value of the homogenized tensor, because it is indeed the objective of our work. This

optimization scheme builds on the idea that, once the homogenized model has been identified, it

should behave exactly the same, whether it is solved alone or coupled to the micro-structure it

represents. In particular, the solution of a coupled Arlequin problem with that homogenized model

and the micro-structure under the homogenization experiments presented in Section 2.3 should yield

exactly the same result as if the homogenized model was solved alone. On the other hand, if the

tentative homogenized is not correct, there will be a mismatch of impedances that can be detected

through the distance between the response of the homogenized model in the coupled model and that

of the same homogenized model solved alone. Hence for an imposed unit strain at the boundary of

the macro-scale domain (Dirichlet approach, which we will consider in the following), the strain

tensor should be identity, whether the macro-model alone is solved for, or the coupled micro-macro

model.

4.2. Description of the algorithm

Algorithm 1: Algorithmic description of the proposed iterative technique for numerical

homogenization of random materials

Data: N realizations of random medium kǫ(x) of correlation length ǫ
Result: Arlequin estimate of homogenized tensor Kǫ

N

Initialization: K0 ←− E[kǫ]I;

while ‖Ki −Ki−1‖ > criterion do

set the mechanical parameter: K
ǫ
←− Ki;

solve the Arlequin coupled system (14) and estimate (u
ǫ
,uǫ,Φ) ;

update Ki+1 to minimize
∫

D
‖∇u

ǫ
− I‖dx

end

Store estimate: Kǫ

N
= Ki.

In this algorithm, note that the iterative loop can be efficiently implemented through classical

general-purpose optimization schemes. In particular, we have used the Nelder-Mead algorithm

(see [36] for details), but others could be considered. Similarly, we chose as initial value K0 =
E[kǫ]I , but other choices are equally reasonable. The influence of the choice of initial value will be

discussed through examples in Section 5.

We have chosen here to drive the iterative scheme with the minimization of the potential
∫

D
‖∇u

ǫ
− I‖dx, consistent with the intuitive idea developed above (Section 4.1). Other

possibilities exist. In particular, we have tested the examples in Section 5 with both this potential

and the energy norm
∫

D
(∇u

ǫ
− I) ·K

ǫ
(∇u

ǫ
− I)dx. The results obtained were exactly the same.

Here, we prefer to avoid using K
ǫ

in the definition of the potential, because it is the quantity we are

iterating on. However, for other problems, in particular when the homogenized tensor is not scalar

anymore, it might become interesting to consider the second type of operator.

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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4.3. Evaluation of numerical costs

Let us finally discuss the comparative numerical costs between the standard numerical

homogenization schemes described in Section 2.3 and the proposal made here. From the point of

view of our method, the differences in cost can be listed as:

• degrees of freedom are introduced for the discretization of V∗ in (14);

• degrees of freedom are introduced for the discretization ofWc in (14);

• the iterative loop means that several Arlequin systems (14) are solved;

• the estimate of the homogenized tensor is less polluted by boundary conditions.

Basically, our approach becomes interesting when the gain from the last item overcomes the costs

induced by the first three. In that respect, it should be noted that the discretization of the functional

space V ⊂ H1(D) is very coarse compared to the discretization of H1(D) because the mechanical

properties are constant in the homogenized model while they are heterogeneous over the stochastic

model. Likewise, the discretization in space of Wc = H1(Dc)⊕ L2(Θ,R) can be made to follow

that ofH1(D), and therefore introduce very few additional degrees of freedom. Finally, concerning

the iterative scheme, it should be noted that as the realizations of the random model do not change

between two iterations (only the homogenized model evolves), the assembly of the Monte Carlo

samples of stiffness matrices does not have to be repeated.

5. APPLICATIONS

In this section, we consider the implementation of our homogenization approach on two problems

for which analytical solutions are available and one classical problem in periodic homogenization.

The software used for the solution of the coupled Arlequin systems is freely available at

https://github.com/cottereau/CArl.

In all the simulations presented in this section, we have used κ0 = 1 and κ1 = 10−3 for the

definition of the coupling operator (see Eq. (19)). Also, we have used α2(x ∈ (D ∩D)\Dc) =
1− η and α1(x ∈ (D ∩D)\Dc) = η, with η = 10−3, for the weighting of the energies of the two

models. The realizations of the continuous random fields kǫ(x) have been generated using the

spectral representation method [37], and its Fast Fourier Transform implementation. Finally, in the

implementation of the loop in algorithm 1, a relative tolerance of criterion = 10−2 was selected for

both the value and the argument of the potential function.

5.1. 2D isotropic medium with random continuous properties

In this first example, we show the effectiveness of the method and discuss numerical implementation

details.

5.1.1. Description of the model. We consider a two-dimensional problem, within a domain D =
[0, 1]× [0, 1], of typical size L = 1. The operator to be homogenized is ∇ · kǫ(x)∇uǫ, with kǫ(x)
a random heterogeneous modulus. We consider for kǫ(x) a homogeneous random field with log-

normal first-order marginal distribution, and average and standard deviation E[kǫ] = σ =
√
2. The

power spectrum is considered triangular (which corresponds to a square cardinal sine correlation),

with correlation length ℓc. We will consider the homogenization problem for three different relative

correlation lengths: ǫ = ℓc/L = 10, ǫ = 1 and ǫ = 0.1. These correlation lengths span several orders

of magnitude (see Figure 3 for examples of realizations of the random media considered) in order

to show a wide range of behaviors for our method. Note that considering a domain of fixed size and

variable correlation lengths, as is done here, is strictly equivalent to considering a constant random

field homogenized over cells of variable sizes, as is more often done in the micro-mechanical

community.

As discussed in Section 2.5, the homogenized tensor is

K∗ =

[

1 0
0 1

]

. (25)

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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(a) ǫ = 10, Sample 1 (b) ǫ = 1, Sample 1 (c) ǫ = 0.1, Sample 1

(d) ǫ = 10, Sample 2 (e) ǫ = 1, Sample 2 (f) ǫ = 0.1, Sample 2

Figure 3. Map of parameter kǫ(x) (in logarithmic scale) for two realizations of each of the cases considered
here (left: ǫ = ℓc/L = 10, center: ǫ = 1, and right: ǫ = 0.1).

Indeed, the inverse of a log-normal random variable follows exactly the same law as the variable

itself in the case when the mean and the standard deviation are equal. Note that, because we know

beforehand that the homogenized tensor is isotropic, we will only discuss here the convergence

toward the scalar value K∗
xx

= 1. This means that the KUBC, SUBC, and Arlequin estimates

will really be based only on numerical experiments in one direction (using only the imposed

gradient ∇uǫ = [1 0]T for the KUBC estimate for instance). More complex cases, with anisotropic

homogenized behavior in particular, will be considered in the future.

5.1.2. Computation of KUBC and SUBC estimates. First, we consider the KUBC and SUBC

estimates of the homogenized coefficient, as described in Section 2.3. To observe the convergence

with respect to the number N of realizations of the random medium over which averages are taken

(equations (7) and (8)), we compute KUBC and SUBC estimates for different values of this number

N . Note that, for a given correlation length, the values of the KUBC and SUBC estimates depend

not only on the number N , but also on the realizations themselves. We therefore compute, for each

value of N , n = 10 different estimates for different ensembles of N realizations of the random

medium. These results are plotted in Figure 4. The linear Finite Element method was used to

compute the corrector problems, with 800, 1600, and 10000 triangular elements, respectively for

the cases ǫ = ℓc/L = 10, ǫ = 1 and ǫ = 0.1.

On these plots, we retrieve the expected asymptotic behavior of the homogenized coefficients.

Both the KUBC Ǩǫ

N
and SUBC K̂ǫ

N
estimates converge to the exact value K∗ for small ǫ and

large N (although the KUBC is not fully converged at ǫ = 0.1). Also, at large ǫ and large N , the

KUBC estimate tends towards the arithmetic average E[kǫ] and the SUBC estimate tends towards the

harmonic average E[k−1
ǫ

]−1. Finally, for a fixed ǫ and increasingN , the variances of both the KUBC

and SUBC estimates decrease, canceling for N →∞. Likewise, the variances of these estimates

decrease for fixed N and decreasing ǫ, canceling again for ǫ→ 0.

5.1.3. Computation of the Arlequin estimate. We now turn to the estimation of the Arlequin

estimate Kǫ

N
of the homogenized coefficient over domains D = [−1; 2]× [−1; 2] and D = [0; 1]×

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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(a) ǫ = 10 (b) ǫ = 1

(c) ǫ = 0.1

Figure 4. Convergence of the homogenized coefficients Ǩǫ

N
(dark grey crosses) and K̂ǫ

N
(light grey circles)

for different correlation lengths ((a) ǫ = ℓc/L = 10, (b) ǫ = 1, and (c) ǫ = 0.1) as a function of the numbers
of Monte Carlo trials N . The dashed lines indicate the values of the arithmetic average E[kǫ] and of the

harmonic average E[k−1
ǫ ]−1. The solid lines indicate the value of K∗ = 1.

[0; 1]. The coupling zone Dc is a band of width 0.2 circling at the boundary of D, and we consider

a unit strain boundary condition at the boundary of D.

In the Arlequin coupled problem, there exist the same typical lengths as before (ℓc and L), plus

an additional one, corresponding to the size L = 3 of the tentative homogeneous medium D. In

order to simplify the comparisons between the Arlequin estimate and the KUBC/SUBC estimates,

we continue to define ǫ as the ratio of the correlation length ℓc to the size L of the random cell D,

that actually indicates the amount of statistical information available about the random medium.

In Figure 5, we plot the values of the Arlequin estimatesKǫ

N
for three different correlation lengths

(ǫ = ℓc/L = 10, ǫ = 1, and ǫ = 0.1) as a function of the numbers of Monte Carlo trials N . As in the

previous case, the Arlequin estimate depends on both the number of Monte Carlo trials, but also on

those realizations themselves, so each value of Kǫ

N
is computed for n = 10 different ensembles of

realizations of the random medium. In the same Figure 5, we compare the Arlequin estimates with

the KUBC and SUBC estimates already presented in Figure 4 and discussed in Section 5.1.2.

The results are extremely convincing in the case presented here. Even when the correlation length

is much smaller than the computational cell (ǫ = 10), the iterative Arlequin method predicts the

correct homogenized coefficient, in the limit of large number of Monte Carlo realizations. The bias

that is observed in the KUBC and SUBC estimates for large ǫ cancels completely for our estimate.

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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(a) ǫ = 10 (b) ǫ = 1

(c) ǫ = 0.1

Figure 5. Convergence of the Arlequin estimate Kǫ

N
(black pluses) for different correlation lengths ((a)

ǫ = ℓc/L = 10, (b) ǫ = 1, and (c) ǫ = 0.1) as a function of the numbers of Monte Carlo trials N , and

comparison with the coefficients Ǩǫ

N
(light grey crosses) and K̂ǫ

N
(light grey circles). The dashed lines

indicate the values of the arithmetic average E[kǫ] and of the harmonic average E[k−1
ǫ ]−1. The solid lines

indicate the value of K∗ = 1.

However, it should be reminded that we have considered here the homogenization of a particular

random medium. The random field kǫ is indeed locally invariant by inversion, and the homogenized

tensor does not depend on the correlation structure. At this point, it therefore cannot be stated

unambiguously whether the excellent behavior of our method is a coincidence or a general behavior.

In any case, it should be stressed that the KUBC and SUBC approaches behave much worse than

our Arlequin estimate.

In the next section, we present a 1D example, for which we still know analytically the

homogenized tensor, but for which the random medium is not locally invariant by inversion. As will

be seen, and although the behavior is still much better than for the KUBC, the Arlequin estimate

appears slightly biased for that example.

5.1.4. Numerical considerations. Before going over to this 1D example, we now consider in more

detail four numerical issues: (1) the behavior of the potential function over which the minimization

problem is solved for the identification of the Arlequin estimate Kǫ

N
(see algorithm 1), (2) the

dependence of the method on the choice of the initial value for the Arlequin estimate, (3) the

corresponding number of iterations for convergence, and (4) the cost of the Arlequin method.

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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We first compute and plot the value of the potential
∫

D
|1− ∂xuǫ|dx (which is minimized through

the iterative loop of algorithm 1), as a function of the tentative homogenized coefficient K
ǫ

for the

effective model, for a correlation length ǫ = ℓc/L = 10, and n = 10 different ensembles ofN = 103

realizations of the random medium. As can be observed in Figure 6, this potential seems well

adapted for the purpose of pinpointing the right value of the homogenized tensor. It is well behaved,

with no local minima and one global minimum. Also, the n = 10 ensembles of realizations yield

similar curves.

Figure 6. Value of the potential
∫

D
|1− ∂xuǫ|dx as a function of the coefficient of the tentative homogenized

medium, for ǫ = 10, and for n = 10 different ensembles of 104 realizations of the random medium.

We then consider the dependence of the method on the choice of the homogenized tensor used to

initialize the iterative process of algorithm 1. We therefore compute estimates of the homogenized

tensor for n = 3 different ensembles of N = 103 realizations of a random medium with ǫ = 1,

for different values of the initial value K0. These estimates are grouped in table I, along with the

numbers of iterations required for convergence. It is observed that the estimate is independent (to the

order of criterion) of the initial value. The only difference lies in the number of iterations required

to attain that convergence. Unless one chooses values that are one order of magnitude away from

the exact value, the convergence is obtained (for criterion = 10−2) in around 7 iterations.

Table I. Arlequin estimate Kǫ

N
obtained for different values of the initial coefficient K0 initializing the

optimization in algorithm 1, and corresponding number of iterations for convergence. The computations

are performed for three different ensembles of N = 103 Monte Carlo realizations, a correlation length
ǫ = ℓc/L = 1, and a relative tolerance on both the value and the argument of the potential function of

criterion = 10−2.

Initial values 0.1 0.8 1.0 1.2 5.0 10.0

Final value 0.985 0.985 0.982 0.981 0.985 0.985

Nb iterations 11 6 6 8 11 11

Final value 0.994 0.994 0.991 0.990 0.994 0.994

Nb iterations 11 6 6 8 11 11

Final value 1.022 1.020 1.028 1.024 1.022 1.022

Nb iterations 11 6 6 8 11 11

We now consider the issue of cost, following on with the discussion at the end of Section 4. Each

Arlequin estimate will require the solution of a coupled problem with more degrees of freedom

that those involved in the computation of the KUBC and SUBC estimates. Note, however, that we

will consider a uniform mesh with intervals of size 0.1 for the entire domain D, whatever the value

of ǫ, and the same meshes as for the KUBC and SUBC computations for the random domain D.

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
Prepared using nmeauth.cls DOI: 10.1002/nme



14 R. COTTEREAU

The space dimension of the functional spaceWc will be also discretized with elements of size 0.1.

Hence, for ǫ = 10, the number of additional degrees of freedom is important compared to the number

of degrees of freedom related to D, but quickly drops to relatively small numbers for small ǫ. For

ǫ = 0.1, the number of additional degrees of freedom (in space) is around 1800 for the discretization

of D and around 200 for the discretization ofWc, to be compared to the 10000 degrees of freedom

(in space) defined over the random domain D. Smaller ǫ would yield even smaller relative numbers.

5.2. 1D bar with random properties

This second example is very similar to the previous one, except that it is one-dimensional.

5.2.1. Description of the model. We now consider a 1D bar, defined over domain D = [0; 1],
of length L = 1, and the homogenization of the operator −∂xkǫ(x)∂xuǫ, where kǫ(x) is a

one-dimensional random heterogeneous modulus. More particularly, we consider a statistically

homogeneous random field with uniform first-order marginal density, average E[kǫ] = 1, standard

deviation σ = 1/2 (hence the realizations of kǫ are in the interval [1−
√
3/2, 1 +

√
3/2]), triangular

spectrum, and correlation length ℓc. Note that this random medium is not invariant by inversion. We

will consider the homogenization problem for three different relative correlation lengths: ǫ = ℓc/L,

ǫ = 1 and ǫ = 0.01 (see Figure 7 for examples of realizations of the random media considered).

(a) ǫ = 10 (b) ǫ = 1 (c) ǫ = 0.01

Figure 7. Three realizations of the random field kǫ(x) for three correlation lengths ((a) ǫ = ℓc/L = 0.01, (b)
ǫ = 1, and (c) ǫ = 10). For ǫ = 0.01, only one realization is plotted for clarity.

For that simple 1D operator, the exact value of the homogenized coefficient can be computed

analytically (see Section 2.4):

K∗ = E
[

k
−1
ǫ

]−1
=

√
3

ln
(

1 +
√
3

2

)

− ln
(

1−
√
3

2

) ≈ 0.6576. (26)

5.2.2. Computation of KUBC and SUBC estimates. As in the 2D case (Section 5.1.2), we first

consider the KUBC and SUBC estimates of the homogenized coefficient. We compute these

estimates for different values of this number N of realizations of the random medium over

which averages are taken (equations (7) and (8)), and for different ensembles of N realizations.

The results are plotted in Figure 9. The linear Finite Element method was used to compute the

corrector problems, with 4, 10, and 1000 elements, respectively for the cases ǫ = ℓc/L = 10, ǫ = 1
and ǫ = 0.01. On these plots, we retrieve the expected asymptotic behavior of the homogenized

coefficients.

5.2.3. Computation of the Arlequin estimate. We now turn to the estimation of the Arlequin

estimate Kǫ

N
of the homogenized coefficient over domains D = [−1, 2] and D = [0, 1]. The

coupling area, over which both models exchange information, is Dc = [0, 0.2] ∪ [0.8, 1]. The

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
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boundary conditions that we consider are u
ǫ
(x = −1) = −1 and u

ǫ
(x = 2) = 2, which correspond

to a unit strain boundary condition (Dirichlet approach). As in the 2D case, we continue to define

ǫ as the ratio of the correlation length ℓc to the size L of the random cell D (rather than to the size

L = 3 of D), because it is L that actually indicates the amount of statistical information available

on the random medium.

In Figure 8, we plot the values of the Arlequin estimate Kǫ

N
as a function of the numbers of

Monte Carlo trials N . Each value of Kǫ

N
is computed for n = 10 different ensembles of realizations

of the random medium. In the same Figure 8, we compare the Arlequin estimates with the KUBC

and SUBC estimates and with the theoretical value of the homogenized coefficient K∗ ≈ 0.6576.

(a) ǫ = 10 (b) ǫ = 1

(c) ǫ = 0.01

Figure 8. Convergence of the Arlequin estimate Kǫ

N
(black pluses) for different correlation lengths ((a)

ǫ = ℓc/L = 10, (b) ǫ = 1, and (c) ǫ = 0.01) as a function of the numbers of Monte Carlo trials N , and

comparison with the coefficients Ǩǫ

N
(light grey crosses) and K̂ǫ

N
(light grey circles). The dashed lines

indicate the values of the arithmetic average E[kǫ] and the solid lines indicate the value of the harmonic

average E[k−1
ǫ ]−1 = K∗.

As can be observed, and as already announced at the end of Section 5.1, our approach provides

better estimates than the classical KUBC (the SUBC is exact in 1D). However, the results are not

perfectly unbiased. Note also that, if we had used Neumann boundary conditions for our Arlequin

estimate (results not shown), we would have obtained the same results as the SUBC.

To refine these observations, we present in Figure 9 the Arlequin estimates obtained for N = 103

Monte Carlo trials as a function of the correlation length ǫ = ℓc/L. Again, each experiment is

repeated for n = 10 different ensembles of realizations of the random medium. It seems that the

bias of the Arlequin estimate drops down to close to zero for ǫ of the order of 0.1. Finally, several

numerical tests were considered, as in Section 5.1.4, and similar results were obtained (not shown):
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Figure 9. Convergence of the Arlequin estimate Kǫ

N
as a function of the correlation length ǫ = ℓc/L, for

different ensembles of N = 103 realizations of the random medium. The dashed line indicates the value of
the arithmetic average E[kǫ] and the solid line indicates the value of the harmonic average E[k−1

ǫ ]−1 = K∗.

the shape of the potential function is adequate and the number of iterations ranges from 6 to 11,

depending on the initial value chosen for the homogenized coefficient (from 0.1 to 10).

5.3. 2D periodized bi-phasic material with spherical inclusions

This last example aims, on the first hand, to present an example with discontinuous properties, and,

on the other hand, to compare the behavior of the method proposed here to the classical method of

periodic homogenization.

5.3.1. Description of the model. We consider, as in the first example, a domain D = [0, 1]× [0, 1],
of typical size L = 1. This domain is separated into a matrix and overlapping (almost) spherical

inclusions, with diameter ℓc. The operator to be homogenized is∇ · kǫ(x)∇uǫ, where kǫ(x) is equal

to 1 in the matrix and 10 in the inclusions. The centers of the spheres are uniformly distributed in a

larger domain ([−10, 10]× [−10, 10]), with an average concentration of c = 0.3. The computational

domain is then periodized, that is to say the centers inside the computational cell D are repeated

outside of it before the spheres are constructed. We will consider the homogenization problem for

four different relative correlation lengths: ǫ = ℓc/L = 8/3 >
√
2 (for which periodization implies

that all the realizations are homogeneous, 30% of them with value 10 and 70% of them with value

1), ǫ = 2/3, ǫ = 1/3, and ǫ = 1/6 (which correspond, on average, to 1, 4 and 16 spheres in each

computational cell, respectively). Examples of realizations of the random media considered can be

observed on Figure 10. Note that the discretization of the spheres is exaggerated in the smaller cells

in order not to keep the shape of the inclusions exactly the same (up to homothety) in all the cases

considered. This is to avoid the introduction of a bias due to a modification of the shape of the

inclusions with size.

5.3.2. Computation of KUBC, SUBC and periodic estimates. The KUBC, SUBC and periodic

estimates are computed for different values of the number N of realizations of the random medium

over which averages are taken and, each time, for n = 5 different ensembles of N realizations.

The results are plotted in Figure 11. The linear Finite Element method was used to compute the

corrector problems, with 288, 576, 1152, and 2304 triangular elements, respectively for the cases

ǫ = ℓc/L = 8/3, ǫ = 2/3, ǫ = 1/3, and ǫ = 1/6.

5.3.3. Computation of the Arlequin estimate and discussion. The Arlequin estimate Kǫ

N
of the

homogenized coefficient is computed over domains D = [−1, 2]× [−1, 2] and D = [0, 1]× [0, 1].
The coupling zone Dc is a band of width 0.4 circling at the boundary of D, and we consider a unit

strain boundary condition at the boundary of D. For each number N of Monte Carlo realizations,
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(a) ǫ = 8/3, Sample 1 (b) ǫ = 2/3, Sample 1 (c) ǫ = 1/3, Sample 1 (d) ǫ = 1/6, Sample 1

(e) ǫ = 8/3, Sample 2 (f) ǫ = 2/3, Sample 2 (g) ǫ = 1/3, Sample 2 (h) ǫ = 1/6, Sample 2

Figure 10. Map of parameter kǫ(x) for two realizations of each of the cases considered here (from left to
right: ǫ = ℓc/L = 8/3, ǫ = 2/3, ǫ = 1/3, and ǫ = 1/6).

Arlequin estimates are computed for 5 different ensembles of N realizations. The number of

triangular finite elements for the micro-structure is the same as for the KUBC, SUBC and periodic

estimates (see above), and the macro-structure is discretized with 81 elements. In Figure 11, the

value of the Arlequin estimate can be observed and compared to those obtained with the KUBC,

SUBC, and periodic estimates.

The first observation that should made on these results is that, except for the smallest cell

(Figure 11(a)), the estimates obtained with our method and with the periodic boundary conditions

are very similar. The KUBC and SUBC estimates provide bounds for both these estimates (at

convergence for a given cell size). The second observation concerns the first case. Remember

that periodization of the medium implies that the realizations for ǫ = 8/3 are all homogeneous.

In that case, all knowledge of correlation is lost, and only the first-order marginal law remains. As

the realizations are all homogeneous, the periodic boundary conditions therefore provide exactly

the same estimates as the KUBC, which are very bad. On the other hand, the Arlequin estimate

provides a reasonable value of the homogenized coefficient. Note however that, as all statistical

information has disappeared, except that related to the first-order marginal law, we do not expect

that the Arlequin method will in general provide perfect estimates of the homogenized coefficient.

As before, this example should be seen as a promising feature of our method.

6. CONCLUSIONS AND PROSPECTS

In this paper, we have introduced a new computational method for the homogenization of random

media. It is based on two major ingredients: (1) a stochastic-deterministic coupling method that

limits the influence of the boundary conditions in the homogenization experiments, and (2) an

iterative technique for updating the value of the tentative deterministic model. At convergence, the

material parameter of the deterministic model is expected to provide the value of the homogenized

tensor. The results obtained for the chosen 2D example are spectacular. In that case, the bias

observed in the KUBC and SUBC estimates totally disappears, even for very large correlation length

ǫ = ℓc/L. On the other hand, the biases obtained in the 1D example are non-zero but smaller than for

the corresponding KUBC estimates. With respect to the classical periodic homogenization method,

our estimates seem to compare well at all sizes, except for small cells, for which our estimates are

much more accurate.

This promising behavior of the proposed method should obviously be confirmed on other

examples, starting with a 3D problem. However, this method will show its true interest not on
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(a) ǫ = 8/3 (b) ǫ = 2/3

(c) ǫ = 1/3 (d) ǫ = 1/6

Figure 11. Convergence of the Arlequin estimate Kǫ

N
(black pluses) for different correlation lengths ((a):

ǫ = ℓc/L = 8/3, (b): ǫ = 2/3, (c): ǫ = 1/3, and (d): ǫ = 1/6) as a function of the numbers of Monte Carlo

trials N , and comparison with the coefficients Ǩǫ

N
(light grey crosses) and K̂ǫ

N
(light grey pluses) and the

periodc estimate (black circles). The dashed lines indicate the values of E[kǫ] and E[k−1
ǫ ]−1.

examples (as those that were considered in this paper) for which current techniques already work

(in particular the periodic boundary conditions approach), but really on examples where the full

potential of the Arlequin method as a multi-model coupling technique can be used. In particular, the

approach can be used in cases when the equation driving the behavior of the micro-structure is not

the same as the equation driving the homogenized equation. As an example, one could consider the

homogenization of an elastic random media by a beam model. Other promising examples include

the coupling of wave propagation models with kinetic models (where the variable of interest is not

a displacement field but a phase-space energy density) [38, 39].
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