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Abstract—Since the first demonstration of a complete photonic band
gap by E. Yablonovitch in 1987 [1], photonic band gap materials have
attracted a very significant interest in Electromagnetism but also in
Solid State Physics. Doped photonic crystals that have a point defect
(a local disturbance) have been extensively studied with the emergence
of this new area of Physics. They present localized modes in the band
gap and triggered many potential applications. Fewer papers have been
devoted to strongly disordered photonic crystals that are periodic on
the average. These structures are disturbed on the overall feature and
the defect corresponding is referred to as extended. Analogue at a first
glance to amorphous semiconductors, these materials could present
interesting properties. Moreover, manufacture of photonic crystals is
still a real challenge for the optical domain and undesirable extended
defects can appear leading to a compulsory study of the tolerances of
periodicity for such new materials.
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1. INTRODUCTION

Photonic crystals are periodic structures in which optical properties
can be tailored depending on the index contrast and the geometry
of the elementary pattern [1–3]. The simplest photonic crystal
is unidimensional and corresponds to a Bragg reflector. A two-
dimensional photonic crystal can be a set of parallel identical cylinders
(dielectric or metallic rods, holes in a dielectric material) periodically
arranged in a homogeneous medium. A three-dimensional crystal
can be for instance a set of identical spheres periodically arranged,
but many other patterns have also been tested. By analogy with
semiconductor materials, band structures can be calculated for pho-
tonic crystals using numerical methods and reveal band gaps for
certain frequency ranges of the incident wave on the material. In
the microwave domain, the first 3D photonic crystal referred to as
the Yablonovite [4] was constituted by three series of cylindrical holes
having three fold symmetry drilled at 35◦ from the normal to the
surface and presented a full band gap whatever the direction and
polarization of the incident field. 2D and 3D structures count a large
number of potential applications for the microwave domain where they
could be used as very efficient reflectors [5], antenna substrates, etc. In
the optical domain highly attractive applications are considered, such
as filters, optical switches, cavities, very efficient (low-threshold) laser
diodes and light emitting diodes [1, 4, 6], superprism [7, 8], etc.

To be still consistent with this usual analogy between Electromag-
netism and Solid State Physics, disordered photonic crystals can be
either structures containing localized defects and may be the analogue
of real crystal with point defect or structures containing extending de-
fects. We will describe below the first type (point defects) of disordered
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structures then the second type (extended defects).
In real crystals, typical point defects are atoms missing from the

lattice or extra atoms inserted in the crystal lattice. The last decade
have seen numerous studies on disturbed photonic crystals with point
defects that correspond to a defect created locally within the structure
in adding, moving or removing material [9]. A pioneer work by
Anderson in 1958 [10] has been devoted on the study of the properties
of disordered lattices and superlattices and has revealed that these
structures can present light localization (energy trapped in the defected
zone referred to as Anderson’s localization). These structures were also
called doped photonic crystals because they can modify locally the
properties of the frequency response of the structure. Indeed, localized
modes can appear in the band gap for such a structure. A simple
explanation is generally used for a defect consisting in a cavity created
by removing one or several cylinder/spheres in a two/three-dimensional
photonic crystal: the cavity plays the role of a relay for the photons
which can then penetrate the structure. Consequently, the localized
state appearing inside the band gap corresponds to a resonance peak
(mode) of the cavity [11–15] and can be enhanced using a periodic
defect [16]. Moreover, according to some selection rules, linked to
both symmetry of the incident field and of the structure, it is possible
to control the occurrence of a mode [11, 13, 17, 18]. The control of
the propagation of the light by these new materials is linked to the
control of localized modes and has been extended to the study of
propagation in waveguides [19]. Many numerical methods have been
devised to analyze doped photonic crystals. Five of these methods
are briefly outlined in the next section as they have also been used
to study disordered structures of interest of this review paper. It is
worth signaling another method that has been used to analyze doped
photonic crystals: the Finite Element Method [20]. It is possible to
calculate the S matrix (that contains the reflection and transmission
coefficients) for undisturbed infinite photonic crystal using symmetric
boundaries. For the basic method, the size required for a disordered
structure is very large compared to the memory size of a computer
even for a point defect. The only defect which was simulated so far
with this method was a cavity of infinite width.

The second type of disordered photonic crystal experiences strong
disturbances on the overall structure and may rather be compared to
real crystals with extended defects. Extended defects are locations
where atom positions are displaced over a large area and they have
attracted a significant interest because fabrication of periodic structure
is highly difficult especially for the visible domain where the size of
the elementary pattern is submicrometric. As a consequence, the
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study of tolerances of periodicity for photonic crystals is a crucial
problem. In particular, the knowledge of the behavior of the band
gap depending on a random variation of parameters like the index or
the lattice constant mimicking fabrication imperfections is essential.
Moreover, as for real crystals such as silicon, photonic crystals should
be expected to present different behaviors when their periodicity
is strongly disturbed by extended defects but maintained on the
average. Many effects like light localization at edges of band gaps
occur only when the disordered structure is large enough compared
to the wavelength. Due to computer limitations, theses structures are
not approachable numerically. One tip consists then in averaging on
many small realizations of one disturbance [41]. As a result of a strong
disturbance, band tails (instead of narrow peaks) usually appear at
the edge of the band gaps [27, 39]. These effects can not easily be
shown experimentally because i) they require dozens of experiments,
ii) it is difficult to guarantee that only one type of defect is present in
the actual structure. Therefore, numerical simulations are important
to assess the effect of a particular type of extended defect on optical
properties of a photonic crystal and allowable deviations during its
fabrication.

Very recently, some studies have dealt with extended defect in a
2D and 3D disturbed photonic crystals [21–38] or in a much simpler
1D model [39, 40]. These studies have been presented using different
numerical methods. However, depending on the problem tackled, not
all methods are equivalent or suitable. In this paper, a review of
these studies is presented and discussed. The purpose here is to focus
on extended defects rather than point defects since the latter were
extensively studied during the last decade.

2. NUMERICAL METHODS

In this part, we will review different numerical methods that have been
devoted during the past decade to the investigation of properties of
disturbed photonic crystals. Some of these methods permit to calculate
transmission and reflection coefficients, which are experimentally
attainable. The main methods are: 1) the Plane Wave Method
[42], 2) the Finite Difference Time Domain (FDTD) method [43], 3)
the Transfer Matrix Method (TMM) [44], 4) a rigorous scattering
theory for 2D [45] or 3D [46, 47] photonic crystals and 5) the study
of Diffraction Gratings [48, 49]. All of these methods can deal with
metallic or dielectric structures and with 1D, 2D or 3D geometry.
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2.1.1. The Plane Wave Method in Outline

The plane-wave method is, in essence, the resolution of Maxwell’s
equations using an expansion of the electric field with discrete Fourier
series expressed on the plane waves basis, which is possible when the
medium is supposed to be periodic. This technique, well described in
[42], was historically the first method used to calculate band structures
of photonic crystals having a frequency independent dielectric function.
It is directly emerging from Solid State Physics as an application of
the Bloch’s theorem to electromagnetic waves that can propagate inside
the structure. It has been applied since to many calculations of band
structures of 2D and 3D photonic crystals [50–57] although convergence
is quite slow in some 3D cases [58] owing to the large fluctuation
of truncated series approximating the actual dielectric constant and
fields. The diamond lattice (one example of such a structure is
depicted in Figure 1(a)) proposed for the first time by Yablonovitch
[4], has widely been studied since this face centered cubic geometry
has an advantageous full gap whatever applied incident field. Figure 2
presents the calculation of the band structure for the 3D photonic
crystal of Figure 1(a), obtained with the plane wave method.

At a first glance, the plane wave method does not seem very
suitable for studying disturbed photonic crystals as the count of plane
waves escalates when the structure diverges from a periodic one.
However, many structures having a point defect have already been
studied with this method using a supercell technique. A convergence
study is then necessary to verify that the coupling is weak between
adjacent supercells. Recently, some papers have dealt with square,
triangular and graphite 2D [24, 28, 34] or 3D [22, 29] extended defect
in photonic materials by means of the plane wave method.

In any case, it is not possible to access to reflection and transmis-
sion coefficients with this method.

2.1.2. Disturbed Photonic Crystals Studied with the Plane Wave
Method

A very recent study of 2D disturbed dielectric photonic crystals having
an extended defect has been performed by Li et al. [34] using the
Plane Wave method. Structures studied were square and triangular
lattices of dielectric cylinders in air for an TM-polarization (E along
the axis of cylinders). The TE-polarization study was ignored since
the band gap is quite narrow for such a case. The authors have
succeeded to deal with two typical types of randomness by the way of
a supercell technique using a large number of plane waves: cylinder
site displacements referred to as site randomness by the authors
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(a)

(b)

Figure 1. (a) A diamond lattice of spheres (from Joannopoulos et al.
[2]) and (b) a stacked-bar structure (from Chutinan et al. [31]).

and cylinder radius variations referred to as size randomness. The
disordered system was approximated as a periodic system with a period
large enough to guarantee negligible coupling between neighboring
supercells. Typically, the supercell contained 5 × 5 unit cells for site
randomness and 7 × 7 for size randomness. For site randomness, the
position of each rod was randomly disturbed by executing a translation
γxa on x and γya on y, where a was the lattice constant and γx and
γy were variables uniformly distributed over the interval [−dxy, dxy]
where dxy characterize the random strength of the disordered system.
An equivalent distortion of γra was applied on radii for the size
randomness: the new radius for the ith cylinder was given by ri =
r0 + γra with a random strength of dr. They calculated the density-
of-states (DOS) for different realizations of disordered structures.
Results were independent of the realization of the sample with a
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Figure 2. Photonic band structure of a 3D photonic crystal
constituted of air spheres periodically arranged in a high dielectric
material (ε = 13) with a diamond like geometry, calculated with
the plane wave method. The x-axis indicates the directions of
the wave vector varying across the irreducible Brillouin zone (from
Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals,
Molding the Flow of Light, Princeton University Press, 1995, reprinted
by permission of Princeton University Press).

site randomness contrarily to that obtained with a size randomness,
especially at strong disorders. More generally, results revealed that
the sensitivity to disorder was more important with size randomness
than with site randomness. Actually, as shown in Figure 3, band gaps
tended to reduce very slightly even for a strong disturbance of the site
displacement (typically a strength as large as half the cylinder radius
was applied). On the contrary, band gaps reduced more than one-half
for typical size randomness strength of about one-third the cylinder
radius. They explained this behavior in showing that localization states
responsible of band gaps reduction appeared far more easily even with
weak size randomness than for a strong site randomness. In any case,
the ground band gap was far more robust than the higher ones. This
result was highly consistent with other theoretical efforts [22, 24, 28, 29]
and was explained considering that the higher the frequency, the larger
the ratio of disorder to minimum feature size.
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Figure 3. Density of state (DOS) of disordered crystals with (a)
site randomness and (b) size randomness in various random strengths.
The DOS was calculated for the E-polarization (E along the axis) of a
square lattice of dielectric cylinders in air. The cylinders have a filling
factor of 30% and a dielectric constant of ε = 12.96. Dotted vertical
lines in (a) and (b) represent the band edges of a periodic crystal. For
a clarity of view, the upper curves are offset alternately (from Li, Z. Y.,
X. Zhang, and Z. Q. Zhang, Physical Review B, Vol. 61, 15738, 2000,
with permission of Phyical Review B).

2.2.1. The Finite-Difference Time-Domain (FDTD) Method in
Outline

This method is formulated by discretizing Maxwell’s curl equations
over a finite volume. The space and time derivatives of the electric
E and magnetic H fields are formulated by means of centered
difference approximations. This method is very flexible and powerful
because it can deal with active or passive structures applying the
appropriate boundaries conditions to consider an infinite or finite
material (thus corresponding to a real piece of material). Indeed,
most of photonic crystals studied so far concerned passive structures.
However, a new field has emerged recently with the introduction of
active structures comprising electronic components such as PIN diodes
in order to control electronically their electromagnetic properties
[59, 60]. The FDTD method can take into account these components.
The theory consists in discretizing the problem over a finite four-
dimensional domain with appropriate boundary conditions enforced
on the source, conductors and mesh walls, the Maxwell’s equations
are then approximated using the centered difference approximation on
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both time and space first-order partial differentiations. Typically, the
x-component of the electric field is given for a (∆x,∆y,∆z) mesh by:

En+1
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Similar expressions are obtained both for other components of E and
for the magnetic field H. In the formula (1), i, j, k are integers related
to the space discretization with x, y, z space-coordinates, n to the time
discretization, and ε is the dielectric constant.

The maximum time step that may be used is limited by the
stability restriction of the finite difference equations:
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where vmax corresponds to the maximum velocity of light in the
computational volume.

As said previously, almost all types of passive or active structures
(and linear or non-linear) can be dealt with this very powerful method.
It is not limited to a plane wave incident field, which may be useful
in the study of emitters embedded in photonic crystal as it would be
the case for lasers. Another interesting feature of this method is the
possibility of a dynamic resolution of Maxwell’s equations and may
permit to study dynamic behaviors of photonic crystals. It is worth
noting the lack of a rigorous model for very specific structures such
as thin wires. Limitations of the theory are then attained in that
case. Moreover, this method is a time resolution that requires a Fast
Fourier Transform operation to obtain the transmission with respect
to the frequency. At a first glance, this method is advantageous since
it does not require an inversion of a linear system, but the temporal
approach can be a problem for calculating a quality factor of a cavity
with a good resolution. For indication to the maximum size storage of
the computer, it has already been successfully applied to calculate the
transmission spectrum of a graphite 2D photonic crystal containing up
to 90 dielectric rods having a diameter to wavelength ratio equal to 0.04
and a dielectric filling factor of 16.3% with highly accurate results (the
reliability is obtained when compared to experimental measurements)
[61] (Figure 4).

The interested reader is referred to the book of Taflove [43] for a
very detailed explanation of the FDTD method.
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Figure 4. Transmission spectrum of a 2D graphite structure photonic
crystal experimentally measured (thick curve) and numerically ob-
tained (thin curve) by means of the FDTD method and for a TM-
polarization for the Γ-K direction (perpendicular to the rods). The
structure contained 90 alumina rods of dielectric constant ε = 0,
and the dielectric filling factor was equal to 16.3%. Vertical dashed
lines indicate the positions of the full photonic band gap (from Gadot,
F., A. Ammouche, E. Akmansoy, T. Brillat, A. de Lustrac, and J.-
M. Lourtioz, IEE Proceedings Optoelectronics, Vol. 145, 415, 1998,
reprinted with permission of IEE).

2.2.2. Disturbed Photonic Crystals Studied with the FDTD Method

A comparison between experimental measurements and FDTD method
calculations of the transmission spectrum has been recently addressed
[38] in the case of extended defects in metallic photonic crystals for
the microwave domain. This work indicated the tolerances of metallic
structures to three generic types of disorder: site, angular and size
displacements. The 2D structures were finite-sized (constituted of
7× 14 rods) as experimental structures and results obtained with the
FDTD model fitted very well to experimental results. It was showed
that band gaps and localized states of doped 2D metallic photonic
crystals were particularly insensitive to site displacement (Figure 5)
and inclination variations while for the size variation localized states
tend to appear at the edges of the band gap. These results are
consistent with the results of Li et al. [34] who resolved the site
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(a)

(b)

(c)

Figure 5. (a) Doped square 2D metallic photonic crystal studied in
[38], rods had a radius of 1.5 mm and the lattice constant was 6 mm;
(b) FDTD calculations of the transmission spectrum for a strength of
disorder dxy equal to 0.025 both for two different samples and for the
perfect case; and (c) experimental data (from Guida, G., T. Brillat, A.
Ammouche, F. Gadot, A. de Lustrac, and A. Priou, Journal of Applied
Physics, Vol. 88, 4491, 2000, reprinted by permission from the Office
of the Publisher, American Institute of Physics).
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displacement dielectric case with the Plane Wave method. Hence,
behaviors for a true band gap of dielectric and metallic periodic
materials seem to be similar with respect to a site and size displacement
disorder.

2.3.1. The Transfer Matrix Method in Outline

In this section, the salient points of the Transfer Matrix Method
(TMM) are reviewed. The method is a layer by layer calculation of the
field. It begins with Maxwell’s equations where the field contains the
time only in the factor exp(−iωt). Written in terms of (ω,k) space we
have,

k×E = +ωB (3)

k×H = −ωD (4)

For the first equation we make use of the following approximation
to discretize Maxwell equations on a cubic mesh of unit dimensions
(a, b, c):

kx ≈ (−ia)−1(exp(ikxa)− 1) (5)

and for the second,

−kx ≈ (−ia)−1(exp(−ikxa)− 1) (6)

and similarly for y and z. A transfer matrix approach is made viable
by retaining some components, (Ex, Ey, Hx and Hy), and Fourier-
transforming back into real space. After some manipulations the
equations may be expressed in a matrix form,

F (r+ c) =
∑

r′

T̂ (r, r′)F (r′) (7)

where

F (r) =





Ex(r)
Ey(r)
Hx(r)
Hy(r)



 (8)

Since r and r′ lie within one layer (z = z′), and T̂ is the real space
transfer matrix, Eq. (7) permits a layer by layer calculation of the field
propagating in the z-direction. The reflection R and transmission T
coefficients may be found from the components of T̂ for plane waves
incident on a layer. Alternatively, when T̂ represents a unit cell, by
applying Bloch’s theorem in the z direction, the band structure can
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be obtained from the eigenvalues of T̂. Various investigations in the
literature have demonstrated the application of TMM for a wide range
of PBG materials [62–66].

The interested reader is referred to the original reports [44, 67, 68]
for a detailed explanation of the method that has widely been used for
the study of PBG structures.

2.3.2. Extended Defect Studies with the TMM Method

Sigalas et al. [30] and Chutinan et al. [31] have used this method very
recently to analyze effects of extended defects on band gaps of a finite
thickness slab of 3D photonic crystals. The former study dealt with the
very interesting diamond symmetry both with spheres and connected
wires (it was previously suggested that a connected structure may
present wider band gaps) having random site displacements, while
the second dealt with a stacked-bar (Figure 1(b)) structure having
various types of disorder (misalignment of stripe position, deviation of
intersecting angle, variation of layer thickness and variation of stripe
width).

As for the plane wave method, authors were obliged to use a
supercell technique. Then, their structures were of infinite width and
effects of the actual finite width of the material were neglected.

Sigalas et al. [30] investigated the localization length formally
defined by:

l = −
2La

〈lnT 〉
(9)

where La is the thickness of the slab of the disordered photonic crystal,
and 〈lnT 〉 is the logarithmic average of the transmission over different
configurations. The localization length has been introduced in the
study of random medium and is a length representative of the thickness
of material necessary to localize light (stop light propagation). In [30],
this quantity has then a feature similar to the transmission of the
material studied. Calculations of Sigalas et al. revealed that the rods’
case is more robust than the spheres’ case due to the connectivity of
the rod structure that exists for any amount of disorder. The authors
suggested that these strongly disordered photonic crystals can not be
compared to disordered type IV semiconductors for which the electrons
are always locally influenced by a quasi perfect tetrahedral atomic
symmetry even though atoms have random positions. This evidences
that a comparison with amorphous materials should be approached
with extreme carefulness.

Concerning calculations for the stacked-bar structure [31], dealing
directly with the transmission spectra, the sensitivity to disorder was
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Figure 6. Transmission spectra of a normally incident wave for
polarization in which the electric field is parallel to the x-axis, when
δ varies from 0 to 0.5a, a being the period in the y direction of the
stacked-bar structure. The refractive index, width and thickness of a
stripe were 3.309, 0.25a and 0.3a respectively. The deepness of the
band gap increases as δ decreases (from Chutinan, A. and S. Noda,
Journal of the Optical Society of America B, Vol. 16, 1398, 1999,
reprinted with permission of the Optical Society of America).

dominated by the stripes misalignment provided that it was parallel
to the propagating direction of the incident field. Figure 6 presents
transmission spectra through eight layers of a stacked-bar structure
(corresponding to two periods), in the stacking direction and for
different stripes misalignment defects quantified by δ. The authors
suggested that behaviors of the transmission spectra with respect to
the disorder can be understood considering the insensitiveness of the
electromagnetic wave to the existence of perpendicular dielectric rods.

2.4.1. A Rigorous Scattering Theory

A rigorous scattering theory [45] permits to deal with a certain type of
2D photonic crystal consisting in a finite numberN of parallel cylinders
made of a perfectly conducting or dielectric material of optical complex
index v. The method consists in the resolution of a linear system which
unknowns are coefficients of the diffracted field. To establish the linear
system, the actual incident field on a cylinder is written as the sum of
the conventional incident field and of the fields diffracted by the other
cylinders. For any arbitrary rod, the field at a point P in the vicinity
of this rod can be written in the form of the sum of a local incident field
Ei

n(P ) and a local diffracted field Ed
n(P ) expressed by a Fourier-Bessel
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expansion. The local incident field Ei
n(P ) is then generated not only

by the actual incident field Ei(P ) but also by the field scattered by the
other rods in the direction of the nth rod. Using Graf’s formulae [69]
and the S-matrices of the rods (providing for each rod a simple relation
between the coefficients of the incident field and the coefficient of the
field diffracted by the rod), it is possible to access to the linear system
linking the coefficients of the local incident field to the coefficients of
the local diffracted field. Finally, after resolution of the linear system,
the field scattered at infinity by the set of N parallel cylinders can be
obtained using:

Ed(P ) = g(θ)
exp(ikr)

r1/2
(10)

deriving from the asymptotic expression of the Hankel function, and
where g(θ) depends only on the angular θ coordinate and on coefficients
of the diffracted field.

The intensity at infinity (also called bistatic differential cross-
section) is defined by:

D(θ) = 2π|g(θ)|2 (11)

and for lossless cylinders an energy balance criterion can be used to
verify the validity of the results obtained [45].

The reader can find in [41, 70, 71] various tests of validity of the
results. Using Mie’s theory, it is possible to adapt this method to deal
with a 3D photonic crystal constituted of spheres placed in the space
[46, 47, 72].

Dielectric constants and shapes of rods are described in a S-
matrix and can be randomly varied together with the positions using
this method. Alternatively, all type of incident wave can be tackled
provided that it is expressed on a Fourier-Bessel expansion. The main
limitation is the type of 2D photonic crystal which is then necessarily
a set of parallel cylinders (dielectric or metallic and with arbitrary
shapes) or necessarily a set of spheres for the 3D case. This method
combines very good relative accuracy (better than 1%) with rapid
computation. Structures of a few hundred cylinders have already been
studied. Sabouroux et al. [73] have recently realized a 2D dielectric
photonic crystal with an hexagonal geometry. Their measurements
in the microwave domain of the transmission spectrum showed a very
good agreement with calculations obtained with this numerical method
(Figure 7).

2.4.2. Extended Defects Studied with the Rigorous Scattering Theory

This method was employed in studies on doped photonic crystals
consisting of point defect in periodic structures [71]. This technique
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Figure 7. Transmission spectrum for a 2D dielectric photonic crystal
having an hexagonal symmetry and made of 80 rods of dielectric
constant ε equal to 6 and a 5mm radius. The shift between
experimental and numerical results was explained by a dependency on
the dielectric constant on the frequency (reprinted from Sabouroux,
P., G. Tayeb, and D. Maystre, Optics Communications, Vol. 160, 33,
1999, with permission from Elsevier).

has also been applied to the study of extended defects [41, 27] for
disordered 2D dielectric and metallic photonic crystals experiencing
a random variation of the rods location. In the metallic case, the
study has permitted to prove for the first time that the large forbidden
band gap extending from zero to the cut-off frequency ωp was not
related to the periodicity but to the metallicity of the rods (Figure 8).
Indeed, a strong perturbation in positions of rods does not generate
a noticeable distortion in the overall response of the structure to an
electromagnetic wave. In previous works [74–77], ωp was regarded
either as been analogue to a type of plasma frequency associated
with the motion of electrons in the continuous medium (in solid state
physics) or as the shortest frequency which fits between the rows of
wires (electromagnetic theory). The behaviour of metallic crystals
that are effective media at very low frequencies was then explained by
a frequency dependent dielectric constant described for a 2D square
lattice array of perfectly conducting rods by:

ε(ω) = 1−
ω2

p

ω2
(12)
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Figure 8. Mean of the energy penetrating a square 2D photonic
crystal (dotted line) and an average over 6 different realizations of
this crystal but strongly disordered with site displacements of strength
dxy = 0.5 that corresponds to the maximum value possible (reprinted
from Guida, G., Optics Communications, Vol. 156, 294, 1998, with
permission from Elsevier).

with the plasma frequency obtained with:

ωp =
c

d

√
2π

ln(d/2a)
(13)

where d corresponds to the period of the 2D photonic crystal and a to
the radius of the metallic rods.

It has been shown [27, 76] that these formulae, which are valid only
for extremely low frequency, are indeed a proper approximation even
for the resonance domain (i.e. for a period d having the same order
of magnitude as the wavelength) where localized states can actually
appear.

However, although this rigorous scattering theory is highly suit-
able for a low frequency study, it was not used at high frequencies
owing to the limitation of the computer memory storage. Indeed, this
problem was not linked to the method but to the finite size nature
of the structures. The mean of the electric energy penetrating the
structure was calculated for a frequency range sufficiently large to cover
the plasmon band gap and the first “true” band gap of the structure
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but not the band gaps beyond. Typically, calculations were limited
to ωd/2πc = 0.8. A thorough study should check that all band gaps
have the same behaviour that the first true band gap, that is to be
linked to the periodicity and to tend to disappear for a very strong site
displacement.

2.5.1. Diffraction Grating Theory

The Diffraction Gratings Method, based for instance on an integral
formulation [48] or a rigorous coupled-wave method [49], permits one
to calculate the S matrix linking the incoming waves to the outgoing
waves for a stack of identical or different gratings. This matrix
then provides the reflection and transmission coefficients of the total
structure. The integral formulation uses a Rayleigh expansion of the
field between two successive gratings. A linear combination of plane
waves is then obtained with coefficients calculated using the integral
formulation of gratings. The rigorous coupled-wave method is a modal
theory that consists in determining a set of eigenvalues and eigenvectors
of a propagation matrix containing information on the propagating
waves in the stack of gratings. The S matrix is then obtained from
the eigenvectors. These very classic methods are limited to the study
of partially disordered photonic crystals with a defect consisting of
the lack of one or more layers of perfect gratings and provide a very
good agreement with results obtained with other numerical methods
[78]. However, it is possible to use a supercell technique to deal with a
strongly disordered structure as done by Asatryan et al. [32, 35]. The
interested reader can find a very detailed review of efficient methods
using the electromagnetic theory of gratings in the book of Petit [79],
a general presentation of modal theory was given by Li [80] and the
differential and integral theories applied to non periodical structures
were given by Giovannini et al. [81].

It is worth noticing at this stage that methods [82, 83] based upon
grating theories, not described here, are able to compute the dispersion
curves of the Bloch modes. These methods then permit to calculate
band structures as the plane wave method does and can often be more
powerful as regards accuracy, memory requirements and computation
time.

2.5.2. Extended Defects Studied with the Diffraction Grating Theory

Asatryan et al. [32, 35] used recently a method similar to the Diffraction
Grating Theory to analyze properties of a disordered 2D photonic
crystal generalizing the Rayleigh method to incorporate many cylinders
per unit cell of the grating. Studied structures were constituted
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of cylinders of random refractive index [32] and random geometry
[35]. Random geometry included randomness of radii, random site
displacement and random thickness of each layer constituting the
photonic crystal. They compared the optical transmittance properties
obtained to the absorption spectra of amorphous semiconductors. Both
responses exhibit tail-like features near the band gap edges. Indeed,
the optical transmission spectra do not reveal any isolated narrow
peak associated with localized states when the structure is disordered.
Spectra exhibit instead extensions of the band pass that can be
interpreted as a gathering of several peaks due to disorder resulting
in band tail near the edges of the bandgap.

3. CONCLUSION

Deviations from the periodic structures that may arise during a
fabrication process are the analogue to extended defects in real crystals.
They have been of interest since the earliest photonic band gap
structure realizations. However, first conclusions on the effect of these
deviations on band gap sizes and localized states appeared only very
few years ago with the use of adapted numerical methods to permit a
statistical analysis. The main methods encountered in the literature
are described in this paper and limitations are indicated. All methods
presented very accurate results when compared to experimental results.
They can deal with any type of incident field provided that it is
expressed on the required basis expansion, except for the plane wave
method. Indeed, the calculation of a band structure is independent
of the incident field: the plane wave method then only provides the
possible propagating modes of the structure.

As a conclusion, the choice of a numerical method among the
main usual methods presented here, depends on the problem tackled.
To obtain a band structure rapidly with an efficient and quite easy to
implement method, it is highly recommended to use the plane wave
method. A less obvious method would be based on a grating theory.
To calculate the reflection and transmission coefficients of a photonic
crystal of finite size experiencing a sophisticated defect, the rigorous
scattering theory is advised. This theory is able to model the real
defect without any “tip” (like a supercell technique) and provides
results without any approximation. However, with this method the
structure must correspond to a set of parallel cylinders or holes for the
2D case and to a set of spheres for the 3D case. In any case, a modal
theory (like the rigorous scattering or a rigorous coupled-wave method)
is far more efficient than for instance temporal methods to calculate
the Q-factor of a cavity in a photonic crystal. If one is interested in
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comparing numerical simulations with experimental measurements, the
FDTD and TMM methods have already revealed very reliable results
permitting a direct calculation of transmission spectra. The advantage
of the FDTD compared to the TMM is the possibility to also study a
finite structure that is a real piece of material as for experiments as the
rigorous scattering theory does. For future works, the FDTD should be
more and more used as it can integrate quite easily active components
into photonic band gap materials that seem the advantage so far of
this method compared to the rigorous scattering theory. To study
strongly disordered photonic crystals, a supercell technique is required
for the TMM, the Diffraction Grating Theory and the Plane Wave
Method as these methods were first developed to deal with periodic
structures only. However, this technique is a distorted way to deal with
disordered structures using numerical theories designed for periodic
structures. In that respect, it is recommended to address the problem
by the mean of a rigorous theory that provides the solution without
approximation. The other methods briefly described here do not need
a supercell. However, thanks to the steady advances in computers, the
size storage is less and less an obstacle to calculate with a supercell
technique.

Numerical studies have been devoted to the calculation of band
structures, localization length or transmission spectra for various types
of deviations and various types of photonic crystals from 1D to 3D.
Sensitivity to disorder strongly depends on the parameter altered. For
example, random site displacement generally leads to slighter reduction
of the band gap than random size displacement. Analyses of field
maps have permitted to reveal occurrence of localized states that
appeared easily depending on the type of disorder applied. However,
the extensive study of the behavior of localized modes (occurring for
instance when a cavity is created) in extended defect is another crucial
point that remains mainly unexplored. Allowable deviations depend
on the application envisaged and it is obvious that for a very specific
application requiring very sharp band edges only a very weak deviation
is acceptable.

In the future, some works should be made in order to analyze
the sensitivity to disorder of the very peculiar properties of photonic
crystals such as the superprism phenomenon, the negative dielectric
constant and the negative magnetic permeability. Moreover, the
emergence of controllable photonic crystals that are active structures
obtained in inserting for instance PIN diodes in the lattices to control
band gaps and localized modes will also present extended defects.
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K. Busch, A. Birner, U. Gösele, and V. Lehmann, Physical Review
B, Vol. 61, R2389, 2000.

61. Gadot, F., A. Ammouche, E. Akmansoy, T. Brillat, A. de Lustrac,
and J.-M. Lourtioz, IEE Proceedings Optoelectronics, Vol. 145,
415, 1998.

62. Sigalas, M. M., C. M. Soukoulis, C. T. Chan, and K. M. Ho,
Physical Review B, Vol. 49, 11080, 1994.

63. Pendry, J. B. and L. Martin-Moreno, Physical Review B, Vol. 50,
5062, 1994.

64. Smith, D. R., S. Shultz, N. Kroll, M. Sigalas, K. M. Ho, and
C. M. Soukoulis, Applied Physical Letters, Vol. 65, 645, 1994.

65. Ozbay, E., E. Michel, G. Tuttle, M. Sigalas, and K. M. Ho, Applied
Physical Letters, Vol. 65, 2059, 1994.

66. Gadot, F., A. Chelnokov, A. de Lustrac, P Crozat, J. M. Lourtioz,
D. Cassagne, and C. Jouanin, Applied Physical Letters, Vol. 71,
1780, 1997.

67. Pendry, J. B., Journal of Modern Optics, Vol. 41, 209, 1994.

68. Pendry, J. B. and P. M. Bell, NATO Advanced Study Institute on
Photonic Band Gap Materials, Costas M. Soukoulis (ed.), June
1995.

69. Abramovitz, M. and I. Stegun, Handbook of Mathematical Func-
tions, Dover, New York, 1970.

70. Roussel, H., W. C. Chew, F. Jouvie, and W. Tabbara, Journal of



Numerical studies of disordered photonic crystals 131

Electromagnetic Waves and Applications, Vol. 10, 109, 1996.
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