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A new computational tool, edge localized instabilities in tokamaks equilibria~ELITE!, has been
developed to help our understanding of short wavelength instabilities close to the edge of tokamak
plasmas. Such instabilities may be responsible for the edge localized modes observed in high
confinement H-mode regimes, which are a serious concern for next step tokamaks because of the
high transient power loads which they can impose on divertor target plates. ELITE uses physical
insight gained from analytic studies of peeling and ballooning modes to provide an efficient way of
calculating the edge ideal magnetohydrodynamic stability properties of tokamaks. This paper
describes the theoretical formalism which forms the basis for the code.@DOI: 10.1063/1.1459058#
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I. INTRODUCTION

In the high confinement H-mode of tokamak operation
transport barrier forms at the plasma edge, leading to a s
pressure gradient, and therefore, a high bootstrap cur
High pressure gradients can lead to high toroidal mode n
ber, n, ballooning instabilities~e.g., see Ref. 1! but, on the
other hand, high edge current reduces the magnetic s
which helps to stabilize these. However, high edge curre
can drive highn kink or ‘‘peeling’’ modes,2–4 and these are
stabilized by edge pressure gradient~due to the effect of
favorable average curvature in a tokamak!. This interplay
between pressure and current makes edge stability par
larly interesting. As a final ‘‘twist’’ to the story, the balloon
ing and peeling modes can couple,5 leading to particularly
dangerous current-driven instabilities which can extend ri
across the transport barrier region, into the plasma core.4 The
result is that a range of instabilities can exist from high
localized peeling modes, more extended ballooning mo
extended, coupled peeling-ballooning modes, or, indeed,
cess to a second stability region6 with correspondingly
higher pressure gradient limits. This range of possible id
magnetohydrodynamic~MHD! plasma edge instabilities ma
help to explain the wide range of edge localized mo
~ELM! phenomena observed in tokamaks, such as relati
small type III ELMs at low pressure gradient, up to lar
type I ELMs, smaller ‘‘grassy’’ ELMs or even ELM-free
regimes at larger pressure gradient~for a review of ELM
phenomenology, see Ref. 7!. Understanding these instabil
ties may then help us to identify how to access regim
which have tolerable ELMs: A key issue for the Internation
Thermonuclear Experimental Reactor~ITER!.8 It is, there-
fore, important to be able to analyze these instabilities, wh
is complicated by their short wavelength~much shorter than
1271070-664X/2002/9(4)/1277/10/$19.00
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the typical equilibrium length scales! and two-dimensional
nature. In this paper we describe a formalism which perm
efficient analysis of this class of instabilities within a linea
ized ideal MHD model.

The paper is set out as follows. In the next section
describe the formalism which we have developed for ana
ing high n, coupled peeling-ballooning modes in tokamak
The technique is applicable to arbitrary tokamak equilibr
except that at present we have not considered the separ
Then, in Sec. III, we illustrate some results from the co
which we have called ELITE~Edge Localized Instabilities in
Tokamak Equilibria!. We first describe a benchmark cas
which we take to be a circular cross section, aspect ratiA
53 plasma which has an edge pressure pedestal unstab
n5` ballooning modes. We compare the results of ELIT
with those of MISHKA-1,9 and find good agreement forn
.4 ~ELITE makes use of an expansion for largen!. Next we
illustrate the results for a shaped plasma equilibrium, in t
case a DIII-D equilibrium re-constructed using EFIT.10 In
Sec. IV we draw some conclusions, and make some sug
tions for how the model could be further improved.

II. ELITE FORMALISM

To help improve the efficiency of ELITE we restrict con
sideration to intermediate to highn modes, and evaluate th
change in energy associated with a radial perturbation o
plasma fluid element, denoted byX. Following Ref. 1, we
perform an expansion inn21, which permits the other two
components of plasma perturbation to be eliminated in fa
of X. After some algebra, neglecting the contribution due
7
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the inertia for the present, it can be shown that the chang
energy, correct to the first two orders inn21 can be written in
the form

dW5pE
2`

0

dc R dxH JB2

R2Bp
2 ukiXu21

R2Bp
2

JB2 U1n ]Y

]cU
2

2
2Jp8

B2 F uXu2
]

]c S p1
B2

2 D2
i

2

f

JB2

]B2

]x

X*

n

]X

]cG
2

X*

n
JBki~s8X!1

1

n
@PJBki* Q* 1P* JBkiQ#

1
]

]c Fsn X* YG J . ~1!

Here we have defined the poloidal magnetic flux,c, and
toroidal field function,f (c), such that the magnetic field ca
be expressed in the form

B5 f“f1“f3“c, ~2!

so thatc is an increasing function of the minor radius of flu
surfaces. We have chosen the gauge forc such thatc50 at
the plasma edge, and takes a negative value everywhe
the core. In fact, because we are interested in edge loca
modes, whose amplitudeX→0 in the core, we can replac
the lower limit of integration in thec variable by2`, as
indicated in Eq.~1!. The orthogonal~c,x,f! coordinate sys-
tem we use is similar to that used in Ref. 1, wherex is a
poloidal angle andf the toroidal angle;J is the Jacobian in
this system, defined such thatJdx5dl/Bp , wheredl is the
poloidal arc length element along a flux surface, andBp is
the poloidal component of the magnetic field. The major
dius is denoted byR and B is the total magnetic field. The
pressure~with a factorm0 absorbed! is denoted byp, a prime
denotes a differential with respect toc and a star denotes
complex conjugate. The variableY is simply related toX

Y5JBkiX, ~3!

where the parallel gradient operator is defined by

JBki52 i
]

]x
1nn, ~4!

with

n5
f J

R2 . ~5!

The parallel current density, denoted bys, can be written in
the form

s52
f p8

B2 2 f 8. ~6!

Finally, P andQ are defined as

P5sX1
f Bp

2

nnB2

]Y

]c
, ~7!

Q5
p8

B2 X1
f

JB2

1

n

]Y

]c
. ~8!
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Note that Eq.~1! involves contributions todW due to
surface terms arising from integrations by parts. These w
absent in the ballooning analysis of core modes develope
Ref. 1, because there the mode amplitude was assumed
negligible at the plasma–vacuum interface. It is importan
retain these in our situation as the mode amplitude is
negligible at the plasma boundary, and indeed is an esse
feature of the peeling modes which we wish to analyze. A
note that by retaining terms up to, and including,O(n21) we
retain the kink drive, proportional to the radial derivative
the parallel current density.

The above expression~1! neglects the inertial energy
Although we are primarily interested in marginal stability,
is useful to have an indication of the growth rate, so
employ a simplified model which neglects that inertia as
ciated with displacements parallel to the magnetic fi
~equivalent to the assumption of incompressible MHD, va
at marginal stability!. Thus, for the inertial energy, we deriv

dWI5pg2E
2`

0

dc R dxH rJ

R2Bp
2 uXu21

rJR2Bp
2

n2B2 U]X

]cU
2

1
G

n2 S X
]X*

]c
1X*

]X

]c D1
H

n3 S ]X*

]c
JBkiS ]X

]c D
1

]X

]c
JBki* S ]X*

]c D D J . ~9!

The equilibrium functionsH andG are defined in Eqs.~A4!
and ~A5! of Appendix A,r~c! is the mass density andg2 is
the eigenvalue of the system, equal to the square of
growth rate. Again, within our ‘‘incompressible MHD’
model, the inertia term is correct to the first two orders
n21.

Note that we have performed an ordering inn21 so that
the Hermitian property of ideal MHD is exactly preserve
we find this to be important for the numerical results.

The method is now straightforward, but involves a lar
amount of tedious algebra. We first Fourier decompose
poloidal variation of the displacementX, and it is convenient
to do this in terms of a ‘‘straight field line’’ angle,v

v5
1

q E
x

ndx, ~10!

where the safety factorq is simply q5(1/2p)rndx. Thus
we express

X5(
m

um~x!e2 imv, ~11!

wherem are the poloidal mode numbers, and then we ha

Y5(
m

S 2
n

qD ~m2nq!um~x!e2 imv. ~12!

For high m modes field line bending will have a strong in
fluence, and will tend to restrict theum to be localized about
their mode rational surfaces, wherem5nq. Thus we have
introduced the ‘‘fast’’ radial variable

x5m02nq, ~13!
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which is the length scale on which we expect theum to vary.
Here m0 is the poloidal mode number of some referen
rational surface, and we arbitrarily choose it to be that as
ciated with the first rational surface in the vacuum, i.e.,

m05Int@nqa#11, ~14!

whereqa is the edge safety factor. Note thatx increases by 1
each time a rational surface is crossed as we go from
plasma edge towards the core.

We now substitute the forms forX and Y into Eqs.~1!
and ~9!, and perform integrations by parts~in the radial co-
ordinate! to eventually derive a form fordW, which can be
decomposed into a contribution from the core plasma,dWp ,
and a piece arising from the surface terms due to the inte
tions by parts,dWs
er
e
b

li-

-

e
e
Th
e
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dW5dWp1dWs . ~15!

For our vacuum model we assume that the vessel wall is
from the plasma, so that it is effectively surounded by
infinite vacuum on all sides; this is a good approximation
the radially localized modes which we consider. In such
situation the vacuum contribution todW can be expressed
analytically solely in terms of the plasma displacement at
plasma–vacuum interface,11 and therefore, can be absorbe
into dWs . The resulting expressions fordWp and dWs are
given in Appendix A.

We stress here that ELITE is not based on adW numeri-
cal approach, but instead solves the full set of Euler eq
tions for the radial variations of the Fourier mode amp
tudes. These can be derived trivially from Eq.~A1!, and for
each Fourier modek they take the form
(
m

H @A2mk9k,m~m2nq!2~k2nq!1Am2k9k,m~m2nq!~k2nq!21Amk9k,m~m2nq!~k2nq!2g2~ I m9
k,m~m2nq!1I k9

k,m~k2nq!

1I 9k,m!#
d2um

dc2 1@A2mk8k,m~m2nq!2~k2nq!1Am2k8k,m~m2nq!~k2nq!21Amk8k,m~m2nq!~k2nq!1A2m8
k,m~m2nq!2

1A2k8
k,m~k2nq!21~Am8

k,m2g2I m8
k,m!~m2nq!1~Ak8

k,m2g2I k8
k,m!~k2nq!1A8k,m2g2I 8k,m#

dum

dc

1@A2mk
k,m ~m2nq!2~k2nq!1Am2k

k,m ~m2nq!~k2nq!21Amk
k,m~m2nq!~k2nq!1A2m

k,m~m2nq!21A2k
k,m~k2nq!2

1~Am
k,m2g2I m

k,m!~m2nq!1~Ak
k,m2g2I k

k,m!~k2nq!1Ak,m2g2I k,m#umJ 50, ~16!
d

ion
fact
r-
l
the
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e

where the matrix elementsAk,m, A8k,m, andA9k,m are given
in Appendix A, together with those associated with the in
tia, labeled byI . Note that the number of primes on th
matrix elements is used as a notation to indicate the num
of ‘‘radial’’ derivatives on their associated Fourier amp
tudesum , and does not represent ac-derivative of the matrix
elements themselves here~superscripts label the matrix ele
ments!.

If we assume that some number,M , of Fourier harmon-
ics is required to describe the modes, then Eq.~16! represents
a system ofM coupled, linear differential equations for th
mode amplitudes,um . To complete the specification of th
system we need to provide a set of boundary conditions.
first of these is that theum(x) tend to zero deep inside th
-

er

e

plasma core~i.e., we are interested only in edge-localize
modes!; thus we have

lim
x→`

um~x!50. ~17!

Another boundary condition is that the surface contribut
to the total energy must be zero, which represents the
that the jump inp1B2/2 across the plasma–vacuum inte
face is zero.11 The final matching condition, that the radia
component of the magnetic field is continuous across
interface, is used to express the vacuum magnetic-field
turbation in terms of theum at the plasma surface. Thus w
arrive at a second set of conditions~for eachk! to be applied
at the plasma boundary,x5D5m02nqa , where 0<D<1
(
m

H @S2mk8k,m~m2nq!2~k2nq!1Sm2k8k,m~m2nq!~k2nq!21Smk8k,m~m2nq!~k2nq!2g2~Jm8
k,m~m2nq!

1Jk8
k,m~k2nq!1J8!#

dum

dc
1@S2mk

k,m ~m2nq!2~k2nq!1Sm2k
k,m ~m2nq!~k2nq!21Smk

k,m~m2nq!~k2nq!1S2k
k,m~k2nq!2

1Sk
k,m~k2nq!2g2~Jm

k,m~m2nq!1Jk
k,m~k2nq!1Jk,m!#um1dWv

k,mumJ
x5D

50. ~18!
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Again, the matrix elementsS andJ are defined in Appendix
A, anddWv

k,m represents the contribution from the vacuum
The set of Eqs.~16!–~18! constitutes the complete eigen

mode system that ELITE has been designed to solve, e
to determine whether or not a given configuration is stab
or to find the growth rate of the instability through calcula
ing the eigenvalueg2. There are, however, a number of fe
tures that greatly increase the efficiency of the code and
worthwhile noting. First there is a separation of equilibriu
and mode-structure length scales. Because the equilibr
varies slowly on a length scale of the order of the dista
between rational surfaces~for intermediate to highn! the
matrix elements can be evaluated and tabulated on a
tively coarse radial mesh. The Fourier modes,um(x), on the
other hand, vary on the length scale comparable to the
tance between rational surfaces, and these need a much
radial grid. A second feature of ELITE is that it makes use
the fact that we expect eachum(x) to be highly localized
about its rational surface@i.e., wherem5nq(c)# due to field
line bending. This means that while many harmonics may
important to reconstruct the full mode structure, at any o
radial position only a limited subset of these will be signi
cant, and the rest can be set to zero amplitude. This prov
a significant saving of both computing memory and time

A final feature of ELITE is how it is designed to evalua
radial derivatives of equilibrium quantities. In principle the
can be calculated numerically if the equilibrium is known
all flux surfaces. However, by making use of an expansion
the Grad–Shafranov equation about a flux surface, these
rivatives can be calculated analytically in terms of quantit
only on that flux surface12 @specifically the flux surface
shape, the poloidal field variation on the flux surface and
profilesp(c) and f (c) are all that are required#. We require
second derivatives~e.g., of the safety factorq! with respect
to c here, and therefore, we need to expand to hig
order than is usually done: The results are presented
Appendix B.

III. NUMERICAL RESULTS

In this section we illustrate some of the results fro
ELITE. Here we restrict consideration to general results,
will describe more specific tokamak edge stability stud
elsewhere.

We begin by considering the stability of a simple asp
ratio, A53, circular cross section tokamak. We have co
structed abN52.1 equilibrium with a steep pressure pedes
at the plasma boundary~see Fig. 1! so that it is unstable to
n5` ballooning modes in the regionc/ca.0.82, whereca

is the poloidal flux at the plasma boundary (bN

5b(%)a(m)B(T)/I p(MA) where b is the ratio of thermal
to magnetic pressure,a is the minor radius,B is the magnetic
field and I p is the plasma current!. The current profile is
calculated from neoclassical theory, assuming a cons
loop voltage across the plasma, and allowing for the bo
strap current. Figure 1~b! shows the profile of the plasm
current density; note that it is strongly peaked on axis, wh
is a consequence of neoclassical conductivity, but that th
Downloaded 14 Feb 2006 to 198.129.105.159. Redistribution subject to AI
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is significant current driven in the pedestal region, d
mainly to the bootstrap current.

Analyzing the stability of the equilibrium, we find tha
ELITE predicts instability over a range ofn. Figure 2 shows
a typical mode structure, in this case for an510 ballooning
mode. In Fig. 2~a! we show the set of curves for theum(c),
which illustrates the feature that each harmonic is more
dially localized ~about its rational surface! than the whole
mode structure. Note that in this case the mode is essent
localized within the steep pressure gradient region at
plasma edge@compare with Fig. 1~a!#. In Fig. 2~b! we show
the mode structure in poloidal cross section, where we s
clear ballooning mode structure.

Going to higher toroidal mode number,n550, the mode
becomes much more radially localized, as expected fr
conventional ballooning mode theory~e.g., see Ref. 1!. This
can be seen by comparing Fig. 3, which shows the ra
profiles of the Fourier mode amplitudes for this case, w
Fig. 2~a!.

Using the circular cross-section equilibrium as an e
ample, we have performed a careful benchmark with
MISHKA-1 code,9 which is also capable of analyzing highn
ideal MHD stability. In Fig. 4 we compare the predictions f

FIG. 1. ~a! Pressure profile and~b! current profile for the circular cross
section benchmark study.
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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the growth rates as a function ofn from the two codes, and
obtain good agreement over the full range ofn*4. Recall
that ELITE is based on an expansion inn21, while
MISHKA-1 is valid over the full range ofn. This compari-
son indicates that ELITE remains valid over the range
intermediate to highn, which is the range of interest fo
studies of ELMs.

As a final example, we show in Fig. 5 the mode struct
in the poloidal cross section of a DIII-D VH-mode dischar
~#97887!, just before an ELM occurred. In this case the eq
librium is taken from a high resolution, well-converged EF

FIG. 2. ~a! The radial profiles of the Fourier harmonicsum(c) and a contour
plot of the eigenfunction,X(c,x), for an n510 instability in the circular
cross section,A53 equilibrium described in the text. In the contour plo
light and dark shades represent large positive and negative perturba
respectively.

FIG. 3. The radial profiles of the Fourier harmonics for ann550 ballooning
mode for the circular cross-section equilibrium.
Downloaded 14 Feb 2006 to 198.129.105.159. Redistribution subject to AI
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reconstruction of the discharge, limited at the 99% flux s
face ~recall that ELITE cannot yet handle the separatrix
self, but can approach it very closely!. Note the extremely
large number of poloidal harmonics required to analyze th
shaped equilibria~compare with Figs. 2 and 3 for the circula
cross-section case!; ELITE is designed to efficiently handle
such cases~; minute time scales on;1 GHz computers!.

ns,

FIG. 4. Comparison between ELITE~diamonds! and MISHKA-1~triangles!
of the growth rate for ideal MHD instabilities in the circular cross-secti
tokamak~vA is the Alfvén frequency!.

FIG. 5. ~a! A contour plot of the eigenfunction,X(c,x), and~b! the radial
profiles of the dominant Fourier amplitudes for ann520 ballooning-type
instability in a DIII-D equilibrium ~shot #97887!.
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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IV. CONCLUSIONS

Using our knowledge of the physics underlying balloo
ing and peeling modes, we have developed a new, effic
tool for calculating the ideal MHD stability of the tokama
plasma edge region, which is often two-dimensional in
ture. It is anticipated that this will be useful for helping o
understanding of ELMs; in particular, how to control the
and how to identify regimes with benign ELMs. In additio
ELITE is useful for calculating the pressure limits that c
exist in the edge pedestal region, which is an important
gredient for determining the temperature pedestal~which in-
fluences the confinement time!.13 The use of the code to in
terpret ELMs and the temperature pedestal will be descri
elsewhere.14

This work represents a first step to develop a tool
understanding the stability of tokamak edge plasmas, an
such represents the simplest, useful model of edge pla
stability, ie ideal MHD. There are a number of other featu
which one could consider incorporating into the model, a
these are being considered. One issue is to improve
plasma geometry, allowing for the presence of a separa
and even a scrape-off layer plasma, where the field li
connect to material surfaces. The scrape-off layer might
expected to be important when its width is comparable to
-
-

on
ule
pli
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linear radial mode width, and could be incorporated in
ELITE through modified boundary conditions. Improve
plasma physics models would also help us to understand
different ELM regimes observed in more detail. For e
ample, it is likely that diamagnetic effects will be importa
in the steep gradient regions of the edge transp
barrier,15–17 and also strong sheared plasma flows, as m
sured in H-mode, might be expected to have an impact
the radially extended, ballooning-type modes. ELITE h
been developed in such a way that these improvements c
be incorporated as the models are developed.
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APPENDIX A: ELITE MATRIX ELEMENTS

The Euler equations and their boundary conditions
derived from the plasma and surface contributions to the p
turbed energy, respectively. In terms of the Fourier mo
amplitudes, defined through Eq.~11!, these can be written in
the form
dWp5pE
2`

ca
dc(

m,k
uk* H @A2mk9k,m~m2nq!2~k2nq!1Am2k9k,m~m2nq!~k2nq!21Amk9k,m~m2nq!~k2nq!2g2~ I m9

k,m~m2nq!

1I k9
k,m~k2nq!1I 9k,m!#

d2um

dc2 1@A2mk8k,m~m2nq!2~k2nq!1Am2k8k,m~m2nq!~k2nq!21Amk8k,m~m2nq!~k2nq!

1A2m8
k,m~m2nq!21A2k8

k,m~k2nq!21~Am8
k,m2g2I m8

k,m!~m2nq!1~Ak8
k,m2g2I k8

k,m!~k2nq!1A8k,m

2g2I 8k,m#
dum

dc
1@A2mk

k,m ~m2nq!2~k2nq!1Am2k
k,m ~m2nq!~k2nq!21Amk

k,m~m2nq!~k2nq!1A2m
k,m~m2nq!2

1A2k
k,m~k2nq!21~Am

k,m2g2I m
k,m!~m2nq!1~Ak

k,m2g2I k
k,m!~k2nq!1Ak,m2g2I k,m#umJ , ~A1!

for the plasma contribution, and

dWs5
p

n (
m,k

uk* H @S2mk8k,m~m2nq!2~k2nq!1Sm2k8k,m~m2nq!~k2nq!21Smk8k,m~m2nq!~k2nq!2g2~Jm8
k,m~m2nq!

1Jk8
k,m~k2nq!1J8!#

dum

dc
1@S2mk

k,m ~m2nq!2~k2nq!1Sm2k
k,m ~m2nq!~k2nq!21Smk

k,m~m2nq!~k2nq!

1S2k
k,m~k2nq!21Sk

k,m~k2nq!2g2~Jm
k,m~m2nq!1Jk

k,m~k2nq!1Jk,m!#um1dWv
k,mumJ , ~A2!
for the surface contribution~where quantities are to be evalu
ated at the plasma surface!. The vacuum contribution is rep
resented by the termsdWv

k,m

The matrix elements which appear in the above two c
tributions to the plasma energy and also the set of E
equations for the radial variation of the Fourier mode am
-
r

-

tudes solved by ELITE, Eq.~16!, are given by

Ak,m522
p8q

f
T9

k,m1qp8
m

n
T11

k,m2
imq8

n2q
T24

k,m

2
imq8

n2q
T26

k,m1
iq

n
T30

k,m ,
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Ak
k,m5

2mq8

n2q2 T3
k,m1

m

n2q2 S q922
q82

q DT4
k,m

2
2im2q8

n2q2 T6
k,m1

mq8

n2q2 T16
k,m2

T17
k,m

n
1

mq8

n2q2 T20
k,m

12
m2q82

n3q4 T23
k,m1

m

n2 T25
k,m1

m

n2 T27
k,m1

2imq8

n3q3 T50
k,m

1
i

n2 T57
k,m2

i

n2 T60
k,m ,

Am
k,m52

T17
k,m

n
2

mq8

n2q2 T20
k,m1

m

n2 T25
k,m

1
m

n2 T27
k,m1

T31
k,m

n
1

i

n2 T56
k,m2

i

n2 T58
k,m ,

A2k
k,m5

im

n2q
T19

k,m1
2im2q8

n3q3 T21
k,m2

m

n3q3

3 S q922
q82

q DT23
k,m2

4mq8

n3q3 T28
k,m2

mq8

n3q3 T53
k,m ,

A2m
k,m52

im

n2q
T19

k,m ,

Amk
k,m5

T1
k,m

q
2

1

n2q2 T2
k,m1

2im

n2q
T5

k,m1
m2

n2q
T7

k,m

1
im

n2q
T8

k,m2
1

n2q
T14

k,m1
im

n2q
T15

k,m14i
m2q8

n3q3 T21
k,m

2
2m

n3q3 S q92
2q82

q DT23
k,m2

4mq8

n3q3 T28
k,m2

2

n2q
T45

k,m

1
m

n3q2 T47
k,m2

2m

n3q2 T48
k,m2

i

n3q2 T49
k,m1

k

n3q2 T52
k,m

2
2mq8

n3q3 T53
k,m1

i

n3q
T54

k,m2
1

n2q
T55

k,m2
1

n2q
T59

k,m ,

Am2k
k,m 52

m2

n3q2 T22
k,m2

4im

n3q2 T29
k,m2

im

n3q2 T46
k,m

1
2

n3q2 T47
k,m2

im

n3q2 T51
k,m ,

A2mk
k,m 52

m2

n3q2 T22
k,m2

2im

n3q2 T29
k,m2

im

n3q2 T46
k,m

2
im

n3q2 T51
k,m1

2

n3q2 T52
k,m ,

A8k,m5
iqp8

n
T10

k,m ,

Ak8
k,m5

2mq8

n2q2 T4
k,m1

i

n2 T24
k,m1

i

n2 T26
k,m ,

Am8
k,m5

i

n2 T24
k,m1

i

n2 T26
k,m ,
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A2k8
k,m52

1

n2q
T20

k,m2
2mq8

n3q3 T23
k,m ,

A2m8
k,m5

1

n2q
T20

k,m ,

Amk8k,m52
2

n2q
T3

k,m1
2im

n2q
T6

k,m2
1

n2q
T16

k,m

2
4mq8

n3q3 T23
k,m2

2i

n3q2 T50
k,m ,

A2mk8k,m52
2im

n3q2 T21
k,m1

2

n3q2 T28
k,m1

1

n3q2 T53
k,m ,

Am2k8k,m52
2im

n3q2 T21
k,m1

4

n3q2 T28
k,m1

1

n3q2 T53
k,m ,

Amk9k,m52
1

n2q
T4

k,m ,

Am2k9k,m5
1

n3q2 T23
k,m ,

A2mk9k,m5
1

n3q2 T23
k,m ,

I k,m52
q

f
T32

k,m2
imq

n2 T36
k,m2

imq

n2f
T37

k,m2
m2q

n2f
T38

k,m

2
2im2

n3

q8

q
T40

k,m1
m

n3q S q92
2q82

q DT41
k,m2

m

n3 T42
k,m

1
2mq8

n3q
T44

k,m1
q

n2 T63
k,m2

m

n3 T65
k,m1

mq8

n3q
T66

k,m ,

I k
k,m5

m2

n3 T39
k,m1

im

n3 T61
k,m1

im

n3 T64
k,m ,

I m
k,m5

m2

n3 T39
k,m1

im

n3 T61
k,m1

2im

n3 T62
k,m1

im

n3 T64
k,m ,

I 8k,m52
2imq

n2f
T34

k,m1
q

n2 T35
k,m1

2mq8

n3q
T41

k,m ,

I k8
k,m5

2im

n3 T40
k,m2

1

n3 T66
k,m ,

I m8
k,m5

2im

n3 T40
k,m2

2

n3 T44
k,m2

1

n3 T66
k,m ,

I 9k,m5
q

n2f
T33

k,m ,

I k9
k,m52

1

n3 T41
k,m ,

I m9
k,m52

1

n3 T41
k,m .

Turning now to the matrix elements involved in the bounda
conditions, we have
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Sk
k,m52

mq8

nq2 T4
k,m1 f p8T13

k,m

1 f 8T12
k,m2

i

n
T24

k,m2
i

n
T26

k,m ,

S2k
k,m5

mq8

n2q3 T23
k,m1

1

nq
T20

k,m ,

Smk
k,m5

1

nq
T3

k,m2
im

nq
T6

k,m1
1

nq
T18

k,m

1
2mq8

n2q3 T23
k,m2

k

n2q2 T28
k,m1

i

n2q2 T50
k,m ,

Sm2k
k,m 5

im

n2q2 T21
k,m2

1

n2q2 T28
k,m ,

S2mk
k,m 5

im

n2q2 T21
k,m2

1

n2q2 T28
k,m ,

Smk8k,m5
1

nq
T4

k,m ,

Sm2k8k,m52
1

n2q2 T23
k,m ,

S2mk8k,m52
1

n2q2 T23
k,m ,

Jk,m5
imq

n f
T34

k,m2
mq8

n2q
T41

k,m2
q

n
T43

k,m1
m

n2 T44
k,m ,

Jk
k,m5

2 im

n2 T40
k,m ,

Jm
k,m5

2 im

n2 T40
k,m ,

J8k,m52
q

n f
T33

k,m ,

Jk8
k,m5

1

n2 T41
k,m ,

Jm8
k,m5

1

n2 T41
k,m .

The matrix elementsTi
k,m are defined in terms of flux surfac

averages of kernelsKi

Ti
k,m~c!5 R Ki~c,v!ei (k2m)vdv, ~A3!

where

K15
f

R4Bp
2 , K25q

R2Bp
2

JB2 n9, K35
R2Bp

2

JB2 n8,

K45
f Bp

2

B2 , K55
R2Bp

2

JB2 n8v8, K65
f Bp

2

B2 v8,
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K75
f Bp

2

B2 ~v8!2, K85
f Bp

2

B2 v9,

K95
R2

B2

]

]c S p1
B2

2 D ,

K105
R2

JB4

]B2

]x
, K115

R2v8

JB4

]B2

]x
, K1251,

K135
1

B2 , K145n8
]

]c S R2Bp
2

JB2 D ,

K155nv8
]

]c S R2Bp
2

JB2 D ,

K165n
]

]c S R2Bp
2

JB2 D , K175
sp8

B2 , K185 f p8
Bp

2

B4 ,

K195
f 2sv8

R2B2 , K205
f 2s

R2B2 , K215
f 3Bp

2v8

R2B4 ,

K225
f 3v82Bp

2

R2B4 , K235
f 3Bp

2

R2B4 , K245
p8R2Bp

2

JB6

]B2

]x
,

K255
R2Bp

2p8v8

JB6

]B2

]x
, K265

f 2s

n

]

]x S 1

R2B2D ,

K275
f 2s

n

]

]x S v8

R2B2D ,

K285
f 3Bp

2

R2B4

n8

n
, K295

f 3Bp
2

R2B4

v8n8

n
, K305

1

n

]s8

]x
,

K315s8, K325
r

Bp
2 , K335

rR4Bp
2

B2 ,

K345
rR4Bp

2v8

B2 , K355
1

n

]

]c S rJR2Bp
2

B2 D ,

K365
v8

n

]

]c S rJR2Bp
2

B2 D ,

K375
rR4Bp

2v9

B2 , K385
rR4Bp

2v82

B2 , K395Hv82,

K405Hv8, K415H, K425
Hn9

n
,

K435
G

n
, K445

Hn8

n
, K455

f 3Bp
2

R2B4 S n8

n D 2

,

K465
f 3Bp

2v9

R2B4 , K475
f 3Bp

2

R2B4

n9

n
,

K485
f 3v8n8

n

]

]v S Bp
2

R2B4D , K495
f 3n9

n

]

]v S Bp
2

R2B4D ,

K505
f 3n8

n

]

]v S Bp
2

R2B4D , K515n2v8
]

]c S f 3Bp
2

n2R2B4D ,
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K525nn8
]

]c S f 3Bp
2

n2R2B4D , K535n2
]

]c S f 3Bp
2

n2R2B4D ,

K545n
]

]c S f 3Bp
2

n2R2B4D ]

]x S n8

n D ,

K555n
]

]c S f p8Bp
2

nB4 D , K565
p8R2Bp

2

JB6

n8

n

]B2

]x
,

K575
]

]c S p8R2Bp
2

JB6

]B2

]x D ,

K585
f 2p8

JB6

n8

n

]B2

]x
, K595n

]

]c S f s

JB2D ,

K605
]

]c S f 2p8

JB6

]B2

]x D , K615Hv9, K625
v8n8

n
H,

K635
1

n

]G

]c
, K645v8

]H

]c
, K655

n8

n

]H

]c
,

K665
]H

]c
.

Here we have defined two additional variables, depend
upon the equilibrium

H5
r f R2Bp

2

B4 ~A4!

and

G5
rR2JBp

2

B2 S p8

B2 1
n8

n

f 2

R2B2D . ~A5!

Note that a prime denotes a derivative with respect toc, and
r is the plasma mass density.

APPENDIX B: EQUILIBRIUM RADIAL VARIATION

The first task of ELITE is to analyze the equilibrium an
evaluate the matrix elements described in Appendix A. I
convenient to calculate these matrix elements on each
surface in turn, without reference to other equilibrium fl
surfaces in their neighborhood. It is therefore necessary t
able to evaluate radial derivatives on a flux surface in te
of only the equilibrium parameters on that flux surface. T
is made possible through the technique of expanding
equilibrium locally about that flux surface, using the info
mation provided by the Grad–Shafranov equation, as
scribed in Ref. 12, for example.

Thus, following Ref. 12, we express:

c5c01c1~ l !r 1c2~ l !r 21c3~ l !r 31¯ , ~B1!

wherel is the distance around the flux surface labeledc0 in
the poloidal cross-section andr is the radial distance from
that flux surface~see Ref. 12!. Although we need to expan
to higher order than was done in Ref. 12~as we need to
evaluate second derivatives with respect toc!, the technique
is basically the same. We, therefore, do not describe i
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detail, but simply quote some useful results. Thus, by sub
tuting the above form forc into the Grad–Shafranov equa
tion and equating powers inr , we find

c1~ l !5Rs~ l !Bps~ l !, ~B2!

c2~ l !5
1

2 F S Rs

Rc
1sinuDBps2Rs

2p82 f f 8G , ~B3!

c3~ l !5
1

6 F22Bps sinuS 1

Rc
1

sinu

Rs
D

14c2S 1

Rc
1

sinu

Rs
D2Rs

]

] l S 1

Rs

]c1

] l D
1Rs

2p8S 1

Rc
2

sinu

Rs
D1 f f 8S 1

Rc
1

sinu

Rs
D

2RsBps~Rs
2p91~ f f 8!8!G . ~B4!

All quantities are to be evaluated on the reference flux s
face,c5c0 ~the subscripts on some of the variables denote
this!. The angleu is defined bydRs /dl5cosu, dZs /dl5
2sinu andRc is the radius of curvature, which can also b
defined in terms ofu: du/dl52Rc

21 .
Now that we knowc to sufficiently high order we can

evaluate the equilibrium quantities required by ELITE.
particular, we have

RBp5RsBpsF112r
c2

c1
1

r 2

2 F6c3

c1
1

1

c1
2 S ]c1

] l D 2G G , ~B5!

for the poloidal magnetic field, where

R5Rs~ l !1r sinu. ~B6!

Another important quantity isn, as the derivatives of this ar
required in order to deriveq8 andq9. Thus we need to evalu
aten to O(r 2), and Eq.~B5! is required to provide this. Thus
we express

n5ns~11n1r 1n2r 21¯ !
f ~c!

f ~c0!
, ~B7!

where

n152
1

Rc
2

sinu

Rs
2

2c2

c1
, ~B8!

n25S sinu

Rs
1

2c2

c1
D S 1

Rc
1

sinu

Rs
D2

3c3

c1
1

4c2
2

c1
2 . ~B9!
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