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A new computational tool, edge localized instabilities in tokamaks equilititldTE), has been
developed to help our understanding of short wavelength instabilities close to the edge of tokamak
plasmas. Such instabilities may be responsible for the edge localized modes observed in high
confinement H-mode regimes, which are a serious concern for next step tokamaks because of the
high transient power loads which they can impose on divertor target plates. ELITE uses physical
insight gained from analytic studies of peeling and ballooning modes to provide an efficient way of
calculating the edge ideal magnetohydrodynamic stability properties of tokamaks. This paper
describes the theoretical formalism which forms the basis for the cod2Ol: 10.1063/1.1459058

I. INTRODUCTION the typical equilibrium length scalpsnd two-dimensional

In the high confinement H-mode of tokamak operation, ghature. In this paper we describe a formalism which permits

transport barrier forms at the plasma edge, leading to a stee‘?ﬁdent analysis of this class of instabilities within a linear-
pressure gradient, and therefore, a high bootstrap current _ed ideal MHD model.

High pressure gradients can lead to high toroidal mode numa Ths ﬁp? IS Sl(.at outha_\shfollovr;/s. Indthe Inextdsfecnon Iwe
ber, n, ballooning instabilitiege.g., see Ref.)lbut, on the escribe the formalism which we have developed for analyz-

other hand, high edge current reduces the magnetic she%fehighn’ coupled peeling-ballooning modes in tokamaks.

which helps to stabilize these. However, high edge current technique is applicable to arbitrary tokamak equilibria,
can drive highn kink or “peeling” modesé“‘ and these are ©Xcept that at present we have not considered the separatrix.

o . Then, in Sec. lll, we illustrate some results from the code
stabilized by edge pressure gradiddue to the effect of . ' : e !
favorable average curvature in a tokamakhis interplay which we have called ELITEEdge Localized Instabilities in

between pressure and current makes edge stability particJ—c;:.(arr]nak tE?(u'"tb”g‘ we _ﬂrs} describe atl_Jenchmarkt ;’;;.59’
larly interesting. As a final “twist” to the story, the balloon- which we take 10 be a circular cross section, aspec 10
ing and peeling modes can coupléeading to particularly =3 plasma which has an edge pressure pedestal unstable to

dangerous current-driven instabilities which can extend righp:oo ballooning modes. We compare the results of ELITE

across the transport barrier region, into the plasma tore with those of MISHKA-1; and find QOOd agreement for
P 9 P >4 (ELITE makes use of an expansion for lamge Next we

result is that a range of instabilities can exist from highly.II irate th Its f haoed ol libri in thi
localized peeling modes, more extended ballooning modeg, UState the resufis for-a shaped piasma equriioriur, in this
ase a DIII-D equilibrium re-constructed using EEPTIn

extended, coupled peeling-ballooning modes, or, indeed, ac- IV d lusi q K
cess to a second stability regforwith correspondingly ec. IV.we draw some conclusions, and make some sugges-

higher pressure gradient limits. This range of possible ideafions for how the model could be further improved.
magnetohydrodynamidViHD) plasma edge instabilities may

help to explain the wide range of edge localized mode

(ELM) phenomena observed in tokamaks, such as relatively

small type Ill ELMs at low pressure gradient, up to large|l. ELITE FORMALISM

type | ELMs, smaller “grassy” ELMs or even ELM-free

regimes at larger pressure gradiéfdr a review of ELM To help improve the efficiency of ELITE we restrict con-
phenomenology, see Ref).Understanding these instabili- sideration to intermediate to highmodes, and evaluate the
ties may then help us to identify how to access regimeghange in energy associated with a radial perturbation of a
which have tolerable ELMs: A key issue for the Internationalplasma fluid element, denoted b§ Following Ref. 1, we
Thermonuclear Experimental ReactdTER).2 It is, there-  perform an expansion in~ %, which permits the other two
fore, important to be able to analyze these instabilities, whicltomponents of plasma perturbation to be eliminated in favor
is complicated by their short wavelengtimuch shorter than of X. After some algebra, neglecting the contribution due to
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the inertia for the present, it can be shown that the change in  Note that Eq.(1) involves contributions taSW due to
energy, correct to the first two ordersrin! can be written in ~ surface terms arising from integrations by parts. These were
the form absent in the ballooning analysis of core modes developed in

5 Ref. 1, because there the mode amplitude was assumed to be

0 JB? R?B2|1 oY - - o
SW= WJ dys é dX‘ﬁ|k”X|2+ —2p -7 negl_|g|ble at t_he plasma—yacuum interface. It is mportqnt to
o R°B; JB” |n dy retain these in our situation as the mode amplitude is not
, o 2w negligible at the plasma boundary, and indeed is an essential
_ ZJE [|X|Zi + B_> ! Lz E X_ %} feature of the peeling modes which we wish to analyze. Also
B AP 2) 23B° dx n d¢ note that by retaining terms up to, and includi@n 1) we
X* 1 retain the kink drive, proportional to the radial derivative of
— —JBk (o' X)+ =[PIBK Q* + P*IBK Q] the parallel current density.
n n The above expressiofil) neglects the inertial energy.
oo Although we are primarily interested in marginal stability, it
+@[FX*YH' (1)  is useful to have an indication of the growth rate, so we

employ a simplified model which neglects that inertia asso-
Here we have defined the poloidal magnetic flyx,and ciated with displacements parallel to the magnetic field
toroidal field functionf(¢), such that the magnetic field can (equivalent to the assumption of incompressible MHD, valid

be expressed in the form at marginal stability. Thus, for the inertial energy, we derive
B=fV¢+VpxVy, 2 0 J JR?B2|9X|?
) ¢ ) ’ .lﬂ ) . ) ? 5W|:7T7’2f dlﬁjng’RZBz|X|2+pnszpa_
so thaty is an increasing function of the minor radius of flux — p ¢
surfaces. We have chosen the gaugeyffauch thaty=0 at G/ ox* oX\  H [ax* %
the plasma edge, and takes a negative value everywhere in + | X + X* —) + —g(—JBK(—)
the core. In fact, because we are interested in edge localized n I dih) o\ oy It
modes, whose amplitudé— 0 in the core, we can replace X IX*
the lower limit of integration in thay variable by —«, as + I//JBK*(W> ] 9

indicated in Eq.(1). The orthogonal,x,¢) coordinate sys-
tem we use is similar to that used in Ref. 1, whgrés a  The equilibrium functionsd andG are defined in EqgA4)
poloidal angle andp the toroidal angle] is the Jacobian in  and(A5) of Appendix A, p(#) is the mass density angf is

this system, defined such thatly=dI/B,, wheredl is the  the eigenvalue of the system, equal to the square of the
poloidal arc length element along a flux surface, &ydis  growth rate. Again, within our “incompressible MHD”
the poloidal component of the magnetic field. The major ra-model, the inertia term is correct to the first two orders in
dius is denoted by andB is the total magnetic field. The n=1,

pressuréwith a factoru, absorbeglis denoted by, a prime Note that we have performed an orderingnin® so that
denotes a differential with respect fhand a star denotes a the Hermitian property of ideal MHD is exactly preserved,;
complex conjugate. The variableis simply related toX we find this to be important for the numerical results.

The method is now straightforward, but involves a large
amount of tedious algebra. We first Fourier decompose the
where the parallel gradient operator is defined by poloidal variation of the displacemeKt and it is convenient
to do this in terms of a “straight field line” angley

Y=JBKX, (3)

. d
JBK|=—IE+I’IV, (4) 1 (x
w= —f vdy, (10
with
£ where the safety factay is simply q=(1/27)$vdy. Thus
V=S5 (5) we express
=
The parallel current density, denoted dycan be written in X=2 up(x)e”'me, (12)
the form "
fp’ wherem are the poloidal mode numbers, and then we have
o=——5—f". (6)
B v )
Y=>, (——)(m—nq)um(x)e"m“’. (12
Finally, P andQ are defined as m q
B2 gy For highm modes field line bending will have a strong in-
P=oX+ p2 —, (7)  fluence, and will tend to restrict thg, to be localized about
nvB*® 9y their mode rational surfaces, wheme=ng. Thus we have
p’ £ 10y introduced the “fast” radial variable
Q=g Xt Jen g ® x=mo-ng, (13
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which is the length scale on which we expect theto vary. OW=6W,+ W (15

Here m, is the poloidal mode number of some referenceFor our vacuum model we assume that the vessel wall is far

infinite vacuum on all sides; this is a good approximation for
mo=In[ng,]+1, (14) the re_ldially localized mode_s vv_hich we consider. In such a
situation the vacuum contribution t8W can be expressed
whereq, is the edge safety factor. Note thaincreases by 1 analytically solely in terms of the plasma displacement at the
each time a rational surface is crossed as we go from thplasma—vacuum interfa¢é,and therefore, can be absorbed

plasma edge towards the core. into SWs. The resulting expressions f@w, and W are

We now substitute the forms fot andY into Egs.(1)  given in Appendix A.
and(9), and perform integrations by part® the radial co- We stress here that ELITE is not based of\Ve numeri-
ordinate to eventually derive a form fo6W, which can be cal approach, but instead solves the full set of Euler equa-
decomposed into a contribution from the core plasaw,, , tions for the radial variations of the Fourier mode ampli-
and a piece arising from the surface terms due to the integraudes. These can be derived trivially from E41), and for
tions by parts W each Fourier modk they take the form

> [AM(m=ng)2(k—ng)+AmsT(m—ng)(k—ng)?+ Am™(m—nq)(k—ng)— ¥?(17™(m=ng)+ 1 ;*™(k—nq)
m

2
u
1M Gz HAR(M=na) 2 (k=na) + Aggd(m=na) (k=ng)?+ AL"(m=na) (k—na) + Az "(m—na)”

duy,
dy
+[AS™ (m—ng)?(k—ng)+ AT (m—ng)(k—ng)2+ AT (m—ng)(k—ng) +ASM(m—ng)?+ A5M(k—nq)?

!km(k nq)2+(Alkm |/km)(m nq)+(A!km ZIII(k,m)(k_nq)+A!k,m 2|rkm]

+ (A= Y™ (m—ng) + (A= Y21E™) (k—n@) + AR M= 421y, =0, (16)

where the matrix elemen&®™, A’kM andA”%™ are given plasma core(i.e., we are interested only in edge-localized

in Appendix A, together with those associated with the iner-mode$; thus we have

tia, labeled byl. Note that the number of primes on the .

matrix elements is used as a notation to indicate the number )!|rrlum(x)=0. 17)

of “radial” derivatives on their associated Fourier ampli-

tudesu,,, and does not represent/ederivative of the matrix ~ Another boundary condition is that the surface contribution

elements themselves hefguperscripts label the matrix ele- to the total energy must be zero, which represents the fact

ments. that the jump inp+B?/2 across the plasma—vacuum inter-
If we assume that some numb#t, of Fourier harmon-  face is zerd! The final matching condition, that the radial

ics is required to describe the modes, then®86) represents component of the magnetic field is continuous across the

a system oM coupled, linear differential equations for the interface, is used to express the vacuum magnetic-field per-

mode amplitudesy,,. To complete the specification of the turbation in terms of thei,, at the plasma surface. Thus we

system we need to provide a set of boundary conditions. Tharrive at a second set of conditioffer eachk) to be applied

first of these is that the,,,(x) tend to zero deep inside the at the plasma boundary=A=mg—nq,, where G=sA<1

; [Séka?(m—nqﬂk—nq)+%§£‘(m—nq><k—nq>2+s;1kk'm<m—nq)<k—nq>—yzur’#'m(m—nq)
+35M(k—ng)+J’ )] ¢+[82mk(m ng)2(k—naq) + So(m—ng)(k—ng)2+ SEP(m—nqg) (k—ng) + Ssp"(k—ng)?

+SM(k—ng)— y2(IE™(m—ng)+ IE"(k—ng) + ™ Jun+ SWE MU, =0. (18)
Xx=A
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Again, the matrix elementS andJ are defined in Appendix 1.a
A, and SW*™ represents the contribution from the vacuum.

The set of Eqs(16)—(18) constitutes the complete eigen- 0.8
mode system that ELITE has been designed to solve, either |
to determine whether or not a given configuration is stable, P
or to find the growth rate of the instability through calculat- 0.6
ing the eigenvalue?. There are, however, a number of fea-
tures that greatly increase the efficiency of the code and are 0L

worthwhile noting. First there is a separation of equilibrium
and mode-structure length scales. Because the equilibrium-
varies slowly on a length scale of the order of the distance 0.2
between rational surfacg$or intermediate to higm) the
matrix elements can be evaluated and tabulated on a rela-
tively coarse radial mesh. The Fourier modeg(x), on the
other hand, vary on the length scale comparable to the dis- 0.0 0.2 0.& 0.6 0.8 1.0
tance between rational surfaces, and these need a much finer
radial grid. A second feature of ELITE is that it makes use of
the fact that we expect eaah,(x) to be highly localized
about its rational surfade.e., wherem=nq()] due to field
line bending. This means that while many harmonics may be
important to reconstruct the full mode structure, at any one
radial position only a limited subset of these will be signifi-
cant, and the rest can be set to zero amplitude. This provides
a significant saving of both computing memory and time.
Afinal feature of ELITE is how it is designed to evaluate
radial derivatives of equilibrium quantities. In principle these
can be calculated numerically if the equilibrium is known at 0.2
all flux surfaces. However, by making use of an expansion of
the Grad—Shafranov equation about a flux surface, these de-
rivatives can be calculated analytically in terms of quantities
only on that flux surfacé [specifically the flux surface 0.0 0.2 0.4 0.6 0.8 1.0
shape, the poloidal field variation on the flux surface and the (b) Wwa
profilesp(zp) ar?df(l//) are all that are reqUiréd\-Ne require FIG. 1. (a) Pressure profile an¢b) current profile for the circular cross-
second derivativege.g., of the safety factay) with respeqt section benchmark study.
to ¢ here, and therefore, we need to expand to higher
order than is usually done: The results are presented in
Appendix B. is significant current driven in the pedestal region, due
mainly to the bootstrap current.
Analyzing the stability of the equilibrium, we find that
IIl. NUMERICAL RESULTS ELITI_E predicts instability over a range af Figure 2 sh(_)ws
a typical mode structure, in this case fona 10 ballooning
In this section we illustrate some of the results frommode. In Fig. 2a) we show the set of curves for thg,(),
ELITE. Here we restrict consideration to general results, andvhich illustrates the feature that each harmonic is more ra-
will describe more specific tokamak edge stability studiesdially localized (about its rational surfagethan the whole
elsewhere. mode structure. Note that in this case the mode is essentially
We begin by considering the stability of a simple aspectiocalized within the steep pressure gradient region at the
ratio, A=3, circular cross section tokamak. We have con-plasma edgécompare with Fig. @)]. In Fig. 2b) we show
structed g3y = 2.1 equilibrium with a steep pressure pedestalthe mode structure in poloidal cross section, where we see a
at the plasma boundaiigee Fig. 1 so that it is unstable to clear ballooning mode structure.
n=oo ballooning modes in the regiaW r,>0.82, where/, Going to higher toroidal mode number=50, the mode
is the poloidal flux at the plasma boundary8y becomes much more radially localized, as expected from
=pB(%)a(m)B(T)/I ,(MA) where g is the ratio of thermal conventional ballooning mode theo(g.g., see Ref.)1 This
to magnetic pressura,is the minor radiusB is the magnetic can be seen by comparing Fig. 3, which shows the radial
field and 1, is the plasma currentThe current profile is profiles of the Fourier mode amplitudes for this case, with
calculated from neoclassical theory, assuming a constariig. 2(a).
loop voltage across the plasma, and allowing for the boot- Using the circular cross-section equilibrium as an ex-
strap current. Figure () shows the profile of the plasma ample, we have performed a careful benchmark with the
current density; note that it is strongly peaked on axis, whichMISHKA-1 code? which is also capable of analyzing high
is a consequence of neoclassical conductivity, but that theneleal MHD stability. In Fig. 4 we compare the predictions for

)
<
<
€

<J.B>/<B%""?
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FIG. 2. (a) The radial profiles of the Fourier harmonigg( ) and a contour
plot of the eigenfunctionX(¢,x), for ann=10 instability in the circular
cross sectionA= 3 equilibrium described in the text. In the contour plot,

light and dark shades represent large positive and negative perturbations,

respectively.

the growth rates as a function offrom the two codes, and
obtain good agreement over the full rangenst 4. Recall
that ELITE is based on an expansion m !, while

MISHKA-1 is valid over the full range of. This compari-

son indicates that ELITE remains valid over the range of

intermediate to higm, which is the range of interest for
studies of ELMs.

As a final example, we show in Fig. 5 the mode structure
in the poloidal cross section of a DIlI-D VH-mode discharge
(#97887, just before an ELM occurred. In this case the equi-

librium is taken from a high resolution, well-converged EFIT
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FIG. 3. The radial profiles of the Fourier harmonics fomen50 ballooning
mode for the circular cross-section equilibrium.
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FIG. 4. Comparison between ELITiamond$ and MISHKA-1 (triangles
of the growth rate for ideal MHD instabilities in the circular cross-section
tokamak(w, is the Alfven frequency.

reconstruction of the discharge, limited at the 99% flux sur-
face (recall that ELITE cannot yet handle the separatrix it-
self, but can approach it very closglyNote the extremely
large number of poloidal harmonics required to analyze these
shaped equilibrigcompare with Figs. 2 and 3 for the circular
cross-section cageELITE is designed to efficiently handle
such case$~ minute time scales or-1 GHz computers
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FIG. 5. (a) A contour plot of the eigenfunctioX (¢, x), and(b) the radial
profiles of the dominant Fourier amplitudes for ar 20 ballooning-type
instability in a DIII-D equilibrium (shot #9788Y.
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IV. CONCLUSIONS linear radial mode width, and could be incorporated into
ELITE through modified boundary conditions. Improved

lasma physics models would also help us to understand the

ing and peeling modes, we have developed a new, efficient. X . .
tool for calculating the ideal MHD stability of the tokamak rﬁmeren_t ELM regimes observeq n more _deta||_. For ex-
ample, it is likely that diamagnetic effects will be important

plasma edge region, which is often two-dimensional in na- h ; dient . ¢ th q ¢ '
ture. It is anticipated that this will be useful for helping our " e15_517eep gradient regions ot ine edge franspor
understanding of ELMs; in particular, how to control them

barrier, and also strong sheared plasma flows, as mea-
and how to identify regimes with benign ELMs. In addition, sured in H-mode, might be expected to have an impact on
ELITE is useful for calculating the pressure limits that can

the radially extended, ballooning-type modes. ELITE has
exist in the edge pedestal region, which is an important in_been developed in such a way that these improvements could
gredient for determining the temperature pedestdlich in-

be incorporated as the models are developed.
fluences the confinement tim€ The use of the code to in-
terpret ELMs and the temperature pedestal will be describe@CKNOWLEDGMENTS
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such represents the simplest, useful model of edge plasma
j\fﬁgﬁ]‘tﬁ:z foeual‘:j'\ggr%i;-:reirﬁcﬁ:e a number of other feat“reZAPPENDlx A: ELITE MATRIX ELEMENTS

porating into the model, an
these are being considered. One issue is to improve the The Euler equations and their boundary conditions are
plasma geometry, allowing for the presence of a separatrixderived from the plasma and surface contributions to the per-
and even a scrape-off layer plasma, where the field lineturbed energy, respectively. In terms of the Fourier mode
connect to material surfaces. The scrape-off layer might bamplitudes, defined through E@.1), these can be written in
expected to be important when its width is comparable to théhe form

Using our knowledge of the physics underlying balloon-

_ Va 2 * nk,my 2 K— nkme k— 2 nk,my K— o 20mkmy
Wp=m | dy2, Ui| [Azmc(M=nQ)*(k=ng)+Apz (m=ng)(k—=ng)*+ Anc(m=na)(k—=na) = y*(In"(m=ng)

2

d<u
g2 T Asm(m=na*(k=ng)+ Agi(m=na)(k=na)*+ ArT(m—na)(k—na)

+ AL (M=ng)%+ AR (k—n0)2+ (AR™ = Y21 ™) (m=na) + (A= 21™) (k—ng) + A7km

1M (k—ng) +176™)]

du
—yzl'kvm]d—j+[A5h2”k<m—nq>2<k—nq>+A$n"2“k<m—nq><k—nq>2+Amm—nq><k—nq)+A§£‘<m—nq>2

+ A5 (k—ng) 2+ (A= 215M) (m—ng) + (A= y21E™) (k—ng) + ARM— 21 km]y 4 (A1)

for the plasma contribution, and

fwvs%mEk Ui | [Sem(m=na)?(k—na) + SE(m—na) (k—na)®+ Spi™(m=na) (k—ng) = y*(I"(m=na)
rk,m ’ dum k,m 2 k,m 2 K,m
FIEMk=na)+30 ] m H[Semdm=na)*(k—na)+Spz(m—ng) (k—na)*+ Sm—na) (k—ng)

+ S5 (k—n @)%+ S¢M(k—ng) — y2(I5™(m—ng) + I M(k—ng) + ™) Jup+ SWE MUt (A2)

for the surface contributiofwhere quantities are to be evalu- tudes solved by ELITE, Eq16), are given by

ated at the plasma surfgc@he vacuum contribution is rep- 0'q

resented by the termsws™ Akm_ _2_Tg,m+qp/m-|-liim_ T
The matrix elements which appear in the above two con- f n n=q

tributions to the plasma energy and also the set of Euler imq’_, - ig_,

equations for the radial variation of the Fourier mode ampli- T g 26 T FT3b '
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- n TA2N2 2.2 P 2.2
°q n “q n n “q
mq'?_, . 2imq’
+2—3q—Tz3 +—2Tzs +—2T —ge—T
+ T = —Te",
K, ,
Ak m_ _ T17m _ mq T m _Tk,m
m Th n2g2'® Tpzl's
5
o Ta T T
i 2im*q’ _,
km_ """ —+km
Azk n2qT19 e —5 - T5" n%q
12 ’
q 4mq mq’
q _ZF) Thy"— N3 Tg'sm_ n quss ,
im
ASm= ﬁT'Igm:
k,m . 2
Ak m_T1 1 k,m 2 Tkm m_ k,m
mk =g n2q? 2 n?q'5 nZq '’
H 2~
im q
K, K, K, - K
Tr2g T nZg Tt rg s A g Ta
Zm( 2q’2) em  4mg
- S3|q'- M T =T
q q 23 n3q3 n’q
2m
k,m k,m k
: T T
n q 47 n3q2 48 n qZ 49 q2
2mq 1 km 1 km
2 - -
m 4im im
Aﬁ}g& nsqug'zm_ n3 quggm_ naquZ’e
2 im
n qZT - n q2T51 ’
2 2i
m m im
Aomi= nsquzz - n3q2T - naqu
im 2
N qu qusz )
i
A/k,m qp TlO ,
m !
A= e T T TS
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1 2mq’
rk, Kk,
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rk K,
A" nquzoma
2im 1
Ik K, K, K,
Amk =~z T8 T g e nZg e
amqg’
- n3q° 23— n quso )
2im
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2mk — n q2 21 n3q2 28 n3q2 53

AKm— 2ImT+4T+1T
m2k nsqz 21 T p3g2 128 T 32 53
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f 32 n? 36 FZT 37 f
2im? q’ m( 2q’2) wm M
- TP — | T T
P q 3q q" q a3l
2 mq’ q K m_, mq’
n%q T 2T6'3m_ ﬁTe'sm qTae ;
2 . .
m im |
|om= 3Tkm+—T 3T64 ,
im 2im im

k,m

k,m ,
| _TTez +t3Tes

_ k,m
m —F§T3 + —gT

I/k,m:_Zimq k,m q k,m qu, k,m

nZf 34 +?-rss nq Tar s

Irkm 2im k,m__ 1 T

- n3 40 3 66
I!k,m_ZIm k,m_ ET’ _ T
m n3 40 n3 44 n3 66
I/Ik m__ q Tk,m

_n2f 33
nkm_ _ — —km
Ik r]3-'—41 '

I;/nk,m: _ _]'ng,m .

Turning now to the matrix elements involved in the boundary
conditions, we have
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maq' , B2 B2
ST g TP T Ki=g7 ()% Kg=p7 0",
i R? ¢ B2
+fr-|—k,m_ _Tkm_ —Tkm, —- i
12 26 Ko B2 9y p ,
mg’ 1 _, R? gB? R2w' 9B?
= T — T35, - - =
SZk 2q3 nq 20 KlO JB4 aXl Kll JB4 (9)(' KlZ 1'
im 1 1 R’B}
km_ = +km_ km, =
Smk_an?’ an +an Kis=gz, Ku=v' ¢(JBZ)
2md’ 2R2
+ T Tk,m+ Tk,m’ R B
N’ 2 n2q? 28 " nZg? %0 Kis=ve 071,0( J82
im 1 2R2 / 2
S = Th"— —— Tha", d [RBy ap Pl
2k n%g? 2 n%g? 2 Klesz( ' K17:§2‘, Kig=fp B
im 1 2 2 3R2 1
T — ——Tm fow f<o f°Byw
S2mk n2 2 nzqz 28 K19= R2B7 KZO:W’ KZlZW'
, 1 3 12R2 32 'B2R2 1R2
srkm_ _— rkm Pw'?B; B} _P'R’Bj 9B°
nq 22~ TR2g% KZS__RZB4v K24_—JBG ax
’ 1 2
Shik =~ g2 128 RBip'w’ B2 20 9 1
257 JBb 07)( %7 gy R?B2?)"
’ 1 2 ’
Szrl;lrkn: HZEZTEém’ feo 0 w
27 v aX RZBZ ’
im !
gem= T pgm_ T piom_ dpiomy Tpiom. B3 v B} w'v 1do
a o gt KeRegt 0 Ko Gy
im
k K, 2
ka n® T4Om’ Ka=o' K :i K :pR4BP
31 , 32 B,ZJ’ 38T gz
gkm_ ImTkm 4n2 1 2R?2
m nZ 40 pR™Byow 1 9 [pIR°B;
34~ B2 , 357 oy B2 )
, q
Jrlem=— ST o' 3 (pIRB
37 ) oy B? '
1
I M= T pR*BZ0" pR'BZw'?
37~ B2 , 38~ B2 , 3= Hw
1
J/km HZTkI"n V”
K4o:H(1) y K41—H, K42_ ’
The matrix element$*™ are defined in terms of flux surface
averages of kernelk; G Hv' f3B§ "\2
Kiz=—, Ky= ) K45:§2? )
TEM(p)= 3§Ki<w,w>ei<k-m>wdw, (A3) . -
f*Bpw” f°By v"
Where K46_ RZB4 ’ K47_ RZB4 71
Ko f Ko RZBIZJ "k R282 _faw'v’ e, Bs _fgv" e, Bs
TRz Kemdgg T Kem gt o= G0\ R 9T G | REBY)
B2 R?B2 B3 3’ o ( BZ o B2
K4:_p K5 V w K6_ (1) KSO:__ _p K51_ 2(1)’_ —p
B2’ J82 82 v do|R?B*)’ | v°’R?B4)”
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9 fSBFZJ 9 f3Br2) detail, but simply quote some useful results. Thus, by substi-
Kso= VV'WI 2R2BA ) 53= V Wf 2R?B? ) tuting the above form foi/ into the Grad—Shafranov equa-
tion and equating powers in we find
Koy [ B0 ) 2 (¥ da()=R(1)Byl), ®2)
oy | VPR2BA) ax\ v )’
1//R i
P fp’BrZJ p'RZB;‘; v 9B2 l/’z(')zi[ R—S+smu)BpS—R§p’—ff’}, (B3)
=pyp—| ——— L — C
Kes=v g\ B |+ Ks™ 385 5 oy _
1 ) 1 sinu
P (p’RzBf) 9B2 ¢3(I)=6 —2Bpssinu R—+ R
K57:_ T —) y C S
W\ BT Ix 1 sinu a1 dyy
(1) R o Iy
58T 9R6 , 9. ° 50~ V| JR2 |
JB” v dx y\JB 5 1 sinu (1 sinu
g (f2p’ B2 ) o' TRP R TR R. "R
Keozw Fa y K61:H(x) y K62: " H,
_ 2.n !
146 M o RyBps(REP"+(f") )] (B4)
esz_w: 64— @ g’ 65__w1 .
v v All quantities are to be evaluated on the reference flux sur-
9H face, = iy (the subscrips on some of the variables denotes
Kee=—- this). The angleu is defined bydRs/dl=cosu, dZ,/dl=
It —sinu andR¢ is the radius of curvature, which can also be
Here we have defined two additional variables, dependersiefined in terms ofi: du/dl=—R;*.
upon the equilibrium Now that we know to sufficiently high order we can
fR?B2 evaluate the equilibrium quantities required by ELITE. In
p :
H= = P (Ad) particular, we have 2 2
o 171643 1 (Y
and RBp—RSBpS 1+2|’E+E W—i_lﬂ_% T , (B5)
21R2 ’ ’
_ pRAIB;, p_+ v f2 (A5) for the poloidal magnetic field, where
- B? |B? v R°B?)
R=R4(l)+r sinu. (B6)

Note that a prime denotes a derivative with respeaf,tand

pis the plasma mass density, Another important quantity is, as the derivatives of this are

required in order to derivg’ andq”. Thus we need to evalu-
atevto O(r?), and Eq(B5) is required to provide this. Thus

we express
APPENDIX B: EQUILIBRIUM RADIAL VARIATION f(p)
The first task of ELITE is to analyze the equilibrium and ¥~ Vs(1Fvar+ var® ) (o)’ (B7)
evaluate the matrix elements described in Appendix A. It is
convenient to calculate these matrix elements on each ﬂuyyhere
surface in turn, without reference to other equilibrium flux 1 sinu 2y,
surfaces in their neighborhood. It is therefore necessary to be V1= — R_c - ?S - W (B8)

able to evaluate radial derivatives on a flux surface in terms

of only the equilibrium parameters on that flux surface. This sinu  2¢,\( 1 sinu) 33 4¢/,§

is made possible through the technique of expanding the ¥2=| g~ +7 RTTR _7+ — -
el s . . S 1 C S 1 (ﬂl

equilibrium locally about that flux surface, using the infor-

mation provided by the Grad—Shafranov equation, as de—1J We R 3. Hastie. and J. B. Tavior. Proc. R. Soc. London. Ser. A
SCfibed in REf 127 fOf example. . W. Connor, R. J. Rastie, an . b. laylor, Proc. R. S0C. London, ser.

A365, 1 (1979.

(B9)

Thus, following Ref. 12, we express: 2D, Lortz, Nucl. Fusionl5, 49 (1975.
5 3 3J. A. Wesson, Nucl. Fusioh8, 87 (1978.
b= thot (D1 + do(Dr+ ghg(1)ro4---, (B1) 4J. W. Connor, R. J. Hastie, H R. Wilson, and R. L. Miller, Phys. Plasmas

. . 5, 2687(1998.
wherel is the distance around the flux surface labelgdn 5C. C. Hegna, J. W. Connor, R. J. Hastie, and H. R. Wilson, Phys. Plasmas

the poloidal cross-section andis the radial distance from 3, 584(1996.
that flux surfacgsee Ref. 12 Although we need to expand fH- R. PYVHSOT and R-hL- Miller, Plfllyj- Plasmas 873((19%9-
; : H. Zohm, Plasma Phys. Controlled Fusigd 1213(1996.
to higher order than. W?‘S don.e in Ref. 13s we nee.d to 8R. Aymar, Plasma Phys. Controlled Fusié® B385 (2000.
evaluate second derivatives with respect/jpthe technique 5 g wikhailovskii, G. T. A. Huysmans, W. O. K. Kerner, and S. E.

is basically the same. We, therefore, do not describe it in Sharapov, Plasma Phys. R&3, 844 (1997.
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