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* DES2 022279 NUMERICAL STUDIES OF IMPURITIES IN FUSION PLASMAS 

R. A. H u l s e 

Plasma Physics Laboratory, Princeton University 

Princeton, New Jersey 08544 

ABSTRACT 

The coupled partial differential equations used to describe the behavior 

of impurity ions in magnetically confined controlled fusion plasmas require 

numerical solution for cases of practical interest. Computer codes developed 

for impurity modeling at the Princeton Plasma Physics Laboratory are used as 

examples of the types of codes employed for this purpose. These codes solve 

for the impurity ionization state densities and associated radiation rates 

using atomic physics appropriate for these low-density, high-temperature 

plasmas. The simpler codes solve local equations in zero spatial dimensions 

while more complex cases require codes which explicitly include transport of 

the impurity ions simultaneously with the atomic processes of ionization and 

recombination. Typical applications are discussed and computational results 

are presented for selected cases of interest-

"Presented at the Annual Meeting of the American Nuclear Society, Los 
Angeles, CA, 1982. To appear in Nuclear Technology/Fusion. 
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I. INTRODUCTION 
The range of Impurity elements found In the high-temperature plasmas of 

controlled fusion devices Is quite broad, ranging from helium (Z = 2) up 

through tungsten (Z » 74) depending on the device in question. The 

understanding of Impurities in these plasmas involves both atomic physics as 

well as plasma physics and is a critical component in the achievement of 

controlled fusion power. Detailed calculation of the behavior of impurity 

ions in fusion plasmas requires numerical solution of systems of coupled 

partial differential equations which describe the evolution of the impurity 

density In time, space, and ionization state. Several computer codes 

developed for impurity modeling at the Princeton Plasma Physics Laboratory 

will be discussed. These codes model impurity behavior in the low-density, 

high-temperature hydrogenic plasmas typical of magnetically confined fusion 

devices, such as tokamaks. 

Impurity modeling codes are used in various ways in fusion research. One 

fundamental application involves the measurement of basic plasma parameters, 

such as the derivation of electron temperatures from Impurity line radiation. 

Another important experimental application arises from the fact that much of 

the detailed physics of Impurity behavior is still poorly understood. For 

example, one can use the codes to empirically determine particle transport 

coefficients by comparing code results with spectroscopic observation of 

impurity ion densities and time behavior. As our knowledge of Impurity 

behavior Improves, aided by such studies and theoretical work, then the codes 

can be employed with increasing confidence to model and aid in the design of 

future experiments, up to and including fusion power reactors. 

The theoretical and experimental study of impurities in fusion plasmas is 

an area of active interest in the fusion community, and a wide variety of 
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techniques and codes have been developed. We will not attempt here a 

comprehensive review of these various Impurity studies, or of the many 

computer codes currently employed in such work. Rather the physics and 

numerical methods Involved in certain specific codes developed at the 

Princeton Plasma Physics Laboratory will be discussed, and examples will be 

presented of typical applications and results. To begin, a brief review is 

presented of the various roles impurities play in magnetic fusion plasmas 

(Section II), and the relevant atomic processes occurring in these plasmas are 

outlined (Section III). Local codes with zero spatial dimensions (0-D) are 

relatively simple and are described In Sections IV and V. A full 1-D radial 

transport code which treats the atomic and transport processes simultaneously 

for each impurity ionization state is invaluable for the more complete 

description of realistic plasmas and Is discussed in Section VI. A summary 

and comments on future development directions appear in Section VII. 

II. IMPURITY EFFECTS AND DIAGNOSTIC APPLICATIONS 

Some level of impurity concentration occurs naturally in all plasma 

devices as a result of the inevitable presence of material walls somewhere on 

the plasma periphery. In addition to the vacuum vessel Itself, there are 

usually various structures within the vacuum vessel associated with coils and 

diagnostics. Many devices also operate with liraiters specifically intended to 

constrain the hot plasma to some safe distance from the walls. A host of 

processes, such as arcing and sputtering, release impurity ato&s from these 

material surfaces . These atoms include both those of the underlying material 

Itself (carbon, iron, tungsten, etc.), as well as those of other elements, 

such as oxygen, which are bound to their surfaces. Elimination (or at least 

control) of these Impurity sources ia desirable, but difficult to achieve. In 
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contrast, impurity elements are sometimes deliberately introduced into the 

plasma. This may be done by gas puffing or by laser ablation of a thin film 

of material off a sample slide (1) . The purpose may be to encourage certain 

desirable impurity effects (such as enhanced ohmic heating), or it may be 

related to specific diagnostics which require the controlled presence of 

certain impurity ions. Once an impurity is introduced, deliberately or 

otherwise, into the plasma periphery, its subsequent behavior and effects are 

governed by the atomic physics and transport phenomena it encounters, first in 

the scrapeoff region between the wall and limiter radius and then in the hot 

plasma core itself . 

The presence of impurities has certain important effects on the bulk 

plasma parameters. First, because of their high charge, iupurity ions 

contribute significantly to the plasma resistivity. This resistivity in turn 

affects both the ohraic heating rate and current profile in devices, such as 

tokamaks, which rely on large circulating internal plasma currents. 

Radiative cooling by impurities is an effect which can range from 

devastating to beneficial, depending on the location and rate at which power 

is lost due to this process. Severe cooling of the central plasma core via 

line radiation from heavy metals can have catastrophic consequences (2) and 

has led to the removal of such materials as molyder.'im and tungsten from many 

machines. On the other hand, radiative cooling at the plasma edge offers a 

relatively benign channel for heat transport from the plasma core to the 

walls . In principle, the plasma edge can be tailored to a desired temperature 

via properly controlled impurity radiation from this region. 

Other impurity effects include their influence on the 'jeposition of 

neutral heating beams (via beam-impurity ion collisons which ionize the beam 

atoms) and the dilution of a reacting plasma. Since a principal plasma 
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constraint is the electron density, one impurity ion effectively replaces a 

number of hydrogen fuel ions equal to its total charge . 

Impurities can also act as valuable diagnostic tools, in part because 

they are a plasma constituent which is uniquely identifiable via its 

characteristic line radiation. Since the plasma is optically thin to this 

radiation, impurity ions can be studied throughout the plasma volume by 

spectrometry from the outside. This line radiation is often detectable from 

impurity concentrations sufficiently small that they are essentially non-

perturbing to the bulk plasma. Most plasma devices have at least one 

spectrometer, and on larger machines several spectrometers covering a wide 

range of wavelengths are typically available. 

The ionization state reached by an impurity is a strong function of the 

plasma electron temperature; hence, the presence or absence of line radiation 

from various charge states is a measure of the .electron temperature. While on 

larger machines more accurate data is commonly available via Thompson 

scattering and other methods, on small devices this technique is still quite 

important. The electron temperature and density can also be determined from 

line ratios . 

The doppler width of certain selected impurity ion transitions can be 

measured to sufficient accuracy that ion temperatures can be obtained (3) . In 

other cases, plasma flow velocities (such as toroidal rotation in tokamaks) 

can be measured by the doppler shift of Impurity ions moving with the bulk 

plasma ions . 

Finally, the ability to measure in detail the spatial distribution and 

time evolution of impurity ion densities throughout the plasma via 

spectroscopy provides a unique tool for the determination of plasma particle 

transport and confinement. These observations can either rely on naturally 
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occurring impurity elements, or selected impurities can be introduced in a 

controlled manner in order to observe their subsequent behavior. 

III. ATOMIC PROCESSES 

The high electron temperature (1 eV < T g < 100 keV) and low density 
1 S —3 (n < 10 cm ) of magnetically confined fusion plasmas allows certain 

(coronal) approximations to be taken as a starting point when treating the 

atomic physics of ;he impurity ions. First, the plasmas are optically thin to 

atomic line radiation, and hence all photoabsorption processes may be 

neglected. We also have collision times at these low densities much longer 
than the decay times of most excited atomic states, with the result that each 

ion may be taken to be in its ground state at the start of any collisional 

process. Working at or near this coronal limit greatly simplifies both the 

atomic processes which need to be considered, as well as the formulation of 

the associated transport models for the impurity ions. 

In the following, we will briefly note the atomic processes which must be 

considered in the impurity calculations- Various additional processes and 

considerations peculiar to the scrapeoff region of the plasma, such as 

molecules, will not be considered. Data on the cross sections and rate 

coefficients for these processes is fundamental to any impurity modeling 

calculations. Therefore, the calculation and measurement of such data on the 

part of the atomic physics community is a critical part of our increasing 

understanding of fusion plasma impurities . This research presents challenging 

problems In its own right. 

Ionization of ions of an impurity element with atomic number Z and charge 

q is primarily due to direct electron impact ionization; 
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z+q + e + z+q + 1 + 2 e . (i) 

For some ions, excitation to autoionizing states may also be an important 

process. Here, the electron impact removes an electron indirectly by exciting 

the ion to a state which subsequently decays by the ejection of an electron 

rather than by radiation. Combining these two processes, we can define a 

total ionization rate per ion as 

1 = n k (T ) , (2) 
q e q v e 

_3 where T e is the electron temperature, ne(etn ) is the electron density, and 

the ionization rate coefficient k-(era s ) is essentially independent of n e. 

Rate coefficients such as k result from the average over a maxwellian 

velocity distribution of the cross section - velocity product, <cv>. 

For recombination of an ion, radiative, dielectronic, and charge exchange 

rates typically must be considered. Radiative recombination proceeds by 

direct capture of an electron from the continuum with the emission of one or 

more photons: 

Z + q + e + fZ + q _ 1] + hv. 

[z + q _ 1) •> Z + t r l + hv, + hv, + .... (3) 

The second step Involving decay of an excited state via line radiation occurs 

only if the electron was not directly captured Into the ground state of the 

Ion. 
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Dielectronic recombination is a complex process whereby a free electron 

Is captured into a highly excited level of an ion during the excitation of a 

bound electron. This doubly excited state Is unstable against autoionization, 

but will sometimes stabilize before this occurs by radiative decay of the 

inner excited electron. Cascade of the captured electron to the ground state 

follows, resulting in the recombined ion: 

Z + q + e - (z + q _ 1) * (Z+'1"1) + hvL 

( z + q _ 1 ) - Z + q _ 1 + hv2 + hv3 + .... (4) 

Both radiative and dielectronic recombination occur due to electron 

Impact and, hence, can be combined into a total recombination rate per ion: 

R = n a (T ) , (5) 
q e q e 

where the total recombination rate coefficient u (cnr,; ) includes both the 
q 

radiative and dielectronic processes. While a does have an intrinsic density 
q 

dependence via the dielectronic process, in many cices this dependence is weak 

over the density range of Interest in a particular problem. For present 

purposes, a will therefore be written as independent of density. In general, 
q 

however, this effect cannot be neglected. This is particularly true at the 

high density and/or low temperature extremes of the parameter ranges mentioned 

In the introduction to this section. 

Neutral hydrogen atoms present in the plasma (produced either by charge-

exchange transport of recycling plasma from the cool edge region or by neutral 

beam injection) can charge exchange with impurity ions and produce a 
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slgniflcant net recombination rate: 

Z+1 + H° + (z + q _ 1) + H + 

( z + q _ 1 ) * • Z + <* _ 1 + hvt +hv 2 + .... (6) 

This rate depends on the neutral hydrogen density instead of the electron 

density. In order to simplify the following discussions, charge-exchange 

recombination will be neglected, but it is important to note that it can be an 

important process in certain plasmas (4). 

The prime radiation mechanism for impurity ions is line radiation due to 

eleccron impact excitation followed by prompt radiative decay. Other 

proce°.;es of importance include line and continuum radiation associated with 

the recombination processes and bremsstrahlung. Neglecting charge-exchange 

recombination, all these processes- are the result of electron impact, and, 

therefore, one can write a total radiation rate coefficient for each charge 
state 1 (T 1 {watts-cm ] which is a function of the electron temperature, q e 
The radiative cooling for a given Ion Pq (watts) is simply given by 

P = n S. (T ) . (7) 
q e q e 

Rate coefficients for these processes have been obtained from those 

originally used in the average ion code of Post et al. (5) by reformulating 

them in terms of individual charge states. In addition, detailed spectral 

line excitation rates are calculated separately as required for each specific 

modeling application. 
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IV. CORONAL EQUILIBRIUM 

Given the necessary rate coefficients from the preceding section, it is a 

simple matter to obtain the local (zero-dimensional), time-independent 

solution for the ionization balance of an impurity in equilibrium with its 

surrounding plasma. Since the total flow between adjacent ionization states 

must be zero, the densities of the individual charge states n (cm ) are 

simply given by 

n ,, I k (T ) 
q + 1 q__ _ q e ,„. 
q q+1 q+1 e 

taken together with the constraint that the total impurity density ^(cm--1; i s 

given by 

n = Z n . (9) 2 q q H 

Note that the tesulting ionization balance is primarily a function of the 

electron temperature, T , with the only density dependence occuring via the 

dielectronic recombination rate as previously discussed. This "coronal 

equilibrium" result is often used as a starting point for understanding 

impurity effects in plasmas. The associated total radiated power P(watts 

cm ) can be simply calculated from 

P = Z n n A ( T ) = n n iJ^fT ) . (10) 
e q qv e' e Z Z v e' 

q ^ ̂  

The coronal equilibrium radiation rate (cooling rate) coe fflcient A?(T ) and 

charge state fractions f (T ) q e' 
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Jlf (T ) = £ f C E(T ) I (T ) 7, e' q v e' q v e' 
q 

^(TJ-^L . ("> q *• e> n z ' CE 

are tabulated in the literature for various elements (5,6). 

Figure 1 shows the coronal equilibrium ionization balance and radiation 

rate coefficient for iron as a function of electron temperature for 

10 eV < T e < 10 keV. Note the persistence of F e + l 6 and F e + 2 4 , which 

correspond to the relatively stable closed-shell neon-like and helium-like 

states. This sort of shell structure is evident in corresponding curves for 

all elements. In particular, the hellum-llke, hydrogen-like, and fully-

stripped ions radiate relatively poorly, and hence it is possible to "burn 

out" impurities to reduce their cooling effect . 

The inclusion of charge-exchange recombination Introduces a dependence on 

the neutral hydrogen density into these calculations and thereby complicates 

the corresponding results. A given neutral hydrogen velocity spectrum results 

in a family of ionization balance and total radiation curves which are 

parameterized by the neutral fraction, ( n H / n e ) ( 4 ) . 

Assuming local coronal equilibrium is an adequate approximation when the 

plasma is stable in time, and the impurity particle transport across 

inhomogenities in the plasma is slow compared with the ionization and 

recombination times. 

V. ZERO-DIMENSIONAL T^ME-DEPENDENT MODEL 

When coronal equilibrium is a poor approximation, one may introduce a 

tlrae-dependent, zero-dlraensional calculation. Here we need to solve the 
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coupled rate equations: 

on n 
-J±- = 1 tn , - ( l + R l n + R , 1 n , 1 - - 3 - + S . (12) 
Ot q-1 q-1 *• q q ̂  q q+1 q+1 T q 

q 
The ionization and recombination rates I and R q now may vary with time in 

response to the changing electron temperature and density of the impurity 

Ion's environment. The -c decay times and S„ source/sink terms can also be 
q i 

arbitrary functions of time. 

The set of coupled equations (12) of such a zero-dimensional impurity 

model are readily transformed into an implicit finite-difference scheme for 

numerical solution (7) . Here "zero-dimensional" refers to the zero spatial 

dimensions of the model; the multi-species (e.g., multi-lonization scate) 

codes described here always have the additional charge state dimension to 

solve in beyond the number of spatial dimensions considered. Since the 

charge-state dimension is already intrinsically discrete, however, finite 

differences need only be taken in the time and spatial coordinates (if any). 

Equation (12) becomes in vector form 

^-2-= A-((l - 6) n + 9n') + £ , (13) 

where 

and 5 -I b2 1 . (14) 

The (Z + 1) x (Z + 1) matrix A contains the ionization and recombination 

rates and the % term. The implicitness factor e may be adjusted from 
q 
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9 = 0 (fully explicit) to 9 =• 1 (fully implicit) although 9 > 0.5 is 

dictated for stability. This equation advances the system to a new state n' a 

timestep of length At advanced from ;he state n. 

Equation (13) Is trivially put in the form 

X n' = y , (15) 

where 5? and y are known. Sf is tri-diagonal (as Is X ) since the atomic 

processes connect only adjacent ijulzatlon states. The solution Is thus 

easily obtained (7) by elimination on X by assuming solutions of the form 

n' = E n' + F . . (16) 
q q-1 q-1 q-1 

When (16) is substituted Into (15), one obtains recursive relations for E and 

T which involve E. + 1 and F_+j plus the known elements of X and y. One 

then starts by evaluating these recursion relations at q = Z and sweeps down 

to EQ and F~. The n 1 are then extracted from (16) on a return sweep from q = 

0 to q ~ Z. The boundary conditions are invoked at the endpoints, and simply 

reflect the absence of n_x and n z + 1 . This procedure is quickly carried 

through on even a small computer, which makes such codes of great practical 

utility. 

Beyond the algorithm described above, one must supply a choice of At for 

each timestep. This is done dynamically in the code by establishing some 

Index of how rapidly the system is changing in time. A useful particular 

choice is 

6 = (An ,) /(n ) 
q max ^ q'max 

(17) 
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where (An ,) is the largest change in any ionization state density during 

the last timestep and [n ) is the largest density. This choice discounts 
v q'max 

fast changes in ionization states which have negligible densities. This 

change parameter 6 is compared after each timestep with a specified e , which 

Is the target change per timestep. The code then adjusts the next timestep 

length in such a way (either longer or shorter) as to try to approach this 

target. This system works quite well for most applications. 

With fixed plasma parameters and no source/sink terms, these equations, 

of course, yield ionization balances and radiative cooling rates which 

converge towards coronal equilibrium fr^u any given initial state. But In 

many cases, the finite rate at whi'-h the impurity can respond to rapid changes 

in its environment lead to important departures from coronal equilibrium. In 

the case shown in Fig. 2, a cold plasma containing an initially neutral oxygen 

impurity has been instantaneously he.ated to t.n electron temperature of 50 

eV. The electron density is taken to be n e = 2 x lO^cm - 3 . This is a 

representative situation for many small plasma devices, such as spheroinaks, 

which heat on time scales fast compared with characteristic ionization times 

for their intrinsic impurities. In Fig. 2(a), the fractional distribution of 

the oxygen impurity among its different ionization states is shown as a 

function of time. The final coronal equilibrium distribution is not 

approached for several hundred microseconds, which is often much longer than, 

the plasma lifetimes in such machines. One result of this is that the use of 

ionization balances observed spectroscopically in such situations will yield 

incorrect estimates for the electron temperature if simple coronal equilibrium 

is assumed. 

Figure 2b Illustrates another consequence of the non-equilibrium nature 

of the oxygen distribution. The effective radiative cooling coefficient of 
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the oxygen is well above that which would obtain in coronal equilibrium at 50 

eV as a consequence of the finite time required for the oxygen to burn out to 

the relatively non-radiative helium-like state. Until this occurs, the oxygen 

radiates quite strongly, with an integrated energy loss which can be many keV 

per oxygen ton. This radiative energy loss often cannot be sustained by the 

heating in small devices and produces the phenomenon often referred to as the 

"oxygen barrier." Other elements (such as carbon) can produce similar 

effects. 

Zero-dimensional time-dependent codes can also be used to obtain initial 

approximations to situations where transport of the impurity is the important 

process keeping the ions away from coronal equilibrium. For example, one may 

consider a homogeneous volume which is kept from coronal equilibrium by finite 

source and sink terms. The particular situation where impurities recycle as 

neutrals back into the plasma after being transported out as ions can be 

modeled by setting up a finite source of neutral atoms in the SQ term of 

equation (12), and then setting a finite confinement time T for all the other 

charge states. 

One can also attempt to mock up one-dimensional spatial transport using a 

zero-dimensional code by choosing some velocity with which a test packet of 

impurity is moved through a fixed plasma profile, such as that shown in Fig. 

3. The time varying T e and nfi seen by the impurity thus reflect its changing 

position in the plasma. An approximate departure from coronal equilibrium to 

be expected from impurities transporting through a plasma can be quickly 

calculated using this approach. However, the uniform convective motion 

assumed for the impurity ions in this model cannot directly include a 

diffusive "random walk" component in the impurity transport. Since diffusion 

is likely to be important in most situations, some uncertainty arises in the 
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iaterpretation of results from such models. 

VI. ONE-DIMENSIONAL RADIAL TRANSPORT 

VI.A. Equations and Numerical Solution 

Computer models which treat impurity transport and the atomic processes 

ionization and recombination simultaneously and self-consistently are 

necessary to treat accurately the many situations in which these processes 

occur on comparable time scales. Full three-dimensional solutions for 

impurity behavior are unnecessary as most plasmas have some degree of symmetry 

which can be exploited. The 1-D model to be presented here was written 

primarily for application to tokamak plasmas. In a tokamak, particle motion 

in the poloidal and toroidal directions occurs along field lines anu, thus, is 

typically quite fast compared with cross-field radial motion. Assuming 

symmetry in all but the radial coordinate (cylindrical geometry) is thus a 

physically reasonable choice for a model, resulting in a one-dimensional 

impurity transport code. 

The expression governing the time evolution of a given impurity charge 

state density in space and time now has the form 

on , n 
3-a.--i_2.fr r l + 1 ,n , - fl + R ) n + R ,,n . , - - * + S , (18) ot r Br l q' q-1 q-1 *- q q J Q q+1 q+1 T q 

q 

where we have introduced a particle flux density T . This flux is taken to 

be of the general form 

On 
T = -D (r) -=£+ v (r) n n , (19) 
q q dr q q 

http://3-a.--i_2.fr
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where D (r) is the particle diffusion coefficient, and v (r) is a convective 

velocity. These transport coefficients may, as indicated, be functions of the 

ionic charge as well as space and time. Similarly, the I_, R_, x , and S. are 

functions of charge state, radius, and time. As will be described later, the 

n /-[ and S terms are primarily used to model impurity ion loss, recycling, 

and deposition in the plasma serapeoff region near the wall. 

For tokamaks, neoclassical transport theory provides expressions for 

D (r) and v (r) . These neoclassical transport coefficients depend on the 

temperature and density profiles of the background hydrogenic ions (8) . There 

are also contributions from ions of other impurity elements and ions of the 

same element in different charge states. In most tokamak plasmas, however, it 

appears that anomalous processes either add to or completely dominate 

neoclassical transport. In order to handle such cases, the code allows for 

arbitrary values of the transport coefficients to be specified. These may be 

chosen either to correspond to ;ome alternative transport model, or they may 

be adjusted to yield a match between the code results and experimental data. 

Numerical solution of the set of coupled equations (18) is undertaken 

using an implicit scheme similar to that used for the 0-D code. A radial mesh 

is specified and the finite differences are taken in r and t. The charge-

state dimension is, as before, already in a discrete form. Conservative 

differencing is used in the radial coordinate to ensure particle 

conservation to within the machine accuracy. In each radial zone 

1 < i < ",____, we have a vector n. containing the Z + 1 charge-state 

densities n . The Implicit finite differencing yields a result similar in 

overall form to that of the 0-D equation: 
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X'V = Y • (20) 

The V vector here has the dimension of the number of radial zones N z o n e s and 

has, as Its elements, the charge-state vectors n each (Z + 1) long. 
J 

Correspondingly, X Is now a ( N z o n e s ) x ( N z o n e s ) matrix whose elements are (Z + 

1) x (z + 1) matrices. The x matrix Is tri-diagonal, this time because the 

second order difference operator only connects a given radial zone to its 

adjacent zones. Therefore, one can straightforwardly apply the same tri-

diagonal elimination scheme as before except now the sweeps are in radial zone 

space. The substitution, 

results in recursion relations for the If and f which involve (Z + 1) x 
J J 

(Z + 1) matrices. These matrix equations are solved using a standard Gaussian 
elimination technique with pivoting (9). 

The radial boundary conditions are applied at the inner and outer limits 

of the radial mesh during the tri-diagonal matrix sweeps. Flux or density 

conditions may be imposed at each boundary, with the usual choices being a 

zero flux on axis (r=0) and a zero density at the plasma edge. The latter 

boundary condition is somewhat unphysical, but the scrapeoff model discussed 

below naturally produces small densities in the edge zones so the boundary 

condition there Is not critical. 

Since the impurity transport coefficients are explicitly rather than 

implicitly defined functions of the plasma parameters, the code also contains 

a predictor-corrector loop to improve stability in situations where these 
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transport coefficients are sensitive functions of the changing impurity 

densities. For example, this can occur when the impurity Ion-impurity ion 

transport terras In neoclassical theory become important. 

In addition to the numerical algorithm just described, the 1-D code also 

carries out various auxiliary calculations as part of the physical model. 

Several of these concern physics associated with the wall aad scrapeoff region 

of the plasma. The detailed physics of impurity behavior In the scrapeoff 

region of a plasma Is a complex topic In itself. Since the main applications 

of this code are currently associated with impurity transport and effects in 

the central plasma core region, a fully detailed scrapeoff model has not been 

incorporated. However, some of the essential features are modeled in order to 

provide suitable source and sink terms in this region. 

Beyond a specified radius in the model, the finite confinement time 

term (-n /t ] is employed to simulate loss of impurity ions along the field 
q q 

lines which either strike the limiter or connect to a divertor region (10) . 

The appropriate parallel loss time is either calculated using a ratio of a 

toroidal connection length to the ion sound speed, or may be specified 

externally if desired. Impurities lost via this parallel loss term and by 

cross-field transport to the wall can be recycled into the plasma In various 

ways. One of these Is to return the lost impurity ions as neutral atoms of 

some given energy launched from the wall. The deposition profile of these 

neutrals is calculated to yield a radially dependent source of singly charged 

impurity ions which typically peaks in the scrapeoff region. The ratio 

between the instantaneous magnitude of the entering neutral particle source 

and the total scrapeoff and wall loss rate is the recycling coefficient. This 

quantity is specified as somewhere between zero and one-hundred percent 

depending on the element and problem in question. For injection experiments 
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where an instantaneous puff of impurity is introduced into the plasma 

periphery, the same type of deposition calculation is used to initialize tha 

problem with a given initial distribution, rather than continuous source, of 

singly ionized impurity Ions. 

Despite the (Z + 1) x (Z + 1) matrices which must be handled by this 

algorithm, total computing time for typical problems is reasonable on a fast 

scientific computer such as the CRAY-1 . This is partly because the matrix 

manipulations vectorize quite efficiently on a machine such as this. A factor 

of ~ 10 improvement in speed was achieved on the CRAY-1 relative to the CDC-

7600 without resorting to any special coding techniques. Exact execution 

times depend strongly on the particular element (Z) and problem being run. 

Typical runs on the CRAY-1 take anywhere from seconds for low-Z, transport 

equilibrium cases up to tens of minutes for detailed, high-Z, impurity 

injection models. Equation (18) is particularly stiff in the edge region 

where the impurity neutrals are typically introduced, and special solution 

techniques may be needed in the future to yield efficient execution times when 

this region is considered in more detail. 

Real tokaraaks are, of course, never perfectly symmetric in the poloidal 

and toroidal coordinates, and there are certain circumstances in which these 

asymmetries may become important. An interesting example of this involves 

neutral beam injection, which produces toroidally asymmetric charge-exchange 

recombination of the impurity Ions. A one-dimensional transport cor lch 

considers toroidal rather than radial transport was written in order to handle 

this situation (11). Poloidal asymmetry due to the localized nature of 

impurity sources (such as limiters) and other causes is also frequently 

observed in the outer regions of tokamak plasmas, but it usually decreases as 

one proceeds further into the plasma core. 
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Despite these last caveats, one-dimensional radial impurity transport 

models handle most problems of current interest and can be calculated with a 

reasonable expenditure of computer effort. 

VLB. Applications and Examples 

In order to demonstrate some of the typical applications of the 1-D 

multi-species impurity transport code, the plasma profiles shown In Fig. 3 

will be used. Such a plasma is representative of those which may be obtained 

in present large tcicamaks. The scrapeoff region extends from the r = 40 cm 

limiter radius out to the wall at r = 50 cm. 

Perhaps the simplest calculation which can be performed using the 1-D 

impurity transport code involves the effect of transport on the steady-

state (on /5t = 0) distribution of a naturally occurring impurity. In the 
q 

absence of transport, this steady-state solution corresponds to achieving 
local coronal equilibrium everywhere. Nc recycling is needed since the 

impurity ions do not move and are not lost from the plasma. In Figure 4a, 

such a solution Is shown for an iron impurity with constant 

density n„ = 1 x 10 Fe 
cm in the plasma of Fig. 3. The resulting distribution of charge states 

with radius i.i simply a mapping of the coronal equilibrium curves of Fig. la 

across radius according to the specified radial temperature profile. 

In Figure 4b, a steady-state solution is shown where a radially constant 

diffusion coefficient D = 1 x 1 0 ^ c m
2
s ~ l has been included. Diffusion 

coefficients of this order are Inferred from various experiments (12). The 

recycling coefficient is one hundred percent for this problem, as it must be 

for a steady state to be reached in the presence of transport . The impurity 

outflux is recycled as neutrals at 1 eV energy as previously described. The 
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source and sink terras all occur in the scrapeoff outside of r = 40 cm, and, as 

a result, the total Iron density in the r < 40 cm region shown is radially 

constant in steady state due to the purely diffusive transport. Including a 

convectlve velocity term (vn ) in the transport flux would give rise to 

radially peaked total impurity density profiles In steady state. 

The total iron density in Fig . 4b has been adjusted to be the same as for 

the coronal equilibrium case of Fig. 4a. However, note the change of vertical 

scales between the two graphs necessary to show detail in the diffusive case 

where the individual charge-state profiles are much broader, and hence smaller 

in peak density. The comparison of these two cases illustrates how one can, 

in principle, determine impurity transport 'coefficients via observation of the 

radial profiles of impurity ions. Code calculations, such as those shown in 

Fig. 4, are made aid the transport coefficients are adjusted until a match is 

achieved within the experimental uncertainties. In practice, however, often 

these f.xperimental and other uncertainties (such as in the assumed temperature 

and density profiles, and in the atomic rate coefficients) make accurate 

transport assessment from this type of equilibrium data difficult. 

In Figure 5, the radiative cooling rates corresponding to the steady-

state solutions of Fig. 4 are shown. The transport of relatively radiative 

lower charge states to the plasma core in place of the less radiative heliuta-

like state dominant in coronal equilibrium has a marked effect. One may also 

note here the tendency of the cooling rate to peak somewhere in the outer 

regions of the plasma. As previously noted, such a radiative "shell" is found 

in various plasmas and can sometimes be beneficial by cooling the plasma edge 

and, hence, reducing the severity of plasma/wall interaction effects. 

In Figure 6, we show code calculations for the injection of iron into the 

saine plasma considered in Figs. 3,4,5. Such experiments often allow 
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measurement of impurity transport coefficients more straightforwardly and 

accurately than can typically be achieved by using the steady-state 

observations just discussed. While Iron was chosen for this example for 

consistency with the other cases shown, typically in an experiment of this 

kind one chooses an element not naturally found in the uevice so that there 

will be no confusion between the injected and background impurities . One also 

typically chooses an impurity which will not recycle from the walls, and 

hence, in this set of calculations, we have chosen the recycling coefficient 

to be zero. 

The transport here has again been chosen to be D = 1 x 10 cms . The 

radial scale of Fig. 6 extends out to the r = 50 cm wall radius In order to 

show the initial distribution profile and subsequent evolution in the 

scrapeoff region. A fixed scrapeoff loss time of t " 0.5 ms has been taken 

for the r > 40 cm scrapeoff region. 

Note that the density axis has been rescaled for each of the four 

selected times shown in Fig. 6. The total impurity content of the plasma is a 

monotonically decreasing function of time as a result of scrapeoff and wall 

losses with no recycling, and the dynamic range in densities is large. 

The initial distribution of singly charged iron from the injection is 

seen in Fig. 6a, peaked at r ~ 45 cm. The total number of injected atoms is 

10 , a typical number using the laser ablation technique. 

By t = 3 .2 ms (Fig. 6b), several scrapeoff confinement times have passed, 

and the density in the scrapeoff region is nearly zero . However, in the short 

period before this occurred, some of the ions have had time to diffuse into 

the main plasma region inside of r = 40 cm. Some of thtse ions will diffuse 

inward towards the center of the plasma column, while others will diffuse back 

out into the scrapeoff and be lost. Note the evolution of the iron in charge 
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state as particles flow into the l„i;ter central region of the plasma. 

By t = 16.6 ms (Fig. 6c), the impurity ions have reached the center of 

the plasma. At long times (t = 60.9 ms, Fig. 6d), the impurity has settled 

down to a centrally peaked radial distribution, which decays exponentially in 

time. 

As seen from study of Fig. 6, each individual charge state of the iron 

impurity appears, peaks, and then diminishes wlh time. The time of appearance 

and decay of each charge state is a result of the detailed interaction of the 

transport of the impurity through the T g and nfe profiles and cnu corresponding 

changes in the ionization and recombination rates of the different charge 

states. Since the temperature profile is peaked on axis and the impurity is 

Introduced on the periphery of the plasma, successively higher charge states 

appear in order as the ions move inward into the hotter central region of the 

plasma. One way of clearly presenting this effect is to look at the radially 

integrated column densities of the charge states as functions of time. This 

is shown in Fig. 7. Experimentally, it Is straightforward to observe the time 

evolution of the spectral line brightness from dilferent charge states, a 

quantity which is closely related to these column densities. The code 

calculates a quantitative spectral line brightness at a particular selected 

wavelength for each charge state in addition to thl' column density in order 

to allow direct comparison of code results with experimental data. Such 

comparisons allow the impurity transport to be deduced. Despite the 

recurrence of many of the same uncertainties (electron temperature, atomic 

rate coefficients, etc.) associated with the steady-state radial profile 

method, such modeling of injection data provides complimentary and sometimes 

superior results . 
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VII. SUMMARY AND FUTURE DIRECTIONS 

Impurity physics is an important part of controlled fusion research, and 

numerical models of impurity behavior in realistic plasmas are an important 

tool In the successful development of controlled fusion energy. Impurity 

modeling computer codes are useful both in the diagnostic measurement of 

plasma parameters and also in Investigations of basic physics issues, such as 

particle transport and confinement. The codes are also invaluable in their 

ability to predict impuri;/ effects, such as radiative cooling, and thereby 

have an important role in the design of tuture plasma devices, including 

reactors. Active research efforts concerning all these issues are in progress 

at various fusion laboratories. A particularly Important and complex problem 

not treated here concerns the detailed physics of Impurities in both limlter 

and divertor scraperff plasmas. Reactor design calculations have investigated 

the possibility of forming a radiatively cooled outer plasma region which will 

actively help in the removal of heat and particles from a reacting plasma. 

At the present time, the predictive modeling of impurity behavior in 

reactor-size devices Is hampered by remaining uncertainties In our 

understanding r impurity transport and other fundamental physics issues. 

Much of the -. 1 -rent modeling efforts are thus oriented towards obtaining 

further data on the physics of impurities in realistic fusion plasmas. In the 

next few years. Improved understanding and modeling of impurity transport, 

scrapeoff physics, and plasma/wall interactions may allow all these aspects of 

the problem to be brought together in a comprehensive, self-consistent model 

of Impurity behavior. The lav i presence of toroidal and poloidal asymmetry, 

particularly in the edge _.id scrap-ji.-. regions of tokamak plasmas, will 

probably require such a code to be extended beyond one spatial dimension. 

This development, especially when taken together with the interest In higher Z 
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eleraents as plasma temperatures increase, may dictate fundamental changes in 

the numerical algorithms employed so as to keep the computational requirments 

within reasonable bounds-
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FIGURE CAPTIONS 

Fig. 1. The (a) charge-state distribution and (b) radiative cooling rate 

coefficient for iron in coronal equilibrium from 10 eV < T e < 10 keV. 

Fig. 2. Zero-dimensional time-dependent code solution for the behavior of an 

oxygen impurity taken as neutral at t = 0 in a T g = 50 eV, n = 2 x 10 

cm--* plasma. The time evolution of (a) the charge-state distribution and (b) 

the radiative cooling rate coefficient are shown. 

Fig. 3. Typical tokaraak electron temperature (T ) and density (ng) radial 

profiles. 

Fig. 4. One-dimensional transport code steady-state radial charge state 

density profiles for iron impurity in the plasma of Fig. (3) for (a) coronal 

equilibrium and (b) D = 1 x 10 cm /s . The total iron density in both cases is 
11 — 1 nFe = 1 x 10 era • Note that the density scales for the two cases are 

different. 

Fig. 5. The radiative cooilr.g i.ate (watts/cm3) corresponding to the steady-

state results of Fig. A. 

Fig . 6 . A seq uence of four radial charge—state distributions for 10 neutral 

iron impurity atoms Injected into the plasma of Fig. 3 at t • 0. The 

scrapeoff region extends from r = 40 cm to r - 50 cm. Note that the density 

axis is rescaled as time progresses. 
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Fig. 7. Radially Integrated column densities for selected charge states from 

the Fig. 6 simulation. The peak for each charge state has been normalized to 

unity. 
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