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Abstract—Photonic Bandgap (PBG) materials have been investi-
gated for their versatility in controlling the propagation of electromag-
netic waves [1, 2]. In order to determine PBG structures responses,
several analytical or numerical methods are used, such as:

• The plane wave method applied to solve Maxwell’s equations [3].

• The transfer matrix method, based on the wire grating impedance
developed by N. Marcuvitz [4].

• The Finite Element Method (FEM) exhibits, e.g., the frequency
response of reflection and transmission coefficients of the PBG
materials when they have infinite surfaces and are excited by plane
wave. The FEM method can be also used in the case of finite
structure fed by a dipole.

• The Finite Difference Time Domain method (FDTD). This meth-
od solves the discretized Maxwell’s equations in the time domain
and evaluates the electromagnetic field components. These EM
fields are then obtained in the frequency domain thanks to a
Fourier Transform.

First of all, we present a parametrical study using a 3D Finite Element
method software. This study allows to estimate the role of any
parameters on the reflection and transmission coefficients and then
to design a PBG structure in the X-band (8–12 GHz). Continuous and
discontinuous structures are presented.

Then, we present a numerical analysis of PBG structures, using
the FDTD method in order to understand the propagation phenomena
in these periodic materials.
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1. PARAMETRICAL STUDY IN X-BAND WITH THE
3D FINITE ELEMENT METHOD

1.1. Introduction

The PBG materials are characterized by the period between two
elements of the structure, the diameter of metallic wires and the
number of layers. A PBG structure presents a succession of stop-bands
and propagation bands which depend on its physical parameters as well
as the wave incidence, the dielectric permittivity. . . . The purpose of
this part is to study these parameters influence on reflection (S11) and
transmission (S21) coefficients.

This study is purely theoretical. All simulations have been
realized with Ansoft HFSS Software [5] and an add-on module
OPTIMETRICS. HFSS is a 3D electromagnetic simulation software
that computes S-parameters and full-wave fields for arbitrarily-shaped
3D passive structures. OPTIMETRICS performs parametric analysis,
sensitivity analysis and optimization. Infinite periodic structures (in y
and z directions) are realized using PEC (Perfect Electrical Conductor)
and PMC (Perfect Magnetic Conductor) boundary conditions and
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excited with a normal incident plane wave. MATLAB Software is
used to visualize the reflection and transmission coefficients. The
abbreviations used in this chapter are listed below:

pt: transverse period

pl: longitudinal period (along the direction of propagation)

d: diameter of metallic wire

n: number of layers

n =
3 layers

pl= 12 mmpt = 12 mm

d = 1 mm

z

x

y

E k

Figure 1. Geometry of a 2-D square lattice metallic PBG with 3 layer,
a 12mm period (pl = pt) and a 1mm diameter.

1.2. Review on Metallic PBG Structure of Continuous Wires

Let us consider the simple 2-D square lattice metallic PBG described
in Figure 1. It is composed of 3 layers with a 12mm period and
metallic wires with a diameter of 1mm. This structure is supposed
infinite in y and z directions. When this structure is excited by a
normal incident plane wave, with the electric field parallel to the wires’
axis, this kind of structure exhibits a bandgap (high reflection level)
starting from 0Hz to 7.5GHz, the cutoff frequency which depends on
PBG physical parameters. Then, there is a propagation band (low
reflection level) composed of 2 propagation peaks and finally a second
stopband. We can recall there are (N − 1) Fabry-Perrot cavities in a
N layer structure and then (N − 1) resonance frequencies associated.
Therefore the number of these propagation peaks (Npeaks) is linked
up the number of layers (Nlayers) with the following relationship (valid
only for normal incidence):

Npeaks = Nlayers − 1 (1)
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Figure 2. Theoretical reflection S11 (a) and transmission S21 (b)
coefficients of the metallic PBG structure described in Figure 1 (3
layers, pl = pt = 12mm, d = 1mm).

Table 1. Parametric study of a continuous PBG structure.

pl (mm) pt (mm) d (mm) n εr Figure

9 to 15 12 1 3 1 Figure 3

12 9 to 15 1 3 1 Figure 4

12 12 0.5 to 1.5 3 1 Figure 5

12 12 1 3 to 5 1 Figure 6

12 12 1 3 1 to 10 Figure 7

1.2.1. Influence of Period, Diameter, Number of Layers and
Permittivity

We are interested in studying a metallic PBG structure, which allows
the propagation in the X-band. Dimensions of such a structure were
previously mentioned: pl = pt = 12mm, d = 1mm, n = 3 layers.
We vary each parameter around these reference values, and also the
dielectric permittivity. All these variations and corresponding figures
are listed in the Table 1.

• When longitudinal period increases (Figure 3), propagation peak
frequencies (F1 and F2) decrease as well as the propagation
bandwidth and stop bandwidth. The same phenomenon is
observed with the dielectric permittivity (Figure 7).

• When transverse period increases (Figure 4), stop band and
propagation band frequencies decrease whereas bandwidth be-
tween propagation peaks grows up slightly.
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Figure 3. Longitudinal period influence on reflection (S11) and
transmission (S21) coefficients.
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Figure 4. Transverse period influence on reflection (S11) and
transmission (S21) coefficients) coefficients.



Numerical studies of metallic PBG structures 139

F1 F2

1
st

Propagation

Band

1
st
 Stop Band 2

nd
 Stop Band

F1 F2

1
st

Propagation

Band

1
st
 Stop Band 2

nd
 Stop Band

Figure 5. Diameter influence on reflection (S11) and transmission
(S21) coefficients.
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Figure 6. Number of layers influence on reflection (S11) and
transmission (S21) coefficients.
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Figure 7. Permittivity influence on reflection (S11) and transmis-
sion (S21) coefficients.
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• On the other hand, the diameter of wires (Figure 5) and
the propagation peaks increase in the same time, whereas the
propagation bandwidth decreases.

• For a n layers structure (Figure 6), we can verify there are (n−1)
propagation peaks. It is interesting to notice that the propagation
bandwidth increases until n = 7 layers, and then remains constant.
Moreover the central peak (f0) is the same regardless of the
number of layers.

Moreover, we can notice that a low longitudinal period, a high
transverse period, a thin diameter and a low number of layers are
suitable to improve the propagation (that is to perform a high
transmission coefficient).

In the Table 2, we summarize the influence of each parameter on all
the propagation frequencies (F1 and F2), the propagation bandwidth
and the stop bandwidth.

Table 2. Parameters influence on the propagation and stop bands.

Parameter Propagation

peaks F1 et F2

Propagation

Bandwidth

Stop

Bandwidth

magn (S21) in
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1.3. Review on Metallic PBG Structure of Discontinuous
Wires

We now consider the metallic PBG structure described in Figure 8. It
is composed of three layers of discontinuous wires. Besides the previous
abbreviations (n, d, pl, pt), the axial period (pz) and the spacing (e)
are used. From the transmission coefficient (Figure 9), we can notice
that the structure of discontinuous wires exhibits a propagation band
from 0Hz to about 8 GHz and then a stop band and a propagation
band. The metallic PBG of discontinuous wires has the same behavior
as the dielectric PBG [6, 7]. The interest of such a structure is to
introduce active components (like Field Effect Transistor [8] or PIN
Diode [9]) in the spacing and then to switch from a propagation band
to a stop band.

If we consider a discontinuous metallic PBG structure allowing the
transmission in the X-band, the news dimensions are then: pl = pt = 7
mm, pz = 5mm, e = 1mm, d = 1mm and n = 3 layers.
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Figure 8. Geometry of a discontinuous PBG structure.
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Figure 9. Transmission coefficient of the continuous and discontinu-
ous metallic PBG structure with n = 3 layers, d = 1 mm, pl = pt = 12
mm, −pz = 12 mm and e = 2 mm for the discontinuous PBG.

1.3.1. Influence of Transverse Period (pt), Axial Period (pz) and
Spacing (e)

A variation of the transverse period (pt), the axial period (pz) and the
spacing (e) are realized round their reference values (cf Table 3). The
other parameters (pl, d, n, εr) exhibit the same evolution that those of
a continuous metallic PBG.

The influence of each parameter is summarized in the Table 4.
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Table 3. Parametric study of a discontinuous PBG structure.

pl (mm) pt (mm) pz (mm) e (mm) d (mm) εr Figure

7 5 to 9 5 1 1 1 Figure 11

7 7 5 to 9 1 1 1 Figure 12

7 7 5 0.5 to 4 1 1

Figure 13

Table 4. Parameters influence on the propagation and stop bands.

Parameter Propagation

Bandwidth

Stop

Bandwidth

pt no effect no effect

pz 

e →
→

→
→

→
→

→

Because of a great number of parameters, it’s more difficult to
design a discontinuous metallic PGB structure. A solution is to
conceive a continuous structure in adjusting correctly its parameters
(pl, pt, d, n, εr) in order to present a dual transmission coefficient (that
is a P.B if a S.B is required and inversely). And then, the axial period
(pz) and the spacing (e) are still to be adjusted.

2. MODAL ANALYSIS OF MPBG WITH THE FDTD
METHOD

2.1. Introduction

As seen before, different techniques can characterize infinite photonic
band-gap structures. But the PBG have finite dimensions and it
becomes more difficult to determine modal characteristics (reflection or
transmission coefficients, radiation pattern. . . ). So, we use the FDTD
method (Finite-Difference Time-Domain) [10, 11] to these structures
to obtain such characteristics and also the propagation modes inside or
outside the PBG, when it is associated with the Fourier transform. The
method based on the FDTD and the Fourier transform is described.
This method has been already applied with success to the dielectric
PBG materials [12] where the propagation wave vectors of the infinite
structure are compared with these of the finite structure. So, we only
present results obtained with the metallic PBG materials.

We explain, how to visualize the propagation wave vector of a
finite periodic structure in the reciprocal space thanks to the time or
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frequency domain electromagnetic (EM) fields components [13]. This
numerical technique can be implemented easily if we have an EM
simulator and a visualization software. The method is widely described
and finally, we present some results to show the propagation modes.

2.2. The Analysis Method

Based on the FDTD method and the Fourier transform in time and
space domain, this method allows to visualize propagation modes in
the reciprocal space (or wave vector space). The comparison between
the mode repartition in the k-space and the radiation pattern allows
the evaluation of the coupling between inner modes and free space
modes, which is equivalent to the energy transfer between inside and
outside the PBG. The treatment and visualization data are realized
with MATLAB software [14].

The FDTD technique is a simple and efficient method to solve
the differential equations. It solves the discretized Maxwell’s equa-
tions in the time domain and evaluates the EM field components
(ex, ey, ez, hx, hy, hz) in each cell of a gridding computational volume.

The method used to obtain the propagation modes inside the
metallic PBG is essentially based on the Fourier transform of the EM
fields in time and space domain (Figure 14).

ny cells

nx cells

δx

δz

δy

kx
ky

FFT 2D

for fixed height (z)

(kx,ky,f0) space

Discrete

Fourier

Transform

(x,y,z,t) space (x,y,z,f0) space

x,l y,m

z,n

y,mx,l

z,n

Figure 14. Method of calculation.

FDTD method gives the value of each electromagnetic component
(ex, ey, ez, hx, hy, hz) in a discrete time and space domain. A Fourier
transform is then applied on the field components to go from the
time domain to the frequency domain. The field components in the
frequency domain (at f0 frequency chosen by the user) are obtained
with a discrete Fourier transform realized during the time iteration
of the FDTD computation. This avoids the storage of all the field
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components in the time domain.

exf0
(x, y) =

∑

t

ex(x, y, t) · exp(−j2πf0t) (2a)

eyf0
(x, y) =

∑

t

ey(x, y, t) · exp(−j2πf0t) (2b)

ezf0
(x, y) =

∑

t

ez(x, y, t) · exp(−j2πf0t) (2c)

Where x and y are the components of the real space, t is the time
variable and f0 the frequency for which the Fourier transform is
computed. We have the same equations for the magnetic field H and
its components.

∆y̸ţ 

∆x̸ ţ

Real space domain (x,y)ţ ţ

Integration surface for FFT ţ

PML 

PBG ţ

structure ţ
free spaceţ 

Figure 15. Area to apply FFT 2D.

Finally, a bidimensional Fourier transform is performed on the
space coordinates inside the surface area shown in Figure 15 to obtain
the distribution of the modes in the reciprocal space.

exf0
(kx, ky) =

∑

l

∑

m

exf0
(l, m) · expj(kxlδx+kymδy) (3a)

eyf0
(kx, ky) =

∑

l

∑

m

eyf0
(l, m) · expj(kxlδx+kymδy) (3b)

ezf0
(kx, ky) =

∑

l

∑

m

ezf0
(l, m) · expj(kxlδx+kymδy) (3c)

Where kx and ky are the coordinates in the reciprocal space. Because
of the structure meshing, the components are evaluated thanks to the
discrete coordinates l and m of the real space. δx and δy are the
spatial steps of meshing in the real space. During the calculation, each
component is stored in a matrix whose number of elements is equal to
the product of nx by ny (number of cells in the x and y directions).
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In the simulation, the structure is surrounded by PML (Perfectly
Matched Layer) absorbing boundaries to replace the free space. In
order to excite all the propagation XY -plane directions inside the
PBG, two kinds of excitation can be used: the current line or the
radiating localize element. We will pay our attention on a current line
source whose main advantage is to reduce the computation volume
thanks to the boundary condition. Some examples are given in [15, 16]
with a dipole excitation.

In the reciprocal space, the distribution of the different EM field
components and the power density at the f0 frequency can be observed
versus the real value of the wave vector components (kx and ky).

2.3. Some Results

All the structures that we will consider have a 12 mm period and a 0.2
mm diameter (Figure 16). Only the number of layers is different (4 or
8).

n =
3 layers

pl= 12 mmpt = 12 mm

d = 1 mm

z

x

y

E k

Figure 16. Metallic PBG structure excited with a plane wave
excitation.

First of all, we present the reflection coefficients of these struc-
tures, when excited with a normal incidence plane wave Section 2.3.1.
Then, we present the propagation modes inside the MPBG structures
excited with an infinite current line Section 2.3.2.

2.3.1. Plane Wave Excitation

Let us consider the structure described in Figure 16 excited with
a normal incidence plane wave. This structure is supposed infinite
according to the y and z direction. In the simulation software, infinite
periodic structures are realized using PEC (Perfect Electric Conductor)
and PMC (Perfect Magnetic Conductor) boundary conditions.
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Figure 17. Theoretical reflection coefficients for two metallic PBG
structures (4 or 8 layers) with period = 12 mm and diameter = 0.2mm.
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Figure 18. Current line location inside the structure.

Table 5. Propagation peaks for two metallic PBG structures (4 or 8
layers.

Frequency (GHz) 5.35 6.0 6.9 8.0 9.2 10.5 11.7

4 layers 1
st
 peak 2

nd
 peak 3

rd
 peak

8 layers 1
st
 peak 2

nd
 peak 3

rd
 peak 4

th
 peak 5

th
 peak 6

th
 peak 7

th
 peak
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Figure 19. Power density in the reciprocal space for two different
structures (Figure 16) at several propagation frequencies.
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Figure 20. Results for a 8 layers metallic PBG structure at 1st

propagation peak (5, 35GHz).
(a) Top view of the structure.
(b) Radiation pattern (θ = 90◦, 0 < ϕ < 360◦).
(c) Energy repartition in the real space.
(d) Power density in the reciprocal space.

The reflection coefficients are represented in Figure 17 for two
structures (4 or 8 layers). They both exhibit a band-gap between
the zero frequency and 5GHz, then a propagation band with different
propagation peaks. We can see these structures have common peaks
at 6, 8 and 10.5 GHz. These peaks are listed in the Table 5.

For each propagation peak corresponds a propagation mode with
a particular repartition of energy inside the structure and particular
possible directions of propagation.

We will then present the power density at these propagation peaks,
computed with the FDTD algorithm.
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Figure 21. Results for a 8 layers metallic PBG structure with a linear
defect.
(a) Top view of the structure.
(b) Radiation pattern (θ = 90◦, 0 < ϕ < 360◦).
(c) Energy repartition in the real space.
(d) Power density in the reciprocal space.

2.3.2. Infinite Current Line

Complete structures analysis

An infinite current line located in the middle of the structure
(Figure 18) is used to visualize the propagation modes in the XY -
plane.

The FDTD method allows the visualization of the power den-
sity inside a finite Metallic PBG structure at different frequencies
(Figure 19). We compare two structures which have a different number
of layers (4 or 8). We can observe in Figure 19 that the power density is
the same for the same propagation mode (ith peak) of each structure.
On the other hand, if we compare two mode diagrams at the same
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Figure 22. Results for a 8 layers metallic PBG strcuture with a
“diagonal” linear defect.
(a) Top view of the structure.
(b) Radiation pattern (θ = 90◦, 0 < ϕ < 360◦).
(c) Energy repartition in the real space.
(d) Power density in the reciprocal space.

frequency, we can notice they are not the same. The reason is that
frequencies associated to propagation modes are different.

An example of a 8 layers structure is presented in Figure 20(a).
Figure 20 presents a good correlation between the directions of the
radiated far field beams (Figure 20(b)) and the direction of propagation
modes inside the MPBG (Figure 20(d)).

Structures with defects

Now, let us consider the metallic PBG structures with defects
(suppression or addition of metallic wires). Defect modes inside PBG
are very important as they produce a very particular radiation pattern.
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Let us consider the metallic PBG structure with a linear defect
represented in Figure 21(a). This kind of defect creates a wave guide
in the MPBG structure. The dipole is excited at a frequency inside
the band-gap of the MPBG without defects and larger than the cut-
frequency of the equivalent wave-guide. The radiation pattern is given
in the Figure 21(b) and with the energy distribution in the real space
in the Figure 21(c).

Most of the energy is radiated along the linear defect. The
propagation mode diagram — Figure 21(d) — is well correlated with
the radiation pattern and the energy density in the xy-plane. The
radiation pattern exhibits a large lobe in the direction of defect. In
this case, a lot of propagation modes are excited to obtain a large lob.
The mode diagram shows that a set of modes are excited due to the
relatively large mode density. The mode diagram demonstrates very
well the directions of propagation. This method can be performed to
more complex structures like the 3D dimensional metallic PBG or the
mixed PBG.

As we can see, this approach gives a complete information about
the propagation inside the MPBG with defects.

3. CONCLUSION

A commercial Finite Element Method (FEM) package, with the release
of ANSOFT HFSS 7 and its associated OPTIMETRICS Engine, was
used to achieve a parametrical study of a metallic PBG structure with
continuous or discontinuous wires in the X-Band (8–12 GHz).

Through this study, it has been shown the well-known relation-
ships about continuous structures:

• When the period (longitudinal or transversal) increases, stop band
and propagation band shift in lower frequencies.

• When the diameter increases, stop band and propagation band
shift in higher frequencies.

• They are (n−1) propagation peaks for a n layers structure (under
normal incidence).

Moreover it has been shown the influence of each parameter on
the bandwidth (of stop band or propagation band) and also on
transmission coefficient level. Thus, if a PBG structure is required in
propagation band, a low longitudinal period, a high transverse period
and a thin diameter are suitable.

Concerning the PBG structure with discontinuous wires, the
propagation bandwidth increases when the axial period decreases and
the spacing enlarges.
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In the other section, a numerical method based on the FDTD
method and the Fourier transform is presented. This one gives more
information than others methods to analyze the complex metallic PBG
with or without defects in two or three dimensions, and this under real
conditions (type of excitation, finite size of the structure,. . . ).

It can be shown that with applying the numerical method (the
FDTD method and the Fourier transform) on MPBG structures a
good performance is obtained. The first advantage of the applied
method is that the technique exhibits the reduction of surface waves
by the metallic PBG. This reduction is important to enhance the
radiated power and to obtain a better shape of the beam. The use
of MPBG allows to obtain a better reduction of energy distribution
in the undesirable way. Moreover, this method allows to analyze the
behavior of EM waves in the complex metallic PBG with defects under
real condition.
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