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I.  INTRODUCTION
'.

4                 :Numerical Studies of Nonlinear Evolution of Kink Modes It has been.suggested by Kadomtsevl that the kink mode
f in Tokamaks*

105 · plays an instrumental role in the disruptive instability seen in

M. N. Rosenbluth , D. A. Monticellott, H. Straussttt tokomaks. The imagined mechanism is that the nonlinear kink mode
1
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development leads to highly distorted shapes with the vacuum on

and
the inside and plasma on the outside, the so-called bubble state.
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  Rutherford, Furth, and Rosenbluth, in an earlier work2 pointed out

that for a constant current profile the plasma does not possess

nearby bifurcated states for plasma radius greater than  r  = 0·7

A set of numerical techniques for investigating rwall ' and thus the final state might be highly distorted.

the full nonlinear unstable behavior of low-B kink modes
The expected large distortions of the plasma led us to

of given helical symmetry in tokamaks is presented.
treat the problem by numerical methods. A numerical treatment

Uniform current density piasmas display complicated
of the nonlinear kink mode in tokamaks in a straightforward way is

deformations including the formation of large vacuum
difficult however because of thenvarious time scales involved

bubbles provided that the'safety factor  q  is suffi-
(Alfven waves and sound waves, and relatively slow kinks) and

ciently close to integral.  Fairly large m=1 deforma-
because of the free boundary between plasma and vacuum. In Sec. II,

tions, but not bubble formation, persist for a plasma
we present a reduced set of equations which in the tokamak ordering

with.a parabolic current density profile (and hence shear) .
describe the full nonlinear development of the kink mode.  The

Deformations for m 2 2  are, however, greatly suppressed.
use of this reduced set of equations in a numerical scheme av6ids

most of the above mentioned difficulties. The equilibrium

state and the linear theory of the kink modes are reviewed in

Sec. III and  Sec. IV, respectively. The results of numeri-

  Also at the Plasma Physics Laboratory, Princeton University cally  integrating  the  reduced  equations  are presented  for
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the perturbation exactly tatching the pitch of the equilibrium                                                                                           i
II. THE REDUCED SET OF EQUATIONS

field in the plasma. By adding surface current, whicli is equi-

valent to changing the safety factor q at the plasma surface, The energy reservoir for free boundary kinks is very .1
the equilibrium may be made linearly stable or unstable. In large and the toroidal case is adequately treated by the cylindi-        i

this case, the conjecture of Kadomtsev is verified.  The obtained cal approximation. Hence, we model the tokomak by a cylinder

bubble states are however not the nonlinear result of the ca"se of length  L = 2AR , R  the major radius of the plasma.

studied by Rutherford, Furth and Rosenbluth.  As a function of We also restrict ourselves to following the nonlinear

the safety factor q the growth rate for the linear kink mode has
development of perturbations of a fixed helical symmetry.  This,

two marginal stable points. The case they examined was a mode together with the fact that the walls and equilibrium are

near the marginal stable point where only one mode isunstable. cylindrical, implies that all quantities are functions of: T. ,

We find that in this region, even though the distortion is greater r , and  t  ohly, where T =  me + kz and  k = n/R ·.

than a third order bifurcation theory could hope to follow, it
Here, m  and n are the mode  numbers  of  the  original

is mild compared to the true bubble states. These are found

-- for q in the vicinity of the marginal stable point where all perturbation, which has the form  f(r)·exp(i [me + kz]) .

modes with the same ratio of m/n are unstable. Helical symmetry has the obvious advantage of reducing

The second case, described in Sec VI, is that of a non-
the three dimensional numerical calculation to a two dimensional

constant current profile, and hence with magnetic shear.  As               one  C .3- E =   1  ) · In addition, this symmetry, together

might be expected, the stabilizing effect of shear is very strong.
with   V·B = 0 implies that   80, Br' and Bz  may be related

In fact, we find that for a parabolic current profile (q(0) =

1/2 q (rs)  )   and    m 2 2 the distortions  are  very  mild  and  not  at to a scalar 4  by

all bubble-like. However, appreciable distortions without

bubble formation are still observed 'particularly .for   m = 1
B      =      1  1*            B      =   -   .1!t     -   11£     B                            •                       (1)r    r 30  '  0     3r    m   z

modes. Nonlinear behavior with parabolic current profiles for

m 2 2  is generally mild enough to conclude that ideal MHD kink
or

instabilities with q>1 do not represent a threat to tokomak
4  -

confinement.
.S  =.*11' x i-  Bze + .B z Z. (2)
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The function 4 is a flux function, i.e., (B

.9)0 = 0                                          Be                 e

From the observed  Be -_ 2-1 and q-- 1 -1,w e find
1 It is in fact proportional to flux through a helical ribbon

the following consistent ordering scheme for kink modes:
          defined by the magnetic axis and a helix of constant  T  ,

hence the name helical flux. In addition, 4 is related to
O(1) : Bzo 'P'V I,

the magnetic vector potential by

v 1 10(E) :   Be   ,   Br  '    Jz   '
kr

1 ' at  , gz

0  =  AZ--ir Ae (3)
(6)0 -

0(£7: Bz 'p,  J.L 'v z
and the dynamical behavior

  = O (4)

O( £3) :    Vi  .   V.:

then follows from Faraday's law and the assumption of infinite where  Bz  is the perturbation field,  Bz = Bzo + Bz ·   With

conductivity.     (Here  - -      is the convective time derivative. ) this ordering, we find that the equation of motion Piv =
Equation (4) can also be derived by using the particle Hamiltonian, -VP+Jx B     can be reduced, upon substituting     J   =   V  x B     and

and is simply the statement that the magnetic field is frozen in using Eq. (2) for  B ,  and keeping only lowest order terms in
the plasma. It is convenient to use 0 in a numerical scheme kr to

to guarantee this property. The ideal MHD equations,
2

0   +  V*  (p + 822- (91  )2   +   izzf: +   1- (Me)                  .
m              2         mV.B =0 V X B=J

E  = -v X B V x E=-
8  (7)

Dv
PDt     =     J   x   B   -V   P 22 = -p V·v

(5)

Dt                                                                              2
+    9 0  9    4    =    0

  = -Y P V . .Y

·                                                                                Similarly, we find, to complete the set of reduced equations

can be further simplified by using the large aspect ratio of

tokomaks and expanding in   E = tr = (-*-) (-*-)  << 1
.4

I '

t -
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04                                                Alfven wave  (v      -E) and not the fast magnetosonic wave
-Dt = 0 (8) phase

.
which is one order faster.

JZ  = - eli' - e Bzo (9) Incompressibility can further be used to reduce the number

of variables by introducing a scalar potential  A  to represent
+
V J- . We treat the large surface current as infinitesimally

ViI Vl = 0 (10)
thin and derive a boundary condition for --3A by using

the pressure balance across it:

where all quantities are now functions of  r,  0,   t    only
2

and the three dimensional result is to be obtained by the P+
82-l  -  822   l                           (13)khelical extension  0+8+ -z

m

and Eq. (12)  for B  (See Appendix A.) We then make
In the vacuum the components of V x B=0 give

the equations dimensionless through the transformations:

2kB
v2  = --1

(11)1           m

E    =   '/Fm; (Bzk)   '  A  = (krw2Bz/m,/F)
2 kB r 2

(914)
28_ l r zl +2   -  -2'  l-m-' 2--  + const.

(12) (14)

*

r
We eliminate the unknown  Bz   from  Eq. (7)  in the standard w           (kr Bz/m)
manner by taking its curl. The equations are now complete

since the divergence of Vl is also known from Eq. (10),

expressing incompressibility  in  the   r -0 plane. This in-

c6mpressibility is also important from the numerical point of

view since the fastest wave now possible is the incompressible
1.
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The resulting set of reduced equations which describe the The usual condition at the plasma surface (necessary to
behavior of the kink modes in a tokamak is then avoid infinite forces)

Plasma:
+                I

B·n H =0 (22)

Rlk  -  O 6Dt (15)
implies that  4  is uniform over the surface of the plasma.

(Here,  A H  is the normal to the helically distorted surface,
,(

2
DV-LA and  does not necessarily  lie  in  the     r, 0 plane. The symbols

-DE-     =    -Vl W     x     Vi   (V.L 2111) (16)
A and D will refer to normals and parallels to the inter-

section of the plasma surface with the r,0 plane. ) This

 *                                                 condition, together with     =0, yields the boundary condition

i        =       Dt      =    -    2    X    VIA (1 7) Eq. (20). Similarly, the boundary condition Eq. (21) follows

3A
from  B·n=0  at the perfectly conducting wall.

DE _ 1--- - 2 PVL:{(90)2 _ (911')2}-(V.L.fi)n-·(D.,)0.L (18) Et is now possible to carry out the integration in timeDt                v      p

of. Eqs. (15-21) imposing as constraint either  Ez (walD = -   =0,
or  I = constant,  where  Ez  is the  z component of thewhere p  is the counterclockwise parallel to the plasma
electric field at the conducting surface and I is the totalsurface.
plasma current. Results quoted below are for the case E  =0.

Z

Vacuum:
The procedure for numerically integrating the equations

2
VL *  = -2 (19) is now apparent. *, A, r are specified at time, t .

Boundary Conditions: (94)2    is found from solving Eq.  (19) . Equations  (16,  18)

give   92A  and  ·8A  at time, t + At .   Poissons' equation

WPL- v -   0                     k (20) is then solved to find  A  at time,  t + At , and Eqs. (17, 15)
+

are used to advance r and * .
*(r=l)    =   0 (wall) (21)W

1
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As might be expected, these equations possess an energy The equilibrium is then specified by a  and q(r) ,ria

integral; and the safety factor  q  just outside the plasma vacuum inter-

face. The equilibrium
$0 is found by solving the

I  (1  + C 92 ) rdrde   - /-192 - rdrde  +  27rowb. = const.        (23) differential equation

plasma vacuum

m
0        C       - 1)r (26)     i0               nq(r)where b =- I/27r . This integral, derived in Appendix B,

serves as a starting point for an analytic calculation of the
with the boundary condition  that   * (a) =  0  .    In the vacuum   00

energy of bubble states discussed in Sec. V C.
is found by solving Eq. (11) with boundary conditions given by

Eqs. (20, 21) giving
III. EQUILIBRIUM

We consider only the cylindrical equilibrium shown in (1 -r2)*Ov(r) =  2 +b E n r+ 0 (27)1              w

Fig. 1. The equilibrium is completely specified by choosing

the plasma radius  a,J (r)  for  r s a  , and  J* , the skin m 2z                        z                      where  bl= ((a2-1)/2 -*w)/gna and * w=(a2-1)/2 - K(a gna)/q .
current. (The pressure and  Bz  profile are unimportant since

they do not enter into Eqs. (15-18).) It is more convenient Note that   *   , as determined by Egs. (26, 27) is a function

however, to use a dimensionless quantity such as the safety of the ratio  m/n , i.e., its form depends on the mode numbers

factor  q(r)
rB of the perturbation to be considered.

q (r)     = -2 (24)
RBe                                                The unperturbed current and magnetic field can now be

obtained through  Eq.    (9) , which becomes     Jz  =  -924  -2       when
which in the scaled variables given by Eq. (14) becomes

expressed in terms of the transformed variables given by

Eq. (14) . The expression for the skin current is

q(r)  -  - (  ) (Br )                           (25)

J*  =m a( -1       1
z    n    q(a)     q

- -) (28)
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+
In this case, we can write V = VA and Eq. (16) becomesIV. LINEAR THEORY

A kink mode solution of the linearized form of Eqs. (15-
920 = O (30)

21) can be obtained analytically only for special cases such

as constant current. The results, which we quote here , are and Eq. (17) is reduced to
3well known. The modes grow as  eyt   with

df

dt = 70y2  =ma ((1 -mh)8 + 2) - 4 b (m -1)m (29)

since in this case, the plasma interior being uniform, the
2m

where   8-    nmq-  -1 ,  h=   .Irri  ,  and  b2 = (ngma)-1)21 .
problem is reduced to following the motion of the plasma vacuum

interface. The boundary condition Eq. (18) becomes

22  -
In  this  case,       4   =  b2 (r    -a   )     and    A  -   rmcos (m0),   i.e. , Vi

-00 1
9- Dt

I =    -    *    I     ( , + '1' ) ,2       -     ( ,1 0 ) 
1 (32)

is curl-free and   V-A =0. In the ordering given by Eq. (6) p- v

only the kink modes are unstable to lowest order. The internal
The procedure for advancing the solution forward in time iskink and Mercier modes are at most neutral stable. For the

as  follows:     0,   are given  at  time    t    on the boundary    Es   ·case of non-constant current the growth rates were found using
+a numerical scheme4 to integrate the resulting ordinary Equation   (19)   can be solved  to  give     (91 0)2      .       Now    rs     and  0

differential equation. on the boundary can be advanced with Eqs. (31, 32). Given the

time advanced surface,   920 = 0  with  0   known on the boundary
V.   CASE I;   4 E 0 and V x V  = 0  in the Plasma

gives        0      on the boundary  at  the  new  time. The numerical
A.  Simplification of the Reduced Equations

simplicity of this case is now obvious.  One needs only a one-

From the point of view of numerical analysis, the study dimensional grid on the surface of the plasma. As described

30of Eqs. (15-21) breaks up into two distinct cases. We note in Sec. V E, Laplace's equation can be solved for 5 without

from Eq. (16) that if  V x Vl = 0 initially, it will always the use of an internal grid.

remain so, provided 4  is  identically zero within the plasma.

1
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B.  Linear Theory                                                                                                               w[ -*w

-
2 1   1/inrl

I For the case in which   W   is

The case of 4 equal to zero in the plasma is an a constant of the motion (see Appendix B), we use Eq. (23) to

interesting case also because q(r) = m/n  maximizes the find the energy of the bubble state to be given by

growth rate, as can be seen from Eq. (29). The growth rate

is shown in Fig. 2. We note here that if the initial pertur-
Eb = A 4 a2/2 -11[(1-4)/2 + 11'w]2/En rl + const (33)

bation has mode numbers  n,m, only modes with the same ratio

of  n/m  will be produced through the nonlinear coupling.  Note

for example that if  q  = 0.45, an initial perturbation with where the constant is independent of   *w   and   rl

mode numbers n=1, m=1  couples to the mode  n=2,
Figure 3 shows the bubble state energy as a function of               

m=2, which is unstable, and to  n=3,m=3, which is
rl  for various values of *w (or equivalently  q ) for the

stable, etc. We refer to the point  nq /m =1, where all
case  a = 0.5. Flux trapping ensures that the energy approaches

modes with the same value of n/m  are neutral stable, as the
infinity as  rl + 1.0 except for the particular case *w=O'

right hand neutral stable point.

For a wide range of values of  mq /n , the bubble state is

C.  Nonlinear Stable Equilibrium, Bubbles energetically favored. In Fig. 2, this range of values is

shown along with the growth rates for the linear modes. Note
As. first pointed out by Kadomtsev,1 from the expression                                                     

                                      

for the energy, it is easily seen that states consisting of a
that the bubble region extends beyond the region of linear

vacuum bubble surrounded by plasma (for accessibility, the instability. Although this analytic calculation indeed shows

bubble must be imagined to be connected to the outside via a
the existence of bubble states with lower energy than the initial

thin slit allowing flux penetration) may be of lower energy state, it is not clear that these states are accessible from

the initial configuration, or that there is not a large potential
than the equilibrium configuration. Consider a centrally

located vacuum bubble of radius  rb ' the plasma, thus, extending barrier which would effectively prevent their occurrence. Note

from     rb     to     rl  =    (a2   +  9 ) 4 , where        a     is the equilibrium that the curve in Fig. 3 does not represent the energy following

2                    a phase path initiating from a kink mode perturbation, and
plasma radius. Inside the bubble we have   $ = -r/2 const

thus does not indicate the result of such a perturbation. Theand  outBide  0 = (1 -r2)/2 + b'gn r + *w where  b' =
i
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actual phase space of surface distortions is of course extremely
linearly stable. In this case the magnitude of the necessary

large, and only a full numerical investigation of the actual
threshold perturbations can be calculated and were found to be

evolution of the plasma can decide the question of the accessi-
in agreement with the numerical results.

bility of the bubble states.

An analytic calculation can also be made near the left D.  Results of the Numerical Integration

hand neutral stable point where *w>O' A perturbation
In Fig. 4 is shown the time evolution of the plasma-vacuum

'

expansion of the equations for an  m=1  displacement in the
boundary following an  m=1 perturbation. We have chosen a

vicinity of the left hand neutral stable point (see Fig. 2)
case which exhibits the formation of a bubble,  a = 0.7,  L =leads to an equation of motion
1.0 .   In spite of the rather violent distortions, the plasma

behaves quite elastically, cases with less violent bubble
6r    =  -  w2  Or    +   C (a) 6r3 (34)

formation having been run through several nonlinear oscillation

periods. (Here we refer simply to the maximum inward extensionWe find that the term C(a) is stabilizing for   a < 0.65;

of the concave part of the plasma, periodic motion in the senseotherwise no nearby equilibrium exists. (A similar result

2                                               of the plasma returning to its original configuration is notwas found in a calculation, in which the skin current was

observed.)
zero.) By introducing a damping term  1 -v$)  into Eq. (32),

the final asymptotic state can be found numerically. The Most of the numerical runs were used to find minimum

nearby states found in this manner had displacements agreeing energy states, the purpose here being twofold. First, this

within  a few percent  with the value   a r=  [w2/C (a) 11/2 given reveals the state to which the plasma would proceed in the

by Eq. (34) for  a < 0.65. With   a > 0.65 the displacements presence of energy loss mechanisms. Secondly, they give a

are more distorted than a third order theory could be expected good measure of the maximum distortion that could be expected

to describe, but quite mild compared to bubbles. from a time history of the undamped plasma.

Equation (34) was also used to investigate the threshold Introducing a damping term -vt into Eq. (32) allows

for finite amplitude displacements to the left of the neutral one to find final asymptotic minimal energy states numerically.
'                                                                               Near the left-hand neutral stable point (Fig. 2) where a smallStable point when C(a) is destabilizing but the mode is

number of modes are linearly unstable, the plasma exhibits a

1

4

L                                                                                                                                                                                                                           '
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however, is independent of the position of the inner bubble
shallow deformation which gradually deepens as *w +  O.

within the plasma.) For   *w > O the minimum energy states
However, the quantity (34/an) evaluated on the surface (which

found numerically are strongly concave, but are not bubble
determines the skin current since   4 E O in the plasma interior),

states.
always points outward and has a constant magnitude everywhere

on the surface, a condition which can be seen necessary for
E.   Numerical Analysis of the Nonlinear Behavior

equilibrium from Eq. (32). For *w < 0,  however, (34/an)

becomes discontinuous, the plasma forming sharp horns at the Various numerical methods have been tried--considerable

points of discontinuity which tend to close off the resulting difficulty arising because of the rather extreme distortions

vacuum bubble. For numerical reasons a complete bubble is not of the surface which occur and the impossibility of using

seen, but as the number of points is increased the horns approach simple Fourier representations. A satisfactory scheme seems

each other more closely, evidently asymptoting to a completely to be the following: The surface is represented by a set of

enclosed bubble, whose size agrees with the energetic minimum mass points moving with velocity 90 . The necessary potentials,

predicted analytically by Eq. (33). In Figs. 5 and 6, the 0   in the plasma and  0  in the vacuum,are determined by using

range of final states obtained is shown for  a = 0.8 , and Gauss' theorem to relate the normal derivatives of  0  and  *

a = 0.5 . Figure 7 shows final states obtained for  m = 2, 3,
to their values on the surface, and mass points may be slid

a = 0.7, with ng/m = 1.0 .                           ·                  along the surface with proper interpolation in order to retain

an adequate representation. The basic time step then consists

As can be seen from Figs. (5) and (6), the bubble states
of matrix inversions of the integral equation along the surface.

(characterized by the formation of sharp horns which attempt to Linear growth rates and oscillation periods are determined with

pinch off the bubble) are found to be the true energetic minima -3accuracies of 10 with 20 particles on the surface. Let r
S

only for   *w <0·   The predicted bubble radius and be a point on the plasma surface and A the outward normal

agree very closely with the numerical results in this case. (see Fig. 8a). Using Gauss' theorem, we find for the velocity

(Note that for a true equilibrium to result the sharp horns potential  $  ,

must proceed to the point where the inner and outer plasma                                                                                    ·.

0(r )  = 1. f  0(r)-8  tn Ir -r 1 - tnlr -r 1 111}ds (35)surfaces become tangent. The energy of the final state, S  Ti ' 3 n         s       '    s'3 n
C

i-

L                                                                                                                                                                                                                          _
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where the contour  c  is the plasma boundary and the integral and  P -V  indicates that the contribution to the integral

is a principle yalue integral at  r=rs                                  arising from the integration along the wall vanishes since

+ +
The flux function  *   can be written  4 = -1/2(r2-1) + *w+ A( ) = 0  and  v(r  , r) = 0   on the wall.

S

+ -
A( r) with  AC r) harmonic in the vacuum,  AC  ) =0 ,|r|= 1,

These equations are not appropriate for accurate numerical

and the integration contour becomes that shown in Fig. 8b . analysis because of the singular nature of the logarithmic

The vector  &'  is in this case the outward normal to the vacuum potentials. Equation (35) is suitably modified by subtracting

region. In this case, we have
from each side, for fixed  rs ' the constant function  *s=$(rs) ,

which satisfies     $s  =    /0s A· tn 1 2  -2sl  ds , giving
A($S) = 1'  [A($) av, - v BA, 1 ds                     (36)                                    c

C

0 = 11   {[0(r) -0(rs) 1 ·A· £n 1   - s  -tnl; -2s i *1-} ds (38)where

 

vCrS , r)     =    En  I    -rs  1    -  tn  1   r  -  -3 1-  tn  1  rs I Similarly, the function  As = A(rs), constant in the plasmar
S

chosen   such  that     v (28, $) vanishes   for   1   281    =   1. . Again, S                  Trsatisfies     A   = -1  /  As - i , the sign change arising through
Er

the integral is a principal value integral at  l = 2s · n' = -n . Since 4 = 0  on the boundary, we have

Since  * =0  on the plasma vacuum boundary, we have, AS =  (r2 -1) - *w , and adding  As  to each side of Eq. (37)

for  rs  on the plasma surface
gives

kB kB

0 = - ( s2 -1) --mz + 11'w +  Al   [A(;).8 , -  ' 3.f  ] ds     (37)         0 = -(r  -1)-mz + 2,1'w + Al . '{[A.(i;)-A(i  )] 2X -v BACr)}ds     (39)s  3 n' 3n'PV
P -V

2
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The integrals in Eqs. (38) and (39) are then converted to VI. CASE II; GENERAL CURRENT DISTRIBUTION

finite sums over a discrete set of mass points and the result-

Given a general flux profile $(r) in the plasma one has
ing matrix equations for the values of 30/an and 3A/3n'

no choice but to use a two-dimensional grid in the plasmaon the plasma boundary are used to determine V$ and V*

and finite difference Eqs. (15-21). We used a flux basedThese values are then used in Eq. (32) to step 0 in time

coordinate system and a Lagrangian code, which makes the time
following the mass points, and 90 is used to calculate

advancement of $ trivial. In addition, since the plasma
the new position of the plasma boundary. An explicit two-

vacuum boundary was a coordinate line, the usual numericalstep time stepping procedure was used, the values  V$  , 90

at time t+ At/2 being used to step $ and the mass points problems associated with a free boundary were alleviated.

from time t  to time  t + At . Typical time steps were Two approaches were used to construct the second coordinate.

at =5 x 10-3  ,    but At was continually adjusted to be The first selected, points so as to maintain a coordinate orthog-

compatible with the plasma velocity and mass point spacing. onal to the 9 = constant lines, the second spaced the points

The initial selection of mass points cannot be maintained equally along the * lines, and hence produced a non-

throughout the history of a run as the mass points tend to orthogonal coordinate system.

coalesce, and cease to provide a good representation of the The essential (time consuming) part of the numerical code

plasma surface. They are, therefore, continually shifted in this case is the iterative solution to Poisson's equation

on the surface through interpolation to provide roughly equal
which results from finite differencing Eq. (16) in time. To

spacing.                                                                                               2solve Poisson's equation (V A =p) for A  with (3A/3n)

Note added in proof: We have been informed that techniques known on an arbitrarily shaped boundary the following iteration

I and results similar to those in this section have also been scheme6  is used,

achieved by Dnestrovskii, Zakharov, Kostomarov, Kukushkin,

and Suzdaltseva.5
VfvE AN+1 =P  - (92AN -9  vEAN)           (25)

where   V 2 is the Laplacian operator with the scale factorsAvE

averaged around a  $ = constant surface (Fourier transforms
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0

then being used on 92 The convergence of this iterationAvE ' As might be expected, shear also greatly effects the

procedure can be proved for orthogonal coordinates by using a nonlinear development of thd kink modes, even for an  m=1

variational principle, which also yields the rate of convergence. perturbation. The results indicate that magnetic bubbles

This is demonstrated in Appendix C. The non-orthogonal code are not formed. However, the nonlinear distortions are still

quite severe for m=1. In Fig. 10a, b, c, and d, wewill be discussed in a separate publication.
I present some typical final states, which are to be compared

Aside from this interior relaxation problem, the solution
with the  * E O final states  (Figs. 5, 6) .

is advanced in time in the same manner as described in Sec. V. P

Eq. (19) is solved to give  (914)2 , and Eq. (18) used to Probably more relevant to tokamaks are the  m=2

advance -3-8       in time. Once  A  is obtained in the plasma final states, examples of which we present  in  Fig.   11  e   and  f  .3n

interior through the solution to the Poisson equation resulting These show that the nonlinear distortions are only moderate

from Eq. (16), it is in turn used to advance the positions elongations of the plasma--with little or no concavity.

of the mass points in time. Typically, time steps were

At = 0.005 but the magnitude of the time step was

continually adjusted to be compatible with the plasma velocity

and the (changing) grid spacing.

A parabolic current  (Jz(r)) profile vanishing on the

surface   and  with  no skin current (·  continuous   and     q(0)   =

  q)  was used for the first runs of this phase.   In general,

shear has a significant effect on the unstable modes. However,

it has no effect on the  m=1  linear dispersion curve because

the motion for  m=1  is just a solid displacement so that

the plasma magnetic energy is not affected. In Fig. 9  is

shown the growth rate for the case   *E O  and the case of

a parabolic profile.
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APPENDIX  B.

(9* )2 30  +and    f -A: -12-  d·r  = 0 Jtf n·3 *p ds  -f . *  924'dT
Zero resistivity implies a conserved integral of the p-v

motion, energy. This conservation can be derived directly

from Eqs. (15-21), or from the usual conservation of                                      34
On  the  surface    ·jEE    =  -  j. *111       so

f {v2 + 82 }dT + I 82 dr . However, it is easier to
7

vac
0 -8.f-*· Vt"p ds  = -0 (v·V*P)(d.VII,p) ds

..                plas                                                                                                                                                                                                                                                          3 *

p -V p-V
begin with  Eq. (7) dotted with the velocity, from which

we find the rate of change of the kinetic energy to be

= - 4 (vin) (9*P)2 ds
2                            2 2kB  kB \2 2

P-v

1 -ddt iev2-4, - ittvds (A'*) IP+ --91+  mz*+ l-mil  r21
(„.1)

and thus

-     f  - 44    92 *    dt

(V* )2

2                                           2                                d 4                                                                                                                                                                                     -idt              f                            d r           =      -      f      *     92111     d r      -      11           *·  A       (V *       )  2
d s (B. 3)

Now use  p +   1  =   -1  ,  -irt  = 0 and P-V
-rp

P       V

2                                                                         and

Bv.    (ti ) 2    4     -      f. 12 + const.   in the vacuum  to   f ind

-dt  /{pv22 + 1 12} dr  =  - il ds A·* (V V)2      .              (B.4)
2          22    - (7*v) (94_)

-idt- .fp 19. dr = - ds (A·*) {  2-  - - 2- } + Ift 92*dr (B.2)

P-v

To evaluate the right hand side of Eq. (B.4), note that

But

d   (94 )2 . 4  (94 ) (VO )  + I. d (90-)2
3 (V*-)2 + (VIP..)

22      2
dt'-2-dr =i-ot2-dT+4 32-

v·nds
-dE      i                        d.[       =     i    -TE             ·I            d·[        -     fds   n*v               

P -V

4
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APPENDIX  C

3  (94-)2                         34'vand further    f TE -f-  dr    =  / 911'v ' 9 -Sir dz 2The equation to be solved   V A=p   can be written

which can be expressed as

3 FBA +3 F BA '= p  =
hlh2P (C.1)

lids *v(V-Ttv . A) since v211'v
= constant. 3 xl  1 3xl Dx2  2  dx2

Using a harmonic expansion for the vacuum solution where  hl  and  h2  give the metric for the (orthogonal) co-

2             ordinate system and  Fl = h2/hl ' F2 = hl/h2 , The coordinate

0  = b(t) Znr + *w(t) +    *m(t) (rm-r-m)cos me +'A(r2-1) xl  refers to the grid dimension perpendicular to the  4 =

constant surfaces,  x2  to that along these surfaces.  Defining
this integral can be evaluated as F = F + AF with  F  a function of  x1  only, we introduce an

3*v            ab
iteration scheme for  A  through

4    ds     *v  (n·  V )      a-t (B.6)=  2K *w 5E

N+1 N+1
_L F .28 + 3  - 3A 3

2AN-  1  AF   BAN        (C.2)Two types of boundary conditions can be imagined:
3xl  1 3xl ax2 F.2322     =  9  -  jil &Flaxl   ax2   23x2  '

I.  Constant current 1!2 = 0   then
3t     '

2     (70 ) (V*v)2
2                                                  Given  AN , this equation may be inverted using  Fourier

f {Pv2       +           2P          - 2 } dr = constant (B.7) N+1transforms to find A Let A=A +B with  A   a
0                  0

solution to Eq. (C.1), and  B  satisfying the boundary

II. 4   = constant , then condition BB/3xn =0. The iteration procedure for B is
W

then

„2        (V*  )
2

(9*v) 2                                                                                                                  „
1  1 92        +            :              - 2 } dT  + 2 *wb = constant. (B.9)

3  F  3 BN+1+  3  F  BBN+1    3  AF  DB  _ -3- AF BB
(C.3)

N             N

3x 1     3 x                  3x           2    Bx         =   - 5x 1 3xl 3x2
2 3x

1        1        2        2         1                            2 *
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Consider the eigenvalue equation
aN+1  =  I An a  Bn (C.6)

A  ELF 'Bn +-2- F    Bnl   = _ r a   AF    Bn + 3
33 -1

n 3xl 13xl  3x2 2 dx 3xl   1 dx
1       Yxi  AF2   A-x         (C

.4) and thus
2

N+1
ICa )2 A I

*                                                IN =    2 and

The eigenvalues follow from a variational principle I (4)

faBN12  dx dx
the quadratic form continually decreases if   

A  <  1
n

-f BAF, 00'   +     'F,    l,Ri'1  J      1 2 Thus, to guarantee convergence,  we  must  have   1 --:1.L.21   <   1
8F

X = (C.5)

n          f FF  'SBN '12 . '2 @Sj'] dxl dx2J L lexl J
Fl,2

The optimum is to choose  Fl ' F2  to be half the sum of.maxi-

mum and maximum values along the * surfaces. The least

'8Fl,
AF

and A <      max    I -- ,      1-21 0
convergent modes will presumably be those localized in  a

n  -        Fl        F2                                          region where AF/F is the largest, i.e., short wavelength.

To maintain an orthogonal grid it was found sufficient toMoreover, the  Bn  corresponding to different An are

slide mass points along the  0 = constant. surfaces after each
orthogonal. Hence, consider the quadratic form

time step, using local values of the normals to these surfaces

to reconstruct an orthogonal grid after moving the grid points

IN  -f [F,(* )2  +  '2 (ts )']  d.,t d.2
each time step, rather than use an integral method such as

7that developed by Potter. The grid points were adjusted to

be equally spaced either on the extreme inner, extreme outer,
and normalize the  Bn ' solutions of Eq. (C.4)  such that

or central W surface. The disadvantage of this method is
N 2

I (Bn)  =  1.     Then,  if   BN =  I a Bn  '  IN = I (an)     . From that moderate distortions of the plasma produce bunching ofn

Eqs. (C.3) and (C.4) the grid points on other 0 surfaces (see Fig. 10). This
4

'

A-
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FIGURE CAPTIONS                               

also increases the quantities 8Fi , and leads to a less FIG. 1. The equilibrium plasma configuration

rapid convergence of the Poisson solver. Distortions some-
FIG. 2. Linear kink modes. The square of the growth rate

what greater than those shown  in Fig.  10  were,  in  fact,
is plotted versus  nq/m  for  m = 1, 2, 3. The

impossible to follow.
shaded region shows the range of q for which

.(

Linear growth and oscillation rates produced by the the bubble state is energetically favored. (a = 0.5.)

code agree to within a few percent with analytic theory or

(in the  m=2 case) radial numerical quadrature.   An
FIG. 3. Bubble state energy as a function of the plasma

outer radius  rl 'a= 0.5.analytic nonlinear theory is being developed at this time to

check the code in the region near the right hand marginal
FIG. 4. The undamped time history of the plasma surface

stable point   (q 0 integer) . Other checks on the code are
in a case for which the bubble state is highly

energy and area, which are conserved to within a few percent-- favored. Here  a = 0.7,  *w = -0.08 ,  nq/m = 1.0.

even during the most severe nonlinear distortions.

FIG. 5. Minimal Energy states,  a = 0.8. Note that

is discontinuous for  4  < 0.3n                           W

FIG. 6. Minimal Energy states,  a = 0.5.

FIG. 7. Minimal Energy states,  a = 0.7, for (a) m=2

and (b) m = 3. Here  4  = - 0.08, nq/m = 1.0.
W

FIG. 8. Integration contours to determine  (a) the velocity

potential 0 and· (b) the flux function  *

*

1
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C     -

FIG. 9. The effect of shear on the linear modes. The

square of the growth rate is shown versus  nq/m

for   *E O  and for a parabolic current profile

m = 2.

4

FIG. 10. Minmal Energy states for  m=1  in the case of                                                         r

a parabolic current profile. Compare with                                                             8

R
Fig. 5. ./I li .

FIG. 11.  Minimal Energy states for m=2 in the case

of a parabolic current profile.

r=a

r=t

d
FIGURE  1
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