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Nonlinear guided waves have been investigated widely in simple geometries, such

as plates, pipe and shells, where analytical solutions have been developed. This

paper extends the application of nonlinear guided waves to waveguides with arbi-

trary cross sections. The criteria for the existence of nonlinear guided waves were

summarized based on the finite deformation theory and nonlinear material prop-

erties. Numerical models were developed for the analysis of nonlinear guided

waves in complex geometries, including nonlinear Semi-Analytical Finite Element

(SAFE) method to identify internal resonant modes in complex waveguides, and

Finite Element (FE) models to simulate the nonlinear wave propagation at reso-

nant frequencies. Two examples, an aluminum plate and a steel rectangular bar,

were studied using the proposed numerical model, demonstrating the existence of

nonlinear guided waves in such structures and the energy transfer from primary

to secondary modes. C 2016 Author(s). All article content, except where other-

wise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4959005]

I. INTRODUCTION

Linear ultrasonic methods, widely used in non-destructive evaluation (NDE), are only sensitive

to macro-damages in the order of the wavelength of the ultrasound but they are not capable for

micro-damages such as micro-cracks or material degradation,1 which usually occur at very early

stage of the operation. Such challenge may be overcome by using nonlinear ultrasonic methods, as

they are much more sensitive to incipient damages.2–5 In recent years, nonlinear ultrasonic guided

waves, combining advantages of nonlinear ultrasound and guided waves, have emerged as a useful

tool for the characterization of incipient damages in large structures, as guided waves can travel a

long distance with little loss in energy and therefore provide capability for the remote inspection of

areas with difficult access.5

The theory of nonlinear guided waves was first demonstrated in 1990s by Deng.6,7 Two condi-

tions for the generation of the cumulative second harmonic wave were summarized using pertur-

bation method and modal analysis: (1) phase velocity matching; (2) non-zero power transfer from

the primary to the second harmonic wave.8 Müller et al.9 obtained analytical asymptotic solutions

to Lamb waves and five mode types for the cumulative increase in the amplitude of the second

harmonic wave with the propagation distance. The theoretical analysis was extended from plate

like structures to cylindrical rod and pipe structures by de Lima et al.10 and Chillara et al.11 More

recently, Liu et al. demonstrated a method for the selection of primary modes with respect to the

internal resonance,12 also extended the work to higher order harmonics.13–15

Following theoretical analysis, a number of applications have been developed using nonlinear

guided waves, including characterization of material nonlinearity in elastic plates using Lamb

aElectronic mail: ZFAN@ntu.edu.sg
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waves,16–18 evaluation of incipient damages (creep,19 fatigue20–22 and plasticity23,24) in plate like

structures, investigation of the material decay,25,26 as well as assessment of thermal fatigue damages

in isotropic pipes.27

However, most studies on nonlinear ultrasonic guided waves are limited to simple geometries,

such as plates, rods or pipes. More recently, nonlinear SAFE algorithms were proposed28,29 for

waveguides with arbitrary cross section to analyze modal properties and nonlinear internal reso-

nant conditions, for the application to measure the neutral temperature in railway structures.30 It

is known that experimental investigation of nonlinear guided waves is very challenging due to

weak harmonic waves, noise, and the system nonlinearity. Therefore in order to further explore

nonlinear guided waves in various waveguides, it is important to develop a numerical framework

that is capable to compute resonant modes in complex waveguides efficiently, and simulate the

propagation of nonlinear guided waves using optimized generation and signal processing methods.

The paper starts with a review of the theory of nonlinear ultrasonic guided waves, following

by the introduction of the numerical framework to predict the internal resonant modes in a com-

plex waveguide using an improved nonlinear SAFE algorithm, and time domain FE simulations

to confirm the existence of internal resonant modes and validate their properties. The numerical

models were first demonstrated in an aluminum plate which can be compared with analytical

solutions, and then they were applied on a rectangular steel bar which can only be analyzed by

numerical methods.

II. MATHEMATICAL FRAMEWORK OF NONLINEAR ULTRASONIC GUIDED WAVES

In this section, a brief review of generalized nonlinear elasticity wave propagation theory using

finite deformations and nonlinear material properties is presented. To describe the finite deforma-

tion, a set of markers, with coordinates X in the reference configuration are attached to these mate-

rial particles. At time t, the material particles move to new positions in the current configuration and

is written as x = ϕ (X, t). The change in shape of infinitesimal volume elements within the solid can

be characterized by the deformation gradient tensor,

F =
∂x

∂X
. (1)

The Green-Lagrange strain tensor is defined in terms of the deformation gradient tensor

E =
1

2

�

F
T
F − I

�

, (2)

where F
T represents transposition of F, and I represents the identity tensor. To describe the

nonlinear material properties, Landau-Lifshitz hyperelastic constitutive model is given through a

strain energy density function including third order elastic constants

w =
1

2
λI2

1 + µI2 +
1

3
CI3

1 + BI1I2 +
1

3
AI3, (3)

where λ and µ are Lamé constants; A, B and C are third order elastic constants; I1, I2 and I3

are defined by I1 = Eii, I2 = Ei jE j i and I3 = Ei jE jkEki, representing the first three invariants of

the Green-Lagrange tensor. Basing on the first Piola-Kirchhoff (P-K) stress tensor, the momentum

equation describing the dynamic behavior of the solid is given in the reference configuration by

ρ0ü = ∇ · s, (4)

where ρ0 is the density of the material in the reference configuration, u is the displacement and ∇

is the gradient operator with respect to the reference configuration. The second P-K stress tensor is

given by

S =
∂w

∂E
. (5)
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The first P-K stress is related to the second P-K stress by

s = FS. (6)

Eqs. (2) and (4)-(6) are the set of governing equations describing the wave propagation in solids.

For simplicity, combing Eqs. (2) and (4)-(6), the governing equations with stress free boundary

condition can be formulated as a concise form in terms of the displacement u,

ρ0ü = (λ + 2µ)∇ (∇ · u) − µ∇ × (∇ × u) + f̄, (7)

(sL (u) − s̄ (u)) · nr = 0, (8)

where nr is a unit vector normal to the surface of the solids and sL (u) is the corresponding linear

part of the first P-K stress tensor, which is given by

sL (u) =
λ

2

�

∇u + ∇T
u
�

I + µ
�

∇u + ∇T
u
�

. (9)

f̄ and s̄ (u) represent nonlinear terms and they can be explicitly expressed using tensor components

as

f̄ i =

(

µ +
A

4

)

(ul,kkul, i + ul,kkui,l + 2ui,lkul,k) +

(

λ + µ +
A

4
+ B

)

× (ul, ikul,k + uk,lkui,l) + (λ + B) (ui,kkul,l) +

(

A

4
+ B

)

× (uk,lkul, i + uk, ikuk,l) + (B + 2C) (uk, ikul,l) +O
�

u3
i

�

,

(10)

s̄i j =

(

λ

2
uk,luk,l + Cuk,kul,l

)

δi j + Buk,ku j, i +
A

4
u j,kuk, i

+
B

2
(uk,luk,l + uk,lul,k) δi j + (λ + B) uk,kui, j

+

(

µ +
A

4

)

�

ui,ku j,k + uk, iuk, j + ui,kuk, j

�

+O
�

u3
i

�

,

(11)

where δi j is the Kronecker delta, O
�

u3
i

�

is the higher order term.

This nonlinear wave propagation equation can be solved by using the perturbation theory in

which the displacement field u is expressed as10

u = u
(1) + u

(2), (12)

where u
(1) is the primary displacement field, and u

(2) is the secondary displacement field, which

is very small compared with u
(1). Combining Eqs. (7), (8) and (12), the nonlinear boundary value

problem is divided into two linear boundary value problems. In the first-order approximation, the

governing equation and boundary condition are given by

ρ0ü
(1) = (λ + 2µ)∇

(

∇ · u
(1)

)

− µ∇ ×
(

∇ × u
(1)

)

, (13)

sL

(

u
(1)

)

· nr = 0, (14)

where sL

�

u
(1)
�

is given in terms of u
(1). In the second order approximation,

ρ0ü
(2) = (λ + 2µ)∇

(

∇ · u
(2)

)

− µ∇ ×
(

∇ × u
(2)

)

+ f̄
(1), (15)

sL

(

u
(2)

)

· nr = −s̄
(1)
· nr , (16)

where f̄
(1) and s̄

(1) are the function of u
(1). Once the solution u

(1) is known, the terms f̄
(1) and s̄

(1)

are determined by substituting u
(1) into Eqs. (10) and (11). The solution u

(2) can be interpreted as

a solution with an external force applied in the volume f̄
(1), and on the boundary s̄

(1). Hence, the

original problem reduces to seek two separate solutions.
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For the guide wave problem, the appropriate solution form for the primary wave field can be

written as

u
(1) (x, y, z, t) = U

(1) (x, y) eI (kz−ωt), (17)

where z is the direction of the wave propagation and U
(1) is the displacement in the cross section; k

is the wavenumber; ω = 2π f is the circular frequency and f being the frequency. For the primary

wave field, the solution can be obtained analytically for simple geometries (plates, rods and shells)31

and numerically for waveguides with complex geometries.32 Once the primary wave field is known,

the second wave field can be obtained by solving the inhomogeneous system of linear partial differ-

ential equation. The second wave field obtained via modal expansion and a reciprocity relation can

be written as33

v
(2) (x, y, z, t) =

1

2

∞


m=1

Am (z) v
(2)
m (x, y) e−i2ωt + c.c., (18)

where vm and Am are the particle velocity vector and the modal amplitude for the mth mode at 2ω

respectively and c.c. represents the complex conjugates. Am is to quantify the contribution of the

mth mode in the mode expansion, and it is given by

Am (z) = Ām (z) ei(2kz) − Ām (0) eik
∗
n
z, (19)

where k∗n is the complex conjugate of the wave number of the nth mode at 2ω. Ām can be expressed

by the following forms.

Ām (z) = i

�

f vol
n + f surf

n

�

4Pmn (k∗n − 2k)
if k∗n , 2k (asymchronism) ,

Ām (z) =

�

f vol
n + f surf

n

�

4Pmn

z if k∗n = 2k (synchronism) ,

(20)

where Pmn is the complex power flux along the wave propagation direction z, and the terms f vol
n

and f surf
n represent the power flux through the volume and through the surface of the waveguide,

respectively. They are given by

Pmn = −
1

4



Ω

(v∗n · sm + vm · s
∗

n) · nzdΩ,

f vol
n (z) =



Ω

v
∗

n · f̄dΩ,

f surf
n (z) =



Γ

v
∗

n · s̄ · nrdΓ,

(21)

where Ω and Γ are the cross-sectional area and the surface of the waveguide, respectively; nz is the

unit vector in the direction of wave propagation; sm and vm are the first P-K stress tensor and the

particle velocity for the mth mode at 2ω, respectively.

From Eq. (20), it is evident that the modal amplitude of the generic mth secondary mode in-

creases with the propagation distance z if the solution is synchronous. This is known as the internal

resonance which relies on two conditions: (1) phase velocity matching: k∗n = 2k ; (2) nonzero power

transfer from the primary to the secondary wave field: f surf
n + f vol

n , 0. As a result, nonlinear guided

waves only exist in particular frequencies.

III. NUMERICAL METHODS

A. Nonlinear SAFE algorithm

The SAFE method has been developed to investigate the propagation of guide waves along

arbitrary cross-sectional geometries, such as railways,32,34 square rods,35 grooved plates36 and
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welded plates.37 This method uses a finite element representation of the cross section of the wave-

guide, together with a harmonic description along the propagation direction.

The mathematical model of the SAFE method is based on the three dimensional elasticity

approach. The displacement vector therefore can be written as

ui (x, y, z, t) = Ui (x, y) eI (kz−ωt), (22)

where the subscript i = 1,2,3. The differential equations of motion in an elastic domain of mass

density ρ and elastic constants Cik jl are

3


j,k,l=1



Cik jl

∂2Uj

∂xk∂xl



+ ρω2Ui = 0, (23)

where x1 = x, x2 = y , x3 = z. Combining Eq. (22) and Eq. (23) and using some intermediary

transformations, the differential equations of motion can be written in the following form

Cik jl

∂2Uj

∂xk∂xl
+ I

�

Ci3 jk + Cik j3

� ∂
�

kUj

�

∂xk

− kCi3 j3

�

kUj

�

+ ρω2δi jUj = 0, (24)

where j = 1,2,3 and k, l = 1,2. This equation forms a quadratic eigenvalue problem, where the

eigensolutions are the wave numbers k, and mode shapes of the waveguide at the chosen angular

frequency ω. Each solution at a chosen frequency will reveal the wavenumbers of all possible

modes at that frequency. The dispersion curve can be calculated by repeating the eigenvalue solu-

tion over the desired range of frequencies.

As discussed in Section II, the key step in the investigation of nonlinear guided waves is to

identify internal resonant mode pairs, in which the amplitude of the second harmonic wave in-

creases cumulatively with the propagation distance. Eqs. (12)-(16) has shown that the nonlinear

guided wave problem can be divided into two linear guided wave problems via perturbation theory,

which describe the solutions of the primary wave and second harmonic wave, respectively. The

nonlinear SAFE algorithm (combining the SAFE method and the nonlinear analysis) can be divided

into two stages corresponding to the two conditions in Eq. (20), based on the linear solutions

obtained.

In the first stage, the dispersion curves and modal properties of a given waveguide are devel-

oped using the SAFE method and all potential internal resonant mode pairs are selected based on

the phase velocity matching criterion between the primary and the secondary mode. A simplified

method is implemented by plotting the dispersion curve of the second harmonic waves at its half

frequency. Therefore, by overlapping the phase velocity dispersion curves of the primary wave,

all the intersection points between the two dispersion curves are selected as the potential resonant

points (mode pairs) which satisfy the phase velocity matching criterion.

After identifying the potential internal resonant mode pairs, the second stage is to ensure

non-zero power transfer from the primary to the secondary mode. In this stage, an integral process

according to Eqs. (20), (21) is implemented where mode shapes obtained from the SAFE method

are used to calculate the velocity vector and the first P-K stress tensor in Eq. (21). If there is a

power transfer from the primary mode to the secondary mode, the modal amplitude for the second-

ary mode increases cumulatively with propagation distance and these mode pairs are identified as

internal resonance.

B. Time domain FE model

The nonlinear SAFE algorithm has provided modal solutions of nonlinear guided waves in

complex structures, including their frequencies and mode shapes. Based on the prediction from the

nonlinear SAFE algorithm, time domain FE model is developed to simulate the propagation of the

nonlinear guided wave, and the second harmonic wave is collected to validate the internal resonant

modes. Comparing with the experimental investigations of nonlinear guided waves, which usually

suffer from the noise and the system nonlinearity, FE models can provide accurate control of the
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material properties in a noise-free environment and is therefore an ideal tool to validate findings

from the nonlinear SAFE algorithm.

In the time domain FE model, the Murnaghan model, that describes the strain energy function

of the material is used, and can be express as5

w =
1

2
λ(tr (E))2 + µtr

�

E
2
�

+
1

3
(l + 2m) (tr (E))3

−mtr (E)
(

(tr (E))2 − tr
�

E
2
�

)

+ n det (E) ,

(25)

where l, m and n are Murnaghan constants; tr () and det () denote trace and determinant of the

tensor, respectively. This model is equivalent to the Landau-Lifshiz nonlinear hyperelastic consti-

tutive model in the nonlinear SAFE algorithm, and the relations between the third order of elastic

constants in Eq. (3) and l, m, n are given by

l = B + C, m =
1

2
A + B, n = A. (26)

In the present work, both the nonlinear SAFE algorithm and the time domain FE model were

carried out in a commercial finite element software package.38 In the following sections, two exam-

ples were studied using the simulation tool discussed above: an aluminum plate which can be

compared with analytical solutions, and a steel bar with rectangular cross section which can only be

investigated by finite element models.

IV. APPLICATIONS

A. Nonlinear guided waves in a plate

In this section, an aluminum plate with thickness of 1 mm was chosen to demonstrate the

nonlinear SAFE algorithm and to be compared with analytical solutions. Material properties for

the plate are listed in Table I. The behavior of the modal amplitude for the secondary mode was

discussed at both resonant and non-resonant frequencies.

Figure 1 presents phase velocity dispersion curves of the aluminum plate, in which primary

modes are shown in solid curves with upper case labels while second harmonic modes are plotted

in dashed curves with lower case labels at their half frequencies. All intersection points of the

two group of curves were identified as potential resonant points, following by the calculation of

the energy transfer from the primary mode to the corresponding secondary mode. In Fig. 1, four

resonant points were identified from 0 to 500 KHz marked with triangles: namely (SH0, s0) at

1710.2 KHz, (SH1, s1) at 1780.6 KHz, (S1, s2) and (SH2, s2) at 3561.2 KHz. The results agree very

well with the ones derived from the theoretical analysis.12 It can be noted that there are another three

intersection points marked with dots, which are (S0, sh1) at 954.3 KHz, (S0, a1) at 2219.6 KHz and

(A1, sh3) at 2649.5 KHz, and they correspond to non-resonant points due to zero energy transfer

from the primary to the secondary mode.

Table II demonstrates the energy transfer from the primary mode to the secondary mode at

all intersection points in Fig. 1. Modal amplitudes with respect to the propagation distance for the

secondary modes are listed in the table. For internal resonant points ((SH0, s0), (SH1, s1), (S1, s2),

(SH2, S2)), it can be seen that the modal amplitude of the secondary mode increases cumulatively

with the propagation distance and the (S1, s2) pair has the highest energy transfer efficiency. For

non-resonant points ((S0, sh1), (S0, a1), (A1, sh3)), the amplitude of the second harmonic wave is

almost zero along the propagation distance, indicating zero energy transferring from the primary to

the secondary mode.

TABLE I. Material properties used in the models.12,15

Material ρ0

�

kg/m3
�

λ(GPa) µ (GPa) A(GPa) B(GPa) C (GPa)

Aluminium 2700 55.27 25.95 -351.2 -149.4 -102.8

Steel 7932 107.8 84.7 -325 -310 -800
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FIG. 1. Phase velocity dispersion curves for RL modes and SH modes in the aluminate plate.

It has been shown that nonlinear guided waves only exist in limited frequency points as it

needs to follow two strict criteria. However, in practice, it is not feasible to choose the exact

excitation frequency due to the uncertainty of the material properties in experiment. Fig. 2 demon-

strates the behavior of the second harmonic wave, when the excitation frequency deviates slightly

from the resonant frequency predicted from the nonlinear SAFE algorithm. A deviation factor,

δ = ( f − f resonant) / f resonant is used to quantify the difference from the excitation frequency of the

resonant mode pair (S1, s2) at 3561.2 KHz. It can be seen from Fig. 2 that when there is a

significant deviation the modal amplitude of the second harmonic wave is bounded and oscillates

with a specific period, and this period increases when the deviation decreases. Such oscillation

phenomenon for the secondary mode has also been mentioned in references.8,9,39,40 When the devi-

ation is small, the modal amplitude of the second harmonic wave approaches the resonant one.

This suggests that in the real experiment, when the exact resonant frequency is not certain, it is

still possible to collect the cumulatively increased secondary mode within a limited propagation

distance. Such distance decreases with larger mismatch between the excitation and the resonant

frequency.

Time domain FE simulation was carried out in this section, using the internal resonant mode

pair (S1, s2) at 3561.2 KHz. This pair has been widely investigated among researchers16–26 for

nonlinear guided waves, as both phase and group velocity of the primary mode match with the

secondary mode and therefore easier for the signal post processing. The schematic of the plate

model used for the simulation is shown in Fig. 3(a). Plane strain condition was applied in the model.

The length of the plate was assumed to be 400 mm. Prescribed displacement boundary condition

as a input signal was applied at the left end of the plate to excite the primary mode, using a 20

TABLE II. Modal amplitudes (arbitrary unit) of secondary modes with respect to the propagation distance.

0.1 0.3 0.5 0.7 0.9

(SH0, s0) 2490 7470 12450 17430 22410

(SH1, s1) 244.13 732.39 1220.65 1708.91 2197.17

(S1, s2) 7049 21147 35245 49343 70490

(SH2, s2) 492.11 1476.33 2460.55 3444.77 4428.99

(S0, sh1) 0.0019 0.0056 0.0093 0.0130 0.0168

(S0, a1) 0.0317 0.0928 0.1474 0.1916 0.2223

(A1, sh3) 0.1616 0.4847 0.8079 1.131 1.4541



075207-8 Zuo, Zhou, and Fan AIP Advances 6, 075207 (2016)

FIG. 2. Behaviors of the modal amplitude (arbitrary unit) for the s2 mode with different deviation from the resonant

frequency.

cycle Hanning windowed toneburst with central frequency of 3561.2 KHz. In order to maximize the

generation of the primary mode (S1), the input time signal at each specified node at the left end of

the plate was scaled according to the mode shape of the primary mode (shown in Fig. 3(b)).41 Stress

free boundary conditions were applied to other boundaries. In the simulation model, rectangular

elements were used with a maximum element size of 0.09 mm, and a maximum time step of

0.0025 µs was used. Since both S1 and s2 mode are dominant by the in-plane displacement in the z

direction,31 and the maximum displacement occurs on the surface as shown in Fig. 3(b) and 3(c), the

monitor points were placed on the top surface of the plate to pick up the in-plane displacement, at

propagation distances from 10 mm to 300 mm in a step of 10 mm.

Figure 4(a) shows received signals monitored at 100 mm away from the generator. S1 and

S0 modes at the primary frequency (3561.2 KHz) and s2 mode at the second harmonic frequency

(7122.4 KHz) were identified by using frequency domain analysis. Short time Fourier transform

(STFT) was used to identify mode properties and resolve the amplitude of specific modes in the

FIG. 3. (a) Schematic of the plate for the finite element simulation, numbers in the left side of the plate are scale factors of

the displacement of the node. (b) Displacement in the z direction of the S1 mode at 3561.2 KHz. (c) Displacement in the z

direction of the s2 mode at 7122.4 KHz.
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FIG. 4. (a) Time domain signal received at a propagation distance of 100 mm; (b) STFT’s of the time domain signal;

(c), (d) Slices at the primary and second harmonic frequencies as a funciton of time.

frequency domain, due to its capability to provide accurate results within a short propagation dis-

tance. Fig. 4(b) shows the STFT results of the time domain signal, in which the primary and second

harmonic frequencies are marked with dotted horizontal lines. Slices at these two frequencies are

shown in Fig. 4(c) and 4(d), respectively. Fig. 4(c) shows received wave packets in the primary

frequency. Both S1 and S0 mode were identified, while the S0 mode has slower group velocity and

much less amplitude due to the specific excitation method. In Fig. 4(d), only the s2 mode were

identified in the frequency of the second harmonic wave. The amplitude of the primary and the

secondary mode (A1 and A2) can obtained by identifying the maximum value in the corresponding

wave packets.

The modal amplitude ratio, A2/A2
1
, also named as the relative nonlinear parameter, is plotted

with respected to the propagation distance in Fig. 5. It clearly demonstrates that the relative

FIG. 5. Relative nonlinear parameter with respected to the propagation distance.
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FIG. 6. Schematic of the rectangular bar in the modelling.

nonlinear parameter increases linearly with propagation distance, which confirms that the (S1, s2)

pair at 3561.2 kHz is an internal resonant mode pair.

B. Nonlinear guided waves in a rectangular bar

A steel bar of rectangular cross section with the length of 10 mm and the width of 2 mm was

considered in this section. Material properties of steel are listed in Table I. The schematic of the

rectangular bar is shown in Fig. 6, with the coordinate shown at the center of the rectangular cross

section.

Due to the complex geometry of the cross section, no analytical solution of the primary wave

field is available for the bar. However, propagation modes in a rectangular bar have been studied

and classified via approximate theories.42 Due to the twofold symmetry of the rectangular cross

section, the modes of wave propagation in rectangular bar can be classified into three categories.

(1) Longitudinal modes, in which displacements and stresses are symmetrical with respect to both

x and y axis. (2) Torsional modes, in which displacements and stresses are asymmetrical with

respect to the x and y axis, and correspond to a shearing deformation of the bar. In this study, a

superscript n is used to represent the order of the L or the T mode. (3) Bending modes, in which the

displacement and the stress are symmetric about either x axis or y axis, and asymmetric about the

other axis. The bending modes can be classified as Bn
y and Bn

x, in which the subscript describes their

axis of asymmetry and the superscript denotes their order.

Figure 7 presents the phase velocity dispersion curves for the rectangular bar in 0-500 KHz,

including the primary modes in solid line and second harmonic modes (at half frequency) in dashed

FIG. 7. Phase velocity dispersion curves for the rectangular bar.
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FIG. 8. In-plane displacements (marked as vector arrows) of (a) the primary mode B2
x

at 110.6 KHz and (b) the secondary

mode l1 at 221.2 KHz. Wave structures of (c) the primary mode and (d) the secondary mode extracted along the cutline,

where u, v, w represent the normalized displacement in the x, y, z direction, respectively.

line. Two internal resonant points were identified and marked with triangles in Fig. 7. They are (B2
x,

l1) at the excitation frequency of 110.6 KHz and (T2, l2) at 226.5 KHz, where the upper case letter

and lower case letter represent the primary and the secondary mode, respectively. Other intersection

points between the solid line and dashed line were identified as non-resonant points as there is no

power transfer from the primary to the secondary mode, and one of them, (L1, b2
y) at 229 KHz, was

marked in Fig. 7 with black dot as an example.

Figure 8(a) and 8(b) show the mode shapes for the first internal resonant mode pair, the primary

mode (B2
x) at 110.6 KHz and the secondary mode (l1) at 221.2 KHz, where the vectors present the

in-plane displacement. Fig. 8(c) and 8(d) show the relative displacement in the three axes along

a through thickness cutline which bisects the bar. It is observed that the primary mode is domi-

nated by the vertical displacement at the center of the cross section, while the secondary mode is

dominated by the axial displacement in the mid-plane of the bar.

Table III presents the distance variation of the modal amplitude of the secondary mode for the

three intersection points in Fig. 7. For the internal resonant mode pair, (B2
x, l1) at 110.6 KHz and

(T2, l2) at 226.5 KHz, the modal amplitude of the secondary modes increases cumulatively along the

propagation distance. For the example of the non-resonant mode pair, i.e. (L1, b2
y) at 229 KHz, the

modal amplitude of the secondary mode, b2
y, is almost zero, which confirms no energy transferring

from the primary to the second mode.

In the FE simulation, the internal resonant mode pair (B2
x, l1) at 110.6 KHz was selected. The

schematic of the rectangular bar is shown in Fig. 9(a). The length of the modeled rectangular bar

was 3000 mm. In order to maximize the generation of the primary mode, prescribed amplitude

which properly matched with the mode shape of the primary mode (Fig. 8(a)), was applied at

TABLE III. Modal amplitudes (arbitrary unit) of secondary modes with respect to the propagation distance.

0.1 0.3 0.5 0.7 0.9

(B2
x
, l1) 592.85 1778.55 2964.25 4149.95 5335.65

(T2, l2) 27.84 83.52 139.20 194.88 250.56

(L1, b2
y
) 0.00025 0.00078 0.0013 0.0018 0.0023
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FIG. 9. Schematic of the rectangular bar for the finite element simulation. Numbers in (b) represent the scale factor of the

displacement of the node.

specified nodes on the cross section of the bar, as shown in Fig. 9(b). A 20 cycle Hanning windowed

tone burst with a central frequency of 110.6 KHz was used in the simulation. Stress free boundary

condition was applied to other boundaries. In the simulation, tetrahedron elements were used with

a maximum element size of 2 mm and the maximum time step was 0.1 µs. The propagation of

the wave was monitored by points in the center of the cross section (x = 0, y = 0), from 10 mm to

1000 mm along the z axis with a step of 10 mm. The displacements in the y and the z direction were

recorded for the analysis of the primary mode B2
x and the secondary mode l1 respectively, according

to their mode shapes.

Figure 10 shows time domain signals obtained for the primary mode (v) and the secondary

mode (w) at 410 mm from the excitation. As illustrated in Fig. 10(a), two modes, B1
x and B2

x, were

generated due to the similarity in their mode shapes, although the amplitude of the B2
x mode was

significantly larger due to the mode-shape-matching excitation method.

Fig. 10(b) shows the displacement obtained in the z direction. A number of overlapping wave

packets were found in the time domain. In order to identify these modes, the mode shape along

the z direction of both primary and secondary modes are analyzed in Fig. 11. It can be seen from

Fig. 11(a) that the excited two primary modes, B1
x and B2

x, have no displacement in the middle

of the bar. Fig. 11(b) demonstrates that among all possible secondary modes, only l1 mode has

displacement in the middle of the bar. Therefore it can be confirmed that the packets received at the

monitor points is the l1 mode. It should be noted that although the phase velocities of the B2
x and the

l1 mode match with each other as indicated from the nonlinear SAFE algorithm, the group velocities

of the two modes do not match. Therefore the received second harmonic wave appears to have a

number of wave packets overlapping with each other. Such phenomenon has also been reported by

Deng et al.43 In order to analyze the nonlinearity of the wave, the integrated amplitude of the second

harmonic wave need to be used, and therefore fast Fourier transform (FFT) was applied for the

signal processing instead of STFT method.

Since the wave packets of the two bending modes start to separate completely at the propaga-

tion distance of 410 mm, signals were obtained between 410 mm and 810 mm for post processing.

Fig. 12 shows the relative nonlinear parameter A2/A2
1
, in which A1 and A2 are amplitudes of the

FIG. 10. Time domain signals for (a) out of plane displacement of the primary mode and (b) in-plane displacement of the

secondary mode received at a propagation distance of 410 mm.



075207-13 Zuo, Zhou, and Fan AIP Advances 6, 075207 (2016)

FIG. 11. Displacement component in the z direction for (a) the primary mode at 110.6 KHz and (b) the secondary modes at

221.2 KHz.

FIG. 12. Relative nonlinear parameter with respect to the propagation distance for the excitation of the B2
x

mode.

dominant displacement of the primary and the secondary mode. Almost linear increase of the

relative nonlinear parameter can be observed, confirming that (B2
x, l1) at 110.6 kHz is an internal

resonant mode pair.

V. CONCLUSIONS

In this paper, numerical models have been developed to investigate nonlinear guided waves in

waveguides with arbitrary cross sections. It has been shown that nonlinear guided waves only exist

at particular internal resonant frequencies where the phase velocities of the primary and second har-

monic modes match with each other, and with non-zero energy transferring from the former to the

latter. The nonlinear SAFE algorithm was used for the modal study of the complex waveguide, and

resonant frequencies were identified from the calculation of dispersion curves and the power flux in

the propagation direction. With the results from the nonlinear SAFE algorithm, FE simulations were

performed at the resonant frequencies using the particular mode shapes of the primary mode.

The numerical models were first demonstrated in an aluminum plate, and the predicted internal

resonant frequencies were compared with results from analytical solutions, showing perfect agree-

ment. The models were then applied to a steel rectangular bar, which is chosen to represent complex

waveguides in general. FE simulations in both cases have clearly shown the accumulative increase

of the amplitude of the second harmonic wave with respect to the propagation distance, indicating

the strong nonlinearity at internal resonant frequencies.
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