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Abstract

We numerically investigated liquid droplet impact behavior onto a dry and flat surface. The numer-

ical method consists of a CLSVOF (coupled level set and volume-of-fluid) framework, VSIAM3 (vol-

ume/surface integrated average based multi-moment method) and a CSF (continuum surface force) model.

The numerical simulation reproduces the experimentally observed droplet behavior quantitatively, in both

the spreading and receding phases, only when we use a dynamic contact angle model based on experimental

observations. If we use a sensible simplified dynamic contact angle model, the predicted time-dependence

of droplet behavior is poorly reproduced. The result shows that precise dynamic contact angle modeling

plays an important role in the modeling of droplet impact behavior.
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I. INTRODUCTION

Droplet impacts onto dry and flat surfaces have been studied by many researchers from both

theoretical and practical aspects [1–19]. Droplet impact has many practical applications for exam-

ple in ink-jet printing, fuel injection and the agrochemical field. Inkjet technology is now being

used not only for printing onto paper but also in the manufacturing process for displays, such as

Polymer Organic Light Emitting Diodes (P-OLED arrays). A recent overview of droplet impact

can be found in [20].

Numerical simulations of droplet impact onto dry surfaces have been conducted by many re-

searchers [1–9, 11, 12, 15, 16, 18, 19]. The numerical methods used in previous work can

be categorized into two groups. One is based on fixed grids such as a Cartesian grid [1–

3, 6, 8, 9, 11, 12, 15, 16, 18, 19]. The other uses a finite element method (FEM) with moving

grid [5, 7]. In the fixed grid formulation, the front tracking method [1, 12, 21, 22], the VOF

method [23–26] or level set method [27–31] is used to describe liquid interface motion and a

finite difference (volume) method is used as fluid solver. The front tracking type method uses

Lagrangian objects such as particles to track the liquid interface. The VOF method traces the

interface based on the VOF function (volume fraction in each cell) with a geometrical interface

reconstruction. The level set method represents the liquid interface by using a contour line of the

level set function. An approach using the VOF method as well as the level set method has been

widely used for droplet impact simulation. These formulations are relatively easy to implement

compared with front tracking approaches. The VOF method and the level set method can easily

treat large deformation including topology change of the liquid interface, because a fixed grid is

used. If a moving mesh is used, the mesh may be twisted depending on the situation and then a

special treatment is required. However the interface expression using a moving grid is better than

that using a fixed grid. Both approaches have advantages and disadvantages.

In this paper, we employ an approach using a fixed grid and use the CLSVOF (Coupled Level

Set and Volume of Fluid) formulation [32], which uses both the level set method and the VOF

(Volume of Fluid) method. In this formulation, the VOF method deals with interface motion

and the level set method is used for surface tension and wettability computations. In this paper,

the THINC/WLIC method [33, 34] is used instead of the VOF/PLIC (Piecewise Linear Interface

Calculation) method [24–26]. Although the THINC/WLIC method is a type of VOF method

and satisfies volume conservation, it is easy to implement and the numerical results from the

THINC/WLIC method appear to be similar to the results from the VOF/PLIC method. For the

flow calculation, we employ a finite volume framework. The CIP-CSL method [35–37] is used as
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the conservation equation solver. Although finite volume methods usually deal with only the cell

average as the variable, the CIP-CSL method uses both the cell average and the boundary value

as variables. By using both values (moments), a parabolic interpolation function is constructed in

a cell, and the boundary value and the cell average are updated based on the parabolic function.

For multi-dimensional cases, dimensional splitting is used [38]. VSIAM3 [38, 39] is a fluid solver

which can be combined with the CIP-CSL methods. For the surface tension force, we use the CSF

model [40].

In this paper, we focus on dynamic contact angle. The dynamic contact angle is not well

understood and is also difficult to measure. The dynamic contact angle plays an important role

in not only droplet impact behavior but also various scientific and industrial applications such as

splashing [20, 41], biolocomotion [42–44] and coating. It is known that the surface roughness of

the substrate can influence the splash considerably [20, 41], and that the splash can be 3D.

There have been several numerical studies of dynamic contact angles. The dynamic contact

angle has been considered a function of the triple line velocity. Some simple models are based

on a step function using advancing and receding angles [5, 16] and some representations use a

smoothed step function [8, 11, 13]. Those models work well for inertia-dominated situations,

because the velocity dependence of the dynamic contact angle does not appear to be strong [45].

An empirical model [46] for the dynamic contact angle was used in the numerical work by Spelt

[47]. This model works for capillary-dominated flows. Another model [48, 49] was used in a

numerical study by Šikalo et al. [15]. This model is based on Hoffman’s experiments in glass

capillary tubes for a wide range of capillary numbers. We have developed a dynamic contact angle

model based on droplet impact experiments. Tanner’s law [50–54] is used for capillary-dominated

situations and experimentally observed constant angles for inertia-dominated situations. Although

the same model was used for both spreading and receding in [15], we use an asymmetric model for

spreading and receding. The proposed dynamic contact angle model can quantitatively reproduce

droplet impact behavior from impact to steady state, including spreading and recoiling.

In formulations using the VOF method or the level set method, two methodologies have mainly

been used to apply the boundary condition of the contact angle. One of those applies the contact

angle boundary condition to the normal vectors to the liquid interface at the contact line [8, 15, 40].

The normal vectors are used for the curvature calculation. The other method extrapolates level set

and VOF functions into the solid at the contact line [9, 16, 47, 62]. In this paper, a method by

Sussman [62] is used, because of its simplicity. In this formulation, we are not even required to

find the position of the contact line.

We numerically investigate droplet impact onto a dry and flat surface, for experimental condi-
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tions [55] involving a mm size droplet of water impacting on a chemically treated silicon wafer.

In this experiment, the transient contact angle as well as the contact diameter were measured with

high time and spatial resolution by using a high speed camera (resolution 0.1 ms for time and 7

μm for distance). Our numerical simulations used a dynamic contact angle model based on the

experiments. The numerical simulations can reproduce the receding phase as well as the spread-

ing phase. We also varied the parameters in the contact angle model. The numerical results show

that very precise dynamic contact angle modeling is required to reproduce the droplet behavior

quantitatively.

In section II, we briefly describe the experiment. The numerical method and the dynamic

contact angle models are described in sections III and IV. The numerical results of droplet impact

are given in section V.

II. BRIEF REVIEW OF EXPERIMENT

We briefly describe the experimental method used to measure the contact diameter of the

droplet on the substrate and the contact angle [55]. Fig. 1 shows a schematic diagram of the

experiment. The experimental configuration consists of two parts: the drop generation device and

High speed camera

Substrate Light source

Needle

h

Syringe pump

Light intensifier

Droplet

FIG. 1: Schematic figure of the experiment.

the image recording system. Droplets of several millimeters in diameters are generated with a

syringe pump connected to a hypodermic needle 150 μm in diameter. Droplets were formed using

the pendant drop method. The method generates a droplet by slowly pushing the liquid through

the needle until the drop detaches when its weight overcomes the surface tension. This ensures

the repeatability of the droplet size as well as of the impact speed which is acquired under gravity.

The distance h between the needle and the surface determines the droplet impact speed. The ex-

perimental set-up is completed by an optical acquisition system which is combined with adequate
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drop illumination. It is based on a high speed camera (Nac Memremcam) equipped with a binning

option and a 50W continuous light source. Pictures of 448 × 338 pixels at a framing rate of 10,000

pictures per second were recorded with a shutter time at 2 μs. In order to increase picture quality

and improve edge detection, specifically on the contact line, the camera was combined with a light

intensifier which allowed the shutter time to be reduced down to 10 ns. A 200 ns shutter duration

was found to give the best compromise between image brightness and edge sharpness. In the ex-

periment, only the right hand side of the droplet was captured to increase the resolution around the

triple line.

The recorded surface shape is very sharp and can be easily analyzed using image processing

software. As a consequence of the high framing rate, the displacement of the contact line during

image acquisition was less than one pixel (1 pixel corresponded to 7 μm and the fastest measured

velocity of the contact line was 10 m/s). Contact diameter and dynamic contact angle measure-

ments were made by automatic image analysis to ensure accuracy (error ± 2% for the diameter

and ± 3◦ for the contact angle) and avoid human error.

III. NUMERICAL METHOD

A. Interface capturing based on CLSVOF method

In our numerical framework, the interface is tracked by a VOF function evolved by the

THINC/WLIC method, and the level set function is constructed based on the interface indicated

by the VOF function. Here we should note that VOF methods guarantee conservation when the

divergence-free condition (∇ ·u = 0) is precisely satisfied on staggered grids. If the velocity field

does not satisfy the divergence-free condition, conservation is not satisfied even though a VOF

type method is used.

1. The THINC/WLIC method

The THINC/WLIC method is a type of VOF method. The VOF function is advected by

∂ χ
∂ t

+∇ · (uχ)−χ∇ ·u = 0, (1)

here u is the velocity, χ is the characteristic function. The cell average of χ is the VOF function

Ci, j (axisymmetic case)

Ci, j =
1

|Ωi, j|
∫

Ωi, j

χrdrdz. (2)
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The Ci, j is evolved by an approximation using a dimensional splitting algorithm as follows:

C∗
i, j = Cn

i, j −
ri+1/2, jF

n
r,i+1/2, j − ri−1/2, jF

n
r,i−1/2, j

ri, jΔr
+Cn

i, j

ri+1/2, jur,i+1/2, j − ri−1/2, jur,i−1/2, j

ri, jΔr
Δt, (3)

Cn+1
i, j = C∗

i, j −
F∗

z,i, j+1/2 −F∗
z,i, j−1/2

Δz
+Cn

i, j

uz,i, j+1/2 −uz,i, j−1/2

Δz
Δt, (4)

with

Fr,i+1/2, j = −
∫ zi, j+1/2

zi, j−1/2

∫ rr,i+1/2, j−ur,i+1/2, jΔt

ri+1/2, j

χis, j(r,z)drdz, (5)

Fz,i, j+1/2 = −
∫ zi, j+1/2−uz,i, j+1/2Δt

zi, j+1/2

∫ ri+1/2, j

ri−1/2, j

χi, js(r,z)drdz. (6)

Here Fr,i+1/2, j and Fz,i, j+1/2 are the advection fluxes for the r and z directions, respectively. The is

and js are

is =

⎧⎨
⎩

i if ur,i+1/2, j ≥ 0

i+1 if ur,i+1/2, j < 0
(7)

and

js =

⎧⎨
⎩

j if uz,i, j+1/2 ≥ 0

j +1 if uz,i, j+1/2 < 0.
(8)

The fluxes can be computed by the THINC/WLIC method or the VOF/PLIC method. The details

of the THINC/WLIC method used in this paper are given in [33, 34, 56]. We use the THINC/WLIC

method, because its implementation is easier than that of the VOF/PLIC method and the results

are almost the same.

2. The level set method (CLSVOF)

The level set function ψ (signed distance function) is constructed from the interface indicated

by the VOF function by a method [57] which uses the fast marching method [29, 58] and an iter-

ative re-initialization scheme proposed by Sussman et al. [28] (referred to hereafter as Sussman’s

method). The level set function ψ within Δh (where Δh is the grid spacing) from the interface

indicated by the VOF function is computed by the fast marching method, solving the Eikonal

equation:

|∇ψ| = 1. (9)

Other ψ further from the interface are calculated by Sussman’s method, while ψ computed by the

fast marching method is fixed. The Sussman’s method solves the following problem to a steady

state
∂ψ
∂τ1

= S(ψ)(1−|∇ψ|), (10)
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where, τ1 is artificial time and S(ψ) is a smoothed sign function:

S(ψ) =
ψ√

ψ2 + ε2
. (11)

To reduce the iteration number of (10), we also solve the level set equation

∂ψ
∂ t

+u ·∇ψ = 0, (12)

before the calculation of (10). We just use a first order upwind method for (12). This is a kind of

preconditioner to make ψn approach ψn+1.

The density (color) function φd which is used to define the physical properties for different

materials, such as density and viscosity can be generated as a smoothed Heaviside function

φd = Hα(ψ), (13)

with

Hα(ψ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if ψ < −α
1
2 [1+ ψ

α + 1
π sin(πψ

α )] if |ψ| ≤ α

1 if ψ > α,

(14)

where 2α represents the thickness of the transition region between the liquid phase and the gas

phase. In this paper, α = Δx was used. The density function is set as φd = 1 for the liquid and

φd = 0 for the gas. The density ρ and the viscosity coefficient μ are calculated by

ρ = ρliquidφd +ρair(1−φd), (15)

μ = μliquidφd + μair(1−φd), (16)

where ρliquid and ρair are the densities of liquid and air, and μliquid and μair are the viscosities of

liquid and air.

B. Governing equations of fluid

We use a finite volume formulation so that we use the following governing equation of an

integral form, ∫
Γ

u ·ndS = 0, (17)

∂
∂ t

∫
Ω

udV +
∫

Γ
u(u ·n)dS = − 1

ρ

∫
Γ

pndS+
1
ρ

∫
Γ
(2μD) ·ndS+

Fs f

ρ
+g (18)

where u is the velocity, n the outgoing normal vector for the control volume Ω with its surface

denoted by Γ (see Fig. 2) , ρ the density, p the pressure, D the deformation tensor (D = 0.5(∇u+
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(∇u)T )), Fs f the surface tension force and g the acceleration due to the gravity. Our formulation

is fully conservative for cells not containing the interface, and is only approximately conservative

in cells containing the interface. Equations (17) and (18) are solved by a multi-moment method

based on the CIP-CSL method and VSIAM3.

We use a fractional step approach [59]. (18) is split into three parts as follows:

ut+Δt = f NA2( f NA1( f A(ut))), (19)

1. advection part ( f A):
∂
∂ t

∫
Ω

udV +
∫

Γ
u(u ·n)dS = 0 (20)

2. non-advection part 1 ( f NA1):

∂
∂ t

∫
Ω

udV =
1
ρ

∫
Γ
(2μD) ·ndS+

Fs f

ρ
+g (21)

3. non-advection part 2 ( f NA2): ∫
Γ

u ·ndS = 0, (22)

∂
∂ t

∫
Ω

udV = − 1
ρ

∫
Γ

pndS, (23)

The advection part and non-advection parts are solved by the CIP-CSL method and VSIAM3,

respectively.

C. Grid

We use the grid as shown in Fig. 2. This grid is for a multi-moment method (CIP-CSL and

VSIAM3) which uses both values of cell averages (or Volume Integrated Average) as well as

boundary averages (or Surface Integrated Average) [60]. The cell averages ui, j,vi, j, pi, j are defined

at the cell center and the boundary averages ui−1/2, j, ui, j−1/2 ,vi−1/2, j, vi, j−1/2, wi−1/2, j are defined

on the center of the cell boundary. A cell average and a boundary average are both used as variables

and these definitions are

ui, j =
1

ΔrΔz

∫ ri+1/2

ri−1/2

∫ z j+1/2

z j−1/2

u(r,z)drdz, (24)

ui−1/2, j =
1

Δz

∫ z j+1/2

z j−1/2

u(ri−1/2,z)dz, (25)

ui, j−1/2 =
1

Δr

∫ r j+1/2

r j−1/2

u(r,z j−1/2)dr. (26)
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u ,v ,p
u,v

Ω

Γ

i,ji-1/2,j i+1/2,j

i,j+1/2

i,j-1/2

u,v

u,v

u,v

FIG. 2: Grid used in two dimensional case. ui, j is the cell average and ui−1/2, j, ui+1/2, j, vi, j−1/2 and vi, j+1/2

are the boundary averages.

D. CIP-CSL method (Convection term)

The CIP-CSL method is a solver of the conservation equation

∂
∂ t

∫
Ω

φ dV +
∫

Γ
φ(u ·n)dS = 0, (27)

here φ is a scalar value. The CIP-CSL methods have several variations. Here the simplest one,

CIP-CSL2 method [35], is explained. To avoid numerical oscillation, the CIP-CSLR0 method [37]

should be used. First we explain the one dimensional case. In the one dimensional case, there are

three values (one cell average φi and two point values φi−1/2 and φi+1/2) between xi−1/2 and xi+1/2.

Therefore we can interpolate between xi−1/2 and xi+1/2 by a quadratic function Φi(x) as shown in

Fig. 3,

i-1/2 i+1/2ii-3/2 i+3/2i-1 i+1

udt
udt

FIG. 3: Schematic diagram of the CIP-CSL method.

Φi(x) = ai(x− xi−1/2)
2 +bi(x− xi−1/2)+φi−1/2, (28)
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with

ai =
1

Δx2 (−6φi +3φi−1/2 +3φi+1/2), (29)

bi =
1

Δx
(6φi−4φi−1/2 −2φi+1/2). (30)

By using the interpolation function Φi(x), the boundary value φi−1/2 is updated by the conservation

equation of a differential form
∂φ
∂ t

+u
∂φ
∂x

= −φ
∂u
∂x

. (31)

A semi-Lagrangian approach is used for (31)

φ∗
i−1/2 =

⎧⎨
⎩

Φi−1(xi−1/2 −ui−1/2Δt) if ui−1/2 ≥ 0

Φi(xi−1/2 −ui−1/2Δt) if ui−1/2 < 0,
(32)

∂φ
∂ t

= −φ∗∂u
∂x

. (33)

The cell average φi is updated by a finite volume formulation

∂
∂ t

∫ xi+1/2

xi−1.2

φdx = − 1
Δx

(Fi+1/2 −Fi−1/2), (34)

here Fi−1/2 is the flux

Fi−1/2 =

⎧⎨
⎩

−∫ xi−1/2−ui−1/2Δt
xi−1/2 Φi−1(x)dx if ui−1/2 ≥ 0

−∫ xi−1/2−ui−1/2Δt
xi−1/2 Φi(x)dx if ui−1/2 < 0.

(35)

For multi-dimensional cases, a dimensional splitting method [38] is used. In x-direction com-

putation, φ ∗
i, j and φ ∗

i−1/2, j are updated based on φ n
i, j,k and φ n

i−1/2, j,k by the one dimensional CIP-

CSL method. The rest of the values such as φ n
i, j−1/2, are updated by TEC (Time Evolution Con-

verting) as follows:

φ∗
i, j−1/2 = φn

i, j−1/2 +
1
2
(φ∗

i, j −φn
i, j +φ∗

i, j−1−φn
i, j−1). (36)

In axisymmetric geometry, this formulation is little modified. Although we can use same ap-

proach for the z-direction, for the r-direction (31) and (34) must be modified as

∂φ
∂ t

+u
∂φ
∂ r

= −φ
r

∂ (ru)
∂ r

, (37)

∂
∂ t

∫ ri+1/2

ri−1.2

φdr = − 1
riΔx

(ri+1/2Fi+1/2 − ri−1/2Fi−1/2). (38)
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E. Viscous stress term

The viscous stress term (39) is discretised by a standard finite volume discretization [32].

∂
∂ t

∫
Ω

udV =
1
ρ

∫
Γ
(2μD) ·ndS (39)

First ui, j (cell average) is updated. The boundary values such as ui−1/2, j are updated by TEC as

explained in the section on the CIP-CSL method (section III D).

F. Projection step (pressure gradient term and continuity equation)

By using the divergence of (23) and
∫

Γ un+1 ·ndS = 0, the Poisson equation

−
∫

Γ

r
ρ

∇pn+1 ·ndS =
1
Δt

∫
Γ

ru∗ ·ndS, (40)

is obtained, where u∗ is the velocity after non-advection step 1. Equation (40) is discretized

( r
ρn+1 ∂r pn+1)i+1/2, j − ( r

ρn+1 ∂r pn+1)i−1/2, j

Δr
(41)

+
( r

ρn+1 ∂zpn+1)i, j+1/2 − ( r
ρn+1 ∂z pn+1)i, j−1/2

Δz

=
1
Δt

(
ri+1/2, ju

∗
i+1/2, j − ri−1/2, ju

∗
i−1/2, j

Δr
+

ri, j+1/2v∗i, j+1/2 − ri, j−1/2v∗i, j−1/2

Δz
),

here

(
r

ρn+1 ∂r pn+1)i−1/2, j ≡
2ri−1/2, j

ρn+1
i, j +ρn+1

i−1, j

pn+1
i, j − pn+1

i−1, j

Δr
(42)

A preconditioned BiCGSTAB method [61] is used for the pressure Poisson equation. The

convergence tolerance of the pressure Poisson equation εp = 10−10 is used. This means that the

divergence-free condition is precisely satisfied. By using pn+1, the velocity of boundary values

(ui−1/2, j, vi, j−1/2, wi, j−1/2) are updated

un+1
i−1/2, j = u∗i−1/2, j − (

1
ρn+1 ∂r pn+1)i−1/2, j. (43)

Other velocities (ui, j, vi, j, ui, j−1/2, vi−1/2, j) are updated by the TEC formula.

G. Model of surface tension force

The surface tension force appears as the surface force

Fs f = σκns, (44)
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where σ is the fluid surface tension coefficient, κ the local mean curvature and ns is the unit vector

normal to the interface. In this calculation, the surface tension force is modeled as a body force

Fs f associated with the gradient of the density function

Fs f = σκ∇φd. (45)

κ can be computed from

κ = −∇ ·nls. (46)

nls is evaluated from the level set function

nls =
∇ψ
|∇ψ| . (47)

H. Contact angle implementation

1. Implementation

To impose the contact angle, we used a method developed by Sussman [62]. An important ad-

vantage of this method is that we do not need to locate the position of the triple point in the subgrid

explicitly. Contact angle is taken into account by extrapolating the liquid interface represented by

the level set function as well as the VOF function into the solid as shown in Fig. 4.

Liquid interface

θ
Solid interface

u
nwall

n2

extend
ns

FIG. 4: Contact angle implementation. The dashed line represents the imaginary liquid interface in the

solid. The contact angle is taken into account by the imaginary liquid interface represented by the level set

function.

The liquid interface is extrapolated by solving the extension equation

∂ψ
∂τ2

+uextend ·∇ψ = 0, (48)
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here τ2 is the artificial time. In this work, Δτ2 = 0.5Δx is chosen. uextend is the extension velocity

and is computed as follows.

uextend =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nwall − cot(π −θ)n2

|nwall − cot(π −θ)n2| if c < 0

nwall + cot(π −θ))n2

|nwall + cot(π −θ))n2| if c > 0

nwall if c = 0,

(49)

here

nwall = (0,−1), (50)

n1 = − nls ×nwall

|nls ×nwall| (51)

n2 = − n1 ×nwall

|n1 ×nwall| (52)

c = nls ·n2. (53)

Here θ is the contact angle. The extension equation is simply solved by using a bi-linear interpo-

lation.

2. Singularity at the triple line

In theory, there is a singularity problem at the triple line. If a no-slip condition is imposed on

the solid interface the triple line cannot move. However in reality, the triple line does move. In

formulations using staggered grids, the singularity problem is avoided. The VOF function which

represents the liquid interface is advected by the r-component of velocity indicated by the black

circles in Fig. 5 and the z-component of velocity indicated by the black squares. Therefore if the r-

component of velocity has a finite value, the triple line can numerically move. In this formulation,

the no-slip condition is imposed by extrapolating the fluid velocity into the solid as the no-slip

condition is satisfied

ui−1/2,1 = −ui−1/2,2 (54)

as shown in Fig. 5 (a) [63]. This formulation avoids the singularity problem, because the r-

component of velocity is not defined on the solid surface. Additionally the r-component of ve-

locity has been defined as the boundary average (ui+1/2, j = 1
Δz

∫ zi+1/2, j+1/2
zi+1/2, j−1/2 udz). Therefore the

r-component of velocity can have a finite value and the triple line can numerically move along the

solid surface as taking into account the no-slip condition.
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FIG. 5: Schematic diagrams of no-slip boundary condition (a) and slip length (b). Black circles and squares

represent where r- and z-components of velocity are defined, respectively. The arrow in the fluid repre-

sents the velocity of the fluid. The arrow in the solid represents a fictitious velocity to impose the no-slip

condition. Ls is the slip length.

In this formula, it is easy to introduce the slip length Ls as

ui−1/2,1 =
ui−1/2,2

Ls + Δz
2

(Ls − Δz
2

), (55)

as shown in Fig. 5 (b). The slip length is used to avoid the singularity problem in formulations

which define the velocity on the solid surface such as the finite element method. In fact a slip

length exists in the real world, and has been studied by using molecular dynamics. However, we

do not use the concept of slip length, because our formulation does not have a singularity problem

and we believe that the slip length is much smaller than the mesh size.

IV. DYNAMIC CONTACT ANGLE MODEL

Fig. 6 shows the experimental a contact angle measured during the impact of a 2.28 mm diam-

eter drop arriving at 1 m/s [55]. Here we would like to explain the detail of advancing (receding)

contact angles. Two types of advancing (receding) contact angles are experimentally defined: “dy-

namic” advancing (receding) contact angle and “static” advancing (receding) contact angle. In the

droplet impact experiment, the dynamic advancing (receding) contact angle θda (θdr) is the angle

which is measured during droplet spreading (recoiling). A complex interaction between the fluid

viscosity, the surface tension, the inertia and the substrate results in the dynamic advancing (reced-

ing) contact angle being a function of the velocity of the contact line UCL. In the measurements,

the dynamic advancing (receding) contact angle tends to a limit as UCL increases (decreases) as

shown in Fig. 6. We name these limits the maximum dynamic advancing angle (θmda) and the

minimum dynamic receding angle (θmdr).
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FIG. 6: The liquid is the distilled water and the substrate is a chemically treated silicon wafer. The impact

speed is 1 [m/s]. The droplet diameter is 2.28 [mm].

In contrast, the static advancing (receding) contact angle θsa (θsr) is defined as the maximum

(minimum) angle observed when the triple line speed is zero or nearly zero (i.e. quasi-static) [45].

We propose a dynamic contact angle model. The model is based on Tanner’s law [50–54]:

Ca = k(θd −θe)3, (56)

for capillary-dominated situation (low Ca number), where Ca is the Capillary number (Ca≡ μUCL
σ )

and k is a material-related constant which is empirically determined. The angles θd and θe are the

dynamic contact angle and the equilibrium contact angle, respectively. Another approximation is

used for the inertia-dominated situation. When inertia is dominant (high Ca number), the constant

angles, θmda and θmdr, are used

θd(UCL) =

⎧⎨
⎩

θmda if UCL > 0

θmdr if UCL < 0,
(57)

as shown in Fig. 6. The proposed model is based on (56) and (57).

The dynamic contact angle model simply consists of (56) and (57) as

θ(UCL) =

⎧⎪⎨
⎪⎩

Min(θe +(
Ca
ka

)
1
3 ,θmda), if UCL ≥ 0

Max(θe +(
Ca
kr

)
1
3 ,θmdr), if UCL < 0,

(58)

where ka and kr are material-related parameters for advancing and receding, respectively. These

parameters ka and kr are determined as the best fit parameters to the measurement (Fig. 6). We

assumed that if θmdr < θd < θmda, the system is in the capillary phase, and Tanner’s law (56) is

15



used. If the contact angle reaches to θmda or θmdr, we considered that it was not no longer in the

capillary phase and apply the other law (57). Fig. 7 compares a result of (58) to the experiment

data.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

-0.4 -0.2  0  0.2  0.4

C
on

ta
ct

 a
ng

le
 [d

eg
]

UCL [m/s]

Experiment
ka = 9 x 10-9, kr = 9 x 10-8

FIG. 7: An approximation to the experimental data (Fig. 6) by (58). As parameters for the contact angle

model, θmda = 114◦, θe = 90◦, θmdr = 52◦, ka = 9.0×10−9 and kr = 9.0×10−8 are used. The contact angle

model is referred as model I.

V. NUMERICAL RESULTS

We performed axisymmetric simulations of droplet impact onto a dry surface. We used

the densities ρliquid = 1000 kg/m3, ρair = 1.25 kg/m3, viscosities μliquid = 1.0 × 10−3 Pa·s,

μair = 1.82× 10−5 Pa·s, surface tension σ = 7.2× 10−2 N/m, gravity 9.8 m/s2, initial droplet

diameter D = 2.28 mm and impact speed 1 m/s. The liquid was distilled water. The substrate was

a silicon wafer onto which hydrophobic silane has been grafted using standard microelectronic

procedures. The surface roughness is less than 50 nm. The equilibrium contact angle of the sub-

strate with distilled water is 90◦. The static advancing and receding contact angles are 107◦ and

77◦, respectively. The static angles were measured with a goniometer.

Fig. 8 shows snapshots of comparisons between the numerical results from the dynamic contact

angle model of Fig. 7 (hereafter referred to as model I) and the experiment. Only right hand side

from the center of the droplet is computed. The grid size is 100×100. Fig. 9 shows the numerical

result for time evolution of the contact patch diameter on the substrate. The numerical result using

model I shows good agreement with the experiment. Appendix A shows numerical results using

different grid sizes.
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FIG. 8: Comparison of appearance between the experimental and numerical results for model I. The left and

right hand sides are experimental and numerical results, respectively. Although the numerical results appear

three-dimensional, the simulation is two-dimensional. The grid size is 100× 100. The snapshots were not

obtained from the same experiment in which the dynamic contact angle and the diameter were measured,

although the conditions are as similar as possible. This is because the experiment to measure contact angle

and diameter captures only the right hand side of the droplet in order to increase the resolution around the

triple line. [fig8-1.mpg,fig8-2.mpg]

To study the importance of using appropriate contact angles, we conducted a numerical simu-

lation using only the equilibrium contact angle (hereafter referred to as model II.) instead of the

dynamic contact angle model. Fig. 10 and Fig. 11 show snapshots of the numerical results and the

time evolution of the diameter, respectively. This result shows that numerical simulation using

the equilibrium contact angle (model II) is not suitable. Even partial rebound is observed. This

simulation overestimates the maximum diameter, because the dynamic advancing contact angle

is underestimated during spreading (i.e. the dissipation of the inertia is underestimated). For re-

treating, the receding contact angle is overestimated. If the contact angle is overestimated during

recoil, the contact angle cannot reduce the speed of the contact line sufficiently. As a result, the

triple line retreats too far. The dynamic contact angle usually reduces the speed of the triple line.

However if only 90◦ equilibrium angle is used, the contact angle does not reduce the triple line

speed, and therefore the diameter does not stabilize even after 100 ms.

We conducted a numerical simulation using the static advancing and receding contact angles

(model III), instead of the maximum dynamic advancing contact angle and the minimum dynamic

receding contact angle as shown in Fig. 12. Fig. 13 and Fig. 14 show snapshots of the numerical
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FIG. 9: Time evolution of droplet diameter (contact patch diameter) for model I.

results and time evolution of the diameter, respectively. The numerical results show that the

behavior is different from the experiment (shown in Fig. 8). However the numerical results may

be better than those using the equilibrium angle (model II). During impact and spreading, the

deviation is not so great, because the substrate is hydrophobic, and therefore θmda and θsa are close.

The maximum diameter is slightly overshot, because the static advancing contact angle is little

lower than the actual dynamic advancing contact angle. However, retreating gives a large error in

terms of appearance as well as in the diameter prediction. This is because the receding contact

angle is considerably overestimated, as in the simulation using the equilibrium angle (model II).

This result shows that numerical simulation using static angles (model III) is also not suitable.

To study the importance of using appropriate θmda and θmdr, we conducted a numerical sim-

ulation using 175◦ and 5◦ instead of the measured maximum dynamic advancing and minimum

receding contact angles, respectively. Fig. 15 shows this dynamic contact angle model (model

IV) and Fig. 16 shows the numerical result. The maximum diameter is underestimated, because

the dynamic advancing contact angle is overestimated as shown in Fig. 15. This numerical result

shows that using appropriate θmda and θmdr is important.

To study the influences of smoothing in the dynamic contact angle model, we conducted nu-

merical simulations using a sharp dynamic contact angle model (model V) using ka = 9×10−9 and

kr = 9×10−9 as shown in Fig. 17. Fig. 18 shows the numerical result from model V. During im-

pact and spreading, including the maximum diameter prediction, the numerical result shows good

agreement. This is because the sharp contact angle model (model V) for advancing (UCL ≥ 0) is the

same as that of model I. However the result for the recoil phase does not agree quantitatively with
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FIG. 10: Snapshots of numerical result obtained using the equilibrium contact angle (model II). [fig10.mpg]
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FIG. 11: Time evolution of droplet diameter when the equilibrium angle (model II) is used instead of the

dynamic contact angle model.
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FIG. 12: The dynamic contact angle model using the static advancing and receding contact angles (model

III) instead of dynamic advancing and receding contact angles. As parameter of the contact angle model,

θmda = 107◦,θe = 90◦, θmdr = 77◦, ka = 9.0×10−9 and kr = 9.0×10−8 are used.

experiment, because the contact angle is underestimated in −0.2 < UCL < 0. The underestimated

contact angle reduces recoil. As a result, the numerical simulation did not achieve a metastable

diameter in the time period 13ms - 18ms (Fig. 18).
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FIG. 13: Snapshots of the numerical result using model III. [fig13.mpg]
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FIG. 14: Time evolution of droplet diameter when model III is used.
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FIG. 15: The dynamic contact angle model (model IV) using θmda = 175◦, θmdr = 5◦, ka = 9.0×10−9 and

kr = 9.0×10−8 are used.
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FIG. 16: Time evolution of droplet diameter when model IV is used.
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FIG. 17: Sharp dynamic contact angle model (model V). θmda = 114◦, θe = 90◦, θmdr = 52◦, ka = 9×10−9

and kr = 9×10−9 are used.
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FIG. 18: Time evolution of droplet diameter using model V.
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VI. CONCLUSIONS

We conducted axisymmetric simulations for droplet impact onto a dry plane surface. Our

numerical formulation can robustly simulate droplet impact behavior. We introduced a dynamic

contact angle model based on the experimental measurement. To approximate the measured values

of dynamic contact angle, we used Tanner’s law for low Ca number, the maximum dynamic ad-

vancing angle and the minimum dynamic receding angle for high Ca number, and the equilibrium

contact angle for Ca=0.

Our numerical results show that using appropriate maximum and minimum angles, and smooth-

ing of the dynamic contact angle model are important. Numerical results of model II (using equi-

librium angle) and model III (using static angles) showed totally different behavior from the ex-

periment. Numerical result using different maximum/minimum dynamic angles (model IV) and

smoothing (model V) did not show good agreement with the experiment, either.

The contact angle model is asymmetric in terms of amplitudes as well as smoothing, like the ex-

perimental measurement. The asymmetric dynamic contact angle model is important in predicting

precisely not only the advancing phase but also the receding phase of drop impact.
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ratoire des Ecoulements Géophysiques et Industriels, University Joseph Fourier. DV acknowledge

financial support from MENRT through project Σ 2911. We acknowledge the support of EPSRC.

APPENDIX A: RESOLUTION STUDY

Fig. 19 shows the numerical results obtained with three different grid sizes (50×50, 100×100

and 200×200, respectively) with the parameters of the model held fixed. The results are close. In

particular the final diameter and the time of the first rebound are insensitive to the resolution. We

are therefore confident that the 100× 100 grid used in this article is sufficiently accurate, while

costing 1
16th that of the 200×200 grid.
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