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NUMERICAL STUDIES OF THREE-DIMENSIONAL  

BREAKDOWN IN TRAILING VORTEX WAKES  

By P. F. Evans and J. E. Hackett  

Lockheed-Georgia Company  

SUMMARY  

Finite element, three-dimensional relaxation methods are used to calcu­
late the development of vortex wakes behind aircraft for a considerable down­

stream distance. The inclusion of a self-induction term in the solution,  
dependent upon local curvature and vortex core radius, permits calculation of  

finite lifetimes for systems for which infinite life would be predicted two­
dimensionally. The present report describes the associated computer program  
together with single-pair, twin-pair, and multiple-pair studies carried out  
using it. It is found, in single-pair studies, that there is a lower limit to  
the wavelengths at which the "Cron"-type of instability can occur. Below  

this limit, self-induction effects cause the plane of the disturbance waves  
to rotate counter to the vortex direction. Self induction in two dimen­
sionally generated twin spiral waves causes an increase in axial length  
which becomes more marked with decreasing initial wavelength. The time taken  
for vortex convergence toward the center plane is correspondingly increased.  
The limited parametric twin-pair study performed suggests that time-to­

converge increases with increasing flap span. Limited studies of Boeing 747  
configurations show correct qualitative response to removal of the outer  
flap and to gear deployment, as compared with wind tunnel and flight test  

experience.  

ix  



1. INTRODUCTION  

During the past several years, strenuous efforts have been made to devise  

means for breaking up prematurely and permanently the trailing vortices behind  
large transport aircraft so as to reduce or eliminate their hazard to following  
aircraft. Many of the attempts aimed at modifying individual vortices have met  
with indifferent success or have been impractical or too costly to apply.  

One of the more reliable "natural" modes of vortex pair decay is vortex  
looping. This form of instability was analyzed first by Crow (ref. 1), using  
linear methods. Shortly thereafter, his results were extended numerically by  
Hackett and Theisen (ref. 2), who calculated the progression from Crow's  

sinuous shapes toward the familiar "looped" form sometimes observed in flight  
(ref. 3) or in water tank experiments (refs. 2 and 4). The calculations used  
finite-element, time-dependent techniques applied to single vortex pairs. A  
limited study was made of the effect of the initial amplitude and wavelength  

of a "Crow"-type perturbation. Because these initial quantities must be  

specified, there are difficulties in specifying time-to-loop.  

It is the objective of the present work to provide methods for deepening  

the previous single-pair studies and extending the methods to multiple-pair  
configurations including both wakes typical of current jumbo jets and experi­

mental cases such as "sawtooth" loading suggested by Rossow (ref. 5) for  
promoting early wake disruption. Appropriate Fortran algorithms have been  
written and documented which achieve the above objectives. The program was  
delivered to NASA-Ames in April 1976 and implemented there on both the IBM  

360-67 and CDC-7600 computers. Program development was carried out at the  
Lockheed-Georgia Company on a MAC-16 mini-computer, where CRT graphics are  

available and on a Univac 1106 terminal system for longer runs. The program  

and its documentation form Appendix A of the present report.  

In any study like the present one, it is very desirable to make compari­

sons with experimental results. Though documented flow investigations in the  
near-field are quite numerous and despite the wealth of longer-time measure­

ments at discrete downstream planes, it has proved impossible to find quanti­
tative experiments which give adequate details of vortex looping flow.  
Experiments with towed models are the most suitable for this and although  
looping has been noted with a small model size relative to the test region  
cross section (ref. 2), the majority of scale models tested have had larger  

relative size and looping has not occurred. In some cases, wall constraints  
may have inhibited looping; in others the vortices have encountered a hori­
zontal surface before looping had time to occur. Even with the looping flow  
properly generated, good measurements are difficult.  

In carrying out numerical calculations of the vortex wake, a choice is  

available between a space-fixed and an aircraft-fixed reference system. During  
the present work, it became apparent that while vortex looping is an unsteady  
space-fixed event, spiral multiple-vortex development is steady in an aircraft­
fixed frame of reference. Though computing considerations made space-fixed  
analysis mandatory for a very long wake, it was found in practice that an  



aircraft-fixed analysis was essential to provide proper initial conditions for  
multiple vortex arrays. An extended version of the program was therefore  
developed f6r this purpose, which is compatible with the main, space-fixed  

algorithm.  

Sufficient experience has now been obtained with the program that the  

proper initialization procedures, step sizes, etc. are in hand and the signi­
ficance of each input variable is well appreciated. These factors are docu­
mented herein. However, since some of the quoted twin-and multiple-pair  
examples lie part-way up the learning curve, the corresponding results should  
not be regarded as definitive but rather as a qualitative guide for future  
application of the program.  

Section 2 will outline the theoretical approach, velocity calculation  
methods, self-induction effects, stepping procedures, etc. used throughout the  

present work. Section 3 is devoted to single vortex pair events and further  
examines the vortex looping phenomenon. In Section 4 the distinction between  
looping and spiral center-plane convergence is discussed and the effects of  
twin pair variables are reviewed. The computational details and requirements  
for such calculations are also included.  

In Section 5 pilot calculations are described involving multiple vortex  
pair wakes for actual aircraft configurations. Conclusions are given in  
Section 6.  
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2. THEORETICAL APPROACH  

2.1 General Discussion  

When dealing with single-pair decay, there is little option but to impose  
an initial perturbation either arbitrarily or via a knowledge of a specific  
turbulence environment for aircraft flight. For multiple pairs, however, this  

situation is relieved by the fact that in some cases vortex helices form  
naturally, starting in the near wake. In other cases, vortex strengths and  
positions may be such that the pattern disperses rapidly without helices form­
ing. Figure 2.1 shows an example of each type, in end view, for twin vortex 
pairs. Bilanin et  a. (ref. 6) have produced classification charts showing the 
relative vortex strengths and relative spans associated with each type of 

motion. 

In analyzing single-pair deformations, a space-fixed frame of reference  
is perfectly adequate. However, it is evident from the above that an aircraft­

fixed analysis is needed for multiple pairs, at least to start the calculation.  
Accordingly, a variant of the original program has been written, in an  
aircraft-fixed frame of reference, which includes the near-field effect of the  
wing. The resulting program solves the steady-state problem in three dimen­
sions by a time relaxation of an initial two-dimensional, Trefftz plane  

solution.  

Once the initial, transient motions are complete there may remain a number  
of vortex pairs arranged in helices. It is not practical to continue to  

analyze the subsequent motion in aircraft-fixed axes, because of the prohibi­
tive number of points involved, which must ail be perturbed starting from zero  
time. A change is-therefore made into space-fixed axes and a regular cyclic  
geometry is assumed. If this change is made at a distance corresponding to N  
miles aft of the aircraft and the subsequent time-to-looping is T seconds, the  
total distance to looping is given by (N+U.T) miles.  

It must be remarked that the above transient-plus-cyclic distinction is  

arbitrary, since divergence may require many cycles in some cases. However,  
the distinction is useful and practical except possibly for borderline, near­
cyclic cases.  

2.2 Velocity Calculations  

Given a constant-strength vortex, strength r, radius 6,which follows an  
arbitrary curved path in three dimensions from point A (xA, YA, ZA) to point  

B (xB, YB, zB), we seek the three velocity components, u, v, and w, at an  
arbitrary point N(x, y,z) on the vortex. L(x', y', z') is a typical element  
which influences N.  

3 



y 
x, 

x z  

A(XA,  YA,  ZA) 

The calculation is divided into three parts: the near, intermediate, and  
far fields. The near field concerns the effect of an element on itself, while  
the far field concerns elements sufficiently remote that their detailed struc­
ture is not significant at point N. All other points are classified as  
intermediate.  

When studying the periodic vortex cases, it is convenient to use imaging  
techniques such that only one side of the aircraft wake and only one-half wave  
(one full wave for spiral perturbations) are actually perturbed and the  

periodic part of-the wake vortex system is represented by various reflections.  

In the case of aircraft-fixed analysis, there is no periodic geometry, but  

half-plane symmetry still applies.  

Near-field. ­ The self-induced velocity is determined in a manner similar 

to that of Leonard (ref. 8). The self-induced velocity (Vs) is in a direction 
normal to the local plane of curva ture and-is given by the relation 

Vs oge 0558 --- log coat 6 cot (1) 
V5 hR- 0U e  )1  2  e fc 4  4  1] 

where:  

RC = local radius of curvature  

01, 62 = angles between the local point and each of the adjacent  
points based on the origin of the radius of curvature  

6 = core radius, derived from  

d62  62  dz (la) 

P = length of local segment  

4 



The terms in the time-dependent expression for core radius, 6, yield  
respectively the viscous growth and vortex stretching effects. Since molecular  
viscosity has been used in the present calculations, viscous growth is very  
small. Equation (la) is evaluated in finite-difference form.  

Intermediate field. - We resolve the total strength F into orthogonal  
components 1z, Fz, and Fz at x', y', z' so that  

r2+ p2 (2)7 + r2  

PX Fy Z (2)  

and  

r _ ry (3) rx z 
dx'/ds' dy'/ds' dz'/ds'  

where  

dx' 2 + dy'2 + dz' 2 = dsi2 (4)  

Reference 7 gives:  

B  
­­ r  ds7  r­­ ­­ 2' JB  y' z-z' dz' y y ds' 

A 

B -

v  r f  T7dz' x-x'r  dx'7 z -zrA'dS'2(5) 

A 

BB ds'  y  -y _  x -x ds' 

W T I  s' r  ds '  rx  2r 

A 

2 where AB is the vortex line and r2 =(x-x')2 + (y-y') + (z-z')2 .  

Taking the u component as typical  

B  B 
Sdyz  dz'  r 

4,r3 3 f ds' f ds' 4 sr  

A  A 

Now  
dy' dz'  

ry = -Z and rz = r  
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So 
u  = 

B 
4ry (z­z')  ds' ­

B
f -- (y  y')  ds' 

J  470  47r3 

A  A 

Writing Equation (5), at a point N, as a sum over LTOTAL finite elements:  

LTOTAL (rAy) LTOTAL (FAz) 

3  kN (YN ­YL)uN  =  Ll 47rrNL 3 (zN  zL)  L 4irrNL 
33 

LTOTAL (rAz) LTOTAL (Ax) 

VN L-I (xN-xL) - X 4rNL (zN ­ zL) N # L (6)
L=I  47rrNL 3  L=I 4rL 

LTOTAL (LTOTAL  
3 wN= 4rNL L 4A#rNL 3 (XN-XL) WN I  T (FAx) (YN -YL) ­ z  (rAY)

L=I L=I  

where Ax, Ay, and Az are the components of a straight, finite element which  

represents a segment of the vortex AB. When N=L, Equation (1) is used. In  

implementing Equation (6) for N#L, a "short element" concept is applied, in  

which the products, rAxL, rAYL, and rAzL are defined as the short element  

strength components. Dummy points (XDUM, YDUM, ZDUM) are situated midway  

between the perturbed points along each vortex line. Therefore:  

AxL = XDUML+I - XDUML  

AxL = YDUML+ 1 - LDUML (7)  

AzL = ZDUML+I - ZDUML  

By using this short element method the effects of vortex stretching in the  

intermediate field can be considered, without changing the total number of  

points, by suitable modifications to FAxL, FAYL, and FAzL.  

Far field. - Beyond one or two complete wavelengths, each side of a  

perturbed point the vortex system may be extended by horizontal, straight-line  

elements. These are added at both ends of periodic geometries (space fixed)  

and at the downstream end of aircraft-fixed geometries.  

6 



2.3 Time-History Calculation  

A one-step, second-order predictor-corrector computation is used in which  

the desired element x-displacement, for example, is defined as the midpoint of  

the resultant of two Euler displacement vectors, u(t) dt and u(t+dt) dt.  
u(t) is the induced velocity field based on the positions of the vortex  

element system at the time t and u(t+dt) is the induced velocity based on the  

positions of the system at time (t+dt). The general relation for displacement  

using predictor-corrector stepping is:  

x'(t+dt) I  [x(t)  +  x(t+dt)  +  u(t+dt)  ­ dt]  (8) 

where  

x(t+dt) = x(t) + u(t) *dt (Euler value at (t+dt))  

x(t) = value at t  

x3 (t+dt) = predictor-corrector value at t+dt  

The other two components are treated similarly.  

In two-dimensional calculations the accuracy of the time-integrati-on may  

be ch~cked fairly readily by determining the vortex center of gravity, moments,  

and the Kirkoff-Routh path function (see ref; 5). Such checks are generally  

not available for three-dimensional motions. In principle, checks should be  

made that conservation laws are obeyed, but the necessary volume integrations  

are more difficult and more numerically hazardous than the original calcula­

tion. The only check found feasible so far is to employ a reversed-marching  

technique to find the degree of accuracy to which the system returns to its  

original state. At the end of a series of time steps, the sign of the time  

increment is reversed and the program marches back to the initial time. The  

deviation for each vortex element is then defined as:  

di = [(xif - Xio)2 + (yi. - Yio ) 2 + (zif - Zi0 )2]1 (9)  

where f denotes position after backward marching, and o denotes initial  

position. The arithmetic  

(=  NXdi)F 
i=1  

(10)  

I N )  and geometric =(d d2 --- d1) / 

means are then determined. Some typical results are illustrated in the  

following,table:  

7 



TABLE I. - ACCURACY OF TIME-STEPPING METHODS  

(SINGLE PAIR, 51 STEPS)  

Calculation Method Arith. Mean Geom. Mean  

Predictor-Corrector .00319 .00271  

Euler .801 .696  

The predictor-correlator method, which takes little more than twice the running  

time of the simple Euler stepping method, provides a 250-fold accuracy gain in  

this particular example. In practice, a part of such benefits is used to  

reduce computer run time.  

2.4 Time-to-Loop  

The formation of long loops along the track of an originally parallel  

trailing vortex pair is a well-known occurrence. The development from the  

initial sinuous perturbation (ref. 1) towards the near-ring shapes may be  

calculated (ref. 2) by finite element methods. The next stage, the formation  

of loopsis not well understood. In real flows, the point of nearest approach,  

across the plane of symmetry, starts to convect downwards; but almost immedi­

ately there is a "click" and the vortices break, change partners, and then link  

across the center-plane to form loops. This event is a very fundamental one  

since it also typifies the cascad-ing process by which large eddies break down  

to smaller ones in turbulent flows. Nevertheless, there is Little detailed  

knowledge of the mechanism, and no criterion exists which defines when the  

"click" occurs.  

Fortunately, it is sufficiently accurate for present purposes to define  

the start of looping as the time at which the point of closest approach is  
convected downward at ten times the mean downdrift velocity for the whole wake.  

This defines the start of looping sufficiently sharply-for use in long-time  

solutions. (See Figure 2.2.)  

8 



3. SINGLE-PAIR LOOPING  

3.1 Significant Parameters  

Reference 2 gives examples which extend numerically the linearized analysis  

by Crow (ref. 1). As indicated above, these space-fixed calculations have been  

improved, both numerically and by the addition of the element self-induction  

term of Equation (I). As a result, the tendency to a fine-grain waviness in­

stability on each individual loop has been reduced very considerably. The use  

of the higher precision-CDC-7600 computer for many of the runs reported here  

,gave additional numerical improvements and permitted longer time histories to be  

calculated. Figures 3.1(a), (b), and (c) show, respectively, plan views of  

the initial condition, a later geometry using results from a reference 2 type of  

calculation and the corresponding result from the present program.  

For a given vortex spacing (b), the time to loop (t), as defined in Section  

2.4, is a function of the vortex strength (r); the amplitudes (ax, ay), phase (),  
and wavelength (b) of the initial perturbation and the vortex core radius (6).  

The relationships take the nondimensional form:  

Ftt c  ax ay
b2 ' b b  

3.2 Effect of Perturbation Amplitude  

In Section 3,othe initial perturbations ax and ay usually will be equal  

and in phase, giving the classical 45°-inclined plane wave shown in Figure  

3.1(a). In Figure 3.2, it is evident that there is an approximately inverse  

relationship between time-to-loop and initial amplitude. The constant of pro­

portionality is, of course, dependent upon vortex core radius and wavelength.  

As perturbation amplitude increases, the drift velocity of the point-of-close­

approach will increase. Eventually, this will reach ten times the mean  

(straight vortex) drift velocity as used to define the onset of looping. This  

produces the intercept with the horizontal axis. In potential flow, this would  

correspond approximately to the condition when the distance of closest approach  

was 10% of the mean vortex spacing.  

Limited checks have also been made of the effect of using spiral and  

planar initial conditions. Labelled points in Figure 3.2 show that the use of  

a spiral initial condition increases the time-to-loop by nearly 40%. This is  

important because multiple vortex pairs develop spiral modes. Clearly, the  

"Crow" mode is more efficient at driving the system towards looping. It is  

interesting to note that, if the x- and y-perturbations are applied separately,  

the x-perturbation on its own is very inefficient in this regard. However,  

applying solely y-perturbation increases time-to-loop by only 20% over the  

combined perturbation.  
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These results suggest that the present methods could be used to determine  
optimum configurations for deliberately induced initial perturbations in real  

flows.  

3.3 Effect of Vortex Core Radius  

Figure 3.3 shows the results of three calculations made for the same total  
time. The first uses current numerics, but omits the self-induction effect on  
each element. Figures 3.3(b) and (c) show corresponding results for medium and  
large-sized cores. As might be expected, increase in core size has a damping  
effect on the overall motion. It is also interesting to note that the omission  
of curvature effects produces a result intermediate to the other two; i.e. an  
effective core radius has been implied. This is a somewhat similar situation  

to the use of a cut-off radius by Crow (ref. I). In the present case, the  
effective radius is determined (if self-terms are neglected) by the number of  
elements per wave.  

Figure 3.4 returns to the full equations and shows a gradual increase in  
time-to-loop with vortex core radius. It should be noted that the right hand  
part of this curve becomes less valid because the small radius assumptions in­
herent in Equation (1) are violated.  

A number of investigators have suggested means for diffusing individual  
vortices to reduce their hazard to following aircraft. The present result  
suggests that such diffusion may actually increase the time to ultimate decay,  
by delaying looping. It is therefore important to be certain that such  
attempts to accelerate diffusion have a sufficient effect.  

3.4 Effect of Perturbation Wavelength  

Though time-to-loop decreased with decrease in wavelength, as previously  

(ref. 2), an unexpected upturn in the curve occurred at short wavelengths in  
the present calculations (see Figure 3.5)-.  

To better understand the mechanisms, let us first examine in more detail  
the progression towards "conventional" looping. Figure 3.6 shows, at zero  
time, an end view of the right-hand vortex, inclined outward at 45 degrees.  
The individual points are calculation points on a half-wave. As time pro­
gresses the whole array drifts downward, largely maintaining its 45-degree  
inclination. At the two longest times shown, the lower points are moving  
downward and inward at an increasing rate: a nascent looping stage has been  

reached.  

Figure 3.7 has essentially the same conditions as previously, but a  

shorter wavelength. Initially, the innermost vortices move inward as before  
but at a faster rate, as would be expected from previous experience concerning  
wavelength effects. However, the 45-degree inclination is not retained as  
before. A clockwise rotation, opposing the direction of the vortex, develops.  
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In consequence, the distance-of-closest approach starts to increase markedly  

and looping is forestalled.  

The suggested mechanism for the above motion is illustrated in Figure  

3.8(a). At any wavelength, there is a tendency for the crests of each sine wave  

to self-convect like part of a vortex ring. The corresponding motion is out­
ward and downward at the top of the wave, inward and upward at the bottom, and  
zero at the inflection points. This motion increases as the wavelength is  
reduced. Counterbalancing this effect is the velocity gradient due to the  
opposite vortex, which is approximately constant. Thus, the outward rotation  
due to self-induction, which is dependent upon the ratio of amplitude to wave­
length, is offset against the velocity gradient effect, which depends only upon  
amplitude. An illustrative velocity vector diagram is shown in Figure 3.8(b).  

Boundaries have been found, in an amplitude -wavelength domainwhich  
define the lower limit for looping. Figure 3.9 shows the results of a number  
of numerical calculations, for two core radii. As might be expected from cored­

ring convection properties, the larger vortex core radii cases are less likely  

to self-rotate.  

To each point on the boundaries shown in Figure 3.9, there corresponds a  
(different) time-to-loop. These are minima, as was noted in Figure 3.5.  

Figure 3.10 illustrates the nature of time-to-loop contours in the same  

coordinates as the previous figure.  
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4. TWIN PAIR CONVERGENCE  

4.1 The Generati on and Disruption of Spiral Waves  

It was noted previously that single spiral waves were noticeably more  
stable than plane waves of the "Crow" type. In this section we shall examine the  
properties of spiral waves with emphasis on the mechanisms and flow geometries  
which lead to vortex destruction. Though the same calculation procedures and  
divergence criteria may be used for each, there is a very important distinction  

between the instability of a spiral wave and that of a plane wave of the "Crow"­
type. Figure 4.1 illustrates this distinction from the viewpoint of an observer  
fixed in space. When a vortex trail with plane waves reaches a sufficient age,  
this observer sees "necking" start to occur, followed by the aforementioned  
"click" when looping occurs. Thereafter, the looping point remains fixed in  
space. Il contrast, the spiral wave is fed continuously towards the center  
plane. Prior to the critical time, the fixed-observer sees a convergence event  
moving towards him in the direction of aircraft motion. The "time-to-converge"  

corresponds to its passage directly in front of him. In contrast to the  
previous case, the event is steady as seen from an aircraft frame of reference.  
These considerations in no way preclude space-fixed events due to atmospheric  
disturbance or other modes of instability. However, to underline the distinc­

tion, the distruction of spiral waves by meeting at the center plane will be  

referred to as "convergence" and "looping" will be reserved for the space-fixed  

event.  

Definition of variables. The spiral wavelength for a twin-pair trail is  

determined by aircraft forward speed, as well as vortex details and itmust be  
included in the normalization scheme. Thus, if primed quantities are dimen­
sionless and the kinematic variables are as shown in Figure 4.2, we define  

rr F I rT  
F U b12 FT' U b/2 (12)  

with a total =  FF' +  rT' ('13) 

For convenience, we write  

rT (14) :rF rTrF,  14 

The following relationships are noted:  

rFF I  +Y  T  + 

(15)  

n F  +  T  =  (I  +YhCG 

CL/PR =  'nCG  (16) 
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We normalize time t (secs), after aircraft passage, via  

t U  
T 

=  b2 (17) 

For multiple vortex arrays and because of the possibility of c.g. variations  
under viscous, three-dimensional conditions, we measure wavelength of spiral  
motions, etc., in aircraft spans, as Ab. It may be shown that the time per  

revolution of rF and FT about their c.g., in two dimensions, is given by  

­/rev.  =­4.2  (I  +y)  2  (  T­nCG)  2  (18) 

or in aircraft variables  

T/rev.  =  4w2  AR (F+T) 
c L  ­ ("I  ­Tn F)  2  (19) 

and we note also that the wavelength,  

X  -- /rev. (20)
2  

Conditions for convergence. Figures 4.3 and 4.4 show the effects, on the  
calculated development towards convergence, of varying the relative span posi­

tions and strengths of the vortices. The vortex wavelength, after three­
dimensional relaxation, is a function of these variables and both end view  
and t'ime-to-loop follow from this. Vortex radius also becomes a significant  
variable.  

With a wing tip vortex somewhat weaker than the flap vortex, Figure 4.4  
indicates that small flap spans lead to early convergence of the tip vortex.  
As the flap span increases, the spiral amplitude is reduced, and the trajec­

tories approach the center plane less closely. Consequently, convergence is  
delayed. A simple geometric analysis shows that when the flap vortex is the  

stronger, the tip vortex will intersect the center plane after 180-degrees or  

less of travel provided that  

1­2  (  I)  (21) 

Equation (21) is a particular case of a geometric expression for minimum  
centerplane clearance by the tip vortex, i.e.  

2  

"MIN=  l+y  (nF  +  Y )  ­ 1, (YT1).  (22) 

Figure 4.4 illustrates the consequences of Equation (22). With flap-span  

constant, a case with y less than one [Figure 4.4(a)] clearly converges much more  
quickly than with equal strength [Figure 4.4(b)]. We note here that since the  

two spirals are of equal amplitude, they each have an equal chance of converging.  
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Once y >I, the flap vortex (now weaker) forms the outermost spiral and conse­
quently n1lN clearly cannot be less than nF . This explains the range of  

validity of Equation (22).  

The velocity condition for convergence. Equations (21) and (22), being  
based solely upon geometric considerations, do not reflect the velocity condi­
tion used to define convergence in the present calculations. The effect is to  
move the critical point outward from the center plane by an amount  

A Y(nF+y)2 (23)
N(T +1)  

which is added to Equation (22) to give  
(nIy  {2  Y  I  Y  I  (24)

1 MIN  +y+Y-1y1(4 12 +  N(y+l)}lMN (nF+T) 

Since y:1 and an N-value of 10.0 is used, the effect of the added term is  
evidently small. A corresponding analysis modifies Equation (21) to the form  

(y-1)2 N  
IF - (2(y+I)N - y)- Y (Y 5 1) (25)  

This reduces to Equation (21) for Ne-" or y- O. Again, the differences are  
small within the range of validity. The differences between results derived  
from (24) and (25) and those from the simpler expressions are not sufficient  
to justify the added complexity in most applications.  

The spiral strain index, a. Equations (21) and (25) describe the condi­

tions under which the flap vortex drives the tip vortex into, or near to the  
the center plane after half a revolution or less of travel. The tip vortex,  
being the weaker, forms the outermost spiral, which converges. However, it  
is evident from Figures 4.3 and 4.4 that, for cases with several revolutions  

prior to convergence, it is also possible for the inner, more intense, spiral  

to converge first. Figure 4.5 shows a further example of each type.  

Figure 4.6 is a parametric map with flap span as ordinate and relative  

vortex strength as abscissa. Each plotted point depicts one computer run in  
a parametric study which will be described in Section 4.2. Triangles and  
circles represent, respectively, flap and tip vortex convergence as the first  
event. As might be expected, tip vortex convergence occurs in the vicinity  
of the lower-left boundary [Eqns. (21) and (25)], but then flap vortex con­
vergence becomes more likely as nF is increased. There is also a change on  
passing through y= 1.0 (i.e. flap and tip strengths equal). To understand  
the structure of these domains, we shall examine the distortion mechanism  
which leads ultimately to convergence.  

On passing through its innermost position, each vortex receives an extra  
downward impulse induced by the opposite-hand vortex at a distance 2T1iN away  

This causes an outward-spiraling tendency which, continued long enoug0, leads  

to convergence at the center plane. We may quantify this tendency in terms  
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of the nondimensional velocity increment causing the effect. Thus, we define  

spiral-strain indices:  

rF  

F nMINF  

(26)  

a  TTand  
dT MINT 

We now hypothesize that the vortex which has the larger a value will converge 

first. Thus, for the tip vortex to converge first requires that 

aT >  GF 

= Using Equation (22) and noting that nMINF 'F' this yields  

rF'y(I  +y) rF (27) 

27FCRIT - (1-T 1 FcRIT 

for the tip vortex to converge first.  

A borderline case may be found by using an equality in Equation (27)  

which readily yields  

11  - (28) 
RIT -y+2  

This line partitions the data in Figure 4-5 quite successfully though not  

perfectly because of the simplifying assumptions. However, resolution of the  

flap- or tip-convergent regions requires some care.  

Provided that qFcRIT and rF' are both positive, Equation (27) may be  

written  

n~RI y~l +y)  
>  1Y

N TFOCRIT  

D  2flFcRIT - (i-y) 

We may clear this further, by multiplying by D, only if  

2nFCRIT - ( -y) > I  

i.e. if y >l -2TFCRI T  

This defines a region in Figure 4.5 above the line marked "Eqn. (21)."  

Thus,  
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nFCRIT  Y1  +y)  >  (2nFCRIT  ­ ­y))  ,  Y >  (1­2FCRIT) 

giving  

nFCRIT  (y  2 +y­2) >  (y­i),  y>  (1  ­2lFCRIT)  (29) 

Since both sides change sign at y=1, the cases y'I must be considered  

separately. This yields, eventually  

1y  l 

TFCRIT  >  y  +2' 

and (30)  

nFCRIT  <  y+ ­2nFCRIT) 

for the tip vortex to converge first. This agrees with most of the test cases  

in Figure 4.6. More elaborate treatments are obviously possible, using Equa­
tion (25), for example, or taking spiral diameter into account. However, the  
simplicity of Equation (30) is attractive.  

4.2 Twin-Pair, Parametric Study  

By suitable choices of flap span and loading, it is possible to reduce  

the vortex hazard for any specific aircraft at a given weight and speed.  

Recent studies (ref. 11) have demonstrated the hazard reduction benefits of  

reduced flap span, for example. In order to provide a basis for quantifying  

the trades between flap span and setting angle, convergence times have been  

calculated over a wide range of nF and rT/rF. Boundaries for rapid conver­
gence have been published previously (ref. 6), but no attempt has been made  

to calculate the time taken for cases within such limits. This is only  

possible if three-dimensional, self-induction effects are included.  

Figure 4.7a shows contours of the dimensionless time-to-converge [see  

Equation (17)]. For computational consistency a constant wave~length  
= X 5.375, was employed for the-whole figure, the implicit assumption  

being that X is a weak parameter. However, subsequent studies (see Section  

4.3) have shown this to be untrue. Consequently, the loading parameter  

(CL/AR) cannot be merged with nondimensional time T, as was originally hoped.  

It follows that a map like Figure 4.7a should be prepared for each of a series  

of constant values of CL/AR. In the present case the relevant CL/AR value for  
any specific point may be found from Figure 4.7b using the fact that X=5.375  

in the previous figure. Figure 4.8 presents the results of a limited study  

(for CL/AR =0.25) using proper wavelengths for each run. An increase in time­

-to-converge with increasing flap span is indicated. In view of the signifi­
cance of othier parameters (notably vortex radius), there is a very real  

question whether it is preferable to treat even twin pair cases on an  

individual, rather than a parametric basis.  
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When convergent vortices reach the center plane, they merge and dissipate.  

However, it is possible and even probable, in still air, that the surviving  

vortex will still represent a hazard. Figure 4.9 shows that, for short con­

vergence times near the lower hatched boundary, the surviving vortex is un­

desirably strong. At any given flap span (>.333b) it is evident that the  

surviving vortex strength is maximized if flap- and tip-vortex strengths are  

equal. It is possible to adopt a systems approach to define a minimum hazard  

condition and then determine optimum flap spans and vortex strengths for a  

given flight condition with both the surviving vortex strength (Figure 4.9)  

and time-to-converge (Figure 4.7a) taken into account. However, Figure 4.7a  

should be revised to include values of spiral wavelength consistent with the  

relevant CL/AR condition before such studies are undertaken.  

4.3 Three-Dimensional Effects  

As indicated above, changes in spiral wavelengths were found to have a 

significant effect on time-to-converge. Figure 4.10, which was calculated on 

the same space-fixed basis as the previous study, shows an increase in time­

to-converge as wavelength is increased. When two-dimensional calculations 

were attempted, to provide a limiting case, convergence was not obtained even 

well beyond T  values corresponding to the six-mile limit generally applied. 

This indicates agreement between the present numerical result and Bilanin's 

(ref. 6) analytical result which predicts infinite time for two-dimensional  

cases outside the lower boundary.  

The detailed reasons for wavelength dependence are not understood. How­

ever, it is noted that the self-convection effect on an element is similar in  

nature in a spiral to that found previously for plane waves; there is a  

tendency to slow down the gross rotation rate. Another distinction concerns  
"axial pumping." A tightly-wound spiral vortex has transverse vorticity com­

ponents, which correspond to "ring" vorticity. In the core of the spiral,  

these vorticity components induce a velocity away from the generating wing and  

a proportion is felt by the spiral itself, tending to lengthen it. It follows  

that any vortex spiral geometry generated on the basis of quasi-two-dimensional  

assumptions will have too short a wavelength. Figure 4.11 quantifies this  

effect. Vortex spirals were first calculated two-dimensionally, then relaxed  

three-dimensionally in a wing-fixed frame of reference. In view of the X­

dependence of time-to-converge (Figure 4.10), it is clearly desirable to  

determine a 3-D relaxed wavelength, rather than one derived simply from two­

dimensional considerations, before embarking on detailed or definitive  

studies.  

4.4 Notes on Computing  

Initialization. We saw in the preceding section that a spiral wavelength  

assigned on the basis of two-dimensional considerations [Eqns. (19) and (20)]  

will not be in equilibrium axially. It has also been necessary to assign unit  
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value to the tip vortex span, in the interest of reducing the number of vari­

ables. To circumvent such difficulties, it is now clear that any space-fixed  

calculation involving more than one vortex pair should at least start with a  

corresponding aircraft-fixed calculation which determines vortex spans and  

wavelengths, which are in self-equilibrium and which are consistent with the  

span loading. The two-dimensions-plus-time type of calculation provides a  

suitable starting geometry for three-dimensional relaxation of an appropriate  

(i.e. more than one-full wavelength) length of wake.  

Since it is unfeasible to relax the equivalent of several miles of wake  
simultaneously, in aircraft-fixed axes, a transition to a single-wave, space­

fixed calculation is made. A suitable whole wavelength is selected* which is  
downstream of the direct influence of the wing; this is assigned time value  

T=0 in the space-fixed calculation. Figure 4.12 shows how subsequent time  

steps march down the wake. There are, thus, three computational components  

to the distance of any particular point from the wing. These are: xi, the  
distance from the wing to the leading edge of the frame T =0; 'r,which defines  

the distance travelled by the leading edge of the frame; and finally xo, the  

axial distance within the frame T, measured from its leading edge.  

The trajectory of a particular point. Since the point which converges  

is of predominant interest in the present study, we shall use this as an  

example. At the start of the calculation, it cannot be known which point will  
converge. Consequently, all points on every frame must be output. Once the  
convergent point has been identified, however, its complete trajectory may be  

determined, frame-by-frame, back to the point xo on the initial frame. The  
examples in Figure 4.5 were plotted in this way. TO, which corresponds to the  

position on the original frame, is given by  

2N -I  
T° = NTOT 2 (31)  

where N is the vortex element number and NTOT is the number of elements per  
wave. The total time-to-converge is thus given by  

Tcc = TI +TO +  tc (32) 

where-Tj equals xl/U. and Tc, as before, is the time step (space fi'xed) at  

which convergence occurred. Any other specific point may be treated in the  

same way.  

Conjugate runs. In twin-pair parametric studies, advantage may be taken  

of the fact that, after the first half wavelength, the flap and tip vortices  
interchange. If these are now renamed and suitable changes are made to the  

length scales, a new point on the parametric may may be obtained. If a tilde  

is used to signify the conjugate run, we may write  

= 1 /y (33) 

*For multiple-pair cases, see Section 5.  
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and  

nF  2nCG  ­ "T  (34) 

fT 2nCG - "F  

The assumption implicit above, that true spiral form is retained for the first  

half wave, has been confirmed in practice. However, attempts to carry out a  

similar procedure further down the wake have shown that true conjugates are  

not obtained; distortion of the spiral has become too significant.  

Size of time-step. The angle, A8, through which the joining line between  

two vortices rotates during one time step, AT, is given approximately by:  

(ri'  + r 2 ')
A  =  +n F2 AT radians  

(35) 
2,f  (TI ­T  n F ) 

For consistent accuracy, it is fairly obvious that the value of the stepping  

index, A8, must be maintained at an appropriately small level for all cases.  

It is also evident that as fF or loading becomes large, a large number of  

small time steps will be required. Typical step sizes, AT, in the previous  

study have ranged from 1/3 to 2.0, depending upon flap span, at a (CL/AR)  
value of 0.1714. It is generally found that the longer running cases (larger  

time-step. This affects computation IF) also reqdire the smaller values of  
time severely..  

Figure 4.13 shows the effect of step size on time-to-converge for four  

flap and tip vortex geometries. Quite good accuracy is obtained provided the  

stepping index is maintained at 8-degrees or below. Thereafter, the larger  

nF cases degrade fairly rapidly. This occurs not only because longer times  

result at larger F Vbut also because errors are larger at any given step size.  

Figure 4.14, which shows the relative distance between two vortices after 50  

time units, demonstrates this. In the absence of center-plane images, an  

ideal stepping system would maintain constant spacing indefinitely. Figure  

4.14 shows that deviations from this trend increase with fF .  
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5. MULTIPLE-PAIR CALCULATIONS  

5.1 Introduction  

For each vortex pair in a multi-component system, there are at least  

three independent variables, even if a horizontal, unswept trailing edge is  

assumed. These are: vortex strength, span position, and core radius. Effec­

tive viscosity is a possible fourth candidate. For N multiple vortices there  

are thus 3N or 4N minus one variables. (Length scale may be embedded in the  

core Reynolds number.) For a twin vortex system, a two variable map like  

Figure 4.7 must be repeated at least over a parametric range of CL/PR, for  

example, even for constant core properties.  

It is evident that it is not profitable to attempt to extend generalized  

results Beyond twin-pair cases. A number of realistic, multiple-pair cases  

have therefore been selected, as examples for the present section, involving  

up to seven vortex pairs. These cases, defined in Figure 5.1, will be  

described further in later sections.  

An additional motivation for treating cases individually concerns the  

5alculation itself. For example, if a 4-pair rather than a two-pair case is  

considered, point density must be increased along each vortex, by a factor of  

two, giving four times as many points and a factor of 16 on the number of  

velocity calculations required. Yet a further factor of two is-needed to  

properly relate the time step-size to vortex spacing*, yielding an overall  

computation increase of 32-times, or 25. Computer run time considerations are  

much more critical than core storage requirements, which vary only as the  

square of the number of vortex pairs.  

For these reasons, and because of the relative cost-per calculation,  

three-pair runs and up were carried out on Lockheed-Georgia computers only as  
necessary for program checkout, i.e. one or two time steps. The multiple pair  

runs reported in this section were made on the NASA-Ames CDC 7600 computer  

during a three-week period which included program checkout. Part of the  

development of the aircraft-fixed algorithms was also carried out at this  

time. This was sufficient to complete a number of test cases and to establish  

preferred methods and guidelines. Owing to the "one-shot" nature of the runs  

it was not possible, however, to produce completed calculations which may be  
regarded as totally definitive. The Ames results, plus subsequent studies.,  
indicate that the program does have the required capability, however.  

This is mandatory for aircraft-fixed calculations, but some relief is  

possible in space-fixed cases.  
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5.2 General Approach  

The decay of a complex, multi-vortex wake involves successive reductions  

in the number of vortices, either via convergence at the center plane (see  
Section 4) or by merging of two vortices into one (see ref. 10). Figure 5.2  

shows how the length of the wake may be partitioned on this basis. In the  

present context, the terms "near-," "middle-,"-or "far-wake" relate only to  

the number of vortices present and have no specific counterparts in miles.  

Starting at the downstream end, we see that the "far" wake contains just  
one vortex pair. Since this has the potential for very long life under calm  

conditions, it is important to design the initial wake configuration in such  
a way that this remaining pair is a weak one. (We saw in Section 4 that, with  
suitable starting conditions, earlier convergence of stronger pairs is  

possible).  

The "middle" wake involves a twin pair. This may be dealt with either  
using parametric plots or on a specific basis depending upon whether the  

geometry is near-spiral or has suffered noticeable distortion in the near  

wake*. In the latter case, space-fixed calculation methods may be used, as  

described in Section 4.  

It is the "near" wake which is of principal concern in this section.  

Considering briefly the simplest, three-vortex case, it is noted that an em­
bedded twin-pair wavelength will no longer characterize the motion. In most  
cases, this will prevent effective use of a space-fixed analysis, because the  

wavelength over which the motion is cyclic (assuming no convergences) is  

impractically long. It follows that an aircraft-fixed analysis must be used.  

The dependence of computer run time upon the fifth power of the number  
of vortices (see Section 5.1) makes it highly desirable to eliminate from the  
calculation those vortices which converge early and to merge those which  

spiral together in close proximity. Figure 5.3 shows examples of both types.  

This particular case concerns a "sawtooth" loading configuration designed by  

Rossow (ref. 5). The reduction from seven to four vortex pairs is clearly  

most desirable, computationally.  

The results shown in Figure 5.3 were obtained using an aircraft-fixed  
two-dimensional calculation. A corresponding three-dimensional relaxation  

was attempted but proved unstable. Since complicated 3-D relaxation cases  

are likely to require individual treatment to overcome stability problems and  

are liable to be very expensive to run, it may Ee acceptable to rely on a  

simpler method for the early wake provided that the convergence or merging  

events are strongly indicated. If this is so, the predictive accuracy of the  

overall calculation will probably be acceptable.  

*If specific core details are to be used, the parametric approach is likely  

to be precluded.  
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In summary, the overall approach includes the following steps, given  

vortex dispositions along the trailing edge and their strengths:  

(la) Use 2-D, reference 9, or (preferably, if stable) 3-D relaxation  
methods to identify and treat each vortex merging and convergence to the center  
plane. This will usually reduce the wake to no more than three or four vortex  
pairs.  

(ib) Continue to treat the remaining wake using aircraft-fixed methods  

until two pairs remain.  

(2) If the remaining twin pair is largely undistorted and individual  
core details are not available, a parametric map may be consulted. A recom­
mendation for the preparation of such plots is included later in this report.  

(3) Once one member of the twin pair has either converged on the center  
plane or-merged with its mate, the ensuing single pair wake cannot be calcu­

lated by present methods because it is straight and undisturbed in still air.  

If it is possible to postulate a periodic disturbance, the methods of Section  

3 may be used.  

5.3 Three-Dimensional Relaxation of the Near Wake  

.Before starting a three-dimensional relaxation, it is desirable to  
determine a reasonably close approximation to the final result. This reduces  
computer time and may prevent instability problems in some cases. Either a  

two-dimensional or a quasi-two-dimensional (ref. 9) initial run may be used.  
Figure 5.4 shows an example of each type, together with a fully-relaxed,  
three dimensional run for the same case. Both of the two-dimensional methods  
display wake geometries very similar to the fully-relaxed, three-dimensional  

method. The fully-relaxed run does not extend as far downstream as the  

two-dimensional runs due to computer limitations.  

The three-dimensional relaxation process iswell behaved for all the  
three-pair wakes reviewed. Disturbances originating near the trailing edge  
propagate away at approximately mainstream speed (see Figure 5.5) leaving a  
stable vortex system whose transverse velocities are of order 10-5 or 10-6 ­

the limit of computer resolution. The vertical arrows in Figure 5.5 depict  
the downstream end of the converged region.  

Attempts were made to converge 4-, 5-, 6-, and 7-pair cases in the same  
manner as above, with decreasing degrees of success. However, all of these  
cases employed a swept trailing edge starting line which caused elements on  

adjacent vortices to be staggered relative to each other. It is believed  

that this destabilized the relaxation calculation.  
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5.4 Three-Pair Cases  

Certain three-pair wakes may be described as near-cyclic [see Figure  

5.6(a)], while in others [Figure 5.6(b)] the third vortex causes irregulari­

ties in the shorter wavelength which gives the overall motion a more transient  

nature. In such cases, there is, therefore, no prospect for using a space­

fixed analysis which uses reflection techniques based on the shortest wave­

length.  

In near-cyclic cases [Figure 5.6(a)], an attempt was made to simplify the  

problem by assuming that beyond the initial relaxation region, the third  

vortex remains straight* A space-fixed calculation at the shorter wavelength  

was then carried out with the full streamwise image system, as used previously  

for twin pairs. As for the corresponding aircraft-fixed case, the innermost  

vortices travelled together as they were convected downward and outward by  

the main flap vortex. However, a rapid spiraling then occurred which is un­

characteristic of the aircraft-fixed result. The straight-vortex approxima­

tion was therefore unsuccessful.  

Recognizing the inherent aircraft-fixed nature of the expected phenomena,  

the above data were scanned as if by an observer moving at aircraft speed.  

This produced improvements in some cases, but cyclic instabilities which  

occurred at frame passage frequency prevented useful results from being ob­

tained. However, deeper investigation suggested a hybrid aircraft-fixed/  

space-fixed calculation technique which appears promising. This will be  

described in Section 5.6.  

5.5 "Jumbo-Jet" and "Sawtooth" Cases  

The Boeing 747 runs outlined in Figure 5.1 were selected in the light  

of recent wind tunnel and flight wake hazard test experience at NASA concern­

ing the effect of removing the outer flap and using the inner flap alone to  

restructure the vortex wake, and concerning the effect of landing gear deploy­

ment on such results. In the present calculations the representation of the  

gear is via its estimated effect upon span load: this omits all viscous wake  

considerations. Nonetheless, the gear-related span-load changes are found to  

have a significant impact upon the vortex wake structure. Pre-runs, to  

identify convergence, merging, etc. (see Section 5.2), permitted simplifica­

tions to the distributions shown in the upper part of Figure 5.1 such that  

three-pair loading configurations could be used as depicted in the lower part  

of that figure. Three-dimensional relaxation of these three-pair configura­

tions to a steady state then produced the wake structures shown in Figure 5.7.  

The upper two cases of Figure 5.7 correspond to early flight tests which  

were carried out, gear-up, for full flaps and for inboard flaps only. Wider  

vortex dispersion is evident in the latter case, which should be beneficial.  

Lowering the gear reduced the strength of the (anti-lift) inboard flap vortex  

in both cases. With outer flaps present, lowering the gear caused a much  

less regular periodic near-wake solution. The reduction in inboard vortex  

*Though not fixed.  
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strength, due to the gear, also greatly reduced the tendency of the flap and  
tip vortices to spread apart. A more hazardous wake is therefore implied with  
the gear down. This corresponds to flight test observations.  

The results of Figure 5.7, and other "jumbo"-jet runs not reported here  
because of step-size problems, have not been extended to determine time-to­
converge. Two-dimensional extensions of the B747 runs have been made which  
indicate that convergence is occurring in the cases shown, but such runs can  
give no further information because curvature terms, which lead to convergence,  
are lacking.  

It is urged that the "jumbo"-jet demonstration runs started during the  
present study, are completed and compared with corresponding flight and wind  
tunnel test results. The use of the sliding-frame calculation method (see  
below) should make such studies more economical than was envisaged  
previously.  

5.6 The Sliding-Frame, Aircraft-Fixed Calculation Method  

In previous sections of this report, space-fixed and aircraft-fixed  
calculations have been regarded as quite separate approaches for solving the  
far vortex wake. However, a review of results, particularly the moving ob­
server, space-fixed study of Section 5.4, has suggested a hybrid method which  
is best regarded from an aircraft-fixed point of view.  

In Figure 5.5, the history of an aircraft-fixed three-dimensional relaxa­
tion is dominated by a disturbance wave which propagates downstream at approxi­

mately mainstream speed and leaves behind the desired steady solution. Let us  
define the wave propagation speed as S times aircraft speed. We may choose a  
time, in the aircraft-fixed calculation, at which direct wing influence is no  
longer felt at the position of the disturbance front: "TIME =20" is suitable  
(Figure 5.5). A calculation frame, stretching, say from Station 16 to  
Station 28, is now drawn around the disturbance front. If this frame is slid  
along the wake at a times mainstream speed, the disturbance front in Figure  
5.5 remains cefitered and converged wake is always contained in the left half  
of the frame. If suitable precautions are taken with conditions at the ends  
of the frame, particularly upstream, this provides an attractive and economical  

= basis for a wake solution. In fact, if 1 I, the method reduces to a space­
fixed calculation. The corresponding (S=I) program changes are trivial.  

Treatment of the downstream end of the frame presents little difficulty:  
a two-dimensional type of initial solution will clearly suffice, as for the  
aircraft fixed case. At the upstream end care must be taken both to ensure  
that a sufficient length of converged wake is included and to provide suffi­
ciently realistic upstream conditions that the converged wake within the box  
is not contaminated. Such questions could be resolved by comparison with  
existing cases run with the current aircraft-fixed algorithms.  

Since the program changes involved are minor, and test examples exist,  

the above modifications and checkout appear to be highly worthwhile.  
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6. CONCLUSIONS AND RECOMMENDATIONS  

A computer program has been developed which uses finite-element three­
dimensional relaxation methods to calculate the development of vortex wakes  
behind aircraft for a considerable downstream distance. The program is now  

operational at NASA-Ames. The inclusion of a self-induction term in the  
solution, dependent upon local curvature and vortex core radius, permits  
calculation of finite lifetimes for systems for which infinite life would be  

predicted two dimensionally. The present report describes the program to­
gether with single-pair, twin-pair, and multiple-pair studies carried out  
using it. Though "jumbo" aircraft wake examples are included, these have not  
been carried far enough for other than qualitative conclusions to be drawn.  

The wake studies have lead to the following conclusions:  

Single-Pair Wakes  

(1) There is a lower limit to the wavelengths at which the "Crow"-type  
instability can occur. Below this limit, self-induction effects cause the  
plane of the disturbance waves to rotate counter to the vortex direction.  

(2) Disturbance waves in a horizontal plane are several times more  
stable than the classic, 45-degree "Crow" case. Vertical and spiral waves  
are slightly more stable.  

Twin-Pair Wakes  

(3) There is an important distinction between single-and twin-pair  

vortex convergence at the center plane. The first is usually a space-fixed  
event, but the latter moves at aircraft speed.  

(4) The self-induction term causes the time taken for vortices to con­

verge at the center plane to be a strong function of wavelength (see Figure  
4.10). Either vortex can converge first (Figure 4.6).  

(5) In the limited twin-pair studies performed for constant CL/AR,  
time-to-converge increases with increasing flap span.  

(6) Choosing equal strengths for flap (for tIF >.333) and tip vortices  
maximizes the strength of the vortex which survives after one has converged  

at the center plane (see Figure 4.9).  

Multiple-Pair Wakes  

(7) Though space-fixed axial-imaging techniques can be used for single­

and twin-pair wakes, they are not applicable directly to multiple pairs.  
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­­­  ­­  ­­­  ­­­  ­­  ­­  ­­­­  ­­  ­­  ­­  ­­  ­­  ­­

Calculations must at least start in an aircraft-fixed coordinate system.  
Thereafter, a "sliding-frame" method is suggested which has potential for  
applying three-dimensional relaxation methods economically to the far wake.  
The method is very similar to a space-fixed calculation but is controlled  
differently (see Section 5.6).  

(8) Pilot studies of Boeing 747 configurations show correct qualitative  

response to removal of the outer flap and to gear deployment, as compared with  
wind tunnel and flight test experience (see Figure 5.7).  

Recommendations  

(1) More detailed studies should be undertaken of the separate effects  
of vortex core radius and relaxed wavelength on the time to attain center­
plane convergence in twin-pair cases. This should provide useful design  
guidance for low-hazard wakes.  

(2) Further time-to-converge, twin-pair parametric studies (see Section  

4.2) should be carried out, holding CL/AR constant for each of several maps  
like Figure 4.7a and 4.8.  

(3) The "sliding frame" calcultion method should be implemented and used  

to complete the present jumbo-jet studies.  

(4) More comprehensive studies should be made concerning wakes designed  
for early disruption, e.g. the "sawtooth" design. This requires more detailed  
aircraft fixed runs for near wake, including an improved rationale for vortex  
merging. If significant vortices then remain, the "sliding frame" method  

-- ­should­be  ­appl­ied  ,­­­­­­­­
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APPENDIX  

VORTEX LOOPING COMPUTER PROGRAM OPERATION  
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1. GENERAL PROGRAM OPERATION  

A computer program has been developed to apply the previous methods to  
multiple vortex pair instabilities. The program has been implemented on the  
U1106 computer and the MAC-16 mini-computer at Lockheed-Georgia and the IBM  
360-67 and the CDC-7600 computers at NASA-Ames.  

The program has the capability to analyze up to seven vortex pairs and  
up to ninety points per wavelength in the cyclic, space-fixed option and ninety  
points per vortex in the aircraft-fixed option. In the space-fixed option  
each point is perturbed at each time step and a new geometry is calculated for  
the next time step. Since the frame of reference is fixed in space, no veloc­
ity is imparted to the system except that induced on each point by the system.  
The calculations are continued until the vortex system becomes unstable.  

The aircraft-fixed option is more complex. An initial two-dimensional  
time dependent, space-fixed calculation is performed. Time is then converted  
to downstream distance to set up the initial geometry for a three-dimensional  
time relaxation. In the aircraft-fixed frame of reference the free stream  
velocity must be added to the induced velocities. The free stream velocity  
causes the points to move downstream. To keep the frame of reference fixed  
with the aircraft, the points must be reordered at each time step. Each  
point, N, at time, t, becomes the point, N+l, at time, t+At. The points on  

the wing are fixed with time, and the trailing edge point is used twice at  
t+At; once fixed on the wing and once shed downstream. The last downstream  
point is removed at each time step. The calculation continues until equi­
librium is reached. This normally requires that the number of time steps  
equal the number of points per vortex considered.  

2.  INPUT 

The general input parameters to the vortex looping program are:  

Spatial coordinates (x,y, z)  
Vortex strength (r)  
Semi-wavelength (X/2)  
Wave amplitude (a)  

Core radius (6)  

A description of the input parameters is given in Table A:1. All-variables  
used in the vortex looping program are normalized on wing semispan (b/2) and  
free stream velocity (U). If the subscript, s, denotes normalized value  
used in the program and the subscript, o, denotes dimensional values, then:  
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TABLE A-i. INPUT PARAMETERS  

IPRT Frequency of printout 

NCASE Number of cases to be run (I in current version) 

ITAPE Graphics or plotter option ( if desired) 

IU Output unit for graphics or plotter 

IW Output unit for printout 

IWR Printout option (1 if desired) 

IPRTA Frequency of output for graphics or plotter 

IBACK Backward march option (1 if desired) 

J Case number 

DELTM(J) Time increment 

RNCM(J) Reference Reynolds number 

IPM(J) Number of wavelengths considered 

IZLM(J) Number of points-per wavelength ­ must be even if 

IOP2M(J)=D. For aircraft-fixed or 2-D options 

IZLM( J)=1-

NPM(J) Number of vortex pairs 

MTIMIA(J) Number of time steps 

ICASM(J) Graphics case number (not used in current version) 

IOPTM(J) Input option 

0 Sinusoidal input 

I Point-by-point input 

-1 Spiral input 

IOP2M(J) Full/half wave option 
0 Half wave considered 

I Full wave considered 

TIMEM(J) Initial time 

DELTB( J) Time increment (= distance increment) for initial 2-D 

aircraft fixed calculation. DELTB(J) must equal 

DELTM(J)-

CBAR(J) Wing mean aerodynamic chord. 

MPTS(J) Number of time steps for initial aircraft fixed calcula­

tion. If MPTS(J)=0, then space fixed option is used. 

TITLE(IIJ) Title 
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TABLE A-I. INPUT PARAMETERS (Concluded) 

I Vortex pair number. For aircraft fixed calculations, 

vortices must be input from inboard to outboard. 

NPAM(I,  J)  Vortex reference number 

CIRCMC I,  J)  Vortex strength 

WVLM(I, J) Wavelength/2.0. Must be the same for all vortices. 

AMPXM(I,J) Amplitude of sinusoidal/spiral disturbance in x-direction 

AMPYM(I,J) Amplitude of sinusoidal/sprial disturbance in y-direction 

RCORM(I,  J)  Core radius-

SSM(I1J) Initial spanwise location of vortex 

HINM(IJ)  Initial vertical location of vortex 

PHASM(IJ,) Phase shift of disturbance. Must be the same for all 

vortices. 

N Point number for point-by-point input 

XIN(NI,J)  X location of N 

YIN(N,I,J)  Y  location of N 

ZIN(NI,J)  Z location of N 

RCOMI(N,I,J) Core radius of N 
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Xis =  xio/(b/2) 

rs = ro/(U b/2)  

Vis =  vio/(U.) 

ts = to(U./b/2)  

Xs = Xo/(b/2)  

as = ao/(b/2)  

6s = 60/(b/2)  

The input format is summarized in Table A-2. Note that x is the spanwise  

coordinate, y is the vertical coordinate, and z is the downstream coordinate.  

3. MAIN PROGRAM/SUBROUTINE FUNCTIONS  

The principal functions performed by the main program and each sub­
routine are:  

SUBROUTINE  FUNCTIONS  

Main Program 1. Case data input.  

2.  Initial geometry for one side of each vortex pair  
determined using sinusoidal or spiral distribution  

or point-by-point input.  

3.  Other parameters used in calculations determined  

(XiDUM, CXi =Fti, etc.).  

4.  Displacements and new geometry for each time step  

calculated.  

5.  Geometry at each time step output.  

PCOR  1. Induced velocities summed.  

2.  Element compression applied.  
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TABLE A-2. INPUT FORMAT 

Card Format Input Parameters 

1 914 IPRT, NCASE, ITAPE, IU, IW, IWR, IPRTA, 
IBACK 

2 2F10-O,7IW DELTM(J), RNCM(J), IPM(J), IZLM(J), NPM(J) 

MTIMM(J), !CASM(J), IOPTM(J), IOP2M(J) 

3 3F1O.O,Il TIMEM(J), DELTB(J), CBAR(J), MPTS(J) 

(If aircraft fixed calculations are not to be done, 
then MPTS(J) =0.) 

4 20A4 TITLE(II,J) 

If ZOFTM(J)=0 

5 I4,SF9­0 

­ ­ ­­

NPAM(IJ), CIRCM(I,J), WVLM(IJ), AtPXM(IJ), 

AMPYM(I,J), RCORM(IJ), SSM(IJ), PHASM(I,J),
HINM(IJ) 

-(Repeat-card 5-fore-rah-v&-tdadi.) ­ ­ ­

If IOPTM(J)=1 

5  iBF9.0 NPAM(IJ), CIRCM(I,J), WVLM(IJ) 

6 fF1O.O XIN(N,I,J), YIN(N,IrJ), ZIN(N,I,J), 

RCOMI(N,I,J) 

(Repeat card 6 for each point (N=1, INPI) on a 
single vortex pair (one side only).) 

(Note: Calculations are performed on the points 
N=2, INPI-2.) 

(Repeat cards 5 and 6 for each vortex pair.) 
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FAAVEL 1.  Induced velocities from each point determined.  

2.  Imaging techniques used to determine the effects of up  

and downstream points and the vortices shed from the  

other wing.  

1.  Local radius of curvature calculated. CURV  

2. Core radius at time, t, calculated.  

3. Self-induced velocity calculated.  

STAT 1.  Final geometry at end of backward march compared to  

initial geometry.  

4.  PROGRAM LISTING  

looping program as used  on the U1106 computer A listing of the vortex  

follows.  
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1 C PROGRAM MAIN(INPUTPOUTPUTPTA E5=INPUTTA6E6=OUTPUT TA0 E8rTAPEl) 
2 C MAIN PROG 
3  DIMENSION NPAM(7t1 )rCIRCM(7,i )PWVL'4(7t1 )pAMPXM(71 )p 

4 
5 

1 AMPYM(7t1 )?RCORM(7,t  )iS5M(7pl ),PHASM(7ti ),ICASM(1  )
2  MTIMM(1  )rOELTM(1  )PRNCM(1  )PIM(j )tIZL(1  )PNPM(1 

6 
7 

3 ,XIN(92,7ti ),YIN(92#7tl )pZIN(92pt1 )tRCPMI(92*7 1 
4 PIOPTM(1)PIOP2M(1),HINM(7,I)iTIMEM(),TITLE(20,1)TTL(20) 

8 5 tDELTB(1),MPTSi1),CAR(l) ...  -. 

9 DIMENSION X'(92,7,Y)(92p7)PZP(92,7),NPA(7)pWVLC7),AMPX(7TAMY(7) 

10 1_.RCORE()tSS(7)PSEIW7) 0 H(7)flHAS(7)PHIN(7) 
11 COM'ONX(92P7),Y(92p7)?Z(92,7)pU(92t7)PV(92P7)pW(92p7), 
12 1 XDUM(93,7)PYDUM(93?7)pZDUM(93p7)pCX(92,7)PCY-(92p7),CZ(92p7)p 
13 2 CIRC(7),ALMBDA(7),XO(92t7),YO(92p7),ZO(92p7),DELRM(92p7) 

14 
15 

5 YRCOM(92p7)I ..  ­

DATA 0 I/3.1415926/,QPI/.7855982/,Q0 I2/1.5707963/PZERO/O.O/P1I2/62 
16 .  $831852/ 
17 90 CONTINUE 
18 IR=5 
19 i20=6 
20 C IN0UT .. ­.. . 
21 READ(IR,106)IPRTNCASEtITA0 EIUtIWIWRIPRTAIBACK 
22 IF(IPRT.LT.0) GO TO 998 
23 DO 54,J=lrNCASE 
24 READ(IR 1OT)DELTM(J)RNCM(J)rIP(J)PIZLM(),NPM()MTI m-I(J)p 
25 1 ICASM(J)_rIOR1M(J)PIOP2M(J). 
26 READ(IRP120)TIMEM(J)tDELTB(J)PCBAR(J)nrMTS(J) 
27 READ(IRt302)(TITLE(IIJ),IIzl,20) 

28 NPRE=NPM(J) 

29 IF(IZLM(J).LE.1) 12D=1 
30 DO 54 I=IpNPRE 

31 IOPTT=IOPTM(J) 
32 IF(IOPTT.LE.O) GO TO 56 
33 READ(IR,10-3NAMA(IpJ)--CIRCM(iprJ-)r-WVLM(ir) ­ -...... 

­4­ ­­ ­­ ­­ iNPIIZL'v10(J)/2+I2­-
35 IF(IOP2M(J).GE.1) INPI=IZLM(J)+2 

36 IF(I2D.GE.1) INPI=I 
37 DO 57 K=, INPI 
38 57 READ(IR117)XIN(KtIJ),YIJ(KpIJ),ZIN(KIpJ)pRCOMI(KI'J) 
39 GO TO 54 
460 56READ(IR103)NPAM(ItJ)PCIRC(I1J)pWVL4(XpJ),AMPX4(IJ), 
4 1 AMOY (IpJ)PRCORM(IpJ)iSSM(IpJ),0 HASM(IpJ),HINM(IJ) 
42 54 CONTINUE 
,143 DO 5 J;1NCASE 
44 C INITIALCOND. FOR EACH CASE 
45 DO 88 11i20 
46 88 TTL(I)=TITLE(IpJ) 
47 DELTZ=O.0 
48 120=0 

49 MTIME='ATIMl-(J) 

50 IAC=O q 
51 JACO 
52 -A~IF(MPTS(J).GE.1) IAC1I 
53 IF(IAC.GE.i) JAC=- Q1ALj7; 
54 IF(IAC.GE.±) MTIME=MPTS(J) 
55 XMAC=CBAR(J) 
56 ICASE±ICASM(J) 
57 DELT=DELTM(J) 
58 IF(IAC.GE.1) DELT=DELTB(J) 
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59 BNC=RNCA(d)  
60 IP=IMM()  
61 6 IZLINK=IZLM(J)  

62 IF(IZLINK.LE.1) 12D=l  

63 NOAIR=NPM(J)  

64 IOPT=IOPTM(J)  

65 I002=IOP2M(J)  

66 DO 55 I=IN 0 AIR  

67 NPA(I)ZNoAM(IpU)  

68 IF(IOPT.L.E.0) GO TO 58  

69 INP=IZLINK/2+2  

70 IF(IOP2.GE.1) IN0 :IZLINK+2  

71 IF(I2D.GEo1) IN0=1  

72 00 97 K=ItINP  

73 X(KI)=XIN(KIrJ)  
74 Y(KI)=YIN(KPId)  

75 Z(KI)=ZIN(KpItJ)­

76 RCOM(KI)=RCOMI(KrIJ)  

77 XO(KI)=XIN(K4;pJ)  

78 YO(KtI)=YIN(KpItJ)  

79 97 ZO(KrI)ZZIN(KIrJ)  

80 58 CONTINUE  

81 WVL(I)=WVLM(IJ)  

82 IFCIOPT.GT.0) GO TO 55  

83 AMPX(I)=A4PXM(IJ)  
84 AMPY(I)=AMPYM(ItJ)  

85 RCORE(I)=RCORM(IJ)  
86 SS(I)=SS(IJ)L  
87 PHASCI)=PHASM(IpJ)  

83 HIN(I)=HINM(IJ)  

89 55 CIRC(I)=CIRCM(IJ)  

90 RNCRNC*10000:.  

91 IMARCH=O  

92 IF(IWR.LE.O)GO TO 61  

93 WRITE(IWr303)  

94 WRITE(1Wt302)TTL  
95 WRITE(IWt08)  

96 IFSDELT)999t999,60  

97 60 WRITE(IW,1O9)DELTRNCPIIZLINKPNPAIR  

98 IFCIAC.LE.0) GO TO 26  

99 WRITE(IW,305)XMAC  

100 26 IF(IOPT.LE.0) GO-TO 67  

101 WRITE(IWPrl8)  

102 GO TO 68  

103 67 WRITE(IWP114)  
104 68 CONTINUE  

105 DO 52 I=ItN 0 AIR  

106 IF(IOPT.LE.0) GO TO 59  

107 WRITE(IW,104)ICIRC(I)  

108 GO TO 52  

109 59 WRITE(IWIO4)ICIRC(I),WVL(I),A'4
0 X(I),AM4PY(I)vRCORE(I)  

110 I ,SS(I)t0 HAS(I)  
ill 52 CONTINUE  

112 61 RIZL=IZLINK  

1±5 ITE=O  

114 IST=O 

115  C  INITIAIVORTEX GEOMETRY ORIGINAfl  PAGE  1S 
116 DO 66 I=lINPAIR OF  POOR  QUAIM 
117 IF(IOP2)70,70t71 
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118 71 IHALFzIZLINK  
119 GO TO 72 _  
120 70 iHALF=zZlINK/2  

121 72 IF(IHALF-90) iaiO,11  
122 11 WRITE(IWPlO) IZLINK  
123 GOTO 999 -

124 10 IHALFP=,IHALF+2  
125 IF(I2.GE.) IHALFP=1  
126 IH29;IUALFP+1  
127 IH1I=iHALF+1  
128 iBR=5(2+IH1)/2  
129 IF(I2D.GE.1) GO TO 82  
130 IF(IOPT.LE, ),.GO TO 63  
131 00,64 N=2,IHALFP  
132 NMN-
133 XDUMCN,I)=0.50*(X(NI)+X(NpI))  
134 YDUM(NI)Z=0.50*(Y(NtI)+Y(NMtI))  
135 64 ZOUM(NI)zO.50*(ZCN,I)+Z(NMI))  
136 00 65 N2tIH1  
137 NP=N+1 h  

138 CX(N,I)CIRC(t)*(XDUMCN,I)-XDUM(N=,I)  
139 CY(N,I)=CIRC()*(YOUN(NI)-YDUC(NPI))  
140 65 CZ(NPI)=CIRC(J*(ZDUN(NI)-ZOUI(NPPI))  
141 CX(1i,I=-CX2,I)  
142 CY(1,I):-CY(2,I)  
143 CZ(1,I)=CZ(2,I)  
144 CX(IHALFPI)=-CX(IHX,I)  
145 CY(IHALFPi)=-CY(IHtI)  
146 CZ(IHALFPrI)=CZ(IH,I)  ­

147 ALMBDA(I)=2.0*(ZDUM(IHALFPI)-ZUI(C2,I))  
148 IF(IOP2.GE.1) ALMBDA(I)=ALMBDA(I)/2.0  
149 GO TO 66  
150 63 AM0=AM03Y(I)  
151 ALMBDA(I)=2,0WVL(I)  

153  ZLINK=ALMBDA(I)/RIZL 

154 HZLINK=ZLINK/2.0 
155 SEMIW(!)=SS(I) 
156 ZDUM(1,I)=-AL4BDA(i)/2.6+PH(I)-ZLINK 
157 IF(IO 0 TtLT.0) GO TO 18 
158 YDUM(1,I)=HIN(I)+Am*COS(PI2*ZDUM(iI)/ALMODA(I)) 
159 GO TO19  
160 18 YDUM(I,I)=HIN(I)+AMP*SIN(PI2*ZDOM(1,I)/ALBDA(I))  
161 19 XDUM(1PI)=SEMW(I)+AMPX(I)*COS(012ZDUM(1pI)/ALMSBOA(I))  
162 DO 12 N=2?IHPP  
165  NM=N­1 
164 ZDUM(NI)=ZDM(Nt4,I)+ZLINK 
165 IF(IOOT.LT.0) GO TO 27 
166 YDUM(NI)=HIN(I)+AM0 *COS(PI2*ZDUM(NI)/ALMSDA(I)) 
167 , GOTO  28  . 
168 27 YDUM(NI)=HIN(I)+AMP*SIN(I2*ZDM(N,I)/ALBOA(I)) 
169 .28 XDUM (NI)=SEMIIW(1)+AAPX(I)*COS(P12*ZDUM(NPI)/AL48DA(I)  
170 Z(NA4, I)=O*5O*(ZDUM(NM I)+ZDUM(NPI))  
171 IF(IOT.LT.0) GO TO 29  
172 Y(NMI)=HIN(I)+AMP*GOS(0=I2*Z(NM,I)/ALM0DA(i))  
173  'O TO 36  
174 29 Y(NM,I)=HIN(I)+AMP*SIN(0 12*Z(NMtI)/ALBDA(I))  
175 36 X(NMpI)=SE'IW(I)+AMCX(I)*COS(  1 D2*Z(NMuI)/ALMBDA(I))  
176 XO(NM,  I)  X(NM,  I)  

38  
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177  YO(NM t I)Y (N'  If) 
178  ZO(NM,  I)=Z(NMI) 
179 CX(NM, I) CIRC(I) *(XOUM(NWP I)-XDM(N,)  
180 CY(NMI)=CIRC(I)(YDUM(N,I)-YDUM:(N I))  
181 12 CZ(NMr)IVCIRC(I)4(ZDUM(NMtI)-ZDUM(NI))  

182 GO TO 6G  
183 82 CX(lpI)=.  
184 CY(IpI)=O.  

185 CZ(1,I)=-CIRC(I)  
186 ALMBDA(I)z2.0*WVL(I)  
187 66 CONTINUE  
188 IF(I2D.GE.1) GO TO 87  
189 IF(IO02.GE.1) DELTZ=(Z(IH1,1)+Z(2,1))/2.0  
190 DELTZO=DELTZ  
191 87 CONTINUE  
192 WRITE(IWr111)  
193 IOTI1O  

194 I9TArO.  
195 TIME=TIMEM(J).  
196 DO 25 I=1,NAIR  
197 DO 25 N71,IHALFP 
198 Xci(N4p  )=X(Nt I) 

199 YP(NpI)=Y(NI) 
200 Z93(NI)=Z(NI) 

201 IF(IOPT.GT.6) GOTO 25 
202 RCOM(NrI)=RCORE(I) 

203 25 DELRM(NpI)=0.0 
204 XBAR=O.0 
205 YBAR'O.O. 
206 DELTYB=O.0 
207 23 CONTINUE . 
208 IF(IAC.LE.O).GO TO 
209 FAC=0.75*XMAC/2.0 
210 FACI=FAC . 
211  00  80 I=%,NmAIR 
212 KK=1 
213 RCOMI(lIpJ)=RCOM(lI) 
214 YIN(1,IpJ}=YO(1,I) 
215  ZIN(ltIrJ)=Z(LI-2.0*FAC1 
216 IF(I.EO.X),GO TO..81 
217 XIN(lIrd)=XO($?I-1) 
218 GO TO 80 

219 81 XIN(iprpj)=.0 -

220 80 WRITE(IWv112KXIIN(,IJ)YIN(1IJ)PZIN(1,IJ)  
221 DO 3 I=ItNPAIR  
222 DO 3  K=2,3  

223 RCOMI(KrI,J)=RCOM(lpI)  
224 XIN(K,Ipu)zXO(iI)  

226  ZIN(KIrJ)=Z0(1,)-FAG-FAC1. 
227 WRITE(IW,112)KXIN(KtIrJ)iYIN(KPIJ),ZIN(KIJ) 

228 3 FAC=-FAC  

229  2  CONTINUE 
250 D0 50  IT=IMTIME 
231 C OUT0UT OF WAVE GEOMETRY 
232 IF(IAC.GE.1) K=IT+3 

233 IPCO=O 
234 IF(IMARCH.GE.1)GO TO 30  
235 IF(IWR.LE.O)GO TO 20  

ORIuIy~  PAGWW 
OF POORTQU  'g"

QT"AU* 
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236 IF(IPTI.GE IPRT)ICTI=O 

237 XBARO=XBAR 

38 YBARO;YBAR 
239 GXTZO,0 
240 GYTZ-O. 
241 GT:O.O. 
242 DO 79 IZ=1NPAIR 
243 DO 79 NN=2,IHl 
244 N=NN---------­
245 IF(I2D.GE.1) N=N1-t.. 
246 GXT GXT+CZ(N,I)*X(NI) 
247 ­ GYT=GYT+CZ(I)*Y(NI) 

248 79 GT=GT+CZ(NI) 
249 XBAR=GXT/GT 
250 YBAR=GYT/GT 
251 VDR=(YBAR-YBARQ)/DELT­
252 DELTYB=DELTYBtVDR*DELT 
253 IF(IAC.GE.1) GO TO 7 
254 WRITECIW,113)TIME 
255 7 IF(IPTI.GE.I),,GO.TO 20 
256 1F(IAC.GE.1) GO TO 8 
257 WRITECIW?304)XBARtYBARVDRPDELTYB 
258 8 CONTINUE 

259 DO 78 IF1,NPAIR 
260 DO78 N=1tIHALFP 
261 U(NrI)(X(NFI)-XQ(NpI))/DELT 
262 V(NI)=(Y(NPI)-YP(NI))/DELT 

263 78 W(NpI)=(Z(NI)-ZP(NtI))/DELT 
264 DO 51 I=lNPAIR 
265 IF(i20.GE.1) ZDU&(1,I)=O. 
266 IF{IAC.GE.1) GO TO 9 
267 WRITE(IWiO5)IPDELTZ 
268 9 CONTINUE 
269 DO 51 N.I=1rIHALF 

­2­70  ­ ­­­­­­­ N  NN+  -
271 IFI2D.GE.1) N=NN 
272 IF(IAC.LE.)  .GO TO-13 
273 IF(IT.LE.i) GO TO 51 
274 K0='K-1 
275 WRITE(IWP12l)KPXIN(KPIPJ),YIN(KpiJ),ZIN(K PipJ), 
276 1 U(NtI)V(N#I)pW(NI) 
277 GOTO 51 
278 13 WRITE(IWt112)NNX(NPI)pY(N%,I)pZ(NI)p,(NI),V(N,I),w(NI) 

279 51 CONTINUE _ 
280 20 IPTI=IDTI+1 
281 IF(ITAPE.LE.a),GO TO 30 
282 IF(I2DGE.i) GO TO 30 
283 IF(ITEGE.)GO TO 17 
284 00 41 1=rNPAIR 
285 DO 41 NN=:1IHALF 
286 N=N']+1 
287 IXN=X(NI) 
288 IYN=Y(NI) 
289 IZN=Z(NI) 
290 IF(IASS(IXN).GE.100 ) GO TO 42 
291 IF(IASS(IYN).GE.lO0 ) GO TO 42 
292 IF(IA8S(IZN).GE.O0o ) GO TO 42 
293 GO TO 41 
294  42 ITE=l 

40 



295 WRITE(IW,115) 
296 GO T017 
297 41 CONTINUE 
298 
299 

IF(IPTA.GE.IRTA)I:TA=O 

IF(I0 TA.GE.1)GO TO 17 
300 IF(IT.GT.1) GO TO 86 
301 IF(TIME.GTO.01) GO TO 1 
302 86 CONTINUE 
303 DO 15 I=1,N9 AIR 

504 DO 15 NN=1IHALF 
305 N=NN+1 

,306 YTAP=Y(NI)-DELTYB 

307 IF(JAC.GE.1) YTAP=Y(NI) 
308 
309 

ZTAP=Z(NI)-OELTZO 

15 WRITE(IU,3O0)X(NI)PYTAmtZTA0 

310 17 IPTA=IOTA+1 
311 30 IF(IT.GE.MTIME) GO TO 50 
312 DO 43 I=INPAIR 
313 DO 43 NN=,IHALF 
314 N=N+l 
315 IF(I2D.GE.1) N&NN 
316 IF(ABS(X(NI))-100000)4445p45 
317 44 IF(ABS(Y(NtI))-1O0000o.)46,45t45 
318 46 IF(ABS(Z(NI))-1O00000.)43r45i45 
319 45 IST=l 
20 WRITE(IW,116) 
321 GO TO 48 
322 43 CONTINUE 
323 C -CALCULATION OF INDUCED VELOCITIES 

'324 D 40 I;1,N6AIR 

325 DO 40 NN=2piH1 
326 NC=NN 
327 N=NN 

328 i(I20.GE.1) NNN-1 

329 
330 

CALL PCOR(NpIrIPCOIPpIBRNPAIRIHIIHALFPpDELTIWIStIOPZ, 
1-JACtXMAC) 

331 IF(IST.GE.i) GO TO 48 
332 IF(I2DA E.1) GO TO 83 
333 IF(JAC.GE,1) W(NrI)=W(NI)+1.0 
334 IF(JAC.LE.0) GO TO 69 
335 IF(N.CE.3) GO TO 83 
336 69 CONTINUE 

337 CALL CURY(NCDELTtIHALFtIPCOITtRN4CtIUCVCWCIWIST) 
338 IF(IST.GE.I) 60 TO 48 
339 GOTO 84 
340 83 UC=O. 
341 VC=O. 
342 WCZO. . 

343 84 U(NpI) U(NI)+UC 
344 V(N,I):V(NpI)+VC 
345 
346 

W(N,I)=W(NI)+WC
40 CONTINUE 

347 C MOD. OF-INDUCED VEL. SO THAT VEL ALONG VORTEX 0 

348 IF(JAC.LE.O)WGO TO 96 
349 

350 

IF(IAC.GE.1) GO TO 96 

DO I I=IN 0 AIR 
351 DO 1 NZltIH1 
352 IF(N.LE.2) GO TO 93 

353 RX=XDUM14(N+j1)  I­XDUM (NtI) 



354  
355  
356  
357  

358  
359  
360  

361  
362  
363  
364  
365  

366  
367  

368  
369  
370  
371  

372  

374  
376  

377  
378  
379  
380  
381  

382  

383  
384  

385  
386 
387 
388 ­­­­­

389  
390  

391  

392  

393  

394  
395  
396  

397  
398  
399  

400  
401  
402  
403  
404  
405  
406  
407  
408- 

409  
410  
411  
412  
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RY=YDUrA(N'+iI)-YDM(NtPI  
RZ=ZDUM(N+II)-ZDUM(NI)  
RSQ=R*RY+RZ*RZ  
R =SQRT(R0 SQ)  

RS-=RoSQ+RX*RX  
R=SgRT(RSQ)  

AL31zRX/R  

A052FRY/R  
AL33=RZ/R  
AL21=0o.0- 
AL22=RZ/RP  
AL23=-YtRP  

$IGNR-ABS(RZ)  
AL1=SIGN*RP/R  

AL~2?-SiGU* (RX*RY)/(R*RP)  
AL13: -SI9N* (RX*BWR*RPX.  
UP=AL1*(NPt)4-L12*V(N,.I)+ALt3*WCU4PI)  
V°:AL21*U(N, I)+L22*V(NI)+ALZ3*WCPI)  

WP=AL31*U(NI)+AL32*V(NI)+AL33*W(NpI)  

UCNpI)=ALi1*UD+AL21*VP+AL3*WP  
WCNtI)=AL13*UP+AL23*VP+AL33*W

0 P  

IFCN.GE.3) GO tO i  
93 UNt)=O.0  

VCNi)=0.O  
W(N,I)=O.O  

1 CONTINUE  

96 CONTINUE  

DO 53 I=NPAIR  
IF(I2D.GE,) GO TO 75  

IF(iP2)73t73q74  
73 U(1,I)=U(2,I)  

V(lpI)=V(2,I)  
-W  -- )-W,-- - - ---- 

U(IHALFPI)FU(IHlI) 
V(IHALF ,I)V(lI lkfi  

W(IHALFPI)=-W(IHII)  

0 TOh 7  

74  IF(JACGE.1) GO TO 95  

U(IpI):U(IHII)  
V(C,I)=V(IHII)  
W(li)-W(iHlPI)  

U(HALFPt)=U(2,I)  

V(IHALFPI)=V(2,i)  
W(IHALF pt)=W(2,I)  

Goto 75 .  .­ *  

95  U(IHALFPtI)F2.0*U(IHII)-U(IH-II)  
MC IHALF~t I)';2.a*V( Il )-V( ZHI,-lt I)  
W(IHALFr',I)=2.0*W(IHIl)-W(iHI-rl,)  

75 CONTINUE­
IF(I.EQ.1) IPCO=IPCO+1 

- C -CALCULATION OF VORTEX GEOMETRY 

­ IF(IPCO-1)32t32p33 
32 DO 31:N=IIHALFP  

XR( Ni)FX(NtI)  
YP(N,I)=Y(NPI)  
ZP(NI)=Z(N,I)  
X(NI)=X0 (NpI)+U(NI)*DELT  

http:IF(I2D.GE


­ ­ ­ I) -OL413  13 ~Y(NI)zYP(Ni)+V(Np4*DL 

414 31 Z(NpI)=ZP(NpI)+W(NpI)*DELT  

415 GO TO 35, -,  

416 33 DO 34 N=IIHALFP  

417 X(NI)=.5*(XP(NI)+X(NI)+U(N#I)*DELT)  

418 Y(NrI)=0.5*(Y0 (Nt I)+Y(NI)+V(NI)*DELT)  

419 34 Z(NJI)O.5*(Z(N T)+Z(N I)I(NpI)*DELT)  

420 IF(JAC.LE.0) GO TO 4  

42 IF(IAC.GE.1)G TO 38  

422 DO 14N=LPIHALF  
423 NDEFIHALFo-N+1 N  

424 IF(iAARCH.GE.1) NDE N  

425 F(NDE.E.2) GO TO4  

426 IDPA1  

427 IF(IMARCH.GE.1) IDP=­
428 X(NDE+IDPI)=X(NDEPI)  

429 ­ Y(NDE+IDPPI)=Y(NDEPI) 

430 14 Z(NDE+IDI)(NDErI)  

431 4 CONTINUE  

432 IFFJAC.LE.O) GO TO 38  

433 IDO 39N=l,3  

434 X(NrI)zX0 (NpI)  
435 Y(NI)=Y(N,I)  

436 39 Z(NvI)2--70 (NpI)  
437- IF(IMARCH.LE.O) ,GQ TO 38  

438 X(IHALFPpI)=X(IHALFPrI) 

439 Y(IHALFrI)=Y?(IHALFPI) 

440 Z(IHALFPI)=Zm(IHALFPtI) 

441 38 CONTINUE -

442 IF(;AC.LE.0),GO TO 35 

443 IF(IMARCH.E.1) ,GO TO 35 

444 XLN(kIiJ)FX(1rI) 

445 YIN(KIJ)=Y(1,I)  
446 ZIN(KIpJ)=ZIN.(K-IpjtJ)+DELT  

447 RCOMI(KIJ)=RCOM(II)  

448 35 CONTINUE  

449 IF(I2D.GE.1) GO TO.53  

450 DELTZ=(Z(IHII)+Z(2,If)/2.0  
451 IF(IOP2.LT.1) DELTZ=O.0  

452 IF(JAC.LE.O) Z(,I)=Z(I,I)-DELTZ  
453 DO 47-N=2,IHALFP  

454 NMZN-1 1 

455 IF(JAC.LE.0) Z(NI)=Z(NI)-DELTZ  

456 XDOUM(,NtI).50*(X(NI)+X(N'4,))  

457 YDUM(N,I)=O.50*(Y(N,I)+Y(NM,I)  
458 47 ZDUtA(N,I)=0.50*(Z(NrI)+Z(NMIt))  
459 DO 49 N=2,1HI  

460 NP=N+1  

461 CX(N,I)=CIRC(I)*(XDUM4(N,I)-XDUM(UPP) 
)  

462 CY(NI)=CIRC(I)*(YDUM(NI)-YDUM(NPpi))  
0 463 49 CZ(NrI)=CIRC(I)*(ZDUA(NI)-ZDUM(N I)) ORIGINAL PAGEIS 

464 53 CONTINUE-t O Q U A L MO 0  

465 IF(IC0.LE.1)GO TO 30  

466 TIME=TIME+0ELT  

467 50 CONTINUE  

468 IF(IAC.GE.1) GO TO 92  

469 DO 85 I=ipNPAIR  

470 00 85 N1I,IUALFP ,  

471 85 WRITE(IWllg)INPX(NI),Y(NI)Z(NtI)PRCOM(NI)  
43  



472 92 CONTINUE 
4t3 48 CONTINUE 
474 99 IF(IWR.LE.O)oGO TO 98 
475 WRITE(1WP301) 
476 98 ;F(IBACK.LE.O)GO TO 21 
477 
478 

;F(iST.GE.Z) GOT021_ 
IF(IMAICH.LE.O)GO TO 22 

479 WkiTE(CIW,13)TIME 
480 WRITE(IW!202), 
481 DO 24.I=PNPAIR 
482 (AM=0.O 
485 XG4=1.o 
484  WRITE(IW203)I 
485 D 24 N=2,IHI. 
486 
487 

24 CALL STAT(N,I,IHIXAMXGM,IW) 
@O.TO.21 

488 22 IMARCH1= 
489 DELTDELT 
490 IPTI=IPTI-1 
491 GO TQO23 
492 2f1 IF(IAC.LE.o) GO to 
493 IAC=O­
494 IZLM(U=MTIME 
495 I2D=. 
496 MTIME=MTIMM(J) 
497 0ELT=OELTM(J) 
498 GO T96 
499 5 CONTINUE 

500 
501 

§99 GO.TQ-90_ 
101 FORMAT(2OA4) 

502 102 fORMAT(23),., 
503 103 FORMAT(I4,SF9.0) 
504 104 FORMAT(I3PEl.4). 
505

.5O6­ -.... ­

105 FORMAT(iX,7HIPAIR =,14,3X,7HDELTZ  Ei.4t­-106 -FORMA-T(-gI i 

507 
508 

lOT FORMAT(2F1.OTI7 ) ., 

108 FORMAT(/pOX,4HOELTllX,5HRNREFSX,2HIQ,3X,3HIZLt2XSHN0 AIR) 
509 109 FORMAT(3Xp2(2X,Ei4.6),5(2XtI4)) 
510 110 FORM4AT(C(/),82U**DIAQNOSTIC***- --IZLINK MUST BE LESS THAN OR EQU 
511 ­ SAL TO 40. THE INPUT VALUE WAS (CI41H)) 
512 
513 

Ill FORMAT(3(/)5X1HN4Xt4HX(N)SXIHY(N)h8X,4HZ(N),8Xt 
i4HU(N),8Xp4HV(N),8XpqHW(N)) 

514 
515 

112 FORMAT(I,I46,(,1XEI.4)) 
113 EORMAT(3X,6HTIhEF9.3). . . 

516 
517 
518 

114FORMAT(/p2Xpl-Ip2X,4HCIRCp8X,3HWVL,7Xp4HAMRX,7X,4HAMPYp 
1 1XSHRCOREt5XP1OHSPAN.4_LPC.1X1OHDEL., PHASE) 
115 FORMAT(30H NUMBER TOO LARGE EOR .IAG TADE) 

519 116 FORMAT(31H NUMBER TOO LARGE FOR CONT CALC) 
520 117 FORMAT(4F1O.0) 
521 118 FORMAT(/2Xp5HIPAIR,5X.HCiRC) 
522 119 FORMAT(2I4pE13.6) 
525 120 FORMAT(5F1O.OPI4) 
524 262 FORMAT(2X?1HN,5X,2HXF,YX,2HYF,9X,2HZF,9X,2HDX,9X,2HDYPYX,2HDZ,SX, 
525 12HDR) 
526 203 FORMAT(1Xp7HNPAIR =vi4) 
527 300 FORMAT(3FO.4) 
528 301 FORMAT(IH1) 
529 302 FORMAT(20A4) 
530 303 FORMAT(uHl) 

­ 44 



531 304 FORAT(2XP4HXCG=tEl1.4,6H YCGZ,E11.4p9H VDRIFT=,E11.4,  

532 -.17H DYCG=zE11.q)  

533 505 FORMAT(2Xt5HXMAC=F1O.4)  
53L  998 CONTINUE  

535 STO0  

536 END  
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1 C PREDICTOR ­- ORETki­JTPI  ' 

2 ­ SUBROUTINE PCOR(NIIPCOpIPIBRNPAIRpIH1,IHALFPPDELTIWISTPIO 

3 1 JACPXMAC) ­

4 DIMENSIONXBAR(7)PYBAR(7)tZBMI(7)TZBPL(7)eBMI2(7)tZBPL2(7) 

5 COMMON X(92,7)PY(92t7),Z(92,7)PU(921T)PV(9217)PW(92t7)t 

6  iDXDUM(93p7),YDUM(93v7)eZDUM(9?71'CX(92,t7),CY(92&,7)tCZ(92p7), 
7 2 CIRC(7),ALMBDA(7),XO(92,7),Y0(92,T),Z0(92,7)tDELRM(92t7) 
8 3 iRCOM(2t7 
9 DATA P14/12.566370/ 

i.0 xI3=Ip 

h IF(IHALFP.LE.1) GO TO 1 
12 DO 5 L=lrNPAIR 
13 IF(IO.GE.i) GO-TO 6 

14 
15 

XBAR(L)-(XDUM(2,L)+XDUM(IHLFOPL))/2.0 
YBAR(L)=(YDUM(2L)tYDUM(iHALFPPL))/2.0 

16 ZBMI(L)z-XIP*ALMBDA(L)/2.0 

17 ZB0L(L)=(XI-i.0O)*ALMBDA(L)/2.0 
18 GO TO 5, ,, 

19 6 XBAR(L)=(XOUM(2,L)+bO( BR+Z.L))/.p 

20 YBAR(L)=(YIUM(2pL)+YDUM(IBR+1tL))/2.0 
21 IF(JAC.LE.Q) qOoTO,13 

22, XBAR(U)=XDym(HALFPL) 
23 YBAR(L)=YDUM(IHALFPPL) 
24 13 ZBMI(L)=-(XIPI-.O)*ALMBOA(L) 

25 ZBnL(L)=(XIP:I.5)*AL BDAfA(). 

26 2BM12(L)'-(XIO-1.5)*ALMBDA(L) 
27 ZBPL2(L),(XI6-1.0)*ALMDA(L) 

28 IF(JAC.LE.O) GO TO 5 
29 2BM12(L)"=Z(2,L)-6.3t5*XMAC 
30 ZBPL2(L)=ZDUM(IHALFPL) 
31 5 CONTINUE 
32 12 CONTINUE 
33553VSLZ USL=O ­­O. 

35 WSL=O. 

36 DO 11 dzlNPAIR 
37 DO ±0 LLZ2,IH1 
38 L=LL I I 
39 IF(IHALFP.LE.1)-L=LL-j 

40 CALL FAAyEL(NI,UPLP IPULVLWLIBRIHALFtIW,IST, IO) 

41 OSL=USL+UL 
42 VSL=VSL+VL 

43 10 WSL-WSLtWL ­

44 IF(IHALFP.LE.)-,GOTO 11 

45 IF(Ip.LE.O),GP TO 1_ 
46 IF(JAC.GE.1) GO TO 14 

47 IF(N.CE.IBR) GO TO 1 
48 14 ZPL=ZBPL2(J) 

49 ZMI=ZBMI2(J)
GO TO 2 

51 1 ZPL=ZBPL(J) 

52 ZMI=ZBMI(9) 
53 
54 

2 DXB=$BAR(J)-X(NjI) 
DYB=YBARJ)-Y(NI) 

-55 HSQ=DXB*DXB+DYB*DYB 

56 H=SQRT(HSQ) 
­ 57 
58 

DXBI=-XB-AR(J)-X(NtI) 
DYBI=DYB 

46 



59 HSQI=DXB1*DXBI+DY81*DYB1 
60 Hl=SGRT(HSr1)  

61 DZr=ZPL-Z(NpI)  
62 DZMZ'4I-Z(Np I)  

63 IF(HSQ-.0O1)3r4t4 
64 3 VEL=O.0 
65 GO TO  7 
66 4  COSP=DZP/SQRT(DZO*DZP+HSQ) 
67 COSM=DZM/SGRT DZM*DZAM4HSQ) 
68 Ir(JAC4 GE.I) COSM=-1.0 
69 VEL--CIRC.J)*(2.0+(COSM-COSP))/(PI4*H) 

70 7 IF(H5Q1-:0001)8,9,9 
71 8 VELI=0.0 
72 GO iO 15 

73 9 COSPI=D2P/SQRT(ZDDZDm+HS1) 
74 COS41=DtA/SGRT(DZ *DZM+HSOl) 
75 IF(qAC.GE.1) COSMi=-1. 0. 
t6 VEL1=CIRC(J)*(2.D+(COSM1-COSPi))/(PI4*H1) 
77 15 IF(HSQ-O.0$)16p7u17 
78 16 COSAFi.0 
79 SINA=1.0 
80 GO TO 18 
81 17 COSA=DXB/H 

82 SINAZDYB/H 
83 18 IF(HSQi­.O001)19,26,20 
84  19  COSAil.o 
85 SINA1=1.0 
86 GO TO 21 
87 20 COSA1ZDXBi/H 
88 SINA1=DYB/H1.. 
89 21 USL=USL-VEL*SINA-VELI*SINAI 

90 ­ ySLV=SL+VEL*COSA+VELi*COSA! 
91 11 CONTINUE 
92 U(NI)=USL 
93 V(NIV=VSL 
94 W(N,I)=WSL 

95 RETURN 

96 END 
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1 C INDUCED VELOCITY SUBROUTINE  

2 SUBROOTINE:FAAVEL(Npiii2PIiMMA$PUSYSWSPIBRIHALFPPIWISTIOP2)  
3 COMMON X(92,7)PY(92?7),2(92P7),U(92P7)hV(92t7)PW(92P7)! '  

4 1D(DUM(93,7),YDUM(93,7)tZOUM(93,7)PDCX(SZP7)hDCY(9217)!DcZ(92?7)t  
5 2 CIRC(7),ALMBDA(7),XQ(927)?YO(927)PZO(927)iDELRM(92,7)  
6 3 iRCOM!927)  
7 DATA PI/3.1415926/,PI4/12.566370/  

8 Zn=Z(I,12)  
-9 ZNIZ,(N,I1)  
10 12=1.6  
11  
12 ICD=O.  
13 US=O,O 
1ill  VSZO.O  

15 ws=o.o  

16  C  M=,  MMAX  LQOP  PI,$UP  S  JCCESSIyVEUALF­WAVES..  
17  C  EFFECTS OF BASIC YORTICIES PLUS  REFLECTIONS IN THE  
18  C  OTHR.T REE QUADRANTS  
19  CXDCX(;,4?)  
20  PYFDCY(TT2) 
21 CZDpC?(I,I)  

22 XkBATIX(I,I2)-X(N,I1)  
23 yR6Ti=Y(ItI2)-Y(NvI1)  
24 )sAT2=-X(IpI?'X(NP~l) 
25 yR T2=-Y(,I2 7y(NII)  

26 XR1S=XRATI*XRATI  
27 YRIS'YRAT1*YRAti  
28 XR2S=XRAT2*XRAt2  
29 YR2S=YRAT2*YRAT2  
30 O0.990 m=lNM4AX  
31 IM=MMAX-M  
52 UE=O.O  
53  VE=O .O  ...........  

__4­­ ­­ ­­ ­­ ­­­ WE­.0 
35 IF(MMA.E.1)GOTO  50 
36 IF((I-M)*IM4)46010,20 
57 10 IF(IM) 50P150 

38 20 WRITE(IW,200) 
39 GO TO 999 

40 1 IF(10P2)6t6r7 
41 6 ICD~i 
42 90 TO 40 
43 7 IF(GT.IBR) GO TO 8 
44 ICDfl 
45 IF(I.LE.IBR) GO TO 32 
46  GO7o 4o 
47 8 IABl  

48 IF(I.GT,IBR) §0 TO 32  

49 40 IF(iOP2.GE.1)GO TO 36 5o cx=-C  

51  CY­Cf  -

52 36 SIGN2=:-SIGN2  

53  SIGNZ?­(M/2)  .  

54 Z(IpI2)=SIGN1*ALMBOA(J2)+SIGN2*Z l  
55 IF(IO2.GE.1) VtI2)-(M-1)*ALMBDA(12)+ZNi  
56 50 ZRAT1=Z(ti12)-ZN1  
57 IF(IHALFP.LE.1) ZRAT1=O.  
58 ZRIS=ZRAT1*ZRAT1  
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59 IFVjAB.GE.1) GO fP  
60 RSQA=XRS+YRIS+ZR1S  
61 IF(iOP2.LE.O) GO TO 37,  

62 2 ZRAt2=Z(II2)+(2*M-2f*AL-M80ACI2)-ZN1  
63 IF(IHALFP.LE.1) ZRAT2=O.  
64 GO TO 38  
65 37 ZRAT2=-Z(Ir2)-ZN1  
66 38 ZR2S=ZRAT2*ZRAT2  
67 IF(IAB.GE.1) GO TO 3  
68 RSQB=XR2S+YRIS+ZRIS  
69 IF(IHALF0 .LE.1) GO TO 43  
70 IF(ICD.GE.1) GO TO 5  
71 3 RSQC±XR2S+YR1S+ZR2S  
72 RSQD=XRIS+YR1S+ZR2S  
73 43 IF(IAB.GE.1) GO TO 4.­
74 5 IF(RSQA-.O001)1112u12  
75 11 RECIPA=0.0  

76 ­ G0TO13  
77 12 REC-PA=1..O/(,I4*RS. SeRT(RSQA)...  

78 ­ IF(IHALFPPLE.1) RECfPA=1.O/(2.0*PI*RSQA)  
79 13 IF(SQB7O001)14,!5pi5  
80 14 RECIPB=0.O  
81 GOTO 16  

82 15 RECIPB=1./(PI4*RSB*SGLT,(RSGB).)  
83 IF(IHALFP,LE.i) RECIPB=1.0/(2.0*DI*RSQB)  
84 16 IF(ZCP.GE.)  PO TO2P -

85 I (IHALFP.LE.) GO TO 17  
86 4 IF(RSQC-,OOQ1)178T18  
87 17 RECIPC'=O.0  
88 GO-to-19.  

89 18 BECIOC=.O/(PI4*RSQC*SQRT(RSQC))  
90 19 IF(IHALFP.LE.1) GO TO 23  
91 IF(RSQD.0001)23p21v21  
92 23 RECIOD=O.0  
93 GO-TO 22  

94 21 kECIPD=I.0/(PI4*RSQD*SGRT(RSGD))  
95 22 IF(IABGE.1) GO T0_30  
96 UE=RECIPA*(CZ*YRAT17CY*ZRATI)  
97 VE=RECIPA*(CX*ZRATIrCZ*XRAT1)  
98 WEZRECIPA (CY*XRATIrCX*YRAT1),,,  
99 UE:UE+RECI0 B*(Cy*ZRATi-CZ*YRAfl)  

100 VEFVE+RECI B*(CX*ZRATItCZ*XRAT2)  
iOl WE=WE+RECIPB*(-CY*XRAT2-CX*YRAT1)  
102 IF(ICD.GE.i) GO-TO 32  
103 IF(IOP2.GE1) GO.TO36 ....  

104 UE=UE+RECIPC*(-CZ*YRATi-CY*ZRAT2)  
105 YE=VE+RECiP4*(CX*ZRAT2tCZ*XRAT2)  

SWEWE+RECIPC*(CY*XRAT2+CX*YRAT1)  
107 UE=UE+RECIPO*(CZ*YRATI+CY*ZRAT2)  
108 VE=VE+RECIPO*(-CX*ZRAT zCZ*XRAT1)  
109 WEZWE+RECI0O*(-CY*XRATI+CX*YRAT1)  
110 60 TO 32  
ii 36 IF3M.EQ.) GO TO 32  
112 UE=UE+RECIPC*(-CZ*YRAT1+CY*ZRAT2)  
113 VE=VE+RECIPC*(+CX*ZRAT2+CZ*XRAT2) R Q1300  
114 WE=WE+RECIPC*(-CY*XRAT2-CX*YRATI)  

115 UE=UE+RECiPD* (CZ*YRATI-C.Y*ZRAT2)  
116 VE=VE+RECIRO*(+CX*ZRAT2 CZ*XRAT1)  
117 WE=WE+RECIPD*(+CY*XRAT1-CX*YRAT1)  

49  

http:IHALFP.LE
http:IF(ZCP.GE


h18 32 uS=US-OE 
19 ­ ­VS=VS­VE 

120  990 WS=WS­WE 

122 (UI)ZNl 
123 999 RETURN-
1 4 200 FORMT((/),71d**DIAGNOSTIC***­­=­THE  NUMBER OF  PERIODS (IP) CANN 

125 $0T BE GREATER THAN 5) 

126 END  
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1 C CURVATURE EFFECTS SUBROUTINE .. . 
2 ­ SUBROUTINE CURV(NPDELTIHALFtIPCOtITtRNCpIPUCpVCWCIWIST) 
3 COMMON.X(92i7),Y(92t7)tZ(92?7)PU(92p7)FV(927)!W(927),., 
4 1-XDUM(93r7)tYDUM(937)ZDUM(93,7),CX(92,T),CY(927),CZ(92p7) 

2 CIRC(7)PALMBDA(7)tXO(927)PYO(927)pZ6(927)DELRM(927) 
6 3 iRCOM(92,7) 
7 0PTAYI/3.1415926/ 
8 ITHET=O 
9 C RADIUS OF CURVATURE CALCULATION 

11 
AS=XNtt)X( -iI)**2+(Y(N+IPI)-Y(NIl))**2+

1 (ZCN+lI)-Z(N-iI))**2 

12 
$# A=SQRT(ASQ).,~BSG(X(N+tI)-X(NI))2+YNII-NI)*+(N+I-ZN))2 

14 B=SQRT(BSQ) 
CS&=(XCNrl)hX(N-Il) )**2+(Y(NI)-Y(N-1,I) )*t2t(Z(NI).Z(N...1,))tt-2 

16 C=SQRT(CSQ) 
17 DELR=B+C 

19 1(N+iI)zY(NI)) ­ ­ ..CCY=(Z(NI)-Z(N-1I) )*(X(NfltI)-X(N,I))-(X(N,I)-X(N-1I))* 

21 1(Z(N+1rI)Z(ti)) ­

22 
23 

CCZ(X(N,)-X(N-1,I))*(Y(N+1,I)-Y(N,I))-(Y(NI)-Y(N-1,I))*
1(X(N+,Ip)-X(NtI)) 

24 CCSo=CCX*fCCx+CY*CCY+CCZ*CCZ 

IF(CCSQ)41i55 -... 

26 5 IF(CCCSG!(CSQ*BSO))-.&'O:±')6,, 
27 6 IF(Gr(BSQ+CSG))32,32,33 

28 32 COSA=0.707 
29 COSB=O. 707 

COSC=O.O 
31 GO TO 22 
32 33 COSA=1.o 
33 COSBZ1.0 

34 COSC=1.O 
GO TO 23 

36 7 CSQRT(CCS) 
37 
38 

COSAZCCX/CC 
COSBZCCY/CC 

39 COSC=CCZICC 

IF(C)13t42t13 
LL. 13 IF(B)1i,42pl11 

42 11 SINAL=CC/(C*B) 

43 IF(ASqZ(BSQ*CSQ))34,4 
44 3 QAL9HA=.o 

GO TO 8 
46 4 QALPHA=2.0 
47 
48 

8 iF(SiNAL.001)9p2,2 
9 TFUQAL0HA-15)22,22P23 

49 2 RC=A/(2.0*SINAL) 
GOTO 26 

51 22 RC=(B+C)/2.0 
52 
53 

TFI1=4PI/2.0
TH24=TH14 

54 ITHET=1 

GO TO12 
56 23 VELC=O.O 
57 RCO=SQRT(RCOM(NPI)**2+4.O*DELT/RNC) 
58 ITHET=2 
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59 G9O 12 , .. 

60 C ORERAIDS-ANP SELF INDUCED VELOCITY CALCULATION 
61 26 IF(B-2.0*RC)2843,43 .. 
62 28 trCC7 2.0!RCJ27,P431 43 
63 27 TH14P0.2*ATANBI(SQRT(4.P*RC*RC-B*Bf)) 
64 TH2L=O.25*ATAN(C/(SGRT(4.0*RC*RC-C*C))) 
65 12 IF(IT.GT.l)0O O_34.- _ 
66 IF(IPCO.EQ.0)OELRM(NI)=DELR 
67 34 IF(ITHET.EP.2).GO TO-10 
68 16 D2=RCOMU(,I)'r*2*(DELI-DELRM(NtI))/DELR 

69
70 

DRCO2=4,O*DELT/RNC-D2
RCO2=RCOM(NPI)**2 ODRC02 

71 IF(RCO2)44p44p29 
72 
73 
74 

29 RCO=SRT(RC02) 
. IF(RC)45,453O0 

30 DV1=ALOG(8.O*RC/RCO)-0.558 
75 IF(;THET)18,1819­
76 19 PV2=O.o 
77 GO.TO,20.. 
78 
79 

18 0V?.2-- *ALQGC HCP TH14) /Sl Tfjl4) ) *(COSC(THZ4) /SIN  (TH24)) 
20 VELC=CIRC(I),*(DV1-DV2)/(4.0*DI*RC) 

80 10 UC:VELC*COSA 
81 VC=VELC*COSB 
82 WC6VELCCOSC 
83 IF(IPCO.GE.,)GO TO 1 
84 DELRM(NtI)ZDELR 
85 RCOM(NNI)=RCO 
86 ­ GOTO 1 
87' 41 WRITE(IW,i0) 
88 GOT o 46 
89 42 WRITE(IWul0l) 
9- GO-TO 46 . 
91 43 WRItE(IW,102) 
92 GOTO 46 
93 44 WRITELCIWp103)- ­­­­­­­­ -­
-q- - ,-GO-TO 46 
95 45 WRITE(IWt104) 
96 46 ;ST=z 
97 1 CONTINUE 
98 RETURN . 
99 100 FORMIAT{iH ABSjCB),.LT.0.), 

100 
101 

101 FORMAT(23H A6QJ POINTS COINCIDENT) 
102 FORMAT(24H RAD. OF CURV. TOO SMALL) 

102 103 ORtMAT(12H RCORE.LEO0. ., 
103 104 FORMAT(19H RAD.YOF-CURV.LE.O.) 
104 END 
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24 

C COMPARISON O_ GEOETRY-ATE BKWD. MARCH WITH INIT. GEOMETRY  
SUBROUTINE STAT(NpIiIHIXAXGMpIW)  I­

COMMON.X(92r7)hY(92t7);Z(92,7)P(92P,7)V(927)rW(927)­
1­XOUM(937)pYDUM(937)pDU(93,),CX(92,7}pCY(92p7),CZ(92p?), 
2 CIRC(7)tALMBDA(7)pXO(92p7),YO(92t7),ZO(92,7),DELRM(92,?) 

3 iRCOM(92,7) -

DXX(NI)-XO(NI)
DYFY(N,I)-YO(N,I)  

DZ=Z(NI)7Z0(NpI)  

DR-SQRT(DXDXDY*DY+DZ'DOZ)  

XNP=N  
XAM=XAM+DR  
XGM=XGM*DR  
NP=N-1  
WRITE(6p20O)NPPX(NpI),Y(NI),Z(NI)tDXPDYvDZrDR  

IE(N.LT.IHI) GO TO 25  
XAME:XAM/XNP ­.  

XGME=(XGM)*c(I./XN.)  
._ WRITE(6t201)XAMErXGME  
25 CONTINUE  

RETURN  
20O FORMAT(I3t7Ei. ) ....-.........  

201 FORMAT(2Xt16HARITH MEAN DEV =pE11.4t2Xr15HGEOM MEAN DEV =tE11.4)  
END  
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~Figure  2.1 Two-Dimensiona.1 Twin Vortex Pair Trajectories  



10 

DEFINITION  

LOOPING OR CONVERGENCE OCCURS AT THE POINT WHERE THE LOCAL  

VERTICAL VELOCITY =10 TIMES THE DRIFT VELOCITY OF THE SYSTEM  

8  
rT/rF = ".O nF = 0.333  

rT"F =0.3 nF =0.651\ /  
­

6  

4  

2  

58J 
10 8  64  2  0 

T REMAINING UNTIL CONVERGENCE  

Figure 2.2 Definition of the Onset of Convergence  



(a)  INITIAL CONDITIONS 

F  = 0.127 U. b 

X =  5.0 b 

ax = ay = 0.125 b 

(b)  CALCULATION FROM REF. 2  

10 POINTS/HALF WAVE  

CORE UNSPECIFIED  

TIME = 5.33 b2 /r  

(c)  PRESENT CALCULATION  

10 POINTS/HALF WAVE  

CORE RADIUS = .098 b  

TIME = 5.33 b2/r  

Figure 3.1 Previous and Present Calculations of the Distortion of 

a Vortex Pair 

5 
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oay =  0  
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16­
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a 1 y
ax 

x 

(END VIEW) 
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=a 

a= 11 a 
Y 

I­

S 12-
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0­

SPIRAL 

rtz 0.75 

a x  aay 

0  .2 .3  .4 

PERTURBATION AMPLITUDE, ax/b, ay/b 

.5 

Figure 3.2 Dependence of Time-to-Loop upon Initial Perturbation  

X= Amplitude, 5.0, S/b = .098  
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(a)  NO CURVATURE EFFECTS 

7 = 0.127 U b 

X =  5,0 b 

ax =ay =  0.125 b 

CORE UNSPECIFIED 

TIME = 5.33 b2 /r  

(b)  CORE RADIUS = .098 b  
TIME = 5.33 b2/r  

LOOPING  

IMMINENT  

(c) CORE  RADIUS  .382  b 

TIME = 5.33 b2/r 

Figure 3.3 Effect of Vortex Core Radius on the Distortion  

of a Vortex Pair  
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b/2  

TO TOUCH  

FOR CORES  
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16­

-n  A 

oO 12  

<  8­
<  

I­ti  

I­iI 4­

.1  .2  3. 

VORTEX CORE RADIUS 8/b  

Figure 3.4  Dependence of Time-to-Loop Upon Vortex Core Radius,  
ax/b = ay/b = .125, X = 5.0  
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Figure 3.5 Dependence of Time-to-Loop Upon Perturbation Wavelength, 

ax/b =  ay/b =  .125, 6/b =  .098 
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Figure 3.6 End-View of Vortex-Pair Distortion Toward Looping, 
5.0, S/b = 0.498  
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Figure 3.7 End View of Vortex Pair Distortion at Sub-Looping 
Wavelength, X = 2.5, 6/b = .048  
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NA  

(VORTEX  ROTATION)  

Figure  3.8(a)  Mechanism  for  Oposing­Sensa  Vortex  and  Wave  Rotations  ­ Geometry 
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VELOCITY  
VECTORS  

VLH AT 'A'  
[FIG. 3.8(a)]  

VAMP VROT  

IX 'RES  -

r 

VRING  

VLH -STRAIN VELOCITIES DUE  

TO L.H. VORTEX (DRIFT  

VREMOVED)  

O' VAMP VRING ­ SELF-INDUCED VELOCITY 

DUE TO CURVATURE 

VELOCITY 

VECTORS OT VRES -RESULTANT OF ABOVE 

AT 'B' VLH 

VAMP ­ VELOCITY TENDING TO AMPLIFY WAVE  

VROT - VELOCITY TENDING TO ROTATE WAVE 'BACKWARDS'  

Figure 3.8(b) Mechanism for Opposing-Sense Vortex and Wave  

Rotations - Velocities  
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Figure 3.9 Lower Limit Wavelengths for Vortex Looping to Occur 
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Figure 3.10 Time-to-Loop as a Function of Perturbation Wavelength 

and Initial Amplitude, S/b = .098 
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LOOPING CONVERGENCE  

t tCRIT .  ., , 

t  >tCRT-

Figure 4.1 The Distinction Between Vortex 'Looping" and ''Convergence"  
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VIEW  
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WHERE 

nCG(rF + T) =  nlFrF +  TlTrT 

Figure 4.2 Kinematic Variables for Twin Pair Studies  

71 



'=>  o  / 

T  =200 

SPANWISE DIST 

(a)  nF  =  0.2  396 

S 

< 

EARL IER 

TIMES LEFT 

OUT  FOR 
'CLARITY 

._ 

NOTE: VERTICAL SCALE COMPRESSED 

BY A FACTOR OF 5. 

SPANWISE DISTE 

(b) nF 
= 0.333 

R 

/ 

. . . 

Figure 4.3 Cross-Sectional Tr~ce for the Convergence Point on Twin Vortex 

Systems, as a Function Of F (rT/r F 
= 0 .60, = 1 .0) L YT 

=  1 

--

SPANWISE DIST 

(c) nF = 0.556 



fA  

H  -- ­

A- --­

> = 148   " -- :  

SPANWI SE DIST 

(a rTIr F = o.6 T =254 -" --

NOTE: VERTICAL SCALE COMPRESSED 

BY A FACTOR OF 5. 

SPANWISE DIST 

(b) FT/F F = 1-O 

[ =396 

SPANWI SE DIST 

(c), U)lrF = 1.667 

Figure 4!.4  Cross­sectional  Trace  for  the  Convergence  Point  on  Twin  Vortex 
Systems  as  a  Function  of  rT/  F  (nF =  0.333,  nT  1.o), = 



SPANWISE  

POSITION  

FLAP VORTEX  
1.2- 

TIP VORTEX  

1.1- I  

nT I 0­
=I 0  
=1 0  

0.9­

= IO83  

0 7- (PERSISTS)  

rF  

06­

o.4­

=0.333 0 3-

I' =  .i804 

0.2 TO (DECAYS)  

O' 
T  NONDIMENSIONAL 

TIME 

0 100 200 300 

SPANWISE 

POSITION 

14­

1"3­

1.2­

1.1- 

n'T  
0 -1 0­

0.9­

0 8  
rT= 0.1617  

0.7- (PERSISTS)  

0.6­

0.5­

0.4­

0F = 0.0485  

"F-0 2- (DECAYS)  

=020 T  

0.1- 

T  NONDIMENSIONAL
0 

TIME  

0 100 200 300  

Figure 4.5 Examples of Tip- and Flap-Vortex Convergence  

74 



0­

0.2 

0.4 

rF  

rT 0 0  

0.6  ­  AA A 

A  

EQN. (28) 
0.8  

1.0   A-A 

EQN. (25)  

0.8­

o/ 
rF  0  

0.6 ­  0 0000 

A A  

0 FLAP CONVER( 
0.4- EQN. (21) /   ATIP CONVERGI 

® ) OD   * EQUAL CHANCI 

0.2 CONVERGENCE  
AFTER 1/2  

REVOLUTION 0  

C#  

0  0.2 0.4 0.6 0.8 1.0  

11 F  

Figure 4.6  Twin-Pair Parametric Study: Identification of the  

Convergent Vortex  
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(CL/AR =0.25, Correct X,  8/b =0.98) 
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