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ABSTRACT 

A model has been developed based on Colburn - Drew type formulation to analyze a vertical tube in tube stainless 
steel generator with forced convective boiling. Desorption of refrigerant vapour from refrigerant-absorbent solution 
takes place in the inner tube of the generator, when hot water through the annulus is used as heating medium. 
Simultaneous heat and mass transfer phenomena of desorption are described mathematically using the mass and 
energy balances, considering the heat and mass transfer resistances in liquid as well as vapour phases. Model 
equations are solved simultaneously by means of initial value problem solvers using explicit Runge-Kutta method 
with 4th order accuracy.  A computer code has been developed in MATLAB to obtain the results. A parametric 
analysis has also been performed to study the effect of various parameters on the performance of the generator.  

1. INTRODUCTION 

Among the various types of refrigeration systems, vapour absorption refrigeration system (VARS) has attracted a 
renewed interest due to its ability to use the low grade energy like solar energy, waste heat source, etc. Traditional 
VAR systems were developed with ammonia-water as the working fluid. Due to the toxicity of ammonia, attention 
has been moved to new working fluids. Among them, CFCs and HCFCs are being phased out by Montreal and other 
International Protocols. HFCs, even though do not contribute to ozone depletion, still contribute to global warming. 
Hence ammonia-water mixture is revived and used as the leading working fluid in the absorption systems.  

In the absorption system, generator is considered one of the important components and there is scope for improving 
its performance, which will contribute to the performance of the absorption system itself. In order to achieve better 
performance of the generator, the numerical study of generator is carried out to evaluate the performance of the 
generator and is presented in this paper.  

The boiling process in generator is characterized by simultaneous heat and mass transfer phenomena. These 
phenomena have to be analyzed to understand the desorption process. Bennett and Chen (1980) studied the forced 
convective boiling with aqueous ethylene glycol solutions and developed a correlation to predict the heat transfer 
coefficient. This correlation improved the understanding of flow boiling of binary mixtures. Mishra et al. (1981) 
made an experimental investigation on forced convective evaporation of the CFC refrigerant mixtures R22/R12 
inside horizontal tubes and obtained correlations to predict the heat transfer coefficients for each mixture separately. 
Ross et al. (1987) determined the experimental heat transfer coefficients for horizontal flow boiling of pure R152a 
and R13Bl and for four mixtures of these refrigerants and compared with existing correlations. The correlative 
evidence suggested that full suppression of nucleate boiling is easier to achieve with mixtures than pure fluids. Jung 
et al. (1989) conducted an experimental study on horizontal flow boiling heat transfer for pure R22, R 114 and their 
mixtures under uniform heat flux condition and obtained more than 1200 local heat transfer coefficients for annular 
flow at a reduced pressure. A full suppression of nucleate boiling has been observed for both pure and mixed 
refrigerants at qualities above 10 - 30 %.  Celata et al. (1993) performed experiment on binary mixtures of the CFC 
refrigerants R12/R114 in up flow forced convective boiling and found that the results were in good agreement with 
the Bennett - Chen correlation. Rivera et al. (1999) studied the heat transfer in forced convective boiling 
experimentally for the water/ammonia and ammonia/ lithium nitrate mixtures in a vertical tube. Correlations were 
proposed to correlate the experimental local heat transfer coefficients for the above mixtures. Barbosa et al. (2001) 
proposed a model for phase change heat transfer to binary mixtures at high qualities (annular flow regime) and 
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compared with the experimental data on literature. The model was based on Colburn and Drew (1937) formulation 
originally employed for the condensation of mixed vapours. Convective boiling of ternary mixtures in vertical tubes 
was dealt with experimentally to measure bulk and wall temperatures as well as local heat transfer coefficients 
(Barbosa et al., 2002). It was found that the deterioration in the heat transfer coefficient was due to a combined 
effect of droplet interchange and mass transfer resistance in the vapour side. Khir et al. (2005) performed an 
experiment on the forced convective boiling heat transfer of ammonia-water mixtures inside a vertical tube. The 
experimental data were compared with the available correlations. Jaime Sieres et al. (2007) simulated the heat and 
mass transfer processes of a packed rectification column for ammonia-water absorption system and compared with 
experimental data. In this paper, a model is developed based on Colburn-Drew formulation to simulate desorption of 
refrigerant vapour from the refrigerant - absorbent strong solution in a vertical tubular generator. The model is 
validated using ammonia - water mixtures and the results are compared with experimental results from the literature. 
 

2. MATHEMATICAL MODEL 
 
A mathematical model for the forced convective boiling of refrigerant-absorbent mixtures in vertical tubular 
generator is developed. The generator is made up of two stainless steel coaxial tubes of 1m length as shown in Fig.1. 
The inner and outside diameters of the inner tube are 20 and 23 mm respectively. The strong solution of refrigerant-
absorbent mixture from the absorber enters from bottom of the inner tube of the generator. The hot water, which is 
used as the heating source, is sent from the top through the annulus of the system. The inner and outer diameters of 
the external tube are 28 and 31 mm respectively. The strong solution enters the tube at bubble point temperature for 
the given pressure and concentration of the solution. Hence boiling takes place in the tube and vapour is generated 
from the strong solution.  
 
The generator tube is divided into 100 elements. The schematic of a differential control volume is illustrated in Fig.2. 
Mass and energy balances are considered for each element. In order to consider the heat and mass transfer resistances 
in liquid as well as vapour phases, heat and mass transfer equations are formulated for each phase. The following 
assumptions are considered for the liquid and gas medium: (a) Process is assumed to be in steady state and flow is 
one dimensional; (b) Transport properties are considered constant; (c) Heat and mass transfer resistances are assumed 
to lie in a thin layer close to interface; heat and mass transfer areas are equal; (d) Thermodynamic equilibrium exists 
at the liquid vapour interface; (e) No chemical reactions are considered.  
 
 
2.1 Heat transfer equations 
Heat and mass transfer takes place simultaneously in the liquid and vapour phases. Heat transfer from the hot water 
to the vapour phase takes place in two stages, (i) From hot water to the liquid phase through the wall and (ii) from 
the liquid phase to the vapour phase across the interface. Total energy transferred based on control volume may be 
given as  

                                   ( ) ( )h L L V VQ d m H d m H                                           (1) 

Energy transferred to the liquid phase comprises of latent and sensible heats. Latent heat is utilized for evaporation 
of components of the solution whereas sensible heat is supplied as convective and conductive flux to raise the 
temperature of the solution from TL to Ti and from TL to TL+ TL respectively. Thus the total heat transfer from the 
liquid phase to the liquid interface is given by 

. . .
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In the similar manner, the total heat transfer from the vapour interface to the vapour phase is given as  

. . .

( ) ( )( . ) ( . . ( )).VV V R R V i A A V i I V sid m H m H m H h T T A    (4) 
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       Fig.1. Schematic of the tubular generator         Fig.2. Elemental control volume of generator 

Energy flux balance at the liquid-vapour interface gives 
. . .

( ) ( )

. . .

( ) ( )

( )

( )

R A LR L i A L i L I

R A VR V i A V i I V

m H m H h T T

m H m H h T T
                                     (5) 

Heat supplied by the hot water could be obtained from the Effectiveness - NTU method as  

min. .( )h h LQ C T T         where,         U = f( hh,Kw, hL)                            (6) 

Cmin and Cmax are found from mass flow rates and specific heats of the hot water and boiling mixtures. 

2.2 Mass transfer equations 
Mass flux transfer between the liquid and vapour phases takes place due to the combined effect of bulk transport and 
molecular diffusion of mixture across the interface. The mass flux desorbed from the bulk liquid to the liquid 
interface is evaluated as (Bird et al., 1960)  
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Similarly the mass flux transferred from the vapour interface to the bulk vapour is obtained from  

                                                  
.
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R V V

I
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     (8) 

Mass balance at the liquid-vapour interface results 

                                                             
. .

I I
L V

m m                     (9) 

2.3 Heat transfer coefficient 
Many predictive correlations are available for forced convective boiling of mixtures. The most widely used method 
was proposed by Bennett and Chen and is given by (Celata et al., 1993), 

               . .mix mac mix mic mixh h F h S       (10) 

In this, the heat transfer coefficient is contributed by the convective boiling (macroscopic) coefficient and the 
nucleate boiling (microscopic) coefficient with the corresponding enhancement (Fmix)and suppression (Smix)factors
respectively. The above correlation is used to predict the boiling heat transfer coefficient for the desorption process.  

3.  NUMERICAL TECHNIQUE
For the incremental control volume shown in Fig. 2, the conservation of mass, energy and concentration are given as  
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3.1 Initial and boundary conditions  
The above model equations are solved using the initial and boundary conditions. The initial conditions are taken 
from the conditions of liquid and vapour phases and hot water respectively at the inlet of the first element. For the 
first element, quality of the mixture is assumed as 0.0001. At z = 0 
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For the assumed counter flow direction, 

,h h outT T                               (19) 

The boundary conditions are specified at the liquid-vapour interface 

( , ); ( , )I I I Ix f P T y f P T    (20) 

The above differential equations are solved simultaneously by means of initial value problem solvers using explicit 
Runge-Kutta method with 4th order accuracy.  A computer code has been developed in MATLAB to obtain the 
results. Knowing the initial conditions, mass fluxes desorbed across the interface, mass flow rate, concentration and 
temperatures of the liquid and vapour phases and the hot water temperature are determined for the first element. In 
the every succeeding element, the outlet conditions of the preceding element are considered as the initial conditions 
and the iteration procedure is continued. The gas phase heat and mass transfer coefficients are evaluated from 
Dittus-Boelter equations. Liquid phase mass transfer coefficient is obtained using Chilton-Colburn analogy. The 
properties for the ammonia-water mixture in liquid phase have been calculated as functions of temperature, pressure 
and concentration for each element, using experimental correlations with 3-5% error (Reid et al., 1989). The vapour 
mixture properties have been calculated using correlations from Ziegler and Trepp (1984) and M.Conde engineering 
(2006). The vapour phase enthalpy is calculated from the equations of Yokozeki (2005). The methodology for the 
simulation is detailed in the following algorithm: 

i. Guess interface temperature, TI and calculate xI and yI  using equations (20) 
ii. Fix z to satisfy mass balance equation (9 )  

iii. Fix TI by satisfying energy balance at the interface, equation (5) 
iv. Knowing the inlet conditions, model equations are solved for parameters. 

4. RESULTS AND DISCUSSION 
The model is validated using the ammonia-water mixture as the working fluid and the results have been compared 
with experimental results of Khir et al. (2005). Figure 3a shows the comparison between the average heat transfer 
coefficient predicted by the model and that obtained from the experiment. The agreement is found to be good with a 
deviation of 18.79 %. The heat transfer rate predicted from the model is compared with that determined from the 
experiment as shown in Fig. 3b with a difference of 8.24 %. 
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Fig. 3 Comparison of (a) heat transfer coefficient and (b) heat transfer rate between model and experiment 

The performance of the vertical tubular generator is simulated for a range of heat flux (5500 – 6250 Wm-2), Mass 
flow rate (0.01- 0.025 kgs-1), Ammonia mass fraction (0.55 - 0.65 kgkg-1) and Pressure (1700 - 1900 kPa). By 
solving the model equations, the values of mass flux desorbed, concentration and temperature profiles at the bulk 
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liquid, bulk vapour and liquid-vapour interface respectively, mass flow rate of liquid and vapour phases, average and 
overall heat transfer coefficients and quality are obtained for all the elements. The variation of these parameters 
along the length of the generator may be studied. Figure 4 shows the increase of mass flow rate of vapour, as 
desorption proceeds along the generator.  
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Fig.4 Variation of mass flow rate of vapour along the   Fig.5 Variation of mass flow rate of liquid along the  
          generator                 generator  

At higher temperatures of hot water, the desorption rate is enhanced which results in the increasing trend of mass 
flow rate of vapour. For the same reason, the mass flow rate of liquid is found to decrease in the axial direction as 
shown in Fig. 5. The temperature profiles predicted at the bulk liquid, bulk vapour and at the liquid-vapour interface 
are plotted in Fig. 6. For the constant heat flux conditions, the liquid bulk temperature is always higher than the 
interface temperature which, in turn, is higher than the vapour temperature. From the figure, it is inferred that the 
liquid phase heat transfer resistance is playing a dominant role in the boiling process. 
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 In Fig. 7, the concentration profiles are plotted as a function of length of the generator. In the liquid phase, it is 
observed that the bulk concentration is greater than the liquid interface concentration, whereas in the vapour phase, 
the vapour interface concentration is greater than the bulk concentration. It is inferred that the mass transfer 
resistances are dominant in liquid phase than in the vapour phase. These concentration gradients facilitate the mass 
transfer in two stages: first from the bulk liquid to liquid interface and then from the vapour interface to the bulk 
vapour. As desorption continues, the liquid bulk concentration decreases and the vapour bulk concentration 
increases. Parametric analyses have been carried out to study the influence of important parameters on the 
desorption process. The effect of generator pressure on the mass flux desorbed is presented in Fig. 8. Desorption rate 
increases with increase in pressure, for the same heat flux condition.  
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The variation of average boiling heat transfer coefficient along the generator is illustrated in Fig. 9, at different mass 
fractions of solution. For the constant pressure condition, as the solution inlet concentration decreases, the solution 
inlet temperature increases resulting in suppression of nucleate boiling component. Since the nucleate boiling 
coefficient is the major contributor to the boiling heat transfer coefficient, there is a decrease in boiling heat transfer 
coefficient for the decrease in concentration. As the boiling temperature increases along the length, the nucleate 
boiling coefficient is suppressed and hence the decrease in the average heat transfer coefficient along the length. The 
effect of mass flow rate of solution on the convective average heat transfer coefficient at different generator 
pressures and solution inlet concentrations are depicted in Fig 10(a) and 10(b) respectively. Heat transfer coefficient 
increases with the increase in generator pressure and the mass flow rate of solution. Also it decreases with the 
decrease in solution concentration due to the effect of suppression of nucleate boiling as explained earlier.  
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Fig. 10 Effect of mass flow rate of solution on boiling heat transfer coefficient at (a) different generator pressure and  
            (b) different solution concentration   

In Fig. 11, the effect of heat flux supplied on the heat transfer coefficient is shown for different values of solution 
inlet concentration. Heat transfer coefficient increases as the heat flux to the generator and the solution concentration 
increase. The variation of vapour temperature along the generator has been plotted in Fig. 12. At higher 
temperatures of hot water, the temperatures of the liquid and vapour phases are also found to be higher resulting in 
enhanced desorption rate. This is substantiated with the trends of increased mass flow rate of vapour, at higher 
values of hot water inlet temperatures.
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 Fig.11 Effect of heat flux on heat transfer coefficient   Fig. 12 Variation of vapour temperature along the  
           at different solution inlet concentration                              generator at different hot water temperatures 
 

5. CONCLUSIONS 

A numerical analysis of the forced convective boiling of refrigerant- absorbent solution in a vertical tubular 
generator has been carried out. Both liquid and vapour phase resistances are considered for the combined heat and 
mass transfer phenomena. Mass flow rate, concentration and temperature of the liquid and vapour phases, 
concentration and temperature at the liquid-vapour interface are calculated. Mass flux desorbed, average heat 
transfer coefficient, overall heat transfer coefficient and desorption rate are also estimated. Parametric studies are 
carried out to examine the effect of different parameters on the desorption process. Using the ammonia-water 
mixture, the model is validated and compared with the experimental results in the literature and the agreement is 
found to be good. The following are the conclusions drawn from the analysis: During desorption process, the bulk 
liquid concentration decreases and the bulk vapour concentration increases. Liquid phase mass transfer resistance 
plays a crucial role in this process. As far as the heat transfer is concerned, the nucleate boiling phenomenon is 
suppressed at higher boiling temperatures and desorption process is dominated by convective boiling phenomenon. 
Mass flow rate of vapour, average heat transfer coefficient and overall heat transfer coefficient increase and mass 
flow rate of liquid decreases, as the heat flux given to system increases. For a constant pressure condition, average 
heat transfer coefficient increases as the solution inlet concentration increases. Average heat transfer coefficient 
increases both with the generator pressure and the mass flow rate of solution. Desorption rate increases with increase 
in pressure and mass flow rate of solution 

NOMENCLATURE 

Asi  inner surface area of tube   (m2)    Subscripts 
d diameter of tube     (m)  A  absorbent  
h heat transfer coefficient    (Wm-2K-1)  B bulk 
H enthalpy     (Jkg-1)   h hot water 
K thermal conductivity    (Wm-2K-1) i inner surface 
m mass flow rate     (kgs-1)   i, I liquid-vapour interface 
Q heat supplied    (W)   L liquid phase 
x mass fraction in liquid phase   (kgkg-1)  o outer surface 
y mass fraction in vapour phase   (kgkg-1)  R  refrigerant 
z axial coordinate    (m)  V vapour phase 
Greek symbol       w wall  

 mass transfer coefficient    (ms-1)   
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