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Large-eddy simulation developments and validations are presented for an improved simulation of turbulent inter-

nal flows. Numerical methods are proposed according to two competing criteria: numerical qualities (precision 

and spectral characteristics), and adaptability to complex configurations. First, methods are tested on academic 

test-cases, in order to abridge with fundamental studies. Consistent results are obtained using adaptable finite 

volume method, with higher order advection fluxes, implicit grid filtering and "low-cost" shear-improved Sma-

gorinsky model. This analysis particularly focuses on mean flow, fluctuations, two-point correlations and spectra. 

Moreover, it is shown that exponential averaging is a promising tool for LES implementation in complex geome-

try with deterministic unsteadiness. Finally, adaptability of the method is demonstrated by application to a con-

figuration representative of blade-tip clearance flow in a turbomachine. 
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Introduction 

Improvement of computational fluid dynamics for the 

prediction of internal flows needs progress in different 

but complementary directions. These are mainly: 

-The enlargement of the computational extent (in 

space, time, towards other physics…), in order to include 

more physical phenomena. Schlüter et al. [1] investigate 

such effects in the aerodynamic computation of a com-

plete gas-turbine. 

-A better representation of turbulence, particularly for 

3D interaction with complex mean field. 

The present paper mainly addresses the second point. 

A preference is given to direct simulation of turbulence, 

compared to modeling of averaged effects. Indeed, in-

creasing the complexity of turbulence modeling is of 

limited efficiency: only average data are computed, and 

validity is not guaranteed for complex flows that are not 

comparable to calibration cases. In comparison, direct 

simulation delivers more physical information (spectra, 

correlations...) and is more adaptable. 

Large-eddy simulation (LES) [2] allows direct simula-

tion of turbulence with a reduced number of points: only 

the largest turbulent eddies are represented, out of a 

spectral width that grows with Reynolds number. LES 

already represents a major tool for academic study of 

turbulent flows, from the transition in boundary layer [3] 

to separated flows on bluff bodies [4]. Application to 

practical flows is developing, and a particularly interest-

ing example is given by Raverdy et al. [5] on a turbine 

blade. These developments also benefits from theoretical 

and numerical studies, such as the analysis of compressi-

ble aspects by Erlebacher et al. [6]. 

It can be noted here that direct representation of tur-

bulence can also improve description of other physical 

aspects. For example, it provides spectra and two-point 

correlations used for broadband noise simulation, of ma-

jor importance to study nuisance from turbo-engines. 
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Nomenclature  

Cp specific heat at constant pressure uw friction velocity 

Cs constant of Smagorinsky xi coordinate in the direction i 

cexp exponential average coefficient y+ distance y in wall units (y+=y uw/υ) 
c airfoil chord length α, β filter coefficients (shape and relaxation) 

Eii energy spectrum on ui Δt numerical time step 

e internal energy Δx numerical spatial step 

Gi transfer functions δ channel half width 

k turbulent kinetic energy κ wavenumber 

lc large-scale characteristic length μ dynamic viscosity 

M step of the grid turbulence experiment μsgs subgrid-scale viscosity 

P static pressure ν kinematic viscosity 

Pr Prandtl number ρ density 

Prsgs subgrid-scale Prandtl number τ time period 

Rii two-point velocity correlation ω non-dimensional wavenumber 

T temperature — filter operator 

U0 inflow velocity ~ Favre operator ( ρρ /~ qq = ) 

uc large-scale characteristic velocity < . > average 

ui velocity component in the direction i   

 

Such computations are presented on airfoils by Terracol 

et al. [7] or Boudet et al.[8]. 

The present paper intends to analyze adaptable meth-

ods for LES, from academic test-cases where turbulent 

physics is precisely isolated, to complex configurations 

and associated numerical constraints. Next section pre-

sents numerical methods, chosen for their numerical 

characteristics (precision, transfer function…) and their 

adaptability. Afterwards, the numerical methods are ana-

lyzed on two academic test-cases: isotropic turbulence 

and channel flow, in order to abridge with fundamental 

developments on LES. Finally, a section presents appli-

cation to a complex configuration, representative of tur-

bomachine blade-tip clearance flow. 

Adaptable numerical methods 

General equations 

The Turb'Flow solver uses the filtered equations of 

continuity, momentum and energy: 
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The commutation error of the filter operator with the 

partial derivatives is neglected. The subgrid-scale stress 

tensor is: 
jijiij uuuu ρρ −=Π ~~ , and the subgrid-scale 

heat flux: 

( ) ( ) ( ) ijiijijijtjtj uuuPeuPe ττρρθ +Π+−+−+= ~~~  

The fluid is air, considered Newtonian: 
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with constant dynamic viscosity. Finally, the ideal gas 

law is used: TrP
~ρ=  (with r=287 J/kg-K) 

The equations are solved to obtain the filtered quanti-

ties. The possible use of a discrete filter is presented be-

low, but the approach relying only on the natural filter of 

the grid is shown more reliable. 

Discretisation 

Discretisation uses finite volume approach, with ex-

plicit time marching and 5-step Runge-Kutta. For con-

vection fluxes, value of conservative quantity q is given 

at index j-1/2 by: 
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corresponding to 4th order when computing the spatial 

derivative at index j with: ( ) xqq jj Δ− −+ /2/12/1
, on uni-

form grid. The Fourier analysis of the scheme is briefly 

presented here, to evaluate the capabilities regarding the 

representation of the turbulent spectrum. Following 

Lele [9], the Fourier component ( )xxixq jj Δ= /exp)( ω , 

is considered for [ ]πω ,0∈ . The analytical derivative is: 

( ) ( )xxixixq jj ΔΔ= /exp/)(' ωω , while the discrete 

derivative is: , with: )(')(1 jxqG ×ω

ω
ωωω

6

)2sin()sin(8
)(1

−
=G  

This numerical damping coefficient is presented in Fig. 1. 

Sometimes, ωω ×)(1G  is presented as a modified 

wavenumber, but this can be misleading because the ac-

tual wavenumber (in the exponential) is not altered by 

the linear discrete scheme. In Fig. 1, it can be noted that a 

wide band of the spectrum is correctly described 

( 1)(1 ≈ωG ), using logarithmic scale for physical reason. 

The damping becomes significant for )9.0)(
1

( <ωG

πω 44.0> , corresponding to scales smaller than 4 points 

per wavelength.  

 
Fig. 1  Transfer functions of the numerical schemes. 

Diffusion fluxes are calculated with a second order 

centered scheme. 

Subgrid-scale models 

Models are required for 
ijΠ  and  in order to 

close the system. These quantities represent the influence 

of the subgrid-scales on the resolved field, regarding 

momentum and heat flux respectively. Following the 

theory of Kolmogorov (cf. Pope [10]), the smallest scales 

are considered as mainly dissipative, at the end of the 

energy cascade coming from the largest eddies. This 

leads to the following models: 
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In the present study, two models for 
sgsμ  are investi-

gated: the standard model of Smagorinsky [11], and a 

shear-improved version. In both cases,  and 

filtering is implicit (by the grid). A third approach will be 

presented, using an additional explicit filter to avoid ac-

cumulation of the smallest resolved scales, and 

9.0Pr =sgs

0=sgsμ . 

●  Smagorinsky model 

In the well-known Smagorinsky model [11], sub-

grid-scale viscosity is computed locally: 

SxCssgs

~22Δ= ρμ  

with: 
ijij SSS
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where xΔ  is calculated as the cubic root of the cell 

volume.  

The model of Smagorinsky is constructed from the 

theory of isotropic turbulence, where the constant can be 

calibrated to . Near walls, mean gradients arti-

ficially increase the value of 

18.0≈sC

sgsμ . For a plane channel 

flow, Deardorff [12] reduced  to 0.1 to compensate 

this effect. However, it is necessary to consider more 

general procedures to tackle walls in complex geometries. 

Two recent approaches are considered here, chosen for 

their simplicity and their adaptability to various configu-

rations: a shear-improved Smagorinsky model, and ex-

plicit filtering. 

sC

●  Shear-improved Smagorinsky model 

Lévêque et al. [13] propose the following improve-

ment to the Smagorinsky model: 

( )><−Δ= SSxsCsgs
~~22ρμ  

where the influence of the mean gradients is removed in 

a way that respects the energy budget for both isotropic 

turbulence and shear turbulence (cf. Toschi et al. [14]). In 

the present implementation, is forced to zero if the 

formula gives a negative value. 

sgsμ

The only difficulty lies in the averaging. Spatial aver-

aging is not adapted to complex geometries, and deter-

ministic unsteadiness must not be removed by temporal 

averaging. In many practical applications (e.g. turbo-

machines), an intermediate time scale τ  can be defined 
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between the turbulent time scale and the deterministic 

time scale. Temporal averaging will be done over this 

period. The implementation of a running arithmetical 

average over τ  would require the storage of all the flow 

fields over this period, in order to remove the oldest 

samples as computation progresses. To counter this 

problem, exponential averaging is tested here. For a 

quantity , where superscript n represents temporal 

index: 

n
q

( ) nnn qcqcq exp

1

exp1 +><−=>< −  

Only storage of the average is required in this case. 

] is chosen according to the period [ 1,0exp ∈c τ  the av-

erage has to cover. Practically, the combined influence of 

the data older than τ  will be lower than 5% if 

, or equivalently:  ( ) 05.01
/

exp =− Δt
c

τ

τ/
exp 05.01 tc Δ−=      (1) 

●  Explicit filtering 

Bogey and Bailly[15] propose to use an additional 

discrete filter to continuously remove the smallest com-

puted scales that are fed by the turbulent cascade. The 

filter plays the role of the subgrid-scales, and there is no 

other model to implement: 0=Π ij
 and . 

Mathew et al.[16] discuss the physical behavior repro-

duced by the filter as regularization. The first advantage 

of this approach lies in its simplicity and its generality. 

There is no complex physical quantity to evaluate, and no 

calibration. The choice of the filter parameters will be 

presented below. Moreover, Bogey and Bailly[17] 

showed that subgrid-scale viscosity can modify the effec-

tive Reynolds number of jets, and this effect is sup-

pressed by explicit filtering. 

0=jθ

In order to maintain the adaptability of the solver, the 

stencil of the filter is here limited to 5 points, using a 4th 

order compact filter of Lele[9]. For a conservative vari-

able q, the filtered variable 
c

q  is: 
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where α is a shape parameter. Solution of the resulting 

tri-diagonal system is obtained by Thomas algorithm. 

Following again the analysis of Lele[9], the transfer 

function of the filter is: 
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and it is plotted in Fig. 1 for α=0.48. This value of α 

concentrates the damping on the highest wavenumbers, 

while keeping: 1)(0:],0[ 2 ≤≤∈∀ ωπω G . 

In the solver, the compact filter is applied to the con-

servative variables q, in the three directions of the grid 

sequentially, giving 
c

q  at each time step. The actual 

filtered variables q  are then obtained with a relaxation 

coefficient ]1,0[∈β : 
c

qqq ββ +−= )1(  

The overall transfer function is: 

)()1()(:],0[ 23 ωββωπω GG +−=∈∀  

where β allows controlling the repeated application of the 

filter without excessive damping at low frequencies 

( )(2 ωG  is not exactly 1 at low ω). 

The value of β has to be set according to the energy to 

dissipate. The idea is to filter over a band comparable to 

the damping band of the spatial scheme (here 

9.0)(1 <ωG  for πω 44.0> ), during a time period 

characterizing dissipation. The Kolmogorov time scale 

Kτ  is estimated by 3/ ccK ulντ =  (cf. Pope[10]), 

where lc and uc are characteristic length and velocity for 

large-scale turbulence. Over 
Kτ , resolved turbulence 

can be considered frozen and the global transfer function 

of the filter can be approximated by: . 

Consequently, β is chosen to obtain: , 

where 

( ) tKG
Δ→ /

3 )(
τωω

( ) 5.0)(
/

..3 =Δt
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 where: 3/ ccK ulντ =    (2) 

For illustration, the transfer function  is 

plotted in Fig.1 for β=0.138 and 

( ) tKG
Δ→ /

3 )(
τωω

66/ =ΔtKτ  (values 

corresponding to the isotropic turbulence test-case be-

low). 

Evaluation on academic test-cases 

The adaptable approaches will be first evaluated on 

classical academic test-cases: isotropic turbulence and 

bi-periodic channel flow. The present solver is dedicated 

to complex configurations, but these tests will abridge 

with more fundamental LES studies, and isolate the ma-

jor physical mechanisms. 

 

Isotropic turbulence 

Study first focuses on the free decay of isotropic tur-

bulence, which was particularly addressed by 

Comte-Bellot and Corrsin[18]. Experimental data from 

Kang et al.[19] are used here, because they are obtained 
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at higher Reynolds number, and are consequently more 

representative of LES applications. In the experiment, 

turbulence is generated by a grid with step M=0.152m, in 

a flow with mean velocity U0=11.25m/s. Initial meas-

urement position is 20M after the grid, and final position 

is 48M, corresponding to free decay during time 28M/U0 

according to Taylor hypothesis.  

3D computational mesh is made of 128 points in each 

direction, with step Δx=0.04 m. Time step is Δt=10−4s. 

Boundary faces of the cube are treated as periodic. Mean 

field is still air, at normal atmospheric conditions. Fluc-

tuating velocities are initialized in the corresponding 

wavenumber domain, with amplitudes respecting the 

initial energy spectrum of the experiment, and random 

phases. The flow field is then transposed in the physical 

domain using 3D Fast Fourier Transform. Following 

Kang et al.[19], computation is run for time 10 M/U0, in 

order to initialize the turbulent cascade. Amplitude of the 

fluctuating velocity spectrum is then re-scaled on the 

experiment initial spectrum (cf. Fig. 2). Finally, compu-

tation is run during 28M/U0. Results obtained with the 

different subgrid-scale models are presented in Fig. 2. 

 

Fig. 2  Isotropic turbulence: energy spectrum 

The models are tested in their general form, without 

simplification for the present academic case. Characteris-

tic velocity is 3/2kuc = , where k=2.38 m2/s2 is initial 

turbulent kinetic energy, and characteristic length is 

lc=128Δx. For the shear-improved Smagorinsky model, 

the time used for the averaging is the characteristic time 

of the large scales: s065.4/ ≈= cc ulτ . Using Eq.(1), 

the coefficient of the exponential average is: cexp=7.37 10−5. 

The initialization of the exponential average field is done 

with still air, at normal atmospheric conditions. For ex-

plicit filtering, Eq.(2) gives the relaxation coefficient: 

β=0.138 (with τK=6.57 10−3s). 

This configuration allows isolating the spectral char-

acteristics of the methods, without walls. It is particularly 

demanding for adaptable methods because it is fully un-

steady (statistical decay) and there is no production of 

turbulence. Consequently, numerical effects are accumu-

lated, and there is no regeneration of the turbulent char-

acteristics. 

Fig. 2 shows that LES is correctly initialized over the 

experimental spectrum. After decay, the following ob-

servations can be made. 

●  When no viscosity is used, energy accumulates at 

the highest wavenumbers, and spectrum presents an ex-

ponential growth, as expected from theory. This clearly 

shows the need for a subgrid-scale model. Moreover, this 

is the proof that present methods are not over-dissipative. 

●  The model of Smagorinsky allows good agreement 

with the experiment. A slight overprediction is observed 

at low wavenumbers, but this is probably the influence of 

the periodic boundary conditions. There is also some 

accumulation of energy at the highest wavenumbers 

(weak: logarithmic scale), but this can be explained by 

the uncertainty on Cs. This result shows the good per-

formance of present adaptable methods, when using a 

model particularly designed for this case. 

●  Very similar results are obtained with the 

shear-improved Smagorinsky model. In this case, with 

perfect averaging (i.e. 0
~

=>< S ), this model actually 

reduces to the model of Smagorinsky. Consequently, the 

present result shows the good behavior of the exponential 

averaging. At the end of the computation, in the expo-

nential-averaged flow field, the standard deviation of the 

velocity components is k3/213.0 × , where k is the 

initial turbulent kinetic energy. 

●  Regarding the LES with explicit filtering, the 

damping band clearly appears at the upper end of the 

spectrum. The smallest resolved scales are removed, but 

a bump appears at the intermediate wavenumbers. Pre-

vious authors obtained very good results using such ex-

plicit filtering [15][16][17], and further investigations 

must be carried out to study the failure of the present 

computation. Such complementary study should consider 

how energy is transferred through the cut-off, taking into 

account that the smallest scales are removed. Indeed, in 

the present computation, the spectrum seems to indicate 

an accumulation of energy in the bump before the cut-off. 

The choice of the filter and the position of the cut-off 

must have an influence that could explain the present 

failure. 

As a partial conclusion, isotropic turbulence test case 

shows the good spectral behavior of the present adaptable 

methods, with implicit filtering by the grid. Regarding 

the subgrid-scale modeling, explicit filtering appears to 

distort the spectrum, which needs to be further investi-

gated. The Smagorinsky model, despite its good per-

formance on isotropic turbulence, is not adapted to next 
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configurations with walls. Consequently, only the 

shear-improved Smagorinsky model will be retained. 

 

Bi-periodic channel flow 

The second test-case is a bi-periodic plane channel 

flow at 395/Re == νδww u (based on objective uw value), 

as studied by Moser et al.[20] with Direct Numerical 

Simulation (DNS). An illustration is presented in Fig. 3: 

mean flow is oriented on x, walls bound the domain on y 

direction, and periodicity is imposed on x and z directions. 

Grid extends over: ,22 πδδπδ ×× with δ=0.01m. Point 

numbers are: 49x89x41, with tanh repartition in  

 

Fig. 3  Channel: contours of u1 at the final instant. 

y-direction. In wall units, grid spacing is given by: 

Δx+=47, Δy+=0.5 at wall (11 points below Δy+=10), 

Δy+=22 at centerline, and Δz+=28. Computation is initial-

ized with Poiseuille's parabolic velocity profile for air at 

standard conditions (except pressure), plus 2% random 

velocity perturbation. Pressure is reduced to obtain a 

centerline Mach number of 0.2, in order to optimize 

convergence of the compressible solver. x-momentum is 

maintained by a source term that is adjusted dynamically 

to match the objective centerline velocity. Shear-improved 

Smagorinsky model uses exponential average with 

cexp=8.837 10−5, given τ=δ/uw=1.69 10−2s as characteristic 

time (based on objective uw value) and Δt=5 10−7s. 

Post-treatment uses spatial average in x and z directions, 

plus “mirror”average in y direction, and temporal 

average during 0.22 s (90 instants). 

Computation naturally transitions from perturbed 

Poiseuille flow to turbulent flow. This proves the present 

numerical methods are not over-dissipative, and the sub-

grid-scale model allows transition. Indeed, the 

shear-improved Smagorinsky is designed to yield μsgs=0 

in laminar flow. Resulting turbulent fluctuations are in-

vestigated below. 

Fig. 4 presents the mean axial velocity, compared to 

DNS results of Moser et al. [20]. A fairly good agreement 

is obtained over the different layers of the flow. The 

overestimate of <u1>/uw at centerline comes from the 

underestimate of friction: 53.0/1 =∂><∂= yuuw υ  

instead of 0.59 (objective value). However, this 10% er-

ror lies within expected levels of accuracy given by Sa-

gaut et al.[21] for quality subgrid-scale models. Thin 

lines aside the LES curve represent the standard devia-

tion of velocity, taken between the exponential-averaged 

field at the final instant and the post-processing 

space-time average (<u1>,0,0). A good estimate of the 

mean field is obtained from the exponential average, at 

limited constraints. Indeed, it is computed over a very 

limited period (τ=δ/uw=1.69 10−2s), without spatial aver-

aging. This appears as an interesting tool for LES in 

complex configurations, where no spatial homogeneity or 

stationarity can be used. 

 
Fig. 4  Channel: mean axial velocity (thin lines represent   

standard deviation of running exponential average 

compared to post-processing space-time average). 

 
Fig. 5  Channel: fluctuating velocity components (rms). 

Fig. 5 presents the fluctuating velocity components. A 

good agreement is obtained with DNS, concerning the  

levels and the evolutions. Wall turbulence anisotropy is 

captured with present adaptable methods. 
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Fig. 6 presents the two-point spanwise velocity corre-

lations: 

>Δ+=<Δ ),,().,,()( zzyxuzyxuzR iiii
 

at y+=10 and y+=60. Post-processing average <…> covers 

x and z directions, mirror average in y-direction, and time. 

LES accurately reproduces the two-point correlations, 

considering the levels, the distribution between the three 

components of velocity, and the spanwise evolution. 

Comparing y+=60 to y+=10, the increase of the correla-

tion length is captured, which appears through the s-

preading of the curves. Also, the increase of R22 and R33 

shows some reduction of anisotropy, in agreement with 

DNS. This accurate representation of two-point correla-

tions is one of the advantages of LES for practical appli-

cations. Averaged methods do not provide such informa-

tion, which is particularly important for turbulence phe-

nomena and acoustics. This prediction is achieved with a 

rather coarse discretisation (Δz+=28), which results in the 

slope discontinuities of the LES curves in Fig. 6. This is 

beneficial for the computational time. 

   
Fig. 6  Channel: two-point spanwise correlations ( y+=10, 

and  y+=60) 

Finally, Fig. 7 presents the spanwise spectrum E11 (en-

ergy spectrum for u1) at y+=10. Post-processing average 

covers x-direction, mirror average in y-direction, and 

time. This figure illustrates one of the main advantages of 

LES: the spectral description of the flow, for an accurate 

representation of turbulence eddies and acoustics. More-

over, it allows evaluating the discretisation characteristics. 

In comparison with reference DNS, present LES accu-

rately represents the most energetic structures, character-

ized by a flat spectrum at the lower wavenumbers. Pre-

sent discretisation captures the spectrum up to the decline 

zone, and one decade of decline is directly represented. 

This kind of discretisation is consistent with LES ap-

proach, which does not represent the small and poorly 

energetic structures. The LES curve progressively di-

verges from DNS at the upper end of the spectrum, 

probably due to the damping associated with the numeri-

cal scheme at the high wavenumbers (cf. Fig. 1). The 

present level of physical discretisation, characterized by 

non-dimensional spatial steps Δx
+, Δy+, and Δz+ can be 

used as reference for future applications. 

 

Fig. 7  Channel: spanwise spectrum E11 at y+=10. 

Academic test cases have been used to focus study on 

spectral dynamics and wall-turbulence. Good perform-

ances are achieved on mean flow, fluctuations, two-point 

correlations and spectra. Moreover, discretisation aspects 

have been discussed, as well as performance of the ex-

ponential averaging. 

Application: tip clearance flow 

This section presents a computation on a complex 

configuration, in order to demonstrate the adaptability of 

the numerical methods. The geometry is composed of a 

NACA5510 airfoil (chord c=0.2 m, span: 0.2 m), set 

perpendicularly above a flat plate, with a clearance be-

tween the plate and the airfoil tip (gap: 10−2 m). Incom-

ing air velocity is U0=70 m/s. Lift on the airfoil generates 

a large clearance vortex, shown in Fig. 8-upper. Corre-

sponding aerodynamic and acoustic measurements are 
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presented by Grilliat et al. [22]. 

This configuration is particularly representative of 

clearance effects in turbomachines. The objective of LES 

is a combined description of aerodynamics and broad-

band acoustics, including the turbulent physics of the 

detached vortical flow. The geometric complexity and the 

high Reynolds number ( ) require the 

use of adaptable numerical methods, as presented above. 

6
10/0Re ≈= υcU

This section only demonstrates the applicability of the 

methods, and no quantitative data are considered. De-

tailed numerical analysis of this configuration will be 

presented in a following paper. The grid is composed of 

about 3 million points, with near wall density . 

Computation was initialized with converged RANS re-

sults on the same grid, and the clearance vortex provides 

natural forcing for the development of turbulent fluctua-

tions. The shear-improved Smagorinsky model is used. 

For the exponential averaging, characteristic time is 

τ=c / 3 U

5.0≈+y

0, corresponding to convection over one third of 

the chord length.  

 

Fig. 8  Tip clearance flow: streamlines through the gap (LE: 

leading edge, TE: trailing edge). 

Fig. 8 presents results at an instant during the devel-

opment of turbulent fluctuations. In the top view, stream-

lines show the development of the main clearance vortex 

along the suction side, and its deviation by the main flow 

downstream of the trailing edge. In the bottom view, a 

secondary vortex is observed on the blade tip. It is gener-

ated by the separation of the clearance flow on the pres-

sure side edge. LES must be particularly effective in 

capturing this complex vortical structure through the gap, 

and the associate broadband spectrum. 

In summary, present adaptable numerical methods al-

low turbulent simulation on a complex configuration, at 

limited computational cost (limited discretisation stencils 

and number of operations). Thanks to exponential aver-

aging, spatial homogeneity or steadiness are not required. 

Storage is limited to the instantaneous flow field and ex-

ponential-averaged field. Finally, the shear-improved 

Smagorinsky model allows the development of turbulent 

fluctuations. 

Conclusion 

The present paper focused on the development of LES 

for improved turbulent simulation of practical internal 

flows. 

Numerical methods have been chosen according to 

two competing criteria: their performance (precision, 

spectral characteristics) and their adaptability to complex 

configurations. Also, implementation matters are dis-

cussed, such as the relationship between the filtering 

frequency and the spectral characteristics of the discreti-

sation. 

These methods have been tested on academic con-

figurations, in order to abridge with previous fundamen-

tal studies on LES. Finite volume discretisation with 

higher order advection fluxes, implicit filtering by the 

grid and a “ low-cost”shear-improved Smagorinsky 

model showed good performances on isotropic turbu-

lence and channel flow. Mean flow, fluctuations, 

two-point correlations and spectra are particularly well 

captured. Furthermore, exponential averaging presents 

good performance, and appears as an interesting tool in 

complex configurations with no spatial homogeneity and 

large deterministic unsteadiness. 

Finally, the adaptability of the method is confirmed by 

application to a complex configuration, representative of 

blade-tip clearance flow in turbomachine. 

Acknowledgement 

This work is carried-out in the frame of Ecole Centrale 

de Lyon’s BQR grant “Contrôle de l’écoulement de jeu 

en turbomachines”. Dr Marc Jacob and EU consortium 

PROBAND are acknowledged for providing the 

tip-clearance test-case. Dr Lionel Gamet is acknowledged 

for numerical support and Dr Jean-Pierre Bertoglio for 



336 Journal of Thermal Science, Vol.16, No.4, 2007 

 

 

theoretical discussions on LES. 

References 

[1] Schlüter, J., Apte, S., Kalitzin, G., v.d. Weide, E., Alonso, 

J.J., Pitsch, H.: Large-scale integrated LES-RANS simu-

lations of a gas turbine engine. Annual Research Briefs, 

Center for Turbulence Research, pp. 111—120 (2005). 

[2] Sagaut, P.: Large eddy simulation for incompressible 

flows. Springer, New York (1998). 

[3] Huai, X., Joslin, R.D., Piomelli, U. Large-Eddy Simula-

tion of Transition to Turbulence in Boundary Layers. 

Theoretical and Computational Fluid Dynamics, vol. 9(2), 

pp. 149—163 (1997). 

[4] Rodi, W.: Large-Eddy Simulations of the Flow past Bluff 

Bodies: State-of-the Art. JSME International Journal, vol. 

41(2) (1998). 

[5] Raverdy, B., Mary, I., Sagaut, P., Liamis, N.: 

High-Resolution Large-Eddy Simulation of Flow Around 

Low-Pressure Turbine Blade. AIAA Journal, vol. 41(3) 

(2003). 

[6] Erlebacher, G., Hussaini, M.Y., Speziale, C.G., Zang, T.A.: 

Toward the large-eddy simulation of compressible turbu-

lent flows. Journal of Fluid Mechanics, vol. 238, pp. 

155—185 (1992). 

[7] Terracol, M., Manoha, E., Sagaut, P., Herrero, C.: Airfoil 

noise prediction using large-eddy simulation, linearized 

Euler equations and Kirchhoff integral. International 

Workshop on LES in Acoustics, Gottingen (2002). 

[8] Boudet, J., Grosjean, N., Jacob, M.C.: Wake-airfoil in-

teraction as broadband noise source: a large-eddy simula-

tion study. International Journal of Aeroacoustics, vol. 

4(1+2), pp. 93—115 (2005). 

[9] Lele, S.K.: Compact Finite-Difference Schemes with 

Spectral-like Resolution. Journal of Computational Phys-

ics, vol. 103, pp. 16—42 (1992). 

[10] Pope, S.B.: Turbulent Flows. Cambridge University Press, 

Cambridge (2000). 

[11] Smagorinsky, J.S.: General circulation experiments with 

the primitive equations: I. the basic experiment. Mon. 

Weather Rev., vol. 91, pp.99—163 (1963). 

[12] Deardorff, J.W.: A numerical study of three-dimensional 

turbulent channel flow at large Reynolds numbers. Jour-

nal of Fluid Mechanics, vol.41, pp. 453—465 (1970). 

[13] Lévêque, E., Toschi, F., Shao, L., Bertoglio, J.-P.: 

Shear-Improved Smagorinsky Model for Large-Eddy 

Simulation of Wall-Bounded Turbulent Flows. Journal of 

Fluid Mechanics, vol. 570, pp. 491—502 (2007). 

[14] Toschi, F., Lévêque, E., Ruiz-Chavarria, G.: Shear Effects 

in Nonhomogeneous Turbulence. Physical Review Let-

ters, vol. 85(7), pp. 1436—1439 (2000). 

[15] Bogey, C., Bailly, C.: Computation of a high Reynolds 

number jet and its radiated noise using large eddy simula-

tion based on explicit filtering, Computers and Fluids, 

35(10), pp. 1344—1358 (2006). 

[16] Mathew, J., Lechner, R., Foysi, H., Sesterhenn, J., Frie-

drich, R.: An explicit filtering method for large eddy 

simulation of compressible flows. Physics of Fluids, vol. 

15(8), pp.2279—2289 (2003). 

[17] Bogey, C., Bailly, C., Decrease of the effective Reynolds 

number with eddy-viscosity subgrid-scale modeling, 

AIAA Journal, 43(2), pp. 437—439 (2005). 

[18] Comte-Bellot, G., Corrsin, S.: Simple Eulerian time cor-

relation of full- and narrow-band velocity signals in 

grid-generated, ‘isotropic’ turbulence. Journal of Fluid 

Mechanics, vol. 48(2), pp. 273—337 (1971). 

[19] Kang, H.S., Chester, S., Meneveau, C.: Decaying turbu-

lence in an active-grid-generated flow and comparisons 

with large-eddy simulation. Journal of Fluid Mechanics, 

vol. 480, pp. 129—160 (2003). 

[20] Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical 

simulation of turbulent channel flow up to Reτ=590. 

Physics of Fluids, vol. 11(4), pp. 943—945 (1999). 

[21] Sagaut, P., Comte, P., Ducros, F.: Filtered subgrid-scale 

models, Physics of Fluids, vol. 12(1), pp. 233—236 

(2000). 

[22] Grilliat, J., Jacob, M.C., Camussi, R., Caputi-Gennaro, G.: 

Tip Leakage Experiment – Part One: Aerodynamic And 

Acoustic Measurements. 13th AIAA/CEAS Aeroacous-

tics Conference, paper AIAA 2007—3684 (2007).

 


	Numerical studies towards practical large-eddy simulation  
	J. Boudet1, J. Caro1, L. Shao1, E. Lévêque2  
	Introduction 
	Nomenclature
	uw
	Gi


	Adaptable numerical methods 
	Evaluation on academic test-cases 
	Application: tip clearance flow 
	Conclusion 
	Acknowledgement 
	References 



