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Abstract: This paper is devoted with numerical solution of the system fractional differential equations (FDEs) which are generated
by optimization problem using the Chebyshev collocation method. The fractional derivatives are presented in terms of Caputo sense.
The application of the proposed method to the generated system of FDEs leads to algebraic system which can be solved by the Newton
iteration method. The method introduces a promising tool for solving many systems of non-linear FDEs. Two numerical examples
are provided to confirm the accuracy and the effectiveness of the proposed methods. Comparisons with the fractional finite difference
method (FDM) and the fourth order Runge-Kutta (RK4) are given.
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Nomenclature

Dα : The Caputo fractional derivative of orderα;
N: The set of all nature numbers;
⌈α⌉: The ceiling function to denote the smallest

integer greater than or equal toα;
ℜ: The set of all real numbers;
∇h(x): The gradient of the functionh(x);
µ : An auxiliary penalty variable;
θ : A constant;
Tn(x): The Chebyshev polynomial of degreen;

1 Introduction

In last decades, fractional calculus has drawn a wide
attention from many physicists and mathematicians,
because of its interdisciplinary application and physical
meaning [1, 2]. Fractional calculus deals with the
generalization of differentiation and integration of
non-integer order. Fractional differential equations have

been the focus of many studies due to their frequent
appearance in various applications in fluid mechanics,
biology, physics and engineering [3]. Consequently,
considerable attention has been given to the solutions of
FDEs and integral equations of physical interest. Most
FDEs do not have exact analytical solutions, so
approximate and numerical techniques [4, 5] must be
used. Several numerical methods to solve FDEs have
been given such as, homotopy perturbation method [5],
homotopy analysis method [6], collocation method [7,14]
and others [12].

Representation of a function in terms of a series
expansion using orthogonal polynomials is a fundamental
concept in approximation theory and form the basis of the
solution of differential equations [15, 16]. Chebyshev
polynomials are widely used in numerical computation.
One of the advantages of using Chebyshev polynomials as
a tool for expansion functions is the good representation
of smooth functions by finite Chebyshev expansion
provided that the functiony(x) is infinitely differentiable.
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The coefficients in Chebyshev expansion approach zero
faster than any inverse power inn asn goes to infinity.

Optimization theory is aimed to find out the optimal
solution of problems which are defined mathematically
from a model arise in wide range of scientific and
engineering disciplines. Many methods and algorithms
have been developed for this purpose since 1940. The
penalty function methods are classical methods for
solving non-linear programming (NLP) problem [17,18].
Also, differential equation methods are alternative
approaches to find solutions to these problems. In this
type of methods the optimization problem is formulated
as a system of ordinary differential equations so that the
equilibrium point of this system converges to the local
minimum of the optimization problem [19,21].

In this article, we will compare our approximate
solution with those numerical obtained using the implicit
finite difference method. It has been shown that FDM is a
powerful tool for solving various kinds of
problems [22, 23]. Also, this technique reduces the
problem to a system of algebraic equations. Many authors
have pointed out that the FDM can overcome the
difficulties arising in the calculation of some numerical
methods, such as, finite element method.

The main aim of the presented paper is concerned
with the application of the Chebyshev collocation method
and fractional finite difference method to obtain the
numerical solution of the system of FDEs which is
generated from the non-linear programming problems and
study the convergence analysis of the proposed method.

The structure of this paper is arranged in the following
way: In section 2, we introduce some basic definitions
about Caputo fractional derivatives, the definition of the
optimization problem and its generated system of FDEs.
In section 3, we derive an approximate formula for
fractional derivatives using Chebyshev series expansion
and estimate an upper bound of the resulting error of the
proposed formula. In section 4, numerical examples are
given to solve the system of FDEs which obtained from
the non-linear programming problem and show the
accuracy of the presented methods. Finally, in section 5,
the paper ends with a brief conclusion and some remarks.

2 Preliminaries and notations

In this section, the formulation of the optimization
problem and its corresponding system of FDEs are given
and we present some necessary definitions and
mathematical preliminaries of the fractional calculus
theory required for our subsequent development.

2.1 The fractional derivative in the Caputo
sense

The Caputo fractional derivative operatorDα of orderα is
defined in the following form

Dα f (x) =
1

Γ (m−α)

∫ x

0

f (m)(ξ )
(x−ξ )α−m+1 dξ , α > 0,

wherem−1< α ≤ m, m ∈ N, x > 0.
Similar to integer-order differentiation, Caputo fractional
derivative operator is linear

Dα (c1p(x)+ c2q(x)) = c1Dα p(x)+ c2 Dα q(x),

wherec1 andc2 are constants. For the Caputo’s derivative
we have
Dα C = 0, C is a constant, (1)

Dα xn =

{

0, for n ∈ N0 andn < ⌈α⌉;
Γ (n+1)

Γ (n+1−α)x
n−α , for n ∈ N0 andn ≥ ⌈α⌉.

(2)
We use the ceiling function⌈α⌉ to denote the smallest
integer greater than or equal toα andN0 = {0,1,2, ...}.
Recall that forα ∈ N, the Caputo differential operator
coincides with the usual differential operator of integer
order.
For more details on fractional derivatives definitions and
their properties see ( [15], [24]).

2.2 Optimization problem and its corresponding
system of FDEs

Consider the non-linear programming problem with
equality constraints defined by

minimize f (x), subject tox ∈ M, (3)

with M = {x ∈ ℜn : h(x) = 0}, where f : ℜn → ℜ and
h = (h1,h2, ...,hp)

T : ℜn → ℜp (p ≤ n). It is assumed that
the functions in the problem are at least twice
continuously differentiable, that a solution exists, and that
∇h(x) has full rank. To obtain a solution of (3), the
penalty function method solves a sequence of
unconstrained optimization problems. A well-known
penalty function for this problem is given by

F(x,µ) = f (x)+µ
1
θ

p

∑
ℓ=1

(hℓ(x))
θ , (4)

where θ > 0 is a constant andµ > 0 is an auxiliary
penalty variable. The corresponding unconstrained
optimization problem of (3) is defined as follows

minimize F(x,µ) s.t. x ∈ ℜn. (5)
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For more details about NLP problem can be found in (
[12–14], [17], [18]).

We can write the NLP problem in a system of
fractional differential equations as follows:
Consider the unconstrained optimization problem (5), an
approach based on fractional dynamic system can be
described by the following FDEs

Dα x(t) =−∇xF(x,µ), 0< α ≤ 1, (6)

with the initial conditionsx(t0) = ci, i = 1,2, ...,n.
Note that, a pointxe is called an equilibrium point of (6)
if it satisfies the right hand side of Eq.(6). Also, we can
rewrite the fractional dynamic system (6) in more general
form as follows

Dα xi(t) = gi(t,µ ,x1,x2, ...,xn), i = 1,2, ...,n. (7)

The steady state solution of the non-linear system of FDEs
(7) must be coincided with local optimal solution of the
NLP problem (3).

3 Derivation an approximate formula for
fractional derivatives using Chebyshev series
expansion

The well known Chebyshev polynomials [25] are defined
on the interval[−1,1] and can be determined with the aid
of the following recurrence formula

Tn+1(z) = 2zTn(z)−Tn−1(z),

T0(z) = 1, T1(z) = z, n = 1,2, ... .

The analytic form of the Chebyshev polynomialsTn(z) of
degreen is given by

Tn(z) = n
[ n
2 ]

∑
i=0

(−1)i 2n−2i−1 (n− i−1)!
(i)! (n−2i)!

zn−2i, (8)

where [n/2] denotes the integer part ofn/2. The
orthogonality condition is

∫ 1

−1

Ti(z)Tj(z)√
1− z2

dz =







π, for i = j = 0;
π
2 , for i = j 6= 0;
0, for i 6= j.

In order to use these polynomials on the interval[0,L] we
define the so called shifted Chebyshev polynomials by
introducing the change of variablez = 2

L t −1. The shifted
Chebyshev polynomials are defined as
T ∗

n (t) = Tn(
2
L t − 1) = T2n(

√

t/L). The analytic form of
the shifted Chebyshev polynomialsT ∗

n (t) of degreen is
given by

T ∗
n (t) = n

n

∑
k=0

(−1)n−k 22k (n+ k−1)!
Lk(2k)! (n− k)!

tk, n = 2,3, ... .

(9)

The functionx(t), which belongs to the space of square
integrable functions on[0,L], may be expressed in terms
of shifted Chebyshev polynomials as

x(t) =
∞

∑
i=0

ci T ∗
i (t), (10)

where the coefficientsci are given by (fori = 1,2, ...)

c0 =
1
π

∫ L

0

x(t)T ∗
0 (t)√

Lt − t2
dt, ci =

2
π

∫ L

0

x(t)T ∗
i (t)√

Lt − t2
dt.

(11)
In practice, only the first(m + 1)-terms of shifted

Chebyshev polynomials are considered. Then we have

xm(t) =
m

∑
i=0

ci T ∗
i (t). (12)

Theorem 3.1 (Chebyshev truncation theorem) [25]
The error in approximatingx(t) by the sum of its firstm
terms is bounded by the sum of the absolute values of all
the neglected coefficients. If

xm(t) =
m

∑
k=0

ck Tk(t), (13)

then

ET (m)≡ |x(t)− xm(t)| ≤
∞

∑
k=m+1

|ck|, (14)

for all x(t), all m, and allt ∈ [−1,1].
The main approximate formula of the fractional derivative
of xm(t) is given in the following theorem.

Theorem 3.2 Let x(t) be approximated by Chebyshev

polynomials as (12) and also supposeα > 0, then

Dα(xm(t)) =
m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

ci w(α)
i,k tk−α , (15)

wherew(α)
i,k is given by

w(α)
i,k = (−1)i−k 22k i(i+ k−1)!Γ (k+1)

Lk(i− k)! (2k)! Γ (k+1−α)
. (16)

Proof. Since the Caputo’s fractional differentiation is a

linear operation we have

Dα(xm(t)) =
m

∑
i=0

ci Dα(T ∗
i (t)). (17)

Employing Eqs.(1) and (2) on the formula (9) we have

Dα T ∗
i (t) = 0, i = 0,1, ...,⌈α⌉−1, α > 0. (18)
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Also, for i = ⌈α⌉,⌈α⌉+1, ...,m, and by using Eqs.(1) and
(2), we get

Dα T ∗
i (t) = i

i

∑
k=⌈α⌉

(−1)i−k 22k(i+ k−1)!
Lk(i− k)! (2k)!

Dα tk

= i
i

∑
k=⌈α⌉

(−1)i−k 22k(i+ k−1)!Γ (k+1)
Lk(i− k)! (2k)! Γ (k+1−α)

tk−α

(19)
A combination of Eqs.(18), (19) and (16) leads to the
desired result (15) and completes the proof of the
theorem.

Theorem 3.3 The Caputo fractional derivative of orderα
for the shifted Chebyshev polynomials can be expressed
in terms of the shifted Chebyshev polynomials
themselves in the following form

Dα(T ∗
i (t)) =

i

∑
k=⌈α⌉

k−⌈α⌉
∑
j=0

Θi, j,k T ∗
j (t), (20)

where (for j = 0,1, ...)

Θi, j,k =
(−1)i−k 2i(i+k−1)!Γ (k−α+ 1

2 )

h jΓ (k+ 1
2 )(i−k)! Γ (k−α− j+1)Γ (k+ j−α+1)Lk

Proof. We concern the properties of the shifted

Chebyshev polynomials [25] and expandingtk−α in
Eq.(19) in the following form

tk−α =
k−⌈α⌉
∑
j=0

ck jT
∗
j (t), (21)

whereck j can be obtained using (11) wherex(t) = tk−α

then

ck j =
2

h jπ

∫ L

0

tk−α T ∗
j (t)√

Lt − t2
dt, h0 = 2, h j = 1, j = 1,2, ... .

At j = 0 we find

ck0 =
1
π

∫ L

0

tk−α T ∗
0 (t)√

Lt − t2
dt =

1√
π

Γ (k−α +1/2)
Γ (k−α +1)

,

also, at anyj and using the formula (9) we can find that

ck j =
j√
π ∑ j

r=0(−1) j−r ( j+r−1)!22r+1Γ (k+r−α+1/2)
( j−r)!(2r)!Γ (k+r−α+1)Lr ,

for j = 1,2, ... . Employing Eqs.(19) and (21) gives
Dα(T ∗

i (t)) = ∑i
k=⌈α⌉ ∑k−⌈α⌉

j=0 Θi, j,kT ∗
j (t), i = ⌈α⌉,⌈α⌉+1, ... ,

where

Θi, j,k =














i
(−1)i−k(i+k−1)!22k k! Γ (k−α+ 1

2 )

(i−k)! (2k)!
√

π (Γ (k+1−α))2 , j = 0;

(−1)i−k i j (i+k−1)!22k+1 k!√
πΓ (k+1−α)(i−k)!(2k)!

×∑ j
r=0

(−1) j−r ( j+r−1)!22r Γ (k+r−α+ 1
2 )

( j−r)! (2r)! Γ (k+r−α+1)Lr , j = 1,2, ... .

After some lengthly manipulationΘi, j,k can put in the
following form (for j = 0,1, ... )

Θi, j,k =
(−1)i−k 2i(i+k−1)!Γ (k−α+ 1

2 )

h jΓ (k+ 1
2 )(i−k)! Γ (k−α− j+1)Γ (k+ j−α+1)Lk ,

(22)
and this completes the proof of the theorem.

Theorem 3.4 The error|ET (m)| = |Dα x(t)−Dα xm(t)| in

approximatingDα x(t) by Dα xm(t) is bounded by

|ET (m)| ≤
∣

∣

∣

∞

∑
i=m+1

ci

( i

∑
k=⌈α⌉

k−⌈α⌉
∑
j=0

Θi, j,k

)∣

∣

∣
. (23)

Proof. A combination of Eqs.(10), (12) and (20) leads to

|ET (m)|=
∣

∣

∣
Dα x(t)−Dα xm(t)

∣

∣

∣

=
∣

∣

∣

∞

∑
i=m+1

ci

( i

∑
k=⌈α⌉

k−⌈α⌉
∑
j=0

Θi, j,kT ∗
j (t)

)∣

∣

∣
,

but |T ∗
j (t)| ≤ 1, so, we can obtain

|ET (m)| ≤
∣

∣

∣

∞

∑
i=m+1

ci

( i

∑
k=⌈α⌉

k−⌈α⌉
∑
j=0

Θi, j,k

)∣

∣

∣
,

and subtracting the truncated series from the infinite series,
bounding each term in the difference, and summing the
bounds completes the proof of the theorem.

4 Numerical implementation

In order to illustrate the effectiveness of the proposed
method, we implement them to solve the following
system of FDEs which is generated from the non-linear
programming problem.

4.1 Optimization problem 1:

Consider the following non-linear programming problem
[26]

minimize f (x) = 100(u2− v)2+(u−1)2,

subject toh(x) = u(u−4)−2v+12= 0.
(24)

The optimal solution isx∗ = (2,4), wherex = (u,v). For
solving the above problem, we convert it to an
unconstrained optimization problem with quadratic
penalty function (4) for θ = 2, then we have
F(x,µ) = 100(u2− v)2+(u−1)2+ 1

2µ(u(u−4)−2v+12)2,
where µ ∈ ℜ+ is an auxiliary penalty variable. The
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corresponding non-linear system of FDEs from (6) is
defined as

Dα u(t) =−400(u2− v)u−2(u−1)−µ(2u−4)(u2−4u−2v+12),

Dα v(t) = 200(u2− v)+2µ(u2−4u−2v+12), 0< α ≤ 1,
(25)

with the following initial conditions u(0) = 0 and
v(0) = 0.

1.I: Implementation of Chebyshev approximation
Consider the system of fractional differential equations
(25). In order to use the Chebyshev collocation method,
we first approximateu(t) andv(t) as

um(t) =
m

∑
i=0

ai T ∗
i (t), vm(t) =

m

∑
i=0

bi T ∗
i (t). (26)

From Eqs.(26) and Theorem 3.2 we have

m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

ai w(α)
i,k tk−α =−400((

m

∑
i=0

ai T ∗
i (t))

2−
m

∑
i=0

bi T ∗
i (t))

(
m

∑
i=0

ai T ∗
i (t))−2(

m

∑
i=0

ai T ∗
i (t)−1)−µ(2

m

∑
i=0

ai T ∗
i (t)−4)

((
m

∑
i=0

ai T ∗
i (t))

2−4(
m

∑
i=0

ai T ∗
i (t))−2(

m

∑
i=0

bi T ∗
i (t))+12),

(27)

m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

bi w(α)
i,k tk−α = 200((

m

∑
i=0

ai T ∗
i (t))

2−
m

∑
i=0

bi T ∗
i (t))

+2µ((
m

∑
i=0

ai T ∗
i (t))

2−4(
m

∑
i=0

ai T ∗
i (t))−2(

m

∑
i=0

bi T ∗
i (t))+12).

(28)
We now collocate Eqs.(27) and (28) at (m + 1− ⌈α⌉)
pointstp (p = 0,1, ...,m+1−⌈α⌉) as

m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

ai w(α)
i,k tk−α

p =−400((
m

∑
i=0

ai T ∗
i (tp))

2−
m

∑
i=0

bi T ∗
i (tp))

(
m

∑
i=0

ai T ∗
i (tp))−2(

m

∑
i=0

ai T ∗
i (tp)−1)−µ(2

m

∑
i=0

ai T ∗
i (tp)

−4)((
m

∑
i=0

ai T ∗
i (tp))

2−4(
m

∑
i=0

ai T ∗
i (tp))−2(

m

∑
i=0

bi T ∗
i (tp))+12),

(29)

m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

bi w(α)
i,k tk−α

p = 200((
m

∑
i=0

ai T ∗
i (tp))

2−

m

∑
i=0

bi T ∗
i (tp))+2µ((

m

∑
i=0

ai T ∗
i (tp))

2−4(
m

∑
i=0

ai T ∗
i (tp))

−2(
m

∑
i=0

bi T ∗
i (tp))+12).

(30)
For suitable collocation points we use the roots of shifted
Chebyshev polynomialT ∗

m+1−⌈α⌉(t).

Also, by substituting Eq.(26) in the initial conditions
u(0) = v(0) = 0, we can find

m

∑
i=0

(−1)i ai = 0,
m

∑
i=0

(−1)i bi = 0. (31)

Equations (29) and (30), together the equations of the
initial conditions (31), give (2m + 2) of non-linear
algebraic equations which can be solved using the
Newton iteration method, for the unknownsai and
bi, i = 0,1, ...,m.

1.II: Implementation of fractional FDM
In this section, the fractional finite difference method

with the discrete formula ( [27], [28]) is used to estimate
the timeα-order fractional derivative to solve numerically
the system of FDEs (25). Using ( [27], [28]) the restriction
of the exact solution to the grid points centered atxn =
nk,n = 1,2, ...,N, in Eqs.(25)

σα ,k

n

∑
j=1

ω(α)
j (un− j+1−un− j)+O(k) =−400(u2

n − vn)un

−2(un −1)−µ(2un −4).(u2
n −4un −2vn +12),

(32)

σα ,k

n

∑
j=1

ω(α)
j (vn− j+1− vn− j)+O(k)

= 200(u2
n − vn)+2µ(u2

n −4un −2vn +12),

(33)

σα ,k

n

∑
j=1

ω(α)
j (un− j+1−un− j) =−400(u2

n − vn)un

−2(un −1)−µ(2un −4).(u2
n −4un −2vn +12)+TE1(t),

(34)

σα ,k

n

∑
j=1

ω(α)
j (vn− j+1− vn− j) = 200(u2

n − vn)

+2µ(u2
n −4un −2vn +12)+T E2(t),

(35)

whereT E1(t) andT E2(t) are the truncation terms. Thus,
according to Eqs.(34) and (35), the numerical scheme is
consistent, first order correct in time. The resulting finite
difference equations are defined by

σα ,k

n

∑
j=1

ω(α)
j (un− j+1−un− j) =−400(u2

n − vn)un

−2(un −1)−µ(2un −4).(u2
n −4un −2vn +12),

(36)

σα ,k

n

∑
j=1

ω(α)
j (vn− j+1− vn− j) = 200(u2

n − vn)

+2µ(u2
n −4un −2vn +12), n = 1,2, ...,N.

(37)

This scheme presents a non-linear system of algebraic
equations. In our calculation, we used the Newton
iteration method to solve this system.
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Fig. 1: The behavior of the Chebyshev collocation solution with
m = 4, FDM solution withk = 0.002 and RK4 solution atα = 1.

In figures 1 and 2, we presented a comparison
between the approximate solution (u(t), v(t)) using the
Chebyshev collocation method withm = 4, numerical
solution using the fractional finite difference method with
k = 0.002 and the solution using Runge-Kutta method for
α = 1 andα = 0.85, respectively. From these figures, we
can conclude that the obtained numerical solutions of the
proposed methods are in excellent agreement with those
obtained from Runge-Kutta method.

4.2 Optimization problem 2:

Consider the equality constrained optimization problem
[26]

minimize f (x) = (x1−1)2+(x1− x2)
2+(x2− x3)

2

+(x3− x4)
4+(x4− x5)

4,

subject toh1(x) = x1+ x2
2+ x3

3−2−3
√

2= 0,

h2(x) = x2− x2
3+ x4+2−2

√
2= 0,

h3(x) = x1x5−2= 0.
(38)

The solution of (38) is x∗ ∼= (1.19,1.362,1.47,1.64,1.68)
and this is not an exact solution. For solving the above
problem, we convert it to an unconstrained optimization
problem with quadratic penalty function (4) for θ = 2, then

Fig. 2: The behavior of the Chebyshev collocation solution with
m = 4 and FDM solution withk = 0.002 atα = 0.85.

Table 1: The numerical solution of the system (40) using the
Chebyshev collocation method atα = 1.

t x1(t) x2(t) x3(t) x4(t) x5(t)
0 2 2 2 2 2
2 1.19101 1.35954 1.47404 1.64153 1.67921
10 1.19108 1.36252 1.47278 1.63476 1.67914
15 1.19109 1.36253 1.47277 1.63474 1.67913
20 1.19109 1.36253 1.47277 1.63474 1.67913
30 1.19109 1.36253 1.47277 1.63474 1.67913

we have

F(x,µ) = f (x)+
1
2

µ
3

∑
ℓ=1

(hℓ(x))
2, (39)

where µ ∈ ℜ+ is an auxiliary penalty variable. The
corresponding non-linear system of FDEs from (6) is
defined as

Dα x(t) =−∇ f (x)−µ∇h(x)h(x), 0< α ≤ 1, (40)

with the following initial conditionsx(0) = (2,2,2,2,2)T

that is not feasible.

The obtained numerical results of the problem (40)
using the proposed methods are presented in tables 1-5,
where in table 1, we presented the numerical solution
x(t) = (x1(t),x2(t), ...,x5(t)) using Chebyshev collocation
method withm = 5 atα = 1 and in table 2, we presented
the numerical solution using the fractional FDM with

c© 2013 NSP
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Table 2: The numerical solution of the system (40) using the
fractional FDM atα = 1.

t x1(t) x2(t) x3(t) x4(t) x5(t)
0 2 2 2 2 2
2 1.19101 1.35954 1.47404 1.64153 1.67920
10 1.19108 1.36252 1.47278 1.63476 1.67914
15 1.19109 1.36253 1.47277 1.63474 1.67913
20 1.19109 1.36253 1.47277 1.63474 1.67913
30 1.19109 1.36253 1.47277 1.63474 1.67913

Table 3: The numerical solution of the system (40) using the
RK4 method atα = 1.

t x1(t) x2(t) x3(t) x4(t) x5(t)
0 2 2 2 2 2
2 1.19101 1.35954 1.47404 1.64153 1.67921
10 1.19108 1.36252 1.47278 1.63476 1.67914
15 1.19109 1.36253 1.47277 1.63474 1.67913
20 1.19109 1.36253 1.47277 1.63474 1.67913
30 1.19109 1.36253 1.47277 1.63474 1.67913

Table 4: The numerical solution of the system (40) using the
Chebyshev collocation method atα = 0.85.

t x1(t) x2(t) x3(t) x4(t) x5(t)
0 2 2 2 2 2
2 1.19893 1.36922 1.46874 1.61608 1.66808
10 1.19109 1.36253 1.47277 1.63474 1.67913
15 1.19109 1.36253 1.47277 1.63474 1.67913
20 1.19109 1.36253 1.47277 1.63474 1.67913
30 1.19109 1.36253 1.47277 1.63474 1.67913

Table 5: The numerical solution of the system (40) using the
fractional FDM atα = 0.85.

t x1(t) x2(t) x3(t) x4(t) x5(t)
0 2 2 2 2 2
2 1.19893 1.36922 1.46874 1.61608 1.66808
10 1.19109 1.36253 1.47277 1.63473 1.67913
15 1.19109 1.36253 1.47277 1.63473 1.67913
20 1.19109 1.36253 1.47277 1.63473 1.67913
30 1.19109 1.36253 1.47277 1.63473 1.67913

k = 0.002 at α = 1 and in table 3, we presented the
numerical solution using the fourth order Runge-Kutta
method. But in tables 4 and 5, we presented the numerical
solution of the same system (40) with α = 0.85 using the
two proposed methods, respectively. From these tables,
we can conclude that our solutions of the proposed
methods are in excellent agreement with the solution
using RK4 method.

5 Conclusion and remarks

In this article, we implemented an efficient numerical
method for solving the system of FDEs which is

generated from the NLP problem. The fractional
derivative is considered in the Caputo sense. The
properties of the Chebyshev polynomials are used to
reduce the system of fractional differential equations to
the solution of system of algebraic equations. It is evident
that the overall errors can be made smaller by adding new
terms from the series (26) . The convergence analysis of
the proposed method and derivation an upper bound of
the error are introduced. From illustrative examples, it can
be seen that the proposed numerical approach can obtain
very accurate and satisfactory results. The numerical
comparison among the fourth order Runge-Kutta (α = 1)
and the solution obtained using finite difference method
with the proposed methods shows that our technique
perform rapid convergence to the optimal solutions of the
optimization problems. Also, from the obtained numerical
results we can conclude that our results are in excellent
agreement with the exact solution and those from the RK4
method. All numerical results are obtained using Matlab.
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