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Abstract—In this work, numerical analysis of nonlinear ferromagnetic problems is presented using
the three-dimensional time-domain finite element method (TDFEM). Formulated with the second-
order nonlinear partial differential equation (PDE) combined with the inverse Jiles-Atherton (J-A)
vector hysteresis model, the nonlinear problems are solved in the time domain with the Newton-
Raphson method. To solve the ordinary differential equation (ODE) representing the magnetic hysteresis
accurately and efficiently, several ODE solvers are specifically designed and investigated. To improve
the computational efficiency of the Newton-Raphson method, the multi-dimensional secant methods,
aka Broyden’s methods, are incorporated in the nonlinear TDFEM solver. A nonuniform time-stepping
scheme is also developed using the weighted residual approach to remove the requirement of a uniform
time-step size during the simulation. The capability and the performance of the proposed methods are
demonstrated by various numerical examples.

1. INTRODUCTION

Magnetic hysteresis and constitutive nonlinearity are fundamental properties of ferromagnetic materials.
Mathematically speaking, the magnetization intensity is not only a nonlinear, but also a multi-valued
function of the magnetic field. The magnetic susceptibility depends on both the current and the
past values of the magnetic field. Because of their constitutive nonlinearity, ferromagnetic materials
have found a wide range of applications in data storage and processing, electric power generation,
telecommunications, and transducers in smart systems. The optimal design of a ferromagnetic
device requires an accurate solution of the nonlinear magnetic problem with proper material and
electromagnetic models.

In our previous work [1], a numerical solution to the nonlinear magnetic problem is formulated with
a three-dimensional time-domain finite element method (TDFEM) [2] combining with the inverse vector
Jiles-Atherton (J-A) model [3–6]. The physical problem is expressed as a nonlinear second-order partial
differential equation (PDE) in the time domain, which is solved using the Newton-Raphson or Newton-
like methods. To properly model the nonlinear ferromagnetic materials, the well-known J-A model is
employed. In the J-A model, the constitutive relation of the ferromagnetic materials is described in
terms of an ordinary differential equation (ODE), which can be solved with a proper time integration
method. The solution of the coupled PDE-ODE system is a nonlinear iterative process. In order to
solve the nonlinear PDE using the Newton-Raphson method, an estimated solution of the magnetic
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flux is provided and fed into the ODE, from which the differential reluctivity and the magnetic field
are calculated and returned back to the PDE to generate the next estimated solution. This process
continues iteratively until convergence is achieved.

Since the ODE describing the magnetic hysteresis represents a mathematically stiff problem, it
is inefficient to solve numerically because the rapidly varying component of the solution forces the
use of very small step sizes to maintain stability. Unfortunately, the step size is not controllable in the
nonlinear time-domain formulation because it is determined by the nonlinear PDE solver. In this paper,
the accurate and efficient solution of the stiff ODE is discussed, and different methods are discussed
and compared.

Once the constitutive relation is obtained accurately and efficiently, the PDE that describes the
nonlinear magnetic problem can be solved with the TDFEM using the Newton-Raphson method. An
obvious advantage of the Newton-Raphson method is its local quadratic convergence when starting from
an initial estimation that is sufficiently close to the true solution. A quadratic convergence means that
the error of the solution reduces quadratically with iterations, or a two-digit precision gain per Newton
iteration. Theoretically, to achieve a relative residual of 10−8 in a quadratically converging process,
only four Newton iterations are needed, which makes the Newton-Raphson method very attractive.
Solving the nonlinear magnetic problems in the time domain with the Newton-Raphson method has
two obvious advantages. The first advantage is that the time-domain solver has a natural choice of
the initial guess, which is the solution at the preceding time step. As a result, the convergence of the
time-domain solver can always be achieved if the time-step size is small enough such that the solutions
at two successive time steps are sufficiently close. The second advantage of the time-domain solver is the
ability to capture all the physical phenomena in a real process, such as higher-order harmonic responses,
magnetic remanence, and hysteresis losses. In the meantime, there are also several challenges in the
time-domain modeling of nonlinear magnetic problems. One such challenge comes from the application
of the Newton-Raphson method, where the Jacobian matrix needs to be updated and solved at every
nonlinear iteration, which makes the solution very time consuming for large problems.

In order to improve the efficiency of the Newton-Raphson method, the Jacobian matrix and its
inverse can be formed approximately and implicitly at each Newton step using the multi-dimensional
secant updating methods, also known as Broyden’s methods [7]. Broyden’s methods can reduce the
computational cost by using function values at successive iterations to build an approximation of the
Jacobian matrix and avoiding any explicit evaluation of the derivatives. The computational cost can be
further reduced with Broyden’s methods by updating the factorization of the approximated Jacobian
matrix rather than refactoring it repeatedly at each Newton step. In this paper, Broyden’s methods
are introduced and employed to reduce the computational cost while maintaining a fast convergence,
which is usually super-linear because of the approximation.

To achieve a fast convergence, the time-step size of the nonlinear time-domain solver needs to be
small enough. In the TDFEM, the time-step size is usually a constant throughout the entire simulation.
However, there are many situations where the application of nonuniform time-step sizes is more desirable.
For example, when the excitation signal is varying rapidly, a small time-step size should be used in order
to capture fast variations in physical quantities and guarantee convergence. But when the excitation
signal is varying slowly, it is much more efficient if a larger time-step size is adopted. As a result, the use
of nonuniform time-step sizes would be a better choice in real applications. Another scenario where a
nonuniform time-stepping is more appropriate is the simulation of the magnetic hysteresis phenomenon.
Since the nonlinear hysteresis is a stiff mathematical problem, when the amplitude of the externally
applied excitation is high, the magnetic field would change very drastically. But when the amplitude
of the excitation is low, the magnetic field would change quite smoothly. As a result, it is not always
necessary to use a uniformly small time-step size throughout the entire time-marching process. In this
paper, a nonuniform time-stepping scheme is developed using the weighted residual approach [8] to
remove the requirement of a uniform time-step size during the simulation.

This paper is organized as follows. In Section 2, the TDFEM formulation for the nonlinear
magnetic problems is briefly reviewed and validated through several benchmark problems. Different
approaches of solving the ODE representing the constitutive hysteresis are discussed and their accuracy
and efficiency are compared in Section 3. To alleviate the computational bottleneck of constructing and
solving the Jacobian matrix equation, Broyden’s methods are incorporated in the nonlinear TDFEM
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solver in Section 4. In Section 5, the nonuniform time-stepping scheme is developed and its numerical
performance is investigated. The applications of the proposed nonlinear solver are demonstrated through
the investigation of magnetic hysteresis and its nonlinear effects in Section 6. Conclusion is drawn in
Section 7.

2. TDFEM FORMULATIONS FOR NONLINEAR MAGNETIC PROBLEMS

In this section, we briefly review the nonlinear inverse J-A hysteresis model [6] and the TDFEM
formulation for nonlinear magnetic problems developed in [1], and present simple numerical examples
for validation.

2.1. Inverse Vector Jiles-Atherton Model

In the inverse vector J-A model [6], the magnetic field H and the magnetization M are formulated as
functions of the magnetic flux B

dM = ν0ξ̄
d
r (B,H) · dB (1)

dH = ν0ν̄
d
r (B,H) · dB, (2)

where ν0 = 1/µ0 is the reluctivity in free-space, ξ̄d
r is the relative differential magnetizability tensor,

and ν̄d
r is the relative differential reluctivity tensor. The detailed expression for ξ̄d

r can be found in [1].
Since

B = µ0(H + M), (3)

the differential reluctivity and magnetizability tensors can be related as

ν̄d
r = Ī − ξ̄d

r , (4)

where Ī is the unit tensor. From these differential relations, the magnetization M and the magnetic
field H can be determined by the value and variation of the magnetic flux B.

2.2. Nonlinear Time-Domain Finite Element Formulation

The proposed TDFEM formulation for nonlinear magnetic problems solves for the magnetic vector
potential A, which satisfies the second-order curl-curl equation as

∇× (νr∇× A) +
εr

c2
0

∂2

∂t2
A +

η0

c0
σ

∂

∂t
A = µ0Jimp, (5)

where εr and νr are the relative permittivity and reluctivity of the material, η0 and c0 are the intrinsic
impedance and the speed of light in free-space, respectively. Since it is usually solenoidal in magnetic
problems, the impressed current Jimp can be expressed in terms of the impressed current vector potential
Timp [9] as Jimp = ∇× Timp, which is equivalent to enforcing a gauge condition on A.

The unknown vector A can be spatially expanded in terms of vector basis functions Nj [10–12], and
temporally discretized using the Newmark-β method [8, 13, 14] with β = 1/4. The curl-curl Equation (5)
can therefore be discretized as

{
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where

Sij =

∫∫∫

V

νr (∇× Ni) · (∇× Nj) dV (7)

Mij =

∫∫∫

V

εrNi · NjdV (8)
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Gij =

∫∫∫

V

σNi · NjdV (9)

Aij =

∫∫

S

1

ηr

(n̂ × Ni) · (n̂ × Nj) dS (10)

bi =

∫∫∫

V

(∇× Ni) · TimpdV. (11)

In the above expressions, Ni and Nj represent vector basis functions, V is the solution domain, S = ∂V
is the boundary of V , and ηr is the relative impedance on the truncation boundary [15, 16]. Equation (6)
can be solved step by step by marching from the known solutions at the (n − 1)th and the nth time
steps to the (n + 1)th time step. Once the magnetic vector potential A is obtained at some time step
tn+1, the magnetic flux B and electric field E at the same time step can be calculated.

Since the relative reluctivity of the material νr is a function of the magnetic flux density, which is a
function of the unknown vector {a}n+1, the system Equation (6) is nonlinear. Such a nonlinear system
can be solved iteratively by using the polarization technique and the Newton-Raphson method as [1]

[J ]{δa} = −{r} (12)

{a}n+1
k+1 = {a}n+1

k + {δa}. (13)

In (12), {r} is the residual function at the kth Newton step

{r} = [Kp]
n+1{a}n+1

k + [Kp]
n{a}n + [Kp]

n−1{a}n−1 + {R}k − {b̃}, (14)

where

[Kp]
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1

4
c2
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1

2
η0c0∆t[G] ±

1

2
c0∆t[A] (15)

[Kp]
n =

1

2
c2
0∆t2[Sp] − 2[M ] (16)

{b̃} = η0c0∆t2
(

1

4
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1

2
{b}n +

1

4
{b}n−1

)

(17)

and the nonlinearity is presented in

Rk,i = µ0c
2
0∆t2

∫∫∫

V

(∇× Ni) · RkdV, (18)

where Rk is a nonlinear function of the vector potential A at the kth Newton step

R(A) = H − νopt
r ν0B, (19)

in which H is obtained from the J-A model presented in Section 2.1, and νopt
r is a constant, which can

be chosen as [1]

νopt
r =

{

νr, in the linear material
0, in the nonlinear material.

With the definition of νopt
r , the stiffness matrix [Sp] can be calculated as

Sp,ij =

∫∫∫

V

νopt
r (∇× Ni) · (∇× Nj) dV. (20)

In (12), [J ] is the Jacobian matrix at the kth Newton step

[J ] =
1

4
c2
0∆t2[SJ ] + [M ] +

1

2
η0c0∆t[G] +

1

2
c0∆t[A]. (21)

If the constitutive relation of the ferromagnetic material is described by a scalar relation H = ν0νr(B)B,
where B = ‖B‖,

SJ
ij =

∫∫∫

V
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]}

dV. (22)
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If the constitutive relation of the ferromagnetic material is described by a vector relation H = ν0ν̄r(B)·B,

SJ
ij =

∫∫∫

V

(∇× Ni) · ν̄
d
r · (∇× Nj) dV. (23)

Besides the Newton-Raphson method, the nonlinear system matrix (6) can also be solved with a
simple fixed-point method where A can be solved with a fixed-point iteration

∇×
(

νopt
r ∇× A

)

+
εr

c2
0

∂2

∂t2
A +

η0

c0
σ

∂

∂t
A = µ0Jimp − µ0∇× R. (24)

The solution process has been described in [1] and will not be repeated in this paper.

2.3. Benchmark and Validation

To demonstrate the validity of the proposed formulations and compare the performance of the Newton-
Raphson and fixed-point methods, we consider two benchmark problems, which are adopted from the
“testing electromagnetic analysis methods” (TEAM) workshop [17]. Since the excitation current has
a majority of energy concentrating at very low frequencies or even at dc, the tree-cotree splitting
(TCS) [18, 19] has been applied to the TDFEM solver, in order to eliminate the low-frequency breakdown
problem. To deal with the multiscale geometric configuration, higher-order hierarchical vector basis
functions [12, 20] are also employed whenever needed to achieve a better accuracy.

2.3.1. TEAM Problem 10

The first problem considered is the TEAM workshop problem 10 as shown in Fig. 1, where a racetrack
coil is placed between two steel channels and a flat steel plate is inserted in between of these two
channels. The steel channels and plate have a relative permittivity of εr = 1.0, a conductivity
of σ = 7.505 × 106 S/m, and a permeability given by the nonlinear B-H relation through discrete
measurement data, from which the scalar constitutive relation is constructed and shown in Fig. 2(a)
in [1]. Since it is a scalar B-H relation, the nonlinear TDFEM formulation (22) is used for this example.
The steel structure is excited with a dc coil current turned on from 0 A and gradually increased to Im.
The magnetic flux in three different regions S1, S2, and S3 are recorded and compared with measurement
data. This problem is simulated using both the Newton-Raphson and the fixed-point methods and a
good agreement is achieved between the measurement and the simulated results [1]. Here, we compare
the computational performance between the two methods. As shown in Tab. 1, it can be seen that

(a) (b)

Figure 1. Problem setting and dimensions of TEAM problem 10. (a) Racetrack coil. (b) Steel channels
and center plate.
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Table 1. Comparison of computational data for solving TEAM problem 10 using Newton-Raphson
(NR) and fixed-point (FP) methods.

Im = 18.52 A ∆t (ms) Total Time Steps Ave. Iter. Per Time Step Total CPU Time (s)

NR 1.0 200 3.03 1698.18

FP 1.0 200 12.91 1051.52

Table 2. Comparison of computational data for solving TEAM problem 10 using Newton-Raphson
(NR) method with different time-step sizes.

Im = 5.64A ∆t (ms) Total Time Steps Ave. Iter. Per Time Step Total CPU Time (s)

NR 0.15 1000 2.01 7518.15

NR 3.0 50 3.04 425.77

for this specific problem, the fixed-point method requires less computational time than the Newton-
Raphson method, because it does not require the construction and solution of the Jacobian matrix.
However, the average number of iterations needed for the fixed-point method to converge at each time
step is significantly larger than that for the Newton-Raphson method, which means that the fixed-point
method is much more difficult to converge. In a more complicated application, the fixed-point method
would require a much smaller time-step size in order to achieve convergence. Ideally, a larger time-
step size is more desirable in real applications because it is much more efficient in reducing the total
computational time. This can be seen very clearly from Tab. 2, where the computational costs needed
by the Newton-Raphson method with different ∆t are compared. Although a smaller ∆t can converge
with a smaller number of Newton iterations per time step, the larger number of time steps eventually
counteracts the computational time reduction and results in a larger time consumption.

2.3.2. TEAM Problem 13

Next, we consider TEAM benchmark problem 13 [21]. Compared with TEAM problem 10, problem
13 has the same excitation coil as that shown in Fig. 1(a). The difference is that the steel channels in
problem 13 are shifted horizontally to both sides, as shown in Fig. 2(a). The steel structure is then
excited with a 1000-AT coil current. The unit AT is usually used in the magnetics community to express

(a) (b)

Figure 2. Problem setting and dimensions of the steel channels and center plate in TEAM problem
13. (a) Steel channels and center plate. (b) Observation areas on the steel channels.
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Figure 3. Magnitude of the magnetic flux density on the surface of the steel structure in TEAM
problem 13, top view.

Figure 4. Numerical results of TEAM problem 13 with 1000-AT coil current excitation. Average
magnetic flux density in the observation areas S1, S2, and S3 is shown as a function of position.

the magnitude of the total coil current, which stands for Ampere turn, and is defined as the product
of Im and the number of turns of the coil. The top view of the magnitude of the magnetic flux density
is shown in Fig. 3 when it reaches to the steady state. The average magnitude of the magnetic flux
density in three different areas shown in Fig. 2(b) are recorded as functions of position. The comparison
between the results obtained by the proposed nonlinear TDFEM solver and the measurement data [17]
is shown in Fig. 4. A good agreement can be observed from these figures.

3. ORDINARY DIFFERENTIAL EQUATION SOLVERS FOR MAGNETIC
HYSTERESIS

From the nonlinear TDFEM formulations presented in the preceding section, it is clear that to model the
magnetic hysteresis phenomenon, the accurate generation of ν̄d

r and H is critical to the fast convergence
of the Newton-Raphson method. Since in the hysteresis model introduced in Section 2.1, the constitutive
relation is described in terms of ODEs as those shown in (1) and (2), the question now becomes how these
ODEs can be solved accurately and efficiently. In this section, the accurate solution of the ODE (2)
is discussed because the relative differential reluctivity ν̄d

r is used in the TDFEM formulation (23).
Specifically, Euler’s method and the Runge-Kutta method are investigated. Other more sophisticated
methods that are used to solve ODEs can also be applied to (2) in a similar manner.
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3.1. Euler’s Method

The simplest method that is commonly used to solve an ODE is Euler’s method, in which the first-order
Taylor series expansion is applied to achieve

H (B + ∆B) ≈ H(B) +
∂H

∂B
· ∆B = H(B) + ν0ν̄

d
r (B,H) · ∆B. (25)

The magnetic field H can therefore be obtained as

Hn+1
k = Hn + ν0ν̄

d
r (Bn,Hn) ·

(

Bn+1
k − Bn

)

, (26)

where Hn and Bn are the solutions from the previous time step n, and Bn+1
k is the estimated solution

at the kth Newton iteration of the current time step n + 1, which is produced from the TDFEM solver.
From the above equation, the estimated magnetic field Hn+1

k can be obtained and fed back into the

TDFEM solver for the solution of the next estimation Bn+1
k+1 .

The solution of the magnetic field using (26) is a simple process. However, it should be noted
that the ODE dealt here is different from a normal ODE where the derivatives of variables are usually
taken with respect to time. In that case, the numerical solution of an ODE is to find the values of the
unknown variables for a given time sequence, which is usually a known quantity and can be specified by
the ODE solver. In choosing the time-step size, a large time step is desired to reduce the computational
cost, but in the meantime, it must also be small enough to ensure both stability and accuracy. In (2),
however, the derivative of H is taken with respect to B, which is given by the estimated solution A
from the TDFEM solver. Since the magnetic flux B is the unknown quantity, and its value at a specific
point r is determined from the impressed current Jimp and the mutual coupling from all other points,

there is no way that the step size dB can be controlled. As a result, given a Bn+1
k and the resulting ∆B,

in order to achieve a prescribed accuracy, it is necessary to subdivide the step ∆B into several smaller
steps, and advance the solution step by step until the solution at Bn+1

k is obtained. Euler’s method
with subdivision is shown in Algorithm 1.

A simple example is given here to demonstrate the necessity of doing subdivision when using
Euler’s method to solve (2). Fig. 5 shows the hysteresis loops obtained from the inverse J-A model with
Ms = 1.168 × 106 A/m, a = 60A/m, kp = 130 A/m, α = 10−4, and c = 0.2. Shown as the vertical
axis in these two figures, the input magnetic flux is assumed to be a sinusoidal function in time, and

Input: The solutions from the previous time step: Bn and Hn, the estimated solution of the
current time step: Bn+1

k , and the convergence criterion ǫ

Output: The magnetic field Hn+1
k

Calculate the step ∆B = Bn+1
k − Bn;1

Estimate the magnetic field using the original step H = ν0ν̄
d
r (Bn,Hn) · ∆B + Hn;2

for Refinement i = 1, 2, 3, . . . do3

Define number of subdivisions L = 2i;4

Subdivide the step ∆Bi = ∆B/L;5

B1 = Bn, H1 = Hn;6

for Subdivision j = 1, 2, . . . , L do7

Advance the magnetic field with the subdivided step Hj+1 = ν0ν̄
d
r (Bj ,Hj) · ∆Bi + Hj ;8

Calculate Bj+1 = Bj + ∆Bi;9

end10

if The estimated field is converged ‖HL − H‖/‖H‖ < ǫ then11

The magnetic field is obtained as Hn+1
k = HL;12

Return Hn+1
k ;13

end14

Update the estimation H = HL;15

end16

Algorithm 1: Euler’s Method with Subdivision
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(a) (b)

Figure 5. Hysteresis loops obtained by solving the ODE using Euler’s method with and without
subdivision when the magnitude of the magnetic flux is (a) 1.4T and (b) 1.5T.

its magnitude is Bmax = 1.4T in Fig. 5(a) and Bmax = 1.5T in Fig. 5(b). In order to solve the ODE
using Euler’s method, the time is divided uniformly into 150 time steps at which the magnetic flux is
sampled and used as an input parameter of the ODE solver. From the figures, it is clear that when the
magnitude of the magnetic flux is not very large, the numerical solutions obtained from Euler’s method
with and without subdivision almost overlap with each other. However, when the magnitude increases
a little bit from 1.4 T to 1.5 T, Euler’s method without subdivision would produce a numerical solution
with an obvious error, while that with subdivision still reproduces the hysteresis loop well, as can be
seen from the insert of Fig. 5(b).

3.2. Runge-Kutta Method

Euler’s method discussed above is known as the single-step method since it only requires information at
one point in time to advance the solution to the next time step. Because of this, the single-step method
is also known as the “self-starting” method and is preferred in the solution of initial value problems
(IVPs). However, since it comes from the first-order of the Taylor series expansion, Euler’s method is
only first-order accurate. As a result, it usually requires many loops of subdivisions to achieve a desired
accuracy. If the true solution is varying rapidly, Euler’s method becomes very inefficient. Considering
the fact that the ODE has to be solved in every mesh element (tetrahedron, for example) of a geometry,
or even at every Gaussian quadrature point of every element, the low-order accuracy of Euler’s method
will eventually become a bottleneck of the entire algorithm.

To achieve a higher-order accuracy and hence a better solution efficiency, the well-known Runge-
Kutta method is adopted in this work. The Runge-Kutta method, which is another type of single-step
method, uses the information from several intermediate auxiliary steps to form the solution with a
higher-order accuracy. By expressing the higher-order Taylor series expansion in terms of the linear
combination of the first-order derivatives at several intermediate steps, the Runge-Kutta method is able
to achieve a higher-order accuracy without the need of evaluating higher-order derivatives. Since it
requires information at several intermediate steps, the Runge-Kutta method is known as a multi-stage
method.

There are many different variations of the Runge-Kutta method available in the literature. Here,
only the most commonly used fourth-order Runge-Kutta method is considered. The fourth-order Runge-
Kutta method, also known as the classical Runge-Kutta method, requires four evaluations of the first-
order derivative ν̄d

r to construct the fourth-order Taylor series expansion, as described in Algorithm 2.
The classical Runge-Kutta method is proven to have a local truncation error of O(∆B5) and a global
accumulated error of O(∆B4). As stated before, since the step size ∆B is not directly controllable, it
is necessary to subdivide ∆B into several small steps, and advance the solution step by step to reduce
the accumulated error and achieve a desired accuracy. The Runge-Kutta method with subdivision can
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Input: The solutions from the previous time step: Bn and Hn, the estimated solution of the
current time step: Bn+1

k , and the convergence criterion ǫ

Output: The magnetic field Hn+1
k

Calculate the step ∆B = Bn+1
k − Bn;1

Define the midpoint of the step as Bmid = Bn + ∆B/2;2

Calculate the differential susceptibility using the fields at the previous time step3

ν̄d
r,1 = ν̄d

r (Bn,Hn);

Advance the magnetic field by half step using Euler’s method with the differential susceptibility4

ν̄d
r,1 as H1 = ν0ν̄

d
r,1 · ∆B/2 + Hn;

Calculate the differential susceptibility using Bmid and H1 as ν̄d
r,2 = ν̄d

r (Bmid,H1);5

Advance the magnetic field by half step using Euler’s method with the differential susceptibility6

ν̄d
r,2 as H2 = ν0ν̄

d
r,2 · ∆B/2 + Hn;

Calculate the differential susceptibility using Bmid and H2 as ν̄d
r,3 = ν̄d

r (Bmid,H2);7

Advance the magnetic field by full step using Euler’s method with the differential susceptibility8

ν̄d
r,3 as H3 = ν0ν̄

d
r,3 · ∆B + Hn;

Calculate the differential susceptibility using Bn+1
k and H3 as ν̄d

r,4 = ν̄d
r

(

Bn+1
k ,H3

)

;9

Define the effective differential susceptibility as ν̄d
r =

(

ν̄d
r,1 + 2 ν̄d

r,2 + 2 ν̄d
r,3 + ν̄d

r,4

)

/6;10

Calculate the magnetic field at the estimated flux Bn+1
k using Euler’s method with the effective11

differential susceptibility as Hn+1
k = ν0ν̄

d
r · ∆B + Hn;

Return Hn+1
k .12

Algorithm 2: The Fourth-Order Runge-Kutta Method

(a) (b)

Figure 6. Hysteresis loops obtained by solving the ODE using the fourth-order Runge-Kutta method
with and without subdivision when the magnitude of the magnetic flux is (a) 1.4 T and (b) 1.5T.

be performed in a similar manner as shown in Algorithm 1, with a simple substitution of Lines 2 and 8
by the entire Algorithm 2.

To demonstrate its higher-order accuracy, the ODE with the same parameters shown in the
preceding section is solved again in this section, using the fourth-order Runge-Kutta method with
and without subdivision. The input magnetic flux is also assumed to be a sinusoidal function in time,
which is divided uniformly into 150 time steps. The results using Bmax = 1.4T and Bmax = 1.5T are
shown in Figs. 6(a) and 6(b), respectively. From the figures, it is clear that for the 1.4-T case, the
numerical solutions obtained from the classical Runge-Kutta method with and without subdivision are
identical to each other. However, when the magnitude increases from 1.4T to 1.5T, the Runge-Kutta
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method without subdivision produces a numerical solution with an obvious error. Nevertheless, the
error is smaller than that produced by the corresponding Euler’s method, indicating a better numerical
accuracy of the Runge-Kutta method. The Runge-Kutta method with subdivision still reproduces the
hysteresis loop well, as can be seen from the insert of Fig. 6(b).

A further comparison made between Euler’s and the Runge-Kutta methods with subdivision can
be found in Figs. 7 and 8, and Tab. 3. From Fig. 7, it is clear that the results obtained from these two

(a) (b)

Figure 7. Comparison of the hysteresis loops obtained by solving the ODE using Euler’s method and
the fourth-order Runge-Kutta method with subdivision when the magnitude of the magnetic flux is (a)
1.4T and (b) 1.5T.

(a) (b)

Figure 8. Number of step refinements required by solving the ODE using Euler’s method and the
fourth-order Runge-Kutta method with a desired accuracy set to be ǫ = 10−5 when the magnitude of
the magnetic flux is (a) 1.4T and (b) 1.5T.

Table 3. Computational time of producing the hysteresis loop using different ode solvers with
subdivision.

ODE Solver
Bmax = 1.4 T Bmax = 1.5T

ǫ = 10−4 ǫ = 10−5 ǫ = 10−6 ǫ = 10−4 ǫ = 10−5 ǫ = 10−6

Euler 11.86 s 105.34 s 984.03 s 9.13 s 86.23 s 989.44 s

Runge-Kutta 0.32 s 0.43 s 0.71 s 0.98 s 1.61 s 2.43 s
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methods are identical, in both 1.4-T and 1.5-T cases. However, different computational efficiencies can
be observed from Fig. 8, in which the numbers of step refinements R are shown at each step, with a
desired accuracy set to be ǫ = 10−5. The total number of evaluations needed at each step is

N =
R

∑

i=1

2i (27)

which increases drastically when R increases. Tab. 3 shows the total computational time needed by
these two methods in order to obtain the numerical solutions at all 150 field steps. From the table, it can
be seen that the Runge-Kutta method has a much better computational efficiency. With the increased
accuracy requirement, the computational time needed by Euler’s method increases very rapidly, while
that needed by the Runge-Kutta method increases only by a little.

4. BROYDEN’S METHODS FOR NONLINEAR PROBLEMS

The solution of a nonlinear equation with the Newton-Raphson method requires the repeated
construction and solution of the Jacobian matrix, which can be very time-consuming for large problems.
In this section, the multi-dimensional secant methods, Broyden’s methods [7], are employed to accelerate
the construction and solution of the Jacobian matrix equation.

4.1. Approximation of the Jacobian Matrix

In the original Newton-Raphson method, the Jacobian matrix needs to be updated at every Newton
step using an appropriate formulation discussed in Section 2.2, and the Jacobian matrix (12) is then
solved and the trial solution is updated using (13). In Broyden’s methods, the Jacobian matrix is only
calculated at the initial step. It is then approximated using a rank-one update at the successive steps,
which are called Broyden steps in order to distinguish with the Newton steps where the Jacobian matrix
is calculated explicitly.

At the kth Broyden step, the Jacobian matrix is approximated as the Broyden matrix

Bk ≈ Jk. (28)

To obtain the approximation at the (k + 1)th Broyden step, the Broyden matrix can be updated with
a rank-one matrix as

Bk+1 = Bk + ukv
t
k, (29)

where the superscript t stands for transpose and uk and vk are column vectors defined as

uk =
fk+1

‖sk‖
; vk =

sk

‖sk‖
. (30)

In the above expression, f and s are the residual {r} and the incremental solution {δa} defined in (14)
and (12), respectively. Equation (29) is the simplest approach of updating the Broyden matrix, and it
satisfies the following conditions which justify its validation:

(i) The secant condition, which means the updated Broyden matrix satisfies

Bk+1 (xk+1 − xk) = fk+1 − fk. (31)

(ii) The updated matrix Bk+1 is the one closest to Bk in a sense of the Frobenius norm among all the
matrices satisfying the secant condition.

Using (29), the approximated Jacobian matrix can be updated very efficiently. However, it still
needs to be factorized and solved at every Broyden step, which is much more time consuming than the
construction of the Jacobian matrix itself. As a result, the update of the inverse of the Jacobian matrix
is preferred, which is discussed next.
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4.2. Approximation of the Inverse Jacobian Matrix

As mentioned in the preceding section, the direct update of the inverse of the Jacobian matrix is more
desired compared with the approximation of the Jacobian matrix itself. However, since the inversion of
the Jacobian matrix would produce a fully populated matrix, it is more practical to update its product
with a vector.

To construct such an inverse-matrix vector product, the well-known Sherman-Morrison formula can
be used to express explicitly the inversion of a matrix with a rank-one update as

(

B + uvt
)−1

=

(

I −

(

B−1u
)

vt

1 + vtB−1u

)

B−1. (32)

The Broyden matrix in (29) can therefore be inverted as

B−1
k+1 =

(

Bk + ukv
t
k

)−1
=

(

I − wkv
t
k

)

B−1
k , (33)

where

wk =
B−1

k uk

1 + vt
kB

−1
k uk

. (34)

At this moment, since there is no explicit form for B−1
k , it is still unclear how B−1

k+1 can be calculated.

But it is clear that we can express B−1
k by induction as

B−1
k =

k−1
∏

j=0

(

I − wjv
t
j

)

B−1
0 . (35)

The desired inverse-matrix vector product

sk = −B−1
k fk (36)

can be obtained by applying the following steps:

(i) Solve for z0: B0z0 = −fk;

(ii) Do: zj+1 = zj − wjv
t
jzj for j = 0, 1, . . . , k − 1;

(iii) sk = zk.

Unfortunately, in the process described above, the vector wj still involves the inverse of the Broyden

matrix B−1
j , as indicated in (34). To compute wj , an auxiliary vector p is defined as

p =
k−2
∏

j=0

(

I − wjv
t
j

)

B−1
0 fk = B−1

k−1fk. (37)

Then sk can be rewritten as

sk = −B−1
k fk = −

(

I − wk−1v
t
k−1

)

p = −p + wk−1v
t
k−1p. (38)

Invoking the definition of uk in (30), we have

B−1
k−1uk−1 = B−1

k−1

fk

‖sk−1‖
=

p

‖sk−1‖
. (39)

Therefore, by definition

wk−1 =
B−1

k−1uk−1

1 + vt
k−1B

−1
k−1uk−1

=
p

‖sk−1‖ + vt
k−1p

. (40)

From (40) and (38), we have

‖sk−1‖wk−1 = p − wk−1v
t
k−1p = −sk, (41)
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which results in
wk−1 = −

sk

‖sk−1‖
. (42)

As a result, B−1
k can eventually be expressed as

B−1
k =

k−1
∏

j=0

(

I +
sj+1s

t
j

‖sj‖2

)

B−1
0 (43)

after the application of (30). Since

sk = −B−1
k fk = −

(

I +
sks

t
k−1

‖sk−1‖2

)

B−1
k−1fk, (44)

it can be solved for sk to obtain

sk = zk−1

(

1 −
st
k−1zk−1

‖sk−1‖2

)−1

, (45)

where

zj+1 = zj +
st
jzj

‖sj‖2
sj+1 (j = 0, 1, . . . , k − 2) (46)

and
z0 = −B−1

0 fk. (47)

Obviously, in the solution of the nonlinear TDFEM using Broyden’s method described above, the
Broyden matrix only needs to be solved once, at the beginning of each time step. In order to achieve
a better accuracy, the Jacobian matrix is usually constructed and solved explicitly at the first Broyden
step of each time step. At the successive Broyden steps, the Jacobian matrix is approximated by the
Broyden matrix and the inverse-matrix vector product is performed using (45)–(47). Since at each
Broyden step, only the vectors z and s from the previous step are required, and the inversion term on
the right-hand side of (45) is simply a scalar, the computation of the inverse-matrix vector product is
very efficient.

4.3. Numerical Performance

To demonstrate the efficiency of Broyden’s methods, we consider again TEAM problem 10 [22] used
in Section 2.3.1. Since the first Broyden’s method introduced in Section 4.1 only updates the Broyden
matrix itself, the computational cost of solving the Broyden matrix equation is the same as that of solving
the Jacobian matrix equation. Therefore, the second Broyden’s method introduced in Section 4.2, where
the inverse-matrix vector product is updated at each iteration, is applied to achieve a better efficiency.
The results obtained from Broyden’s method and that from the Newton-Raphson method are identical,
and hence not shown here. Shown in Tab. 4 is the comparison of the computational costs by using the
Newton-Raphson method versus Broyden’s method. From the table, it is clear that by using Broyden’s
method, the total computational time has been reduced effectively to 45.8% of the total time required
by the Newton-Raphson method. Nevertheless, it should also be noted that the average iteration count
needed for the nonlinear solver to converge at each time step increases a little bit when Broyden’s method

Table 4. Comparison of computational data for solving TEAM problem 10 using the Newton-Raphson
(NR) and Broyden’s (BD) methods.

Im = 5.64A ∆t (ms) Total Time Steps Ave. Iter. Per Time Step Total CPU Time (s)

NR 3.0 50 3.04 425.77

BD 3.0 50 3.54 194.94
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is employed. Such an increase in iteration count can be anticipated, because in theory Broyden’s method
only has a super-linear convergence, while the Newton-Raphson method has a quadratic convergence.
This increase may become more serious when dealing with larger and more complicated problems.
Therefore, Broyden’s method needs to be applied with caution.

5. NONUNIFORM TIME-STEPPING SCHEME

The TDFEM solver discussed in the preceding sections is based on the application of the Newmark-β
scheme, which is unconditionally stable and second-order accurate. However, the time-step size ∆t is
assumed to be a constant throughout the entire simulation process. To determine the time-step size
in a nonlinear problem, several aspects need to be taken into consideration, including the operating
frequency of the physical problem, the stability condition constrained by the temporal discretization
scheme, and the convergence condition of the nonlinear solver. Under certain circumstances, nonuniform
time-step sizes are more desirable in order to achieve a better accuracy and efficiency. In this section, the
traditional Newmark-β scheme [8, 13, 14] with a uniform time-step size is generalized to a nonuniform
scheme such that the total simulation steps can be significantly reduced.

Without the loss of generality, the nonuniform time-stepping scheme for the wave equation in the
time domain can be obtained by deriving a recurrence formula for the ODE [8]

[M ]{ẍ} + [C]{ẋ} + [K]{x} + {f} = 0. (48)

The unknown function {x} is first expanded in terms of the temporal shape functions Ni(t) in the time
interval [tn−1, tn+1]

x(t) =
n+1
∑

i=n−1

Ni(t)xi, (49)

which is then substituted into the ODE and tested with a weighting function W (t) to yield
∫ tn+1

tn−1

W

[

M
∑

i

N̈ixi + C
∑

i

Ṅixi + K
∑

i

Nixi + f

]

dt = 0. (50)

By comparing the weak form (50) with the ODE (48), one can obtain that

ẍ(t) =
n+1
∑

i=n−1

(

∫ tn+1

tn−1

WN̈idt

)

xi (51)

ẋ(t) =
n+1
∑

i=n−1

(

∫ tn+1

tn−1

WṄidt

)

xi (52)

x(t) =

n+1
∑

i=n−1

(

∫ tn+1

tn−1

WNidt

)

xi. (53)

For a nonuniform time sequence {tn−1, tn, tn+1}, define ∆t1 = tn−tn−1, ∆t2 = tn+1−tn, and ∆t1 6= ∆t2.
If the temporal shape functions are chosen as

Nn−1 =
(t − tn)(t − tn+1)

∆t1(∆t1 + ∆t2)
(54)

Nn = −
(t − tn−1)(t − tn+1)

∆t1∆t2
(55)

Nn+1 =
(t − tn−1)(t − tn)

(∆t1 + ∆t2)∆t2
(56)

and the weighting function is chosen as

W (t) =











−
t − tn
∆t1

; t ∈ [tn−1, tn]

t − tn
∆t2

; t ∈ [tn, tn+1],
(57)
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the nonuniform time-stepping scheme is obtained as (after multiplied by ∆t1∆t2)

ẍ(t) = x̃n+1 − 2x̃n + x̃n−1 (58)

ẋ(t) =
1

6
{(−∆t1 + 4∆t2)x̃n+1 + 2(∆t1 − ∆t2)x̃n + (−4∆t1 + ∆t2)x̃n−1} (59)

x(t) =
1

12

{

[(∆t1 + ∆t2)(−∆t1 + 3∆t2) − ∆t1∆t2] x̃n+1 + 2
[

(∆t1 + ∆t2)
2 − ∆t1∆t2

]

x̃n

+ [(∆t1 + ∆t2)(3∆t1 − ∆t2) − ∆t1∆t2] x̃n−1

}

, (60)

where

x̃n+1 = ∆t1xn+1; x̃n =
∆t1 + ∆t2

2
xn; x̃n−1 = ∆t2xn−1. (61)

Obviously, if ∆t1 = ∆t2 = ∆t, the uniform Newmark-β scheme with β = 1/4 is recovered.
To demonstrate the accuracy and efficiency of the proposed nonuniform time-stepping scheme, the

same TEAM workshop problem 10 [22] is reconsidered. Since the excitation current is a dc current that
is turned on from 0 A and gradually increased to Im, the nonuniform time steps can be chosen such that
the current increase between two consecutive time steps is constant. With this strategy, the nonuniform
time steps are shown in Fig. 9(a). The average magnetic flux B in two different areas (S1 and S3)
are recorded at these nonuniform time step points. The results from both the uniform (UT) and the
nonuniform (NT) time-stepping schemes are shown and compared in Fig. 9(b). Both results agree very

(a) (b)

Figure 9. Numerical demonstration of the nonuniform time-stepping scheme through a benchmark
problem, TEAM workshop problem 10. (a) Nonuniform time-step sizes. (b) Average magnetic flux
density versus time in the observation areas S1 and S3. The observation areas are illustrated in Fig. 3(a)
in [1]. Both numerical results obtained by the uniform (UT) and the nonuniform (NT) time-stepping
schemes are shown.

Table 5. Comparison of computational data for solving TEAM problem 10 using the Newton-Raphson
method with uniform time-stepping (UT) versus nonuniform time-stepping (NT).

Im = 5.64A ∆t (ms) Total Time Steps Total Physical Time (ms) Total CPU Time (s)

UT 3.0 50 150 425.77

NT N/A 17 200 166.08

BD + NT N/A 17 200 86.97
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(a) (b)

(c) (d)

Figure 10. Numerical demonstration of the nonuniform time-stepping scheme through a benchmark
problem, TEAM workshop problem 10. (a) Observation points on the steel channels. Eddy current
versus time at the observation points (b) P1, (c) P2 and (d) P3 are recorded and compared with the
measurement data. Both numerical results obtained by the uniform (UT) and the nonuniform (NT)
time-stepping schemes are shown.

well with the measurement. The eddy current Je = σE induced in the steel structure is also recorded
at three observation points shown in Fig. 10(a). From Figs. 10(b)–10(d), it is clear that both results
obtained from the uniform and the nonuniform time-stepping schemes agree well with the measurement.
Their computational data are presented in Tab. 5, from which it can be seen that the computational time
needed by the nonuniform time-stepping scheme for the simulation of a 200-ms physical process is only
39% of that by the uniform time-stepping scheme for the simulation of a 150-ms physical process. Clearly,
using the proposed nonuniform time-stepping method, nonlinear magnetic problems can be solved with
a good accuracy and a better efficiency. What is more interesting is that the nonuniform time-stepping
scheme can be used in combination with Broyden’s methods to further accelerate the computation. Also
presented in Tab. 5 is the computational time needed by the hybridization of Broyden’s methods and
the nonuniform time-stepping scheme. The total computational time is further reduced to 20% of the
that needed by the original Newton-Raphson method with a uniform time-stepping scheme.
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6. NUMERICAL EXAMPLES

In this section, numerical examples are given to demonstrate the capability of the proposed methods
in the simulation of magnetic hysteresis problems. The nonlinear magnetic constitutive relation is
represented by the inverse J-A vector model introduced in Section 2.1, and the resulting ODE is solved
using the fourth-order Runge-Kutta method with subdivision presented in Section 3.2. The nonlinear
magnetic problem is solved with the Newton-Raphson scheme described in Section 2.2.

6.1. Generation of Higher-order Harmonics

The phenomenon of magnetic hysteresis and the generation of higher-order harmonics are investigated
using a three-limbed ferromagnetic plate adopted from TEAM workshop problem 32 [23]. As shown
in Fig. 11, the plate is made of five layers of 0.48-mm-thick Fe-Si 3.2%wt laminations which has a
conductivity of σ = 1.78 × 106 S/m. The magnetic property is modeled by the inverse J-A model with

Figure 11. Problem setting and dimensions of
the ferromagnetic core in TEAM problem 32.

Figure 12. Magnetic flux density distribution on
the ferromagnetic core (only one fourth is shown
due to symmetry).

(a) (b)

Figure 13. Numerical results of TEAM problem 32 solved by the nonlinear TDFEM formulation with
a Newton-Raphson scheme and inverse J-A hysteresis model. (a) Hysteresis loop observed at the center
of the center limb. (b) Hysteresis loop observed at the center of the right limb.
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the model parameters chosen as Ms = 1.168 × 106 A/m, a = 60 A/m, kp = 130 A/m, α = 10−4, and
c = 0.2. The excitation of this structure is supplied by two 90-turn windings placed on the external
limbs. In this example, the winding current composes of a fundamental and a fifth harmonic with a
maximum magnitude of 1.5A, which can be expressed as

I = sin(2πf1t) + 0.5 sin(2πf5t), (62)

where f1 = 10Hz and f5 = 50 Hz. Under such an excitation, the magnetic flux density is solved and a
snapshot of the flux distribution is shown in Fig. 12. From the vector plot of this figure, it can be seen
that the magnetic flux follows the right-hand rule, and the field singularities can be observed at the
corners of the structure. The time-domain results of the magnetization M and the magnetic field H are
recorded at the center of the center and the right limbs. The hysteresis loops at these two locations are
shown in Fig. 13. From these two figures, both major and minor loops can be observed clearly. This
problem is solved using both the Newton-Raphson and Broyden’s methods. Both methods produce the
same results, but Broyden’s method only consumes 33.9% of the computational time needed by the
Newton-Raphson method.

(a) (b)

Figure 14. Numerical results of TEAM problem 32 solved by the nonlinear TDFEM formulation with
a Newton-Raphson scheme and inverse J-A hysteresis model. (a) Magnetic flux density versus time at
the center of the center limb. (b) Magnetic flux density versus time at the center of the right limb.

Shown in Fig. 14 is the winding current and the magnetic flux at the two observation points
versus time. The time-domain results are then converted using the Fourier transform into the frequency
domain to demonstrate the generation of higher-order harmonics. As can be seen in Fig. 15, the winding
current only has a power spectrum at 10 Hz and 50 Hz, as specified in (62). Due to the nonlinearity,
the corresponding magnetic flux has a more complicated power spectrum, which contains not only that
of the winding current, but also the integer multiple and combinations of the input spectrum. Because
of the constructive and destructive effect of the two input frequencies, the magnitudes of the newly
generated higher-order harmonics are not decreasing monotonically, but exhibit complicated relations.
From this example, it is clear that the higher-order harmonics can be accurately captured by using the
proposed nonlinear solver.

6.2. Demagnetization Process and Magnetic Remanence

For time-harmonic nonlinear problems, the higher-order harmonics can also be calculated with a
frequency-domain solver using the harmonic balance method [24]. However, for a transient problem,
the harmonic balance method cannot be applied easily, because the response will have a continuous
spectrum. One example of such a problem is the demagnetization problem discussed in this section.
In the demagnetization process, an oscillating field with a center frequency of 10 Hz and a reducing
amplitude is applied to remove the magnetization from the structure, causing the magnetic dipoles in
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(a) (b)

Figure 15. Power spectrum distribution of the excitation current and the responding magnetic flux at
(a) the center limb and (b) the right limb.

(a) (b)

(c) (d)

Figure 16. Numerical results of the nonlinear demagnetization problem solved by the nonlinear
TDFEM formulation with a Newton-Raphson scheme. (a) Observation points on the steel channels.
(b)–(d) Magnetic flux density versus time at the three observation points P1–P3.
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Figure 17. Magnetic remanence distribution at the end of the demagnetization process.

Figure 18. Power spectrum distribution of the excitation current and the responding magnetic flux at
P1.

the ferromagnetic material to flip back and forth and get neutralized. The model from TEAM workshop
problem 10 [22] is used to demonstrate this process. To model the ferromagnetic material, the inverse
J-A model is used, where the model parameters are chosen as Ms = 1.3 × 106 A/m, a = 25.3A/m,
kp = 66.6A/m, α = 0, and c = 0.2. The magnetic flux B at three different observation points (P1, P2,
and P3) in Fig. 16(a) are recorded and shown in Figs. 16(b)–16(d), as a function of time. Because of
the location difference, among the three observation points, only the steel at point P1 has been fully
saturated by the externally applied current. The magnetic remanence at the end of the demagnetization
process is shown in Fig. 17 from three different view angles. Also, from the power spectrum distribution
of the coil current and the corresponding magnetic flux at the observation point P1 shown in Fig. 18,
it is clear that when the input current has a continuous spectrum, the response also has a continuous
spectrum, which is difficult to simulate with the harmonic balance method in frequency domain. This
demonstrates the significance of the time-domain method in the simulation of a real physical problem.
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7. CONCLUSION

In this work, numerical solution of nonlinear magnetic problems was presented using a time-domain
finite element method with an advanced magnetic hysteresis model in three dimensions. Accurate
numerical solutions were obtained very efficiently using the proposed solver for ordinary differential
equations representing the nonlinear constitutive relation. The vector curl-curl equation was formulated
in the time domain with the magnetic vector potential employed as the unknown function, and the
resulting nonlinear system was solved using both the Newton-Raphson and the fixed-point methods. In
order to improve the computational efficiency, Broyden’s methods and the nonuniform time-stepping
technique were developed and implemented. The performances of these methods and techniques were
demonstrated and compared through several well-acknowledged numerical examples. It was found out
that with Broyden’s methods, the computation can be accelerated by 2 to 3 times compared with
the Newton-Raphson method. The restriction of the time-step sizes was successfully removed by the
nonuniform time-stepping scheme, which resulted in a 2.5 times speed-up on the Newton-Raphson
method. When Broyden’s method and the nonuniform time-stepping scheme were used together,
the total computational time was further reduced. The applications in the simulation of magnetic
hysteresis and demagnetization process were shown, and the prediction of the harmonic generation was
also presented. With all these techniques equipped, the proposed nonlinear time-domain finite element
solver is able to solve nonlinear magnetic problems with a high efficiency and a good accuracy.
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11. Nédélec, J. C., “Mixed finite elements in R3,” Numer. Meth., Vol. 35, 315–341, 1980.

12. Webb, J. P., “Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral
finite elements,” IEEE Trans. Antennas Propag., Vol. 47, No. 8, 1244–1253, Aug. 1999.

13. Newmark, N. M., “A method of computation for structural dynamics,” J. Engineering Mechanics
Division. ASCE, Vol. 85, 67–94, Jul. 1959.

14. Gedney, S. D. and U. Navsariwala, “An unconditionally stable finite element time-domain solution
of the vector wave equation,” IEEE Microw. Guided Wave Lett., Vol. 5, No. 10, 332–334, Oct. 1995.

15. Peterson, A. F., “Absorbing boundary conditions for the vector wave equation,” Microw. Opt.
Tech. Lett., Vol. 1, No. 2, 62–64, 1988.

16. Webb, J. P. and V. N. Kanellopoulos, “Absorbing boundary conditions for the finite element
solution of the vector wave equation,” Microw. Opt. Tech. Lett., Vol. 2, No. 10, 370–372, 1989.

17. “Testing electromagnetic analysis methods (T.E.A.M.),” http://www.compumag.org/jsite/team.html,
International Compumag Society.

18. Albanese, R. and G. Rubinacci, “Solution of three dimensional eddy current problems by integral
and differential methods,” IEEE Trans. Magn., Vol. 24, 98–101, Jan. 1998.

19. Lee, S. H., “Efficient finite element electromagnetic analysis for high-frequency/high-speed circuits
and multiconductor transmission line,” Ph.D. dissertation, University of Illinois at Urbana-
Champaign, Urbana, IL, USA, 2009.

20. Jorgensen, E., J. L. Volakis, P. Meincke, and O. Breinbjerg, “Higher order hierarchical Legendre
basis functions for electromagnetic modeling,” IEEE Trans. Antennas Propag., Vol. 52, No. 11,
2985–2995, Nov. 2004.

21. Nakata, T., T. Takahashi, K. Fujiwara, and P. Olszewski, “Analysis of magnetic fields of 3-D
nonlinear magnetostatic model (problem 13),” Proc. of the European TEAM Workshop and Int.
Sem. on Elecmagn. Field Anal., Oxford, England, Apr. 1990.

22. Nakata, T., N. Takahashi, and K. Fujiwara, “Summary of results for benchmark problem 10 (steel
plates around a coil),” Compel., Vol. 14, No. 2/3, 103–112, Sep. 1995.

23. Bottauscio, O., M. Chiampi, C. Ragusa, L. Rege, and M. Repetto, “A test-case for validation
of magnetic field analysis with vector hysteresis,” IEEE Trans. Magn., Vol. 38, No. 2, 893–896,
Mar. 2002.

24. Yamada, S., K. Bessho, and J. Lu, “Harmonic balance finite element method applied to nonlinear
AC magnetic analysis,” IEEE Trans. Magn., Vol. 24, No. 4, 2971–2973, Jul. 1989.


