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In this paper, the propagation of a broadband sound pulse in three-dimensional ~3D! shallow water

waveguides is investigated numerically. Two cases are examined: ~i! the 3D ASA benchmark wedge,

and ~ii! the 3D Gaussian canyon. The numerical method used to solve the four-dimensional acoustic

problem is based on a Fourier synthesis technique. The frequency-domain calculations are carried

out using the fully 3D parabolic equation based model 3DWAPE, recently modified to include a

wide-angle paraxial approximation for the azimuthal component. A broadband sound pulse with a

central frequency of 25 Hz and a bandwith of 40 Hz is considered. For both test cases, 3D results

corresponding to a 25 Hz cw point source are first presented and compared with predictions from a

3D adiabatic modal model. Then, the acoustic problem is solved considering the broadband source

pulse. The modal structure of the received signals is analyzed and exhibits multiple mode arrivals

of the propagating signal. © 2005 Acoustical Society of America. @DOI: 10.1121/1.1855791#

PACS numbers: 43.30.Bp, 43.30.Dr, 43.30.Gv @AIT# Pages: 1058–1079

I. INTRODUCTION

It has been demonstrated both experimentally1–3 and

numerically4,5 that in some particular oceanic environments,

the horizontal refraction of propagating sound waves cannot

be neglected and leads, far from the source, to significant

three-dimensional ~3D! effects. Fully three-dimensional

models are needed to predict such 3D effects. Note that in

this work, a model is referred to as 3D if it allows horizontal

refraction to be considered. Otherwise, the model is said to

be two-dimensional ~2D!, N32D, or pseudo-3D. Among ex-

isting 3D codes available in the underwater acoustics

community,6–10 parabolic equation ~PE! based models are

largely used since they are efficient for solving complex

sound propagation problems in various oceanic environ-

ments. The reader is referred to Ref. 11 for an exhaustive

review of the 3D codes based on modal theory, parabolic

equation, rays, and hybrid models, and in particular to Ref.

12 for a specialized review of existing 3D PE models. The

main drawback of 3D models in cylindrical coordinates

~which is the case for most 3D PE models! is that they are

computationally expensive. Indeed, a 3D code is at least two

orders of magnitude slower than any N32D code since ~i! a

very large number of points is required in the azimuthal di-

rection to maintain the necessary arclength between adjacent

bearing angles, and ~ii! a differential operator with respect to

the azimuthal coordinate must be incorporated into the solu-

tion. However, rising computer performance as well as the

development of efficient numerical techniques9,13 allows 3D

PE models to be treated at a reasonable computational cost.

A calculation in four-dimensional ~4D! ~i.e., three spatial di-

mensions and time! using Fourier synthesis methods is thus

now possible ~at least at low frequencies!, allowing the im-

portant question of broadband signal dispersion in general

3D waveguides to be addressed.

The aim of this work is to study the propagation of

broadband sound pulses in three-dimensional shallow water

waveguides. The numerical method used to solve the rel-

evant 4D acoustic problems is based on Fourier synthesis of

frequency-domain solutions. The calculations in 3D are done

using the 3DWAPE code based on a fully three-dimensional

parabolic equation.13 Two 3D acoustic problems are treated

in this paper. They both consist of an isovelocity water layer

overlying a lossy, homogeneous, half-space sedimental layer.

They only differ in the description of the bottom geometry.

The first acoustic problem considered is a 3D benchmark

wedge based on a three-dimensional extension of the original

two-dimensional ASA wedge configuration.14 Preliminary re-

sults of broadband sound pulse propagation obtained using

3DWAPE for this specific 3D wedge problem can be found in

Ref. 15. They showed that the modal structures of the propa-

gating pulses calculated using a 3D PE model were qualita-

tively consistent with previous results obtained by

Westwood16 for a similar case using an analytical method.

Though these results were satisfying and encouraging, no

quantitative comparison with any exact solution was made.

Note that in its original configuration, the 3DWAPE code had a

very-wide-angle capability along the vertical direction but

only a narrow-angle capability along the azimuthal direction.

It has recently been modified to handle higher-order paraxial

approximations along the azimuthal direction. The results of

Ref. 15 were obtained using the azimuthal narrow-angle ver-

sion of the code. In the present paper, the issue of using

wide-angle approximation in azimuth is addressed. In par-

ticular, numerical solutions obtained using various paraxial

approximations in azimuth are compared with a reference

analytical solution based on the image method. Broadband

calculations are now carried out using the azimuthal wide-

angle version of the code. The second problem considered is

the 3D Gaussian canyon test case. It corresponds to a variant

of the original 3D Gaussian canyon test case created for thea!Electronic mail: frederic.sturm@ec-lyon.fr
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SWAM’99 Shallow Water Acoustic Modeling Workshop.17

Results for the original SWAM’99 test case were obtained

for a 25 Hz cw point source.7,18 Modifications have been

made such that only three propagating modes exist at the

source position ~as in the 3D benchmark wedge! which

makes the modal structure analysis of the received signals

easier. Note that in its original form, eleven propagating

modes were present. The problem involving a broadband

sound pulse is analyzed with the same methodology as for

the 3D wedge problem.

The organization of this paper is as follows: In Sec. II,

the Fourier synthesis technique is briefly summarized, and

the 3DWAPE model is presented. Its wide-angle azimuthal ca-

pability is discussed; a review of the existing 3D PE code is

also given. In Sec. III, the two acoustic shallow water prob-

lems are described. For both test cases, a broadband source

pulse with a central frequency of 25 Hz and a bandwidth of

40 Hz is considered. The 3D ASA benchmark problem is

studied in Sec. IV. First, the 3D results corresponding to a 25

Hz cw point source are presented, analyzed, and compared

with other solutions. Then, the acoustic problem is solved in

4D considering the broadband source pulse. The signals re-

ceived by a set of vertical arrays placed in the cross-slope

direction are analyzed. Section V deals with the 3D Gaussian

canyon test case. Again, results corresponding to both cw

calculations and time series are presented and discussed. No

reference solution is available for this test case. The received

signals on two distinct vertical arrays placed along the can-

yon axis are then analyzed. In Sec. VI, a summary of the

results of this work is provided and future improvements are

suggested.

II. MATHEMATICAL MODELING

A. Fourier synthesis method

A multilayered waveguide composed of one water layer

overlying one ~or several! fluid sedimental layer~s! is consid-

ered. The model for each layer is three-dimensional. Cylin-

drical coordinates are used, where z is the depth ~increasing

downwards! below the ocean surface, u is the azimuthal

~bearing! angle, and r is the horizontal range, related to the

Cartesian coordinates by x5r cos u and y5r sin u. An iso-

tropic, broadband point source, S, is located at r50 and z

5zS . The acoustic wave equation,

r¹•S 1

r
¹P D2

1

c2

]2P

]t2
52S~ t !

2d~z2zS!d~r !

r
, ~1!

is solved, where P5P(r ,u ,z;t) is the acoustic pressure as a

function of the three spatial variables r, u, z, and time t, and

S(t) is the time-dependence of point source S. In Eq. ~1! c

and r represent, respectively, the varying ~in space! sound

speed and the density ~constant within each layer!. Let P̂

denote the Fourier transform of the time-domain acoustic

pressure P, defined by

P̂~r ,u ,z;v !5E
2`

1`

P~r ,u ,z;t !e ivtdt , ~2!

where v52p f is the angular frequency ~expressed in rad/s!
and f is the frequency ~expressed in Hz!. Then, Fourier trans-

form of Eq. ~1! leads to the frequency-domain ~or Helm-

holtz! equation

r¹•S 1

r
¹ P̂ D1ka

2 P̂52Ŝ~v !
2d~z2zS!d~r !

r
, ~3!

where ka5k(11iha) is the complex ~to account for lossy

layers! wave number, with k5v/c , a is the attenuation ex-

pressed in decibels per wavelength, h51/(40p log10 e)

~with ha!1!, and Ŝ~v! is the source spectrum defined by

Ŝ~v !5E
2`

1`

S~ t !e ivtdt . ~4!

The angular frequency v is treated as a parameter in Eq. ~3!.

The complex-valued field P̂5 P̂(r ,u ,z;v) is sought as a

function of the spatial variables r, u, and z, for selected ~non-

negative! discrete frequencies within the frequency band of

interest. The acoustic pressure P̂ is assumed to satisfy a

pressure-release condition on the ocean surface, an outgoing

radiation condition at infinity ~in both range and depth!, a

2p-periodicity condition in the azimuthal direction, and ap-

propriate transmission conditions at each sedimental inter-

face. The frequency-domain solution, P̂ , is then transformed

to the time-domain using the following inverse Fourier trans-

form:

P~r ,u ,z;t !5

1

2p
E

2`

1`

P̂~r ,u ,z;v !e2ivtdv , ~5!

where P̂(r ,u ,z;2v)5 P̂(r ,u ,z;v) so that the real-valued

time-domain acoustic pressure P satisfies the initial time-

dependent wave equation ~1!. In summary, solving a pulse

propagation problem with the Fourier synthesis approach19,20

requires one to ~i! decompose the source pulse using a Fou-

rier transform, ~ii! select a frequency spacing and solve the

3D propagation problem for each discrete frequency within a

frequency-band of interest, and ~iii! perform inverse Fourier

transforms of the frequency-domain solutions to obtain the

time signal at any given receiver. As in Ref. 21, step ~ii! is

achieved by using a three-dimensional parabolic equation

based model. Note that an alternative to the Fourier synthesis

approach would be to solve the pulse propagation problem

directly in the time-domain.19,22–26 In particular, time-

domain methods related to various PE formulations can be

found in Refs. 23–26.

B. Three-dimensional parabolic equation

The acoustic problem is solved in the frequency-domain

using a parabolic equation ~PE! approach. Dropping the

source spectrum from Eq. ~3! yields

r¹•S 1

r
¹ P̂normD1ka

2 P̂norm52

2d~z2zS!d~r !

r
, ~6!

where the unknown is now the normalized acoustic pressure

P̂norm(r ,u ,z;v). Cylindrical spreading is handled by ex-

pressing P̂norm(r ,u ,z;v) as
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P̂norm~r ,u ,z;v !5H0
~1 !~k0r !c~r ,u ,z;v !,

where H0
(1) denotes the zeroth-order Hankel function of the

first kind and k05v/c ref with c ref a reference sound speed.

Assuming that r22 approximately commutes with ]/]r for

r@0, the left-hand side of Eq. ~6! can be factorized, and

assuming only outward propagation in range, the 3D prob-

lem based on ~elliptic-type! Eq. ~6! is reduced to an initial-

and boundary-value problem. For any given value of v, a

complex function c5c(r ,u ,z;v) is sought, which repre-

sents the acoustic field for r0<r<rmax , 0<u<2p and 0<z

<zmax , and which satisfies

]c

]r
5ik0~AI1X1Y2I!c ~7!

and c(r5r0 ,u ,z;v)5c (0)(u ,z;v). Here, c (0) denotes the

initial outgoing field at r5r0 , I is the identity operator, X is

the 2D depth operator in the rz plane, and Y is the azimuthal

operator, defined as

X5~na
2 ~r ,u ,z !21 !I1

r

k0
2

]

]z
S 1

r

]

]z
D ,

Y5

1

~k0r !2

]2

]u2
,

where na(r ,u ,z)5(c ref /c(r ,u ,z))(11iha) is the complex

index of refraction. In order to prevent spurious reflections

from a pressure-release imposed boundary condition at zmax ,

an increasing attenuation coefficient is introduced in the

lower part of the domain. The operator Y handles the azi-

muthal diffraction term. Neglecting Y in Eq. ~7! but retaining

azimuthal dependence in na(r ,u ,z) would lead to an N

32D or pseudo-3D ~i.e., azimuthally uncoupled! PE model

which could not predict horizontal refraction. The square-

root operator present in Eq. ~7! is then approximated using a

higher-order Padé approximation along z and a linear ap-

proximation along u:

AI1X1Y5I1 (
k51

np ak ,np
X

I1bk ,np
X

1

1

2
Y

1O~X 2np11,Y 2,XY!, ~8!

where np is the number of terms, and ak ,np
, bk ,np

, 1<k

<np , are real coefficients given by27

ak ,np
5

2

2np11
sin2S kp

2np11
D , 1<k<np ,

~9!

bk ,np
5cos2S kp

2np11
D , 1<k<np .

Complex coefficients can be used to attenuate Gibb’s

oscillations.28 The Padé series expansion is very convenient

since it allows for a very-wide-angle propagation along z, the

angular limitation depending on parameter np . It is thus able

to model energy at vertical angles approaching 690° with

respect to the horizontal. The linear approximation allows

only for narrow-angle propagation along u. Substitution of

Eq. ~8! into Eq. ~7!, and neglection of the term in

O(X 2np11,Y 2,XY) leads to

]c

]r
5ik0S (

k51

np ak ,np
X

I1bk ,np
X

1

1

2
YD c . ~10!

This equation accounts for refraction effects which are

greater along z than along u. It has been implemented in the

research code 3DWAPE.13 This model has a very-wide-angle

capability in depth, and a narrow-angle capability in azi-

muth. The original 3D PE proposed by Tappert29 can be ob-

tained by expanding the square-root in a Taylor series and

retaining only the linear terms in X and Y,

AI1X1Y5I1
1
2~X1Y!1O~X 2,Y 2,XY!. ~11!

The resulting parabolic equation ~known as the standard 3-D

PE! thus has a narrow-angle capability in both depth and

azimuth:

]c

]r
5

ik0

2
~X1Y!c . ~12!

Note that when np51 ~which leads to the Claerbout’s coef-

ficients a1,151/2 and b1,151/4), Eq. ~10! reduces to the

three-dimensional parabolic equation used by Collins et al.10

and by Fawcett,8

]c

]r
5ik0S 1

2
X

I1

1

4
X

1

1

2
YD c . ~13!

Since the higher-order terms neglected are in

O(X 3,Y 2,XY), this 3D PE has a ~Claerbout! wide-angle

capability in depth and a narrow-angle capability in azimuth.

Instead of using a higher-order Padé approximation along z,

Lee–Saad–Schultz use a Taylor series expansion along z and

a linear approximation along u:

AI1X1Y5I1
1
2X2

1
8X

2
1

1
2Y1O~X 3,Y 2,XY!. ~14!

Neglecting the higher-order terms in O(X 3,Y 2,XY), the re-

sulting equation ~referred to in the literature as the LSS-3D

wide angle wave equation! is

]c

]r
5ik0S 1

2
X2

1

8
X 2

1

1

2
YDc . ~15!

This 3D PE has been implemented by Botseas et al. in the

research computer code FOR3D
30 and applied to realistic

three-dimensional environments with bottom topographic

variations and sound-speed profiles.6

Parabolic equations can be solved numerically using

various techniques. For example, Smith9 uses a marching

algorithm based on the split-step Fourier technique in both

depth and azimuth. In 3DWAPE, instead of the SSF algorithm,

an alternating direction method is used. This technique is

used in many 3D PE codes.6–8,10,18 The alternating direction

method consists in splitting Eq. ~10! into the following sys-

tem of equations:

~I1bk ,np
X!

]c

]r
~r ,u ,z;v !5ik0ak ,np

Xc~r ,u ,z;v !,

~16!
1<k<np ,
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]c

]r
~r ,u ,z;v !5

ik0

2
Yc~r ,u ,z;v !, ~17!

and then these np11 equations are solved sequentially at

any discrete range using an implicit Crank-Nicolson scheme.

Let Dr be the increment in range. Given the 3D field c at

discrete range value rn , c is obtained at the next discrete

range value rn1Dr in two steps. Following the notations

used in Ref. 7, the first step consists in computing np inter-

mediate fields denoted u (1)(u ,z), u (2)(u ,z),. . . ,u (np)(u ,z)

solving

S I1S bk ,np
2

ik0Dr

2
ak ,np

DXD u ~k !~u ,z !

5S I1S bk ,np
1

ik0Dr

2
ak ,np

DXD u ~k21 !~u ,z !, ~18!

for 1<k<np , where u (0)(u ,z) denotes the 3D field c at

range rn : u (0)(u ,z)5c(rn ,u ,z;v). The second step consists

in computing c(rn1Dr ,u ,z;v) from the last intermediate

field u (np)(u ,z) obtained in step 1, by solving

S I2

ik0Dr

4
YDc~rn1Dr ,u ,z;v !

5S I1

ik0Dr

4
YD u ~np!~u ,z !. ~19!

The discretization of Eq. ~18! for any 1<k<np is achieved

using a piecewise-linear finite-element/Galerkin scheme. Let

N and M denote the numbers of mesh points along z and u,

respectively. Solving Eq. ~18! for the N3M points of the uz

grid requires the inversion of np large algebraic linear sys-

tems of order M3N . The matrix for each of the np systems

has a block-diagonal structure. Each inversion is hence

equivalent to the inversion of M ~auxiliary! linear systems of

order N. Since each block is a square tridiagonal matrix of

order N, these inversions are performed using a fast and ro-

bust Gaussian ~direct! algorithm optimized for tridiagonal

matrices. The discretization of Eq. ~19! is achieved using an

efficient higher-order accurate finite difference ~FD! scheme.

The solution of Eq. ~19! involves in this case the inversion of

N linear systems of order M with entries in the upper right

and lower left corners of the banded matrices to account for

the 2p-periodicity condition along u. The bandwidth of each

block depends on the order of the centered FD formula used.

Again, a fast and robust Gaussian algorithm optimized for

banded matrices is used. Using a higher-order accurate FD

scheme along u allows a significant reduction of the azi-

muthal sampling, and faster computations ~see the discussion

in Ref. 13!. Alternatively, Eq. ~19! can also be solved using

any Fourier-based transformation techniques ~e.g., FFTs!.
The 3DWAPE code offers the possibility to use both FD- and

FFT-based techniques for solving Eq. ~19!.
Note that all three-dimensional parabolic equations re-

viewed in this section make use of the following approxima-

tion:

AI1X1Y5AI1X1
1
2Y1O~Y 2,XY!, ~20!

and thus assume that 3D effects are sufficiently gradual ~this

will be discussed in the next section!. They only differ in the

way they approximate the term AI1X. In Eq. ~20!, the op-

erator X and the operator Y are separated. Any PE model

based on this formulation is thus amenable to the alternating

direction method. It is worth mentioning that this approach is

very advantageous for 3D modeling. Assume, for instance,

that an implicit Crank–Nicolson scheme is used instead of

the alternating direction method, and is applied directly on

Eq. ~12!. Given the 3D field c at the discrete range rn , c is

obtained at the next discrete range rn1Dr by solving

S I2

ik0Dr

4
~X1Y! Dc~rn1Dr ,u ,z;v !

5S I1

ik0Dr

4
~X1Y! Dc~rn ,u ,z;v !. ~21!

Then, applying a FD discretization in z and u, Eq. ~21! leads

to a large block-tridiagonal linear system of order M3N .

Unfortunately, because of its block-tridiagonal structure, this

large linear system cannot be decomposed into smaller aux-

iliary linear systems. Furthermore, since realistic acoustic

wave propagation problems generally require a large number

of points in both the z and u direction, it is not possible to use

any direct algorithm ~like Gaussian elimination! due to

memory storage limitations. Instead, a preconditioned itera-

tive algorithm must be used, the efficiency of the solver

highly depending on the preconditioning procedure. In TRI-

PARADIM, the standard narrow-angle 3D PE model was re-

written in a new coordinate system in an effort to handle

properly the varying bottom topography of the three-

dimensional waveguide. The resulting mathematical formu-

lation did not allow the coordinate decomposition of the op-

erator as for other 3D PEs. The use of the alternating

direction method was thus not possible and a numerical tech-

nique similar to Eq. ~21! was chosen. The reader is referred

to Ref. 31 for more details on the TRIPARADIM model.

Though the resulting linear systems were sparse and could be

solved using an efficient preconditioning technique at each

range step, it has been shown that using such an iterative

algorithm could lead to prohibitive computation times in

comparison with other 3D PE models that are amenable to

alternating direction methods, when solving practical prob-

lems in three-dimensional environments.32,33 Computation

time considerations are of major importance in 3D modeling,

especially when broadband pulse propagation problems are

addressed. In this latter case, any numerical technique using

an alternating direction method should definitely be preferred

to basic implicit Crank–Nicolson schemes.

C. Azimuthal wide-angle capability

The azimuthal narrow-angle capability of the 3D PE

model 3DWAPE is now discussed. It is clear that the linear

approximation with respect to the azimuth operator Y used in

Eq. ~8!, or more generally in Eq. ~20!, is only valid when

uYcu!uXcu. This means that any horizontal deviation should

be small compared to the vertical in-plane deviation of the

propagating energy. This assumption is valid for slowly vary-

ing properties. The azimuthal narrow-angle approximation
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may be inappropriate for problems with large out-of-plane

deviations of the outward propagating field. For such prob-

lems, one should utilize a three-dimensional parabolic equa-

tion that handles wide-angle propagation in both the z and

the u directions. Siegmann–Kriegsmann–Lee34,35 developed

a three-dimensional parabolic equation with a wide-angle ca-

pability applying the Claerbout’s coefficients to the operator

X1Y:

AI1X1Y5I1

1

2
~X1Y!

I1

1

4
~X1Y!

1O~~X1Y!3!. ~22!

Neglecting the higher-order terms in O((X1Y)3) then yields

]c

]r
5ik0S 1

2
~X1Y!

I1

1

4
~X1Y!

D c . ~23!

The wide-angle capability of this 3D parabolic equation has

been demonstrated using an asymptotic multiscale analysis.35

However, it is not amenable to the use of an alternating di-

rection method. Instead, the following numerical scheme is

obtained by applying an implicit Crank–Nicolson range-

stepping procedure directly on Eq. ~23!:

S I1S 1

4
2

ik0Dr

4
D ~X1Y! Dc~rn1Dr ,u ,z;v !

5S I1S 1

4
1

ik0Dr

4
D ~X1Y! Dc~rn ,u ,z;v !. ~24!

A FD technique in z and u has been proposed and validated

on several test examples.36 Following our previous discus-

sion, solving Eq. ~24! may be costly. In order to take advan-

tage of the alternating direction technique, higher-order

terms may be incorporated while keeping the two operators

X and Y separated. For instance, in PECAN,7 the following

@1/1# Padé azimuthal expansion is used:

AI1X1Y5AI1X1

1

2
Y

I1

1

4
Y

1O~Y 3,XY!. ~25!

By neglecting higher-order terms, O(Y 3,XY), in ~25!, Eq.

~7! then yields

]c

]r
5ik0S AI1X1

1

2
Y

I1

1

4
Y
D c , ~26!

where the square-root operator present on the right-hand side

is approximated using the split-step Padé algorithm.37 Chen

et al. use a quadratic Taylor series azimuthal expansion,38

AI1X1Y5I1
1
2X2

1
8X

2
1

1
2Y2

1
8Y

2
1O~X 3,XY,Y 3!.

~27!

Neglecting terms in O(X 3,XY,Y 3) in Eq. ~27! leads to the

following parabolic equation:

]c

]r
5ik0S 1

2
X2

1

8
X 2

1

1

2
Y2

1

8
Y 2Dc . ~28!

Equation ~28! can be seen as an azimuthal quadratic correc-

tion of the LSS-3-D Wide Angle Wave Equation given in Eq.

~15!. It has been implemented in the FOR3D code. Notice that

the azimuthal rational-function approximation used in Eq.

~25! and the azimuthal polynomial-function approximation

used in Eq. ~27! are correct to quadratic terms in azimuth,

but both neglect the term in O(XY). Retaining this term

would not allow the use of an alternating direction method.

In its original configuration, the 3DWAPE code had a

narrow-angle capability in azimuth @see Eq. ~10!#. It has been

modified to handle higher-order approximations along u
while keeping the two operators X and Y separated. Instead

of the azimuthal linear approximation in Eq. ~8!, a Padé se-

ries azimuthal expansion is used:

AI1X1Y5I1 (
k51

np ak ,np
X

I1bk ,np
X

1 (
k51

mp ak ,mp
Y

I1bk ,mp
Y

1O~X 2np11,Y 2mp11,XY!, ~29!

where mp is the number of Padé terms and ak ,mp
, bk ,mp

, 1

<k<mp , are real coefficients given analytically by Eq. ~9!
wherein np is to be replaced by mp . Then, by neglecting the

last term in Eq. ~29!, Eq. ~7! yields

]c

]r
5ik0S (

k51

np ak ,np
X

I1bk ,np
X

1 (
k51

mp ak ,mp
Y

I1bk ,mp
YD c . ~30!

The 3D PE has now a very-wide-angle capability in depth

and a very-wide-angle capability in azimuth, but, due to the

term in O(XY), the 3DWAPE model does not, strictly speak-

ing, have a wide-angle capability. Since the depth operator X

and the azimuthal operator Y are well separated in Eq. ~30!,
an alternating direction method is used. Given the 3D field

c at the discrete range rn , c is obtained at the next

discrete range rn1Dr in two steps. The first step consists

in computing np intermediate fields denoted u (1)(u ,z),

u (2)(u ,z),. . . ,u (np)(u ,z) solving Eq. ~18! for 1<k<np . The

second step consists in computing mp intermediate fields

v
(1)(u ,z), v

(2)(u ,z),. . . ,v (mp)(u ,z) solving

S I1S bk ,mp
2

ik0Dr

2
ak ,mp

DYD v
~k !~u ,z !

5S I1S bk ,mp
1

ik0Dr

2
ak ,mp

DYD v
~k21 !~u ,z !, ~31!

for 1<k<mp , where v
(0)(u ,z) denotes the last intermediate

field u (np)(u ,z) computed in the first step, and v
(mp)(u ,z)

corresponds to the 3D field c at the discrete range rn1Dr:

c(rn1Dr ,u ,z;v)5v
(mp)(u ,z). Note that for the particular

value mp51 ~for which we have a1,151/2 and b1,151/4),

Eq. ~31! reduces to
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S I1S 1

4
2

ik0Dr

4
DYDc~rn1Dr ,u ,z;v !

5S I1S 1

4
1

ik0Dr

4
DYD u ~np!~u ,z !, ~32!

which corresponds exactly to the equation used in PECAN to

account for 3D coupling @see Eq. ~2.38! of Ref. 7#.

III. DESCRIPTION OF THE THREE-DIMENSIONAL
TEST CASES

Two three-dimensional test cases are investigated, re-

ferred to as test cases A and B. Test case A is based on a

three-dimensional extension of the original two-dimensional

ASA wedge configuration and is similar to the 3D test case

considered by other modelers in more recent papers.7–9 Test

case A has been proposed as a 3D benchmark problem at the

141st ASA meeting held in Chicago in June 2001. It consists

of an isovelocity water layer of sound speed cw51500 m/s

and density rw51 g/cm3, overlying a lossy homogeneous

half-space sedimental layer of sound speed csed51700 m/s,

density rsed51.5 g/cm3 and attenuation ased50.5 dB/l ,

which leads to a critical grazing angle value of approxi-

mately 28°. There is no attenuation in the water layer. The

parametrization of the water-sediment interface is given by

zsed(r ,u)5hsed(x) where x5r cos u and

hsed~x !5H 200~12x/4000! if uxu<3600

20 if x>3600

380 if x<23600.

~33!

The water depth decreases linearly from 200 m at r50 to 20

m at r53.6 km, and is range-independent for r>3.6 km

along the u50° azimuth ~up-slope direction!. It increases lin-

early from 200 m at r50 to 380 m at r53.6 km, and is

range-independent for r>3.6 km along the u5180° azimuth

~down-slope direction!. It is invariant along the u590° and

u5270° azimuths ~cross-slope directions!. It thus makes an

angle with a constant value of 2.86° with respect to the ocean

surface at both u50° and u5180°, and leads to a zero-slope

at both u590° and u5270° ~see Fig. 1!.
Test case B is based on a modification of the three-

dimensional gaussian canyon test case devised for the

SWAM’99 Workshop17 held in Monterey CA in September

1999, and only differs from test case A in the description of

the bottom topography. Test case B consists of an isovelocity

water layer overlying a lossy homogeneous half-space sedi-

mental layer ~the geoacoustic parameters corresponding to

each layer are identical to the ones used in test case A! with

a parametrization of the water-sediment interface given by

hsed~x !5h01h1 exp~2x2/s2!, ~34!

where the parameters h0 , h1 , and s are expressed in meters.

Like test case A, the water depth only depends on the x

direction. Assuming s54h1 , the maximum slope of the

bathymetry in the x direction ~which we will refer to as the

cross-canyon direction! is approximately 12.1° at x5s/A2.

The values h05200 m, h15500 m, and s543h152000 m

correspond to the ones used during the SWAM’99 workshop.

In this paper, h0520 m, h15180 m, and s54h15720 m.

The configuration used in test case B is depicted in Fig. 2.

The water depth decreases from 200 m at r50 to 20 m at

r→` along the u50° and u5180° azimuths ~cross-canyon

directions!. It is invariant along the u590° and u5270° azi-

muths ~along-canyon directions!. It makes a varying angle

with respect to the ocean surface ~with a maximum value of

approximately 12.1° at r5509.12 m) at u50° and u5180°,

and leads to a zero-slope at u590° and u5270°.

For both test cases, an isotropic point source is located at

point S5(xS50,yS50,zS540 m). Its time dependence is a

Hanning-weighted four-period sine wave ~see Fig. 3! given

by

S~ t !5H 1

2
~12cos~vct/4!!sin~vct ! if 0<t<4/f c

0 if t.4/f c,
~35!

FIG. 1. Geometry of the 3D ~truncated! wedge shaped waveguide consid-

ered in test case A.

FIG. 2. Geometry of the 3D Gaussian canyon waveguide considered in test

case B.
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where vc52p f c and f c525 Hz. The source pulse is cen-

tered at frequency f c525 Hz with a 40 Hz bandwidth cover-

ing the band 5–45 Hz. The amplitudes of both the real and

imaginary parts of the source spectrum are very small for

frequencies below 5 Hz and above 45 H ~see Fig. 4!. The

pulse length is 0.16 s. For both test cases, the geometry of

the waveguide at u590° ~which corresponds to the cross-

slope direction for test case A and to the canyon axis for test

case B! is characterized by a zero-slope ~the water depth is

constant and equal to 200 m!. Due to the geometry of the two

waveguides, large 3D effects are expected in this direction,

along which several vertical arrays are placed. In test case A,

three vertical arrays labeled A1, A2, and A3 are placed across

slope at ranges rA1516 km, rA2522 km, and rA3525 km

from the source S. In test case B, two vertical arrays labeled

B1 and B2 are placed along the canyon axis at ranges rB1

516 km and rB2520 km from the source S. Each of the

vertical arrays is composed of 19 elements evenly spaced in

depth between 10 and 190 m. Note that, for both test cases,

the vertical arrays and the source lie in the same 200 m

isobath vertical plane. All the numerical simulations shown

in the next sections were performed on a 2.2 GHz mono-

processor Dell-workstation. Neither vectorization nor paral-

lel computing was used. Unless specified otherwise, all the

following numerical results were obtained using the 3D PE

model 3DWAPE.

IV. RESULTS FOR THE 3D ASA WEDGE

A. cw point source results

Since the source pulse is centered at f c525 Hz, the

acoustic problem at that specific frequency is treated first.

FIG. 3. Time-dependence of the source pulse, for test

cases A and B.

FIG. 4. Spectrum of the source pulse, for test cases A

and B.
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The N32D and 3D computations were carried out using

Dr510 m, Dz51 m ~i.e., Dr5l/6 and Dz5l/60 where l
denotes the acoustic wavelength! and np52. The maximum

computation range is rmax525 km and the reference sound

speed is c ref51500 m/s. The N32D and 3D PE algorithms

were initialized at r50 using a modal source. Since long-

range propagation is considered, the modal sum was limited

to the discrete modal spectrum. Only three propagating

modes are present at a frequency of 25 Hz at the source

location. The maximum depth of the computational grid is

zmax5600 m. An increasing attenuation coefficient aabs(z)

was introduced in the lower part of the domain ~correspond-

ing to depths between zabs5450 m and zmax5600 m) to pre-

vent spurious reflections from the pressure-release imposed

boundary condition at zmax . For the 3D calculations, a Padé 1

approximation in azimuth ~i.e., mp51) and an eighth-order

FD azimuthal scheme with M53240 points ~i.e., an azi-

muthal step size of 1/9th of a degree! were used. This azi-

muthal increment corresponds to an arclength increment DS

of the order of 3l/4 at the maximum computation range

rmax . As shown in Ref. 32, using a second-order FD azi-

muthal scheme would require in this case M523 040 dis-

crete points in azimuth, i.e., an azimuthal step size of 1/64th

of a degree ~this azimuthal increment corresponding to an

arclength increment DS of the order of l/10 at the maximum

computation range rmax).

Gray-scale images of the transmission loss (TL

5220 log10(uc(r ,u ,z;vc)u/Ar with vc52p f c) at a re-

ceiver depth of 30 m corresponding to N32D and 3D cal-

culations are displayed in Fig. 5. The u590° direction corre-

sponding to the 200 m isobath is indicated by a dashed line.

The positions of the source S and the three vertical arrays

A1, A2, A3 are also indicated on each subplot. Due to the

geometrical symmetry of the problem about the up-slope di-

rection, both N32D and 3D solutions are displayed as a

function of range and azimuth in a limited azimuthal sector.

Figure 6 shows transmission loss-vs-range curves at z

530 m and u590° ~across-slope!. The thin dashed curve is a

N32D PE calculation and the bold solid curve is a 3D PE

calculation. Comparing the two subplots of Fig. 5, the effects

of azimuthal coupling are evident, mainly in the vicinity of

the cross-slope direction and at long ranges. These effects are

well known and have been explained in detail by several

authors. They correspond to intramodal interference effects.

Recall that three propagating modes are excited at the source.

Since the vertical geometry in the cross-slope direction

~characterized by a zero-slope! is a classical 200-m-deep Pe-

keris waveguide, any 2D or N32D model can predict the

presence of the three initial modes at u590° for 0<r

FIG. 5. Transmission loss ~in dB re 1 m! at 25 Hz at a

depth of 30 m for test case A corresponding to N

32D ~upper subplot! and 3D ~lower subplot! PE calcu-

lations. For both calculations, a modal sum was used as

a starting field. The 200 m isobath is indicated by a

dashed white line.

FIG. 6. N32D and 3D transmission loss ~in dB re 1 m! comparisons at 25

Hz at a receiver depth of 30 m along a 200 m isobath in the cross-slope

direction for test case A. The thin dashed curve is an N32D PE calculation

and the bold solid curve is a 3D PE calculation. For both calculations the

Greene’s source was used as a starting field.
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<25 km. The use of a full 3-D PE ~i.e., azimuthally coupled

model! causes these three propagating modes to be horizon-

tally refracted down the slope, which leads to a succession of

three distinct zones in the cross-slope direction ~see Fig. 6!.
For ranges less than approximately 11 km, the three initial

propagating modes are present. Only two modes are present

for r>11 km up to r'16 km, due to the 3D shadowing ef-

fect of mode 3. After r'16 km where the mode shadowing

effet of mode 2 occurs, only mode 1 is present. The interfer-

ence pattern in the 3D solution starting at r'17.5 km corre-

sponds to the 3D mode self-interference effect of mode 1.

To show that no significant 3D effects are omitted in the

3D PE calculations, the results were compared with a refer-

ence solution based on the image source method and origi-

nally provided by Westwood.39 This analytical solution is

expressed as a sum of ray fields, each of which take the form

of a double integral over plane waves. Details of the method

are given in Ref. 16. Note that the source depth was 100 m to

match the original ASA benchmark problem. The 3D PE and

the image solutions are plotted in Fig. 7. The bold solid

curve is the 3D PE solution obtained using two Padé terms in

depth (np52) and one Padé term in azimuth (mp51). Also

plotted on the same figure as a thin dashed curve is the 3D

PE solution obtained using two Padé terms in depth and a

narrow-angle azimuthal approximation. The 3D PE calcula-

tions were initialized using the Greene’s source.40 We ob-

serve an overall good agreement between the two 3D PE

solutions and the image solution in the cross-slope direction,

showing that both models predict the same 3D effects. How-

ever, there are some differences, notably a shift in the phas-

ing at long ranges mainly where mode 1 interferences occur.

Note that the 3D PE solution obtained using a Padé 1 ap-

proximation in azimuth is closer to the reference solution

than the azimuthal narrow-angle 3D PE solution, although a

phase shift is still present. The use of higher-order approxi-

mations in azimuth ~i.e., increasing the number mp of Padé

terms! does not improve phase predictions. Recall that the

PE solutions depend on the value of the reference sound

speed c ref . For the solutions shown in Fig. 7, c ref

51500 m/s. Figure 8 shows 3D PE solutions obtained using

two distinct values of c ref . The bold solid curve corresponds

to c ref51500 m/s ~the value of the sound speed in the homo-

geneous water layer! and the thin dashed curve to c ref

51512.94 m/s ~the value of the horizontal phase speed of

mode 1 at the source location!. As already pointed out by

Smith,9 changing the reference sound speed value induces a

shift in the PE solutions. This shift is yet less pronounced

than that between PE solutions shown in Fig. 7. This sug-

gests that the disagreement between the image and the PE

results is mainly due to the fact that the 3D PE model does

not have a wide-angle capability since the term in O(XY) is

not handled ~see the discussion in Sec. II C!. However, de-

spite the mismatch in the mode 1 interference pattern, all the

physical 3D effects are reproduced by the 3D PE model.

B. Modal initialization results

Azimuthal coupling effects may be easily observed by

exciting individual modes at the source location and propa-

gating them outward in range. The 3D PE marching algo-

rithm was initialized by each of the three propagating modes

separately. Figure 9 shows TL plots ~horizontal slices at con-

stant depth z530 m) obtained by initializing the 3D PE

model using mode 1, mode 2, and mode 3. In order to reduce

the phase error in PE calculations, the horizontal modal

phase speed was used for the reference sound speed, i.e.,

c ref51512.94 m/s for mode 1, c ref51554.44 m/s for mode 2,

and c ref51632.42 m/s for mode 3. For each mode, the source

field was assumed to be omnidirectional. Vertical cross sec-

tions of the 3D PE solutions for mode 1, mode 2, mode 3

FIG. 7. 3D transmission loss ~in dB re 1 m! comparisons at 25 Hz at a

receiver depth of 30 m along a 200 m isobath in the cross-slope direction for

test case A. The thin solid curve corresponds to the image solution. The two

other curves are 3D PE calculations using a wide-angle ~bold solid curve! or

a narrow-angle ~thin dashed curve! approximation in azimuth. The source

depth is 100 m. Both 3D PE calculations were initialized using the Greene’s

source.

FIG. 8. 3D transmission loss ~in dB re 1 m! comparisons at 25 Hz at a

receiver depth of 30 m along a 200 m isobath in the cross-slope direction

~u590°, 14 km<r<25 km) for test case A. The bold solid curve is a 3D PE

calculation with c ref51500 m/s ~same solution as shown in Fig. 7! and thin

dashed curve is a 3D PE calculation with c ref51512.94 m/s. The source

depth is 100 m. The Greene’s source was used as a starting field.

1066 J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 1, March 2005 Frédéric Sturm: Broadband sound pulse propagation

Downloaded 28 Feb 2013 to 128.197.27.9. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



along the u590° direction are shown in Fig. 10. Also shown

in Fig. 10 is the 3D PE solution obtained initializing by the

Greene’s source.

The 3D PE results were compared with the predictions

from adiabatic modal theory.41 Figure 11 shows the modal

ray diagrams in the ~horizontal! yx plane for each omnidi-

rectional modal initialization. The modal ray paths were cal-

culated using the method given in Ref. 8. Hereafter, a modal-

ray path that corresponds to the mth mode and makes

initially an angle f0 with the y axis ~i.e., f050° points

across slope! is denoted Gm ,f0
~see Fig. 12!. According to the

Cartesian coordinate system chosen, for any value of m

P$1,2,3% and any value of f0P]290°,90°@ , the modal-ray

path Gm ,f0
is a representative function y°xm ,f0

(y) satisfy-

ing the following Cauchy problem

dx

dy
5

A12~cm~x !3cos~f0!/cr ,m!2

cm~x !3cos~f0!/cr ,m

, y>0,

~36!
x~y50 !50.

Here, f0590° (f05290°) corresponds to an initial launch

in the up-slope direction ~in the down-slope direction! and

cm is the x-dependent phase velocity of the mth mode satis-

fying cw,cm(x),csed and cm(x50)5cr ,m , where cr ,m is

FIG. 9. Transmission loss ~in dB re 1 m! at 25 Hz at a

depth of 30 m for test case A corresponding to 3D PE

calculations and different omnidirectional mode excita-

tions. From top to bottom: mode 1, mode 2, and mode

3. On each subplot, the 200 m isobath is indicated by a

dashed line.

FIG. 10. 3D transmission loss ~in dB

re 1 m! at 25 Hz for test case A ~ver-

tical slices in the cross-slope direction!
corresponding to 3D PE calculations

and ~a! mode 1, ~b! mode 2, ~c! mode

3, and ~d! Greene’s source excitations.
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the horizontal phase speed of the mth mode at the source

location. The value of cm(x) for any given x is numerically

evaluated by solving

tan~A~vc /cw!2
2~vc /cm~x !!2

3hsed~x !!

52

rsed

rw

3

A~vc /cw!2
2~vc /cm~x !!2

A~vc /cm~x !!2
2~vc /csed!

2
,

where vc52p f c . Note that a modal ray is stopped if it

reaches an x coordinate such that cm(x) does not belong to

]cw ,csed@ ~i.e., when mode m becomes leaky!. Characteris-

tics of the modal rays that connect the source S with one of

the three arrays A1, A2, and A3, are listed in Table I.

Comparison of the results displayed in Figs. 9 and 11

shows that the 3D PE solutions are in good agreement with

the predictions from adiabatic modal theory. A modal ray

which has an initial launch direction f0 toward the wedge

apex turns around, as long as its grazing angle does not ex-

ceed the critical angle. A region of multiple arrivals is cre-

ated in the vicinity of the cross-slope direction for suffi-

ciently large ranges from the source, followed by a shadow

region. Due to the increasing grazing angle with respect to

the mode number, 3D effects are stronger for higher modes

than for lower modes. No shadow zone is observed for mode

1 for r<25 km in the cross-slope direction. Computations for

ranges greater than 25 km for mode 1 would also show a

shadow zone in the cross-slope direction. Following Glegg

et al.,2 three regions exist in the wedge-shaped waveguide

for each modal initialization: ~1! an inner region ~corre-

sponding to f0 greater than a critical launch angle fcrit)

where the modal rays propagating upslope exceed the critical

grazing angle and are not turned around; ~2! an outer region

~corresponding to f0 less than fcrit) where the modal-ray-

turn-around occurs; and ~3! a shadow region where there is

no propagation. The value of the critical launch angle fcrit

depends on the mode number: fcrit'27° for mode 1, fcrit

'23.7° for mode 2, and fcrit'16° for mode 3.

Results obtained with both models ~PE and adiabatic

mode! confirm the presence of mode 1 at the three vertical

arrays A1, A2, and A3. Note that arrays A2 and A3 ~unlike

array A1! both lie in the multiple mode arrival area of mode

1, which means that multiple modal ray path arrivals exist

for mode 1 on array A2 and array A3 ~see Table I!. Indeed,

there are two modal ray path arrivals for mode 1 on array A2

~on array A3!, the first one with a shallow angle f0

FIG. 11. Modal ray diagrams ~top view! for test case A,

obtained solving the differential equation given in ~36!

for 290°,f0,90°. From top to bottom: mode 1,

mode 2, and mode 3.

FIG. 12. Schematic of a modal-ray path Gm ,f0
in the ~horizontal! yx plane

corresponding to mode m, with initial launch angle f0 . The y axis ~the x

axis! corresponds to the cross-slope ~up-slope! direction in the wedge

shaped waveguide considered in test case A. The source is placed at x5y

50.

TABLE I. Characteristics ~for a 25 Hz cw point source, test case A! of the

modal rays launched from the source S and connected with one of the three

arrays A1, A2, A3. The angle f0 denotes the initial launch angle (f050°

points across-slope! of the modal eigenray, and Lm ,f0
denotes the length of

the modal eigenray path Gm ,f0
.

Array Mode m f0 (deg) Lm ,f0
(m)

A1 1 11.8 16 002

A1 2 113.5 16 186

A1 2 116.5 16 300

A2 1 12.7 22 008

A2 1 119.7 22 845

A3 1 13.2 25 013

A3 1 116.7 25 640
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512.7° (f0513.2°) with respect to the cross-slope direc-

tion, and the second one with a steeper angle f0

5119.7° (f05116.7°). Two distinct time arrivals of the

signal carried by mode 1 on both arrays A2 and A3 are thus

expected, but only one single time arrival of the signal car-

ried by mode 1 on array A1. The array A1 lies in the limit of

the insonified region of mode 2. The signal carried by mode

2 should be present at array A1 only. In addition, the array

A1 lies in the multiple mode arrival area of mode 2. Two

distinct modal ray path arrivals for mode 2 with initial

launch angles f05113.5° and f05116.5° are detected on

array A1. Hence, two distinct arrival times of the signal car-

ried by mode 2 on A1 are expected. Obviously, the three

arrays A1, A2, and A3 lie in the shadow zone region of mode

3. No arrival of the signal carried by mode 3 is thus detected

by any of the three arrays.

C. Broadband results

The case of the broadband source signal given in Eq.

~35! is now discussed. The pulse response at a specific re-

ceiver R of range rR , azimuth uR , and depth zR , is obtained

via a Fourier transform of the frequency-domain solution

using

P~rR ,uR ,zR ;t !

5

1

2p
E

2`

1`

Ŝ~v !P̂norm~rR ,uR ,zR ;v !e2ivtdv , ~37!

where Ŝ~v! is the source spectrum given by Eq. ~4!, and

P̂norm is the solution of the normalized frequency-domain

wave equation ~6!. In Eq. ~37!, P̂norm is set to zero for any

~non-negative! frequency f outside the band 5–45 Hz. The

frequency integral in Eq. ~37! is evaluated numerically using

a discrete Fourier transform ~DFT!. A time window of length

T57 s, with 4096 points, is used in the DFT algorithm. This

yields values of the received signal at R in the time window

@ tmin ,tmin1T# with a very fine time resolution Dt of 0.0017 s

(Dt5T/4096). The length of the time window corresponds

to a frequency sampling D f of 0.1429 Hz (D f 51/T), which

leads to 281 discrete values within the frequency-band 5–45

Hz. Producing a pulse response at receiver R requires first

computing values of P̂norm at 281 discrete frequencies. This

is achieved through repeated solution of the 3D PE model for

uniformly distributed discrete frequencies ranging from 5 to

45 Hz and for 0<r<rR , 0<u<2p, 0<z<zmax .

For each solution at a single frequency f, several param-

eters need to be changed, their values depending on the value

of the frequency f, or equivalently, of the acoustic wave-

length l. Suitable selections of the range, azimuthal, and

depth increments Dr , Du, Dz are crucial. For instance, un-

dersampling ~oversampling! the azimuthal direction may ap-

pear inappropriate to accurately compute the 3D effects ~may

lead to untimely computations!. It is well established that the

range and depth increments Dr and Dz should be sufficiently

small in comparison to the acoustic wavelength l. Our cal-

culations were carried out using Dr5l/6 and Dz5l/60.

Since an eighth-order FD scheme was used in azimuth, se-

lection of the azimuthal increment Du52p/M was achieved

using a less restricting criterion with respect to the acoustic

wavelength: Du ~or equivalently M! was selected such that

DS'3l/4, where DS denotes the arclength increment at the

maximum computation range rmax . Note that using a second-

order FD scheme in azimuth would require that DS'l/10.

Our calculations were carried out using M5648 at f 55 Hz

and M55832 at f 545 Hz. For intermediate values of the

frequency within the band 5–45 Hz, the number of discrete

points in azimuth is obtained by linearly interpolating be-

tween 648 and 5832. For each frequency-domain calculation,

the 3D PE marching algorithm was initialized at r50 using

the Greene’s source. Two Padé terms in depth ~i.e., np52)

and one Padé terms in azimuth ~i.e., mp51) were used. The

maximum depth zmax of the computation grid was placed

several wave-lengths below the maximum depth of the sea-

floor and a layer of increasing absorption was placed in the

lower part of the domain ~just above zmax) to attenuate the

reflected energy, its width also depending on the acoustic

wavelength.

The signal arrivals on the three vertical arrays A1, A2,

and A3 were calculated. Comparisons of the signals received

on vertical array A1 at a depth of 20 m corresponding to 2D

and 3D computations are shown in Fig. 13. Both 2D and 3D

solutions were multiplied by a factor rA1516 000 m to com-

pensate for spherical spreading. The pulse responses on ver-

tical arrays A1, A2, and A3 were calculated using tmin

510.6 s, tmin514.6 s, tmin516.6 s, respectively. They are

displayed in Figs. 14, 15, and 16. The received signals are

plotted intentionally as stacked time series versus depth

which is helpful when analyzing the modal structure of the

signal arrivals. Snapshots of the propagating pulse in the

cross-slope direction at two distinct times, t510.7 s and t

516.7 s, are shown in Figs. 17 and 18, respectively. For

comparison, the signals obtained using 2D calculations are

also shown.

Let us analyze first the signal arrivals on receiver arrays

A1, A2, and A3, computed using a 2D PE model. The geom-

etry of the waveguide in the cross-slope direction ~character-

ized by a zero-slope! is seen by the 2D PE model as a clas-

sical 200-m-deep waveguide, which leads to the existence of

three propagating modes when a 25 Hz cw source signal is

considered. As expected, considering a broadband source

pulse with a central frequency of 25 Hz, the propagating

signal splits up in three distinct wave packets, which corre-

spond to the signal carried by the three propagating modes of

the waveguide. Now, using a 3D PE model, the signal arriv-

als exhibit only two distinct mode arrivals ~instead of three

as predicted by 2D calculations! at each of the three vertical

arrays A1, A2, and A3. For each of them, it is clear that the

first wave packet corresponds to the signal carried by mode

1. Indeed, its amplitude is low near the ocean surface, in-

creases with depth toward mid-depth, then decreases toward

z5200 m. This is obviously the depth dependence of mode

1. Following the same analysis, the second wave packet re-

ceived on A1 ~respectively, on A2 and A3! corresponds to the

signal carried by mode 2 ~respectively, by mode 1!. These

observations are coherent with the predictions of the previ-

ous section. Indeed, as expected, the signal carried by mode

1 is present for each of the three vertical arrays A1, A2, and
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A3. Since only A2 and A3 lie in the multiple mode arrival

area of mode 1, two distinct mode 1 arrivals are observed on

A2 and A3 ~and only one single mode 1 arrival on A1!, the

first one corresponding to a modal ray path with a shallow

angle with respect to the cross-slope direction, and the sec-

ond one ~weaker! to a modal ray path with a steeper angle.

The time delay between the first and second time arrival of

mode 1 is shorter at A3 than at A2. As expected, the signal

carried by mode 2 is only present at A1 ~recall that A1 lies in

the limit of the insonified region of mode 2!. Note that the

second wave packet received on A1 corresponds to the

merger of the two distinct ~but close! time arrivals of mode

2. It thus appears more dispersed in time than the single

mode 2 arrival predicted by a 2D calculation. Since the three

arrays A1, A2, and A3 all lie in the shadow zone region of

mode 3, no mode 3 signal arrival is observed at A1, A2, and

A3. Note that all the modal eigenrays have been constantly

refracted in the horizontal direction during their upslope and

downslope propagation. Thus, the corresponding wave pack-

ets are different from the wave packets predicted using a 2D

model.

FIG. 13. Comparison of broadband

pulse solutions for test case A and ar-

ray A1 at a depth of 20 m: ~upper! 2D

calculation and ~lower! 3D calcula-

tion.

FIG. 14. Stacked time series vs depth

for test case A corresponding to verti-

cal array A1: ~left! 2D calculation and

~right! 3D calculation.
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V. RESULTS FOR THE 3D GAUSSIAN CANYON

A. cw point source results

The acoustic problem involving a 25 Hz cw point source

is analyzed first. The N32D and 3D results presented here-

after were obtained using the same range and depth incre-

ments as in test case A (Dr510 m, Dz51 m). Both N

32D and 3D calculations were generated using a fifth-order

Padé 3 approximation in depth ~i.e., np53). For the 3D cal-

culations, a third-order Padé 1 approximation in azimuth

~i.e., mp51) and M52880 points were used. The number of

discrete points used in azimuth is less than in test case A

simply because the value of the maximum computation

range rmax has been reduced from 25 to 20 km. As in test

case A, the azimuthal increment Du52p/2880 corresponds

to an arclength increment DS of the order of 3l/4 at the

maximum computation range rmax520 km.

FIG. 15. Stacked time series vs depth

for test case A corresponding to verti-

cal array A2: ~left! 2D calculation and

~right! 3D calculation.

FIG. 16. Stacked time series vs depth

for test case A corresponding to verti-

cal array A3: ~left! 2D calculation and

~right! 3D calculation.

1071J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 1, March 2005 Frédéric Sturm: Broadband sound pulse propagation

Downloaded 28 Feb 2013 to 128.197.27.9. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



Gray-scale images of the transmission loss ~horizontal

slices at a receiver depth of 30 m! corresponding to N32D

and 3D calculations are shown in Fig. 19. For both of them,

the modal sum was used as a starting field. A maximum

computation depth of 600 m and a reference sound speed of

1500 m/s were used. The u590° direction corresponding to

the canyon axis is indicated by a dashed line. The positions

of the source S and the two vertical arrays B1, B2 are also

indicated on each subplot. Like test case A, due to the geo-

metrical symmetry of the problem about the x axis, both

solutions are displayed as a function of range and azimuth in

a limited azimuthal sector. By comparing the two subplots of

Fig. 19, noticeable differences in both fields can be observed.

The effects of azimuthal coupling are evident. Indeed, when

azimuthal coupling is taken into account in the calculation,

the acoustic energy is horizontally refracted by the sidewalls

of the canyon and gets channeled in the y direction along the

canyon axis. Note that both N32D and 3D solutions are

symmetric about the along-canyon direction.

Figure 20 shows transmission loss-versus-range curves

at z530 m and u590° ~along the canyon axis! corresponding

to 3D solutions obtained with various paraxial approxima-

tions in azimuth. Also shown on the same plot is the 2D

solution. The comparison of the 3D solutions with the 2D

solution confirms an enhancement of the acoustic level when

azimuthal coupling is handled, due to the focusing of the

acoustic energy along the canyon axis. There are also some

differences between the two 3D PE solutions. The validity of

the narrow-angle approximation in azimuth is subject to dis-

cussion for the present test case since, as shown in Fig. 20,

using a Padé 1 paraxial approximation in azimuth changes

the solution. It is worth mentioning that no change in the

solution was observed for increasing values of mp . How-

FIG. 17. Snapshots of the propagating

pulse for test case A at t510.7 s: ~up-

per! 2D calculation and ~lower! 3D

calculation.

FIG. 18. Snapshots of the propagating

pulse for test case A at t516.7 s: ~up-

per! 2D calculation and ~lower! 3D

calculation.
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ever, the error between the 3D PE solution and the exact

solution can not be quantified since there is no reference

solution available for this test case.

B. Modal initialization results

In order to characterize the 3D effects present in the

canyon, the three propagating modes were excited individu-

ally at the source location, and propagated outward in range.

For each modal initialization, the reference sound speed was

selected equal to the phase speed of the mth mode. Figure 21

shows the gray-scale TL plots ~horizontal slices at constant

depth z530 m) obtained initializing the 3D PE model using

mode 1, mode 2, and mode 3. Vertical cross sections of the

3D PE solutions are shown in Fig. 22. Figure 23 shows the

modal ray diagrams for each omnidirectional modal initial-

ization. Characteristics of the modal rays that connect the

source S with one of the two arrays B1 and B2, are listed in

Table II.

By comparing the results shown in Figs. 21 and 23, the

solutions obtained using the PE approach and the adiabatic

modal ray theory are satisfactorily in good agreement. The

effects of the 3D varying bathymetry on the different modal

propagations are now evident. For each propagating mode,

the focusing of the energy along the canyon axis is repetitive

in range and, as expected, is more pronounced for higher

modes than for lower modes. Indeed, three distinct focusing

zones are detected for mode 1, four distinct focusing zones

for mode 2, and five distinct focusing zones for mode 3. For

each propagating mode, the focusing-zone width ~along the

canyon axis! increases with zone number. As a result, two

consecutive focusing zones may overlap at sufficiently large

ranges ~whose values depend on mode number! from the

source along the canyon axis, and, thus, become indistin-

guishable. For example, for mode 1, the third focusing zone

overlaps with the second one near r'19.5 km along the can-

yon axis, and, for mode 2, the fourth focusing zone overlaps

with the third one near r'17.5 km along the canyon axis.

Unlike test case A, no shadow zone is observed along the

canyon axis. Besides, the 3D effects are more pronounced

for test case B than for test case A. For example, the onset of

mode 1 interference pattern along the canyon axis appears

sooner in range for test case B ~at r'6.5 km) than for test

case A ~at r'17.5 km).

Modes 1, 2, and 3 are present at receiver arrays B1 and

FIG. 19. Transmission loss ~in dB re 1

m! at 25 Hz at a depth of 30 m for test

case B corresponding to N32D ~up-

per subplot! and 3D ~lower subplot!
PE calculations. For each calculation,

the modal sum was used as a starting

field. The canyon axis is indicated by a

dashed white line.

FIG. 20. N32D and 3D transmission loss ~in dB re 1 m! comparisons at 25

Hz at a receiver depth of 30 m along a 200 m isobath along the canyon axis

for test case B. The thin dashed curve is a 2D PE calculation. The two solid

curves are 3D PE calculations with three Padé terms in depth and with a

narrow angle ~thin solid curve! or a wide-angle ~bold solid curve, mp51)

approximation in azimuth. For each of the three calculations, the Greene’s

source was used as a starting field.
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B2. This observation is coherent with the fact that there is no

shadow zone along the canyon axis. Both receiver arrays B1

and B2 lie in the multiple mode arrival area of each of the

three propagating modes, the number of eigenrays depending

on both the mode number and the receiver array ~see Table

II!. There are three modal ray paths connecting S and B1 for

mode 1, the first one corresponding to f050° ~the direct

path!, and the two other ones corresponding to a pair of

eigenrays with initial launch angles f05615.4°. Similarly,

there are three modal ray paths connecting S and B1 for

mode 2, the direct path and a pair of eigenrays with initial

launch angles f05613.8°. On the other hand, there are five

modal ray paths connecting S and B1 for mode 3, the first

one corresponding to the direct path, and the other ones to

two distinct pairs of eigenrays with initial launch angles f0

569.5° and f05616°. For receiver array B2, there are

one direct path and two pairs of eigenrays for each of the

three propagating modes. Anticipating the analysis presented

in the next section, multiple arrivals ~not necessarily distinct

in time! for each of the three propagating modes on both

FIG. 21. Transmission loss ~in dB re 1

m! at 25 Hz at a depth of 30 m for test

case B corresponding to 3D PE calcu-

lations and different omnidirectional

mode excitations. From top to bottom:

mode 1, mode 2, and mode 3.

FIG. 22. 3D transmission loss ~in dB

re 1 m! at 25 Hz for test case B ~ver-

tical slices along the canyon axis! cor-

responding to 3D PE calculations and

~a! mode 1, ~b! mode 2, ~c! mode 3,

and ~d! Greene’s source excitations.
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receiver arrays B1 and B2 can be predicted. More precisely,

two mode 1 arrivals, two mode 2 arrivals, and three mode 3

arrivals are expected on B1. Three arrivals for each of the

propagating modes are expected on B2. On the contrary, any

azimuthally uncoupled model should predict only one single

arrival ~the direct path! for each of the three propagating

modes.

C. Broadband results

Let us turn now to the analysis of the acoustic problem

involving the broadband source signal given by Eq. ~35!. The

signal arrivals on the two vertical arrays B1 and B2 were

calculated. The calculations were carried out using tmin

510.6 s and tmin513 s for receiver arrays B1 and B2 respec-

tively, and, as in test case A, a time window of length T

57 s with 4096 points in the DFT algorithm. This required

running the 3D PE model at 281 discrete frequencies within

the frequency band 5–45 Hz. For each frequency-domain

calculation, Dr5l/6, Dz5l/60. The number M of discrete

points in the azimuthal direction was obtained by linearly

interpolating between M5576 at f 55 Hz and M55184 at

f 545 Hz, which gave M52880 at f 525 Hz. The 3D PE

marching algorithm was initialized at r50 using the

Greene’s source. Three Padé terms in depth ~i.e., np53) and

one Padé term in azimuth ~i.e., mp51) were used.

The signals received on vertical array B1 at a specific

depth of 20 m corresponding to 2D and 3D computations are

shown in Fig. 24. Both solutions were multiplied by the

same factor rB1516000 m to compensate for spherical

spreading. As expected, due to the focusing of the energy

along the canyon axis, the amplitude of the 3D solution is

significantly higher than the amplitude of the 2D solution.

The signal arrivals on vertical arrays B1 and B2 obtained

using 3D calculation are displayed in Figs. 25 and 26, re-

spectively. For comparison, the signals obtained using 2D

calculation are also displayed. The two signals marked with

arrows in Fig. 25 correspond to the ones shown in Fig. 24.

For both vertical arrays B1 and B2, the 2D results ~see first

columns of Figs. 25 and 26! clearly show that the propagat-

ing signal splits up in three distinct wave packets which cor-

respond to the signals carried by the three propagating modes

of the waveguide. The 2D results are similar to that obtained

in test case A. On the other hand, the modal structure of the

3D results is much more complicated ~see second columns of

Figs. 25 and 26!. Indeed, though the first wave packet can

clearly be attributed to the first arrival of mode 1, the rest of

the received signals does not clearly show any modal struc-

ture. One way to discriminate the multiple arrivals of one

FIG. 23. Modal ray diagrams ~top

view! for test case B, obtained solving

the differential equation given in ~36!

for 290°,f0,90°. From top to bot-

tom: mode 1, mode 2, and mode 3.

TABLE II. Characteristics ~for a 25 Hz cw point source, test case B! of the

modal rays launched from the source S and connected with one of the two

arrays B1 and B2. The angle f0 denotes the initial launch angle (f050°

points along the canyon axis! of the modal eigenray, and Lm ,f0
denotes the

length of the modal eigenray path Gm ,f0
.

Array Mode m f0 (deg) Lm ,f0
(m)

B1 1 0 16 000

B1 1 615.4 16 360

B1 2 0 16 000

B1 2 613.8 16 258

B1 3 0 16 000

B1 3 69.5 16 112

B1 3 616 16 315

B2 1 0 20 000

B2 1 69 20 138

B2 1 623 21 050

B2 2 0 20 000

B2 2 62 20 005

B2 2 616.5 20 476

B2 3 0 20 000

B2 3 69.5 20 140

B2 3 616 20 394
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mode from the multiple arrivals of the two other modes con-

sists in initializing ~in the Fourier domain! the PE model by

only one single mode ~if present! at each single discrete fre-

quency, instead of initializing by the Greene’s source ~for

which all the propagating modes are excited simultaneously!.
The results obtained by initializing separately by mode 1, by

mode 2, and by mode 3, are displayed, respectively, in the

first, second, and third columns of Figs. 27 and 28. They

confirm multiple arrivals for each of the three propagating

modes on receiver arrays B1 and B2. Note that multiple ar-

rivals of the same mode can be well separated in time. For

example, this is the case for the two distinct arrivals of mode

1 on B1 ~see first column of Fig. 27! and for the two distinct

~though very close in time but still distinguishable! arrivals

of mode 2 on B1 ~see second column of Fig. 27!. This is also

the case for the three distinct arrivals of mode 1 on B2 ~see

first column of Fig. 28!. On the contrary, the multiple arrivals

of mode 3 on B1 and B2 ~see third columns of Figs. 27 and

28! are very close in time. The wave packets observed cor-

respond to the merger of the three distinct arrivals of the

same mode. They thus appear more dispersed in time than

the single mode 3 arrival obtained using a 2D model. Again,

FIG. 24. Comparison of broadband

pulse solutions for test case B and ar-

ray B1 at a depth of 20 m: ~upper! 2D

calculation and ~lower! 3D calcula-

tion.

FIG. 25. Stacked time series vs depth

corresponding to vertical array B1

~placed along the canyon axis at a dis-

tance of 16 km! obtained using 2D

computation ~left column! and 3D

computation ~right column!.
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all these observations are consistent with the predictions of

the previous section.

VI. CONCLUSION

In this paper, the propagation of a broadband acoustic

pulse with a central frequency of 25 Hz and a bandwidth of

40 Hz in three-dimensional shallow water waveguides was

studied. The 3D ASA benchmark problem, and a variant of

the original SWAM’99 Gaussian canyon test case were in-

vestigated. Both test cases were treated following the same

approach. First, the acoustic problem was simplified to an

harmonic point source emitting at 25 Hz. Results for both

point source and modal initializations were obtained. Solu-

tions from the 3D PE model were compared with the predic-

tions from a 3D adiabatic modal theory. Good agreement was

obtained between the two models for both test cases. For the

FIG. 26. Stacked time series vs depth

corresponding to vertical array B2

~placed along the canyon axis at a dis-

tance of 20 km! obtained using 2D

computation ~left column! and 3D

computation ~right column!.

FIG. 27. Stacked time series vs depth

corresponding to vertical array B1

~placed along the canyon axis at a dis-

tance of 16 km! obtained using 3D

computations. The signals have been

obtained initializing the PE model by

mode 1 ~left!, by mode 2 ~middle!, and

by mode 3 ~right!.
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3D ASA benchmark problem, comparisons of 3D PE solu-

tions with a reference analytical solution ~based on the image

method! were made, hence validating the 3D PE model for

this test case. Unfortunately, no reference solution was avail-

able for the Gaussian canyon test case. The signals received

by vertical arrays located far from the source were calcu-

lated. For the 3D ASA wedge problem, multiple mode arrival

times ~e.g., two distinct mode 1 arrivals on A2 and A3, and

only one single mode 1 arrival on A1! or modal shadow

zones ~e.g., no mode 3 arrival on each of the vertical arrays

A1, A2, and A3! were observed. For the Gaussian canyon

test case, the analysis of the signals received by two vertical

arrays B1 and B2 located along the canyon confirmed an

increase of the acoustic level due to energy focusing along

the canyon axis. Multiple mode arrivals on each of the ver-

tical arrays for each of the three propagating modes were

observed. No modal shadow zone was observed along the

canyon axis. For both test cases, geometrical dispersion of

the propagating modes was consistent with results obtained

for a 25 Hz cw point source.

These phenomena are typical of shallow water oceanic

environments in the presence of a sloping bottom. They have

already been described numerically for a 3D wedge-shaped

waveguide using a code based on the image source method.16

Note that the latter code was limited to specific oceanic en-

vironments. The main advantage of using a 3D PE model is

that it can be applied quite generally and is thus not restricted

to a specific acoustic problem. A priori, the methodology that

has been used to analyze the two acoustic problems, the 3D

wedge and the 3D Gaussian canyon, could be applied in

future for investigating any other shallow water acoustic

problem. Nevertheless, the modeler should be wary when

performing numerical simulations with a 3D PE model. For

instance, it is important to keep in mind that any existing and

available 3D PE based model is only an approximate model

~though general! and is limited in its ability to handle hori-

zontal refraction. Indeed, though the 3D PE model used in

this paper, 3DWAPE, has a wide-angle capability along the

azimuthal direction ~comparisons for the 3D wedge seem to

favor the use of the azimuthal wide-angle approximation!, it

does not strictly speaking have a wide-angle capability since

the cross-derivative terms present in O(XY) are not taken

into account in the modeling. This point was discussed in

detail in this paper. The influence of handling cross-

derivative terms is not known. Efforts to incorporate these

terms in 3DWAPE as well as in a 3D version of the Monterey-

Miami Parabolic Equation model developed by Smith9 are

currently under way. Another issue that can be addressed

when one is interested with pulse propagation in shallow

water environments is the following: if shear waves are

present in the bottom, do they modify the three-dimensional

effects described in this paper, and if so, by how much? This

question has not been addressed in this present work since

the 3D model used could not handle shear waves. It is left for

future works.
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