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ABSTRACT

Heat transfer in partially ionized Erying-Powell liquid containing four types of nano-particles is discussed in this manuscript. Mathemati-
cal models for the mixture Erying-Powell plasma and nano-particles are developed and are solved by using finite element method (FEM).
Numerical computations are carried out under tolerance 10-5. Physical parameters have significant effects on both thermal boundary layer
thicknesses and momentum boundary layer thicknesses. Shear stresses at the surface can be minimized by the Hall and ion slip currents
whereas the shear stresses at the sheet for Erying-Powell fluid are high as comparing to the Newtonian fluid. The rate of transfer of heat
is significantly influenced by Hall and ion slip parameters. Highest rate of transfer of heat is observed for the case of TiO2 nano-particles.
Therefore, it is recommended to disperse TiO2 nano-particles in Erying-Powell fluid for enhancement of heat transfer in Erying-Powell
plasma.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5084311

I. INTRODUCTION

Blood and other biological fluids are those which do not fol-
low Newton’s law of viscosity and are called non-Newtonian fluids.
Newtonian and non-Newtonian fluids flows play an important role
in engineering processes. For example, fiber making, plastic manu-
facturing, metal spinning, tooth pastes, yogurt, clay coating, phys-
iological liquids (bile, synovial fluid, blood), petroleum products,
lubricants etc. Erying-Powell fluid is non-Newtonian fluid and its
constitutive equations are reducible to the constitutive equations of
Newtonian at high and low shear rate.1 Several investigators have
explored the flow of Erying-Powell fluid in different scenarios. Here
we will describe some latest studies on the flow of Erying-Powell
fluid. For example, Nadeem and Saleem2 considered transport of
mass and heat in Erying-Powell fluid over a rotating cone. Hayat
et al.3 studied the effects of magnetic fluid on heat transfer in radia-
tive three-dimensional flow of Erying-Powell fluid over a moving
surface. Khader and Megahed4 analyzed the effects of transfer of
heat in unsteady thin film flow of Erying-Powell fluid. Jalil and

Asghar5 discussed heat transfer characteristics in the flow of Erying-
Powell fluid. Elbade et al.6 considered the combined effects of vis-
cous dissipation and magnetic field in Erying-Powell fluid in the
porous medium. Finite element study of heat transfer in Erying-
Powell fluid was performed by Poonia et al.7 The effect of melt-
ing phenomenon of sheet on the transfer of heat in Erying-Powell
fluid is discussed by Hayat et al.8 Javed et al.9 considered the flow
of Erying-Powell fluid over a stretching surface. The effect of ther-
mophoretic and chemical reaction on the transport of mass and heat
in Erying-Powell fluid are studied by Khan et al.10 Ashraf et al.11

considered three dimensional heat transfer in nano-Erying-Powell
fluid over an exponentially stretching. The Erying-Powell rheology
is characterized by the following tensor1–11

τij = µ
∂ui

∂xj
+
1

β
sinh

−1(1
c

∂ui

∂xj
), with sinh−1(1

c

∂ui

∂xj
)

=
1

c

∂ui

∂xj
−
1

6
(1
c

∂ui

∂xj
)3, (1)
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TABLE I. Physical properties of nanoparticles and blood.35

Physical property blood Cu Ag Al2O3 TiO2

ρ/(m-3Kg) 1060 8933 10500 3970 4250

cp/(K
−1Jkg−1) 3770 385 235 765 686.2

k/(K−1Wm−1) 0.492 401 429 40 8.9538
φ 0.00 0.05 0.10 0.15 0.20

σ/(s.m-1) 4.3×10-5 59.6×106 6.6×10-7 35×106 2.6×106

where c and β are material fluid parameters and µ is dynamics vis-
cosity. The constitutive relation (1) reduces to the Newtonian case
when c→∞.

Transport of heat and mass is of great interest for the mathe-
maticians as well as engineers. Various theoretical studies on trans-
port of heat and mass are published. For instance, Ashraf et al.,12

analytically analyzed the transport of heat in the flow of viscoelas-
tic fluid over an exponentially stretching surface. Awais et al.13

studied steady flow of Burger’s liquid in the presence of melt-
ing heat phenomenon. Ramesh et al.14 computed numerical solu-
tions of problems governing MHD dusty fluid in the presence
of heat generation. Ramzan et al.15 reconnoitered MHD Maxwell
fluid flow over a bidirectional stretching surface and discussed the
impact of physical parameters. Majeed et al.16 considered the influ-
ence of chemical reaction on the flow of Ferro-fluid exposed to
magnetic dipoles and resulting problem is solved by the shooting
scheme.

Flow of partially ionized fluid exposed to magnetic field can be
modeled using following generalized Ohm’s law18–28

J +
ωeτe
B○

J × B −
ωeτeωiτi

B2
○

(J × B) × B = σ[E +V × B], (2)

with usual conservation law and set of Maxwell’s equations.
In Eq. (2), J is current density, B is magnetic induction, σ is

electrical conductivity, ωi is ion collision frequency, ωe is electron
collision frequency, τe is electron collision time, τi is ion collision
time and B○ is magnitude of the magnetic induction.

The emission of thermal radiation in the form of electromag-
netic waves during transfer of heat has a great impact on the flow
characteristics and it established fact that the thermal radiations are
electromagnetic waves which carry heat energy away from the fluid
regime. The amount of heat emitted per unit volume in the form
of thermal radiations can be calculated through Stefan Boltzmann
law. This law states that radiative heat flux vector is directly propor-
tional to the fourth power of temperature minus fourth power of the
ambient temperature.

qr = −
4σ∗

3k∗
∇(T4

− T
4
∞), (3)

whereT is the temperature of fluid, k∗ is the Rosselandmean absorp-
tion coefficient, σ∗ is the Stefan Boltzmann constant and T∞ is the
ambient temperature. The Stefan Boltzmann law given in Eq. (3) has
been used by many researchers.29–31 The rate of radiative heat away
per unit volume is

dQr

dt
= −∇ ⋅ qr =

16σ∗T3
∞

3k∗
∇

2
T. (4)

A. Relationship between thermo-physical properties
of base fluid and nano-particles

There are various models (empirical formulas) describing the
relationship between thermophysical properties of the base fluid,
metallic nano-particles and nanofluid but here in this study, we have
followed Das et al.17 The model used by Das et al.17 is

ρnf = φρs + (1 − φ)ρf , (ρcp)nf = φ(ρcp)s + (1 − φ)(ρcp)f ,
µnf =

µf(1 − φ)2.5 ,
σnf = σ f (1 + 3(σ − 1)φ

σ + 2 − (σ − 1)φ), σ =
σ s
σ f

,

knf =
ks + 2kf − 2φ(kf − ks)
ks + 2kf + φ(kf − ks) kf ,

where k, ρ, σ ,φ and cp, respectively, are the density, the thermal con-
ductivity, the electrical conductivity, the volume fraction and the
specific heat. The subscripts nf , f and s stand for nanofluid, fluid
and solid particles (nano-particles) respectively. Thermo-physical
properties of four types of metallic nano-particles and blood are
described in Table I.

To the best of our knowledge, no study considering the effect of
Hall and ion slip currents on three-dimensional heat transfer in par-
tially ionized Erying-Powell liquid is discussed yet. The present work
fills this gape. This study is organized in five sections. Flow situation
and its modeling is given in Section II. Computational procedure
is discussed in Section III. The results are discussed in Section IV.
Results are briefly discussed in Section V.

II. PHYSICAL SITUATION AND MATHEMATICAL
MODELING

Let us consider the enhancement of heat transfer in a partially
ionized non-Newtonian fluid (Eyring-Powell) over an elastic sheet

moving with velocity Vw = Uwi + Vwj = a(x + y) 1
3 i + b(x + y) 1

3 j.

Here a and b are constants having unitsm
2
3 /s. A non-uniform mag-

netic field B○ (x + y)− 1
3 k is applied along z-axis, perpendicular to the

sheet. The fluid over sheet is subjected to the dispersion of four types
of nano-particles (Cu,Ag,Al2O3 and TiO2). The sheet is maintained

at non-uniform temperature Tw(x, y) = dT○(x + y) 2
3 + T∞ in which

d and T○ have units 1/m 2
3 and K (kelvin). Hall and ion currents are

of considerable order of magnitudes. The said fluid occupies half
space −∞ < x < ∞, −∞ < y < ∞ and 0 < z < ∞. The schematic
representation is given by Fig. 1.
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FIG. 1. Physical model and coordinate system.

The conservation laws and generalized Ohm’s law under the
boundary layer approximations take the following form

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (5)

u
∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z
= (υnf +

1

βcρnf
)∂2u

∂z2
−

1

2βc3ρnf
(∂u
∂z
)2 ∂2u

∂z2

+
σnf B

2
○(x + y)− 2

3

ρnf [β2e + (1 + βeβ i)2] × [βev− (1 + βeβ i)u],
(6)

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= (υnf +

1

βcρnf
)∂2v

∂z2
−

1

2βc3ρnf
(∂v
∂z
)2 ∂2v

∂z2

−
σnf B

2
○(x + y)− 2

3

ρnf [β2e + (1 + βeβ i)2] [βeu + (1 + βeβ i)v],
(7)

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= ( knf(ρcp)nf +

16σ∗T3
∞

3(ρcp)nf k∗ )
∂2T

∂z2

+
σnf B

2
○(x + y)− 2

3

(ρcp)nf [β2e + (1 + βeβ i)2] [u
2
+ v

2], (8)

where υ is the kinematics viscosity.
Following boundary conditions will be implemented for the

solutions of the flow equations

u(x, y, 0) = Uw, v(x, y, 0) = Vw, w(x, y, 0) = 0, T(x, y, 0) = Tw,

u→ 0, v → 0, T → T∞, as z →∞.

⎫⎪⎪⎬⎪⎪⎭
(9)

Equations (5)–(9) can be normalized by the following transfor-
mation

u = a(x + y) 1
3 f ′, v = a(x + y) 1

3 g
′

,

w = −
√
aυf (x + y)− 1

3 (2
3
( f + g) − 1

3
η( f ′+ g

′)),
θ =

T − T∞

Tw − T∞
, η =

√
a

υf
(x + y)− 1

3 z,

(10)

and, hence, one obtains

(1 + ε(1 − φ)2.5)f ′′′ − φ1[ 13(g′ + f ′)f ′ − 2
3
( f + g)f ′′]

−ε(1 − φ)2.5δ( f ′′)2f ′′′ + φ2
M2

β2e+(1+βeβ i)
2 [βeg′ − (1 + βeβ i)f ′] = 0

f (0) = 0, f ′(0) = 1, f ′(∞) = 0,
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(11)

(1 + ε(1 − φ)2.5)g′′′ − φ1[ 13( f ′+ g′)g′ − 2
3
( f + g)g′′]

−ε(1 − φ)2.5δ(g′′)2g′′′ − φ2
M2

β2e+(1+βeβ i)
2 [βef ′ + (1 + βeβ i)g′] = 0

g(0) = 0, g′(0) = λ, g′(∞) = 0,
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(12)

(1 + 4
3Nr
)θ′′ + 2kf

3knf
φ3Pr( f + g)θ′ − 2

3

kf
knf

φ3Pr( f ′+ g
′)θ

+
kf
knf

φ2

(1−φ)2.5
M2EcPr

β2e+(1+βeβ i)
2 [ f ′2 + g

′2] = 0,
θ(0) = 1, θ(∞) = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(13)

where

φ1 = (1 − φ) 52 (1 − φ + φ ρs
ρf
), φ2 = (1 − φ) 52 (1 + 3(σ−1)φ

σ+2−(σ−1)φ
),

φ3 = 1 − φ +
φ(ρcp)s
(ρcp)f

(14)

with ε and δ are the fluid parameters, M is the magnetic parameter,
Pr is the Prandtl number, Ec is the Eckert number,Nr is the radiation
parameter, λ is the stretching ratio parameter, βe and β i is the Hall
and ion slip parameters. These parameters are expressed as

ε =
1

µnf βc
, δ =

a3

2υf c
,M

2
=

σ f B
2
○

ρf a
, Pr=

µf (cp)f
kf

,Ec =
a2(cp)f dT○ ,

Nr =
knf k

∗

4σ∗T3
∞

, λ =
b

a
,βe = ωeτe,β i = ωiτi.

The velocity and temperature gradients in normalized forms are

Cf x
=

τzx∣z=0
ρf a2(x + y)2 = 1

ρf a2(x + y)2
×((µnf +

1

βc
)∂u
∂z
−

ε

6βc3
(∂u
∂z
)3)∣

z=0

=
1

(Re) 12 ((1 + ε)(1 − φ)
−2.5f ′′(0) − ε

3
δ( f ′′(0))3), (15)

Cgy =
τzy∣z=0

ρf a2(x + y)2 = 1

ρf a2(x + y)2
×((µnf +

1

βc
)∂v
∂z
−

ε

6βc3
(∂v
∂z
)3)∣

z=0

=
1

(Re) 12 ((1 + ε)(1 − φ)
−2.5

g
′′(0) − ε

3
δ(g′′(0))3), (16)

Nu =
−knf (x + y)∂T

∂z
∣
z=0

kf (Tw − T∞) = −
knf

Re1/2kf
θ′(0), (17)

where Re = a(x + y) 2
3 /υf .
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III. FINITE ELEMENT FORMULATION:
A COMPUTATIONAL PROCEDURE

Galerkin finite element method32–35 is very strong tool to
solve the system of nonlinear differential equations. The detailed
procedure of GFEM for this work is given in following steps.

Discretization of domain: Discretization of domain involves
the breakdown of domain into smaller domain. In present case the
domain is one dimensional and discretized into line segment, two
nodes per segments.

Selection of interpolation functions: Field variables are inter-
polated by using interpolation functions. Interpolation functions
are often polynomials. In the case of line elements (two nodes per
elements) linear polynomial is used which is given by

ψ j = (−1)j−1( ηj+1 − η
ηj+1 − ηj

), j = 1, 2 (18)

Selection of weight functions: Different methods are used for
the selection of weight function. In GFEM, interpolation functions
are taken as weight functions.

Construction of residuals and weak form: The approximate
solution do not satisfy the problems and what we get by substitu-
tion of approximate solution in the differential equations is called
residual and inner product of weight function and residual in inte-
gral sense gives weighted residual integrals and integration of highest
order linear term gives the weak form. Hence,

∫
ηe+1

ηe
wi( f ′− h)dη = 0, (19)

∫
ηe+1

ηe
wi(g′ − R)dη = 0, (20)

∫
ηe+1

ηe
wi[(1 + ε(1 − φ)2.5)h′′ − 1

3
φ1(h + R)h + 2

3
φ1( f + g)h′

− ε(1 − φ)2.5δ(h′)2h′′ + φ2M
2βe

β2e + (1 + βeβ i)2 R
−
φ2M

2(1 + βeβ i)
β2e + (1 + βeβ i)2 h]dη = 0, (21)

∫
ηe+1

ηe
wi[(1 + ε(1 − φ)2.5)R′′ − 1

3
φ1(h + R)R +

2

3
φ1( f + g)R′

− ε(1 − φ)2.5δ(R′)2R′′ − φ2M
2βe

β2e + (1 + βeβ i)2 h
−
φ2M

2(1 + βeβ i)
β2e + (1 + βeβ i)2 h]dη = 0, (22)

∫
ηe+1

ηe
wi[(1 + 4

3Nr
)θ′′ + 2kf

3knf
φ3Pr( f + g)θ′ − 2kf

3knf
φ3Pr(h + R)θ

+
kf

knf

φ2(1 − φ)2.5 M2EcPr

β2e + (1 + βeβ i)2 (h2 + R
2)]dη = 0, (23)

where f ′ = h, g′ = R and wi(i = 1, 2) are the weight functions.
Weak formulations of the said residual are given by

∫
ηe+1

ηe
{− (1 + ε(1 − φ)2.5)w′ih′ − 1

3
φ1(h + R)wih +

2

3
φ1( f + g)wih

′

+ ε(1 − φ)2.5δ(h′)2w′ih′ + M2βe
β2e+(1+βeβ i)

2 wiφ2R −
M2(1+βeβ i)

β2e+(1+βeβ i)
2 wiφ2h}dη

= −∫
Γ

((1 + ε(1 − φ)2.5)wih
′

− ε(1 − φ)2.5δ(h′)2wih
′)dΓ,

∫
ηe+1

ηe
{− (1 + ε(1 − φ)2.5)wiR

′

−
1

3
φ1(h + R)wiR +

2

3
φ1( f + g)wiR

′

+ ε(1 − φ)2.5δ(R′)2w′iR′ − M2βe
β2e+(1+βeβ i)

2 wiφ2h −
M2(1+βeβ i)

β2e+(1+βeβ i)
2 wiφ2h}dη

= −∫
Γ

((1 + ε(1 − φ)2.5)wiR
′

− ε(1 − φ)2.5δ(R′)2wiR
′)dΓ,

∫
ηe+1

ηe
[− (1 + 4

3Nr
)w′iθ′ + 2kf

3knf
φ3Pr( f + g)wiθ

′

−
2kf

3knf
φ3 Pr(h + R)wiθ +

kf
knf

φ2

(1−φ)2.5
M2EcPr

β2e+(1+βeβ i)
2 wi(h2 + R

2)]dη = −∫
Γ

(1 + 4
3Nr
)wiθ

′

dΓ,

where Γ is the boundary of the computational domain [ηe,ηe+1].
Approximation of field variables: In FEM, the field variables are approximated over the typical line element [ηe,ηe+1]. The approxima-

tion of field variables is given by32–35

f =
2

∑
j=1

f jψ j, g =
2

∑
j=1

gjψ j,h =
2

∑
j=1

hjψ j,R =
2

∑
j=1

Rjψ j and θ =
2

∑
j=1

θjψ j. (24)

The unknown nodal values f j, gj,hj,Rj and θj are to be computed. Using the above nodal approximations of the field variables in weak
formulation of weighted residuals, one obtains the model of finite element of the form

[Ke{π}][πe] = {Qe} + {Fe},
where [Ke{π}] is the stiffness matrix for typical element, πe are unknown nodal values, {Fe} is the boundary vector and {Qe} is the source
vector. The stiffness and the boundary elements are given by
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K
11
ij = ∫

ηe+1

ηe
ψ i

dψ j

dη
dη,K13

ij = −∫
ηe+1

ηe
ψ iψ jdη,K

12
ij = 0,K

14
ij = 0,K

15
ij = 0,

K
22
ij = ∫

ηe+1

ηe
ψ i

dψ j

dη
dη,K24

ij = −∫
ηe+1

ηe
ψ iψ jdη,K

21
ij = 0,K

23
ij = 0,K

25
ij = 0,

K
33
ij = ∫

ηe+1

ηe
[− (1 + ε(1 − φ)2.5)dψ i

dη

dψ j

dη
+
ε(1 − φ)2.5δ

3

dh

dη

dh

dη

dψ i

dη

dψ j

dη
+
2

3
φ1( f + g)ψ i

dψ j

dη
−
1

3
φ1(h + R)ψ iψ j −

M2(1 + βeβ i)
β2e + (1 + βeβ i)2 φ2ψ iψ j]dη,

K
34
ij = ∫

ηe+1

ηe

M2βe

β2e + (1 + βeβ i)2 φ2ψ iψ jdη,K
31
ij = 0,K

32
ij = 0,K

35
ij = 0,

K
44
ij = ∫

ηe+1

ηe
[− (1 + ε(1 − φ)2.5)dψ i

dη

dψ j

dη
+
ε(1 − φ)2.5δ

3

dR

dη

dR

dη

dψ i

dη

dψ j

dη
+
2

3
φ1( f + g)ψ i

dψ j

dη
−
1

3
φ1(h+R)ψ iψ j −

M2(1 + βeβ i)
β2e + (1 + βeβ i)2 φ2ψ iψ j]dη,

K
43
ij = −∫

ηe+1

ηe

M2βe

β2e + (1 + βeβ i)2 φ2ψ iψ jdη,K
41
ij = 0,K

42
ij = 0,K

45
ij = 0,K

51
ij = 0,K

52
ij = 0,K

53
ij = 0,

K
53
ij = ∫

ηe+1

ηe

kf

knf

φ2(1 − φ)2.5 M2EcPr

β2e + (1 + βeβ i)2 hψ iψ jdη,K
54
ij = ∫

ηe+1

ηe

kf

knf

φ2(1 − φ)2.5 M2EcPr

β2e + (1 + βeβ i)2 Rψ iψ jdη,

K
55
ij = ∫

ηe+1

ηe
[− (1 + 4

3Nr
)dψ i

dη

dψ j

dη
+ φ3

2kf

3knf
Pr( f + g)ψ i

dψ j

dη
− φ3

2kf

3knf
Pr(h + R)ψ iψ j]dη,

and

b
5
ij = ∫

Γ

−(1 + 4

3Nr
)ψ i

dψ j

dη
dΓ, b

4
ij = ∫

Γ

[ ε(1 − φ)2.5δ
3

ψ i(dψ j

dη
)3

− (1 + ε(1 − φ)2.5)ψ i
dψ j

dη
]dΓ,

b
3
ij = ∫

Γ

[ε(1 − φ)2.5δ
3

ψ i(dψ j

dη
)3 − (1 + ε(1 − φ)2.5)ψ i

dψ j

dη
]dΓ,

b
2
ij = 0, b

1
ij = 0,

respectively, where f , g,h, and R are defined by

f =
2

∑
j=1

f jψ j, g =
2

∑
j=1

g jψ j,h =
2

∑
j=1

hjψ j,R =
2

∑
j=1

Rjψ j,

The nodal values f i, gi,hi and Rj are computed at the previous iter-
ation. Detailed implementation of FEM to nonlinear fluid flow
problems can be seen in References 32–35.

Assembly process: Elemental connectivity is used for the
assembly process. By applying the above approximation to each ele-
ment, one get the system of nonlinear algebraic equations of the
form [K{π}]{π} = {F}, (25)

where [K{π}] is global coefficient matrix whose element also
involve unknown nodal values. An iterative procedure is adopt to
solve the system of equations. This system is linearized by Picard’s
linearization method (see Refs. 32–35).

Programming: The system of algebraic equations is solved
numerically by using Guass-Siedal approach. For computational
procedure described above is implemented by using homemade cod
programming. The developed computer code works with tolerance
10−5. Computational experiments are done to search infinity for η.
The asymptotic boundary conditions are satisfied when η is equal

12, i.e. [0,12] is the computational domain for the problem under
consideration.

Error analysis and convergence: The error is formulated by
using

error = ∣πr − πr−1∣
and criteria for the convergence is set as

max∣πri − πr−1i ∣ < ξ
where ξ is the tolerance and it is taken equal to 10−5 in this analysis.

Grid independent study: Grid independent study is required
when domain is discretize into small elements. The computed solu-
tions are worthless if it depend on grid size. Therefore grid indepen-
dent analysis is carried and obtain numerical values verses number
of elements are tabulated in Table II. This table shows that f ′ and θ

TABLE II. Grid independent study for different number of grid sizes when
M = 0.9,Pr = 3, δ = 0.05, ε = 0.05,βe = 1.2,β i = 0.6,Ec = 2,Nr = 2
and λ = 0.5 and φ = 0.05.

No. of elements f ′(η) θ(η)
10 -1.012508 0.869378
50 -1.169453 0.997194
100 -1.174303 0.999152
150 -1.175077 0.999288
200 -1.175328 0.999302
250 -1.175439 0.999299
300 -1.175497 0.999295
350 -1.175533 0.999293
400 -1.175555 0.999289
450 -1.175570 0.999287
500 -1.175579 0.999283
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are independent of grid size if the domain [0-12] is discretized into
500 elements.

IV. GRAPHICAL RESULTS AND THEIR DISCUSSION

Radivative heat transfer in three dimensional flow of partially
ionized Erying-Powell liquid exposed to magnetic field is discussed
and obtained results are displayed in Figures 2–36.

Behavior of velocity field: The behavior of different nano-
particles on the x− component of velocity is shown by Fig. 2. This
Fig. reflects that velocity f ′ for φ = 0.15, 0.2 (Al2O3− nanoparti-
cles, TiO2− nanopatticles) has highest values of velocity as com-
pare to φ = 0.05, 0.10 (Cu− nanoparticles, Ag− nanopatticles). This
shows that momentum for φ = 0.15, 0.2 diffuses (in x− direc-
tion) faster than the diffusion of momentum (in x− direction) for
to φ = 0.05, 0.10. The influence of Hall force on the diffusion of
wall momentum into Eyring-Powell liquid is displayed by Fig. 3.

FIG. 2. Behavior of f ′(η) for various values of φ when ε = 0.05, δ = 0.05,
M = 0.9,Ec = 2,Pr = 3,Nr = 2, βe = 1.2 and β i = 0.6.

FIG. 3. Behavior of f ′(η) for various values of βe on Cu-nano particles when
ε = 0.5, δ = 0.8,M = 1.2,Ec = 2,Pr = 3,Nr = 2 and β i = 0.5.

FIG. 4. Behavior of f ′(η) for various values of βe on Ag-nano particles when
ε = 0.5, δ = 0.8,M = 1.2,Ec = 2,Pr = 3,Nr = 2 and β i = 0.5.

FIG. 5. Behavior of f ′(η) for various values of βe on Al2O3- nano particles when
ε = 0.5, δ = 0.8,M = 0.8,Ec = 2,Pr = 3,Nr = 2 and β i = 0.5.

FIG. 6. Behavior of f ′(η) for various values of βe on TiO2-nano particles when
ε = 0.5, δ = 0.8,M = 0.8,Ec = 2,Pr = 3,Nr = 2 and β i = 0.5.
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FIG. 7. Behavior of f ′(η) for various values of ε on Cu-nano particles when δ =
0.8, βe = 1.2,M = 0.8,Ec = 3,Pr = 3,Nr = 2 and β i = 0.5.

FIG. 8. Behavior of f ′(η) for various values of ε on Ag-nano particles when βe =
1.2, δ = 0.8,M = 0.8,Ec = 3,Pr = 3,Nr = 2 and β i = 0.5.

FIG. 9. Behavior of f ′(η) for various values of ε on Al2O3-nano particles when
βe = 1.2, δ = 0.8,M = 0.8,Ec = 3,Pr = 3,Nr = 2 and β i = 0.5.

FIG. 10. Behavior of f ′(η) for various values of ε on TiO2-nano particles when
βe = 1.2, δ = 0.8,M = 0.8,Ec = 3,Pr = 3,Nr = 2 and β i = 0.5.

FIG. 11. Behavior of g′(η) for various values of φ when ε = 0.05, δ = 0.05,
M = 0.9,Ec = 2,Pr = 3,Nr = 2, βe = 1.2 and β i = 0.6.

FIG. 12. Behavior of g′(η) for various values of βe on Cu-nanofluid when ε = 0.5,
δ = 0.8,M = 1.2,Ec = 2,Pr = 3,Nr = 2 and β i = 0.6.
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This fig. depicts that velocity of Eyring-Powell liquid is in x− direc-
tion is increasedmonotonically whenHall parameter βe is increased.
Similar trend is noted for Ag−,Al2O3− and TiO2− nanofluid and
shown in Figs. 4–6.

The behavior of velocity under the variation of Eyring-Powell
fluid parameter ε for the case of Cu−,Ag−,Al2O3− and TiO2−

nanoparticles respectively shown by Figs. 7–10. It is found from
these Figs. That the velocity of the fluid over a stretching sheet
increases when Eyring-Powell fluid parameter ε is increased. It can
also be concluded that the velocity of Newtonian liquid (ε = 0) is less
than the velocity of Eyring-Powell liquid (ε ≠ 0). Amicroscopic view
in Fig. 11 explains about the y− component of velocity profile in the
presence of Cu−,Ag−,Al2O3− and TiO2− nano-particles. In the case
of TiO2 nano-particles y− component of velocity is higher rather
than the other nano-particles. It is perceived that boundary layer
thickness of momentum is stronger when the Cu− nano-particles
are mixed into Erying-Powell plasma. Figs. 12–19 depict the effect
of βe, β i and ε on the y− component of velocity profile respectively.

FIG. 13. Behavior of g′(η) for various values of βe on Ag-nanofluid when ε = 0.5,
δ = 0.8,M = 1.2,Ec = 2,Pr = 3,Nr = 2 and β i = 0.6.

FIG. 14. Behavior of g′(η) for various values of βe on Al2O3-nano particles when
ε = 0.5, δ = 0.8,M = 0.8,Ec = 2,Pr = 3,Nr = 2 and β i = 0.6.

FIG. 15. Behavior of g′(η) for various values of βe on TiO2-nano particles when
ε = 0.5, δ = 0.8,M = 0.8,Ec = 2,Pr = 3,Nr = 2 and β i = 0.5.

FIG. 16. Behavior of g′(η) for various values of β i on Cu-nano particles when
ε = 0.5, δ = 0.8,M = 1.5,Ec = 3,Pr = 3,Nr = 2 and βe = 1.8.

FIG. 17. Behavior of g′(η) for various values of β i on Ag-nano particles when
ε = 0.5, δ = 0.8,M = 1.2,Ec = 3,Pr = 3,Nr = 2 and βe = 1.5.
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FIG. 18. Behavior of g′(η) for various values of β i on Al2O3-nano particles when
ε = 0.5, δ = 0.8,M = 1.2,Ec = 3,Pr = 3,Nr = 2 and βe = 1.8.

FIG. 19. Behavior of g′(η) for various values of β i on TiO2-nano particles when
ε = 0.5, δ = 0.8,M = 1.2,Ec = 3,Pr = 3,Nr = 2 and βe = 1.8.

FIG. 20. Effect of φ on temperature θ(η) when ε = 0.05, δ = 0.05, M = 0.9,
Ec = 2,Pr = 3,Nr = 2, βe = 1.2 and β i = 0.6.

FIG. 21. Effect of βe on temperature θ(η) in Cu-nanofluid when ε = 0.5, δ = 0.8,
M = 1.2,Ec = 2,Pr = 3,Nr = 2 and β i = 0.5.

FIG. 22. Effect of βe on temperature θ(η) in Ag- nanofluid when ε = 0.5, δ = 0.8,
M = 1.2,Ec = 2,Pr = 3,Nr = 2 and β i = 0.5.

FIG. 23. Effect of βe on temperature θ(η) in Al2O3- nanofluid when ε = 0.5,
δ = 0.8,M = 0.8,Ec = 2,Pr = 3,Nr = 2 and β i = 0.5.
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FIG. 24. Effect of βe on temperature θ(η) in TiO2- nanofluid when ε = 0.5,
δ = 0.8,M = 0.8,Ec = 2,Pr = 3,Nr = 2 and β i = 0.5.

FIG. 25. Effect of β i on temperature θ(η) in Cu- nanofluid when ε = 0.5, δ = 0.8,
M = 1.5,Ec = 3,Pr = 3,Nr = 2 and βe = 1.8.

FIG. 26. Effect of β i on temperature θ(η) in Ag- nanofluid when ε = 0.5, δ = 0.8,
M = 1.2,Ec = 3,Pr = 3,Nr = 2 and βe = 1.5.

FIG. 27. Effect of β i on temperature θ(η) in Al2O3- nanofluid when ε = 0.5,
δ = 0.8,M = 1.2,Ec = 3,Pr = 3,Nr = 2 and βe = 1.8.

FIG. 28. Effect of β i on temperature θ(η) in TiO2- nanofluid when ε = 0.5,
δ = 0.8,M = 1.2,Ec = 3,Pr = 3,Nr = 2 and βe = 1.8.

FIG. 29. Effect of ε on temperature θ(η) on cu- nanofluid when δ = 0.8, βe = 1.2,
M = 0.8,Ec = 3,Pr = 3,Nr = 2 and β i = 0.5.
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FIG. 30. Effect of ε on temperature θ(η) on Ag- nanofluid when δ = 0.8, βe = 1.2,
M = 0.8,Ec = 3,Pr = 3,Nr = 2 and β i = 0.5.

FIG. 31. Effect of ε on temperature θ(η) on Al2O3- nanofluid when δ = 0.8,
βe = 1.2,M = 0.8,Ec = 3,Pr = 3,Nr = 2 and β i = 0.5.

FIG. 32. Effect of ε on temperature θ(η) on TiO2- nanofluid when δ = 0.8,
βe = 1.2,M = 0.8,Ec = 3,Pr = 3,Nr = 2 and β i = 0.5.

FIG. 33. Effect of β i on temperature θ(η) in Cu- nanofluid δ = 0.05,M = 0.9,
ε = 0.05, Ec = 2,Pr = 3, βe = 1.2 and β i = 0.6.

FIG. 34. Effect of β i on temperature θ(η) in Ag− nanofluid δ = 0.05,M = 0.9,
ε = 0.05, Ec = 2,Pr = 3, βe = 1.2 and β i = 0.6.

Here it is noticed that the results of these parameters on y− compo-
nent of velocity are same as discussed in x− component of velocity
in Figs. 3–10. The expression β2e + (1 + βeβ i)2 appear in the denom-
inator of the components (x and y) of the Lorentz force. Therefore
an increase in Hall and ion slip parameters (βe and β i) reduces the

FIG. 35. Effect of Nr on temperature θ(η) in Al2O3− nanofluid δ = 0.05,
M = 0.9, ε = 0.05, Ec = 2,Pr = 3, βe = 1.2 and β i = 0.6.
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FIG. 36. Effect of Nr on temperature θ(η) in TiO2− nanofluid δ = 0.05,
M = 0.9, ε = 0.05, Ec = 2,Pr = 3, βe = 1.2 and β i = 0.6.

effect of Lorentz force. Consequently, flow in both x and y directions
accelerates and Hall and ion slip currents are increased (see Figs 3–6
and 12–19).

Thermal changes in flow regime: The normalized tempera-
ture field for different nanoparticles Cu (φ = 0.05), Ag (φ = 0.10),
Al2O3 (φ = 0.15) and TiO2 (φ = 0.20) is displayed in Fig. 20.
It is observed from Fig. 20 that temperature in mixture of TiO2-
nanoparticles and Eyring-Powell fluid is the highest as compare to
the temperature of mixture of rest of Cu−,Ag−,Al2O3− nanopar-
ticles and Eyring-Powell liquid. Therefore, it is concluded that the
wall temperature in mixture of Eyring-Poewll liquid and TiO2-
nanoparticles diffuses faster than that in mixture of Eyring-Poewll
liquid andCu−,Ag−,Al2O3− nanoparticles. It is also noted that ther-
mal boundary layer thickness in TiO2- nanofluid is the highest as
compare to the thermal boundary layer thickness associated with
Cu−,Ag− and Al2O3− nano-fluids see (Fig. 20). The temperature
curves for nanoloquids verses variation of Hall parameter and ion
slip parameter (βe and β i) are represented by Figs. 21–28. Figs. 21
and 25 depict that temperature of Cu− nanofluid decreases when
Hall parameter and ion slip parameter (βe and β i) are increased.
This is due to the fact that βe and β i are appear in the denomi-
nator of Joule heating term and as denominator is increased, the
coefficient of Joule heating term decreases. Consequently, the Joule
heating effect is reduced and amount of heat due to Ohmic dissi-
pation can be reduced by using partially ionized liquid exposed to
magnetic field. The similar observation about the behavior of Hall
parameter and ion slip parameter (βe and β i) on the temperature of
Ag−,Al2O3− and TiO2− nanoparticles are noted (see Figs. 22–28).
A significant behavior of fluid parameter ε on the temperature of
nanofluid is noted and displayed by Fig. 29. It is found from Fig. 29
that the temperature of nanofluid decreases when fluid parameter
ε is increased. It can also be noted from Fig. 29 that the temper-
ature of Newtonian liquid (ε = 0) is greater than the temperature
of Eyring-Powell liquid (ε ≠ 0). Thermal boundary layer thickness
of Newtonian liquid is greater than that for Eyring-Powell liquid.
A similar trend is noted for Ag−,Al2O3− and TiO2− nanofluid (see
Figs. 30–32).

TABLE III. Behavior of skin friction coefficient (Re)1/2Cf x for four types
of nano-fluids when M = 0.9, Pr = 3, δ = 0.05, ε = 0.05,βe = 1.2,
β i = 0.6,Ec = 2, Nr = 2 and λ = 0.5.

(Re)1/2Cf x = −((1 − φ)−2.5(1 + ε)f ′′(0) − ε
3
δ( f ′′(0))3)

Cu Ag Al2O3 TiO2

βe

1.2 1.17346190 1.40766961 1.41984174 1.63798918
1.5 1.14614909 1.38878503 1.37921335 1.59075360
1.8 1.12684617 1.37575534 1.35016980 1.55697631
2.2 1.10904546 1.36401457 1.32307237 1.52545139

β i

0.6 1.17346190 1.40766961 1.41984174 1.63798918
0.9 1.17374307 1.40952373 1.41872983 1.63663682
1.2 1.17044683 1.40820722 1.41288551 1.62980434
1.5 1.16563251 1.40545927 1.40512175 1.62075299

ε

0 1.14831935 1.37353659 1.37943514 1.58688173
0.10 1.19859793 1.44157158 1.45964991 1.68828362
0.20 1.24864058 1.50856135 1.53752020 1.78653799
0.30 1.29813646 1.57433450 1.61315343 1.88184655

The effect of thermal radiation on the temperature of nanofluid
(for the case of Cu−,Ag−,Al2O3− and TiO2 nano-particles) is shown
by figures 33–36. The temperature of Erying-Powell fluid decreases
when the intensity of thermal radiations is increased. This is due to
the fact that fluid emits electromagnetic waves which carry the heat
energy and consequently the fluid cools down. This observation is
noted for all nanoparticles (Cu−,Ag−,Al2O3− and TiO2).

Normalized velocity and temperature gradients: Table III
shows the comportment of x− component of skin friction coef-
ficient Cf x

for numerous values of ε, β i and βe It is perceived
that x−component of skin friction coefficient of all nano-particles

TABLE IV. Behavior of skin friction coefficient (Re)1/2Cgy for four types of
nano-fluids when M = 0.9, Pr = 3, δ = 0.05, ε = 0.05βe = 1.2,β i = 0.6,
Ec = 2,Nr = 2 and λ = 0.5.

(Re)1/2Cgy = −((1 + ε)(1 − φ)−2.5g′′(0) − ε
3
δ(g′′(0))3)

Cu Ag Al2O3 TiO2

βe

1.2 0.58297000 0.54507544 0.76927523 0.88881743
1.5 0.55988474 0.52360289 0.73863056 0.85337596
1.8 0.53747771 0.50277711 0.70888964 0.81898338
2.2 0.50997175 0.47721269 0.67238565 0.77677404

β i

0.6 0.58297000 0.54507544 0.76927523 0.88881743
0.9 0.52192383 0.48846353 0.68825572 0.79513824
1.2 0.47345426 0.44352892 0.62394188 0.72078313
1.5 0.43441966 0.40735170 0.57215610 0.66091721

ε

0 0.56286900 0.52510235 0.74024370 0.85401682
0.10 0.60265958 0.56466572 0.79783096 0.92311714
0.20 0.64088827 0.60276500 0.85358488 0.99027561
0.30 0.67770660 0.63952424 0.90763696 1.05561035
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TABLE V. Behavior of Nusselt number when M = 0.9,Pr = 3, δ = 0.05,
ε = 0.05,βe = 1.2, β i = 0.6, Ec = 2,Nr = 2 and λ = 0.5.

(Re)1/2Nu = − knf
kf
θ′(0)

Cu Ag Al2O3 TiO2

βe

1.2 1.15602803 1.27075126 1.16570769 1.11596542
1.5 1.23542760 1.33081842 1.28151732 1.25009862
1.8 1.29139372 1.37274165 1.36352918 1.34501174
2.2 1.34316196 1.41116768 1.43972242 1.43311070

β i

0.6 1.15602803 1.27075126 1.16570769 1.11596542
0.9 1.23309580 1.32818150 1.27918844 1.24758155
1.2 1.28861208 1.36948864 1.36094333 1.34229274
1.5 1.32940289 1.39977259 1.42105290 1.41185330

ε

0 1.15222713 1.26534971 1.16321473 1.11420763
0.10 1.15948126 1.27579706 1.16798358 1.11756440
0.20 1.16548820 1.28494253 1.17195617 1.12033266
0.30 1.17049053 1.29299647 1.17525888 1.12259585

Cu,Ag,Al2O3 and TiO2 is a decreasing function of βe and β i whilst it
is mounting function of ε. The similar fashion is noted for y− com-
ponent of skin friction coefficient Cgy (see Table IV). It is noted from
the both tables the nano-particles of TiO2 has the higher skin friction
coefficient rather than Ag and Al2O3 nano-particles. Comportment
of Nusselt number is displayed in Table V. It shows that the Nus-
selt number is mounting function of βe, β i and parameter ε for
Cu,Ag,Al2O3 and TiO2 nano-particles. It is perceived that the mag-
nitude of Nusselt number in the case of Cu nano-particles achieves
higher value than other nano-particles (Ag,Al2O3 and TiO2).

V. CONCLUSION

The enhancement of heat transfer in Erying-Powell liquid in
the presences of thermal radiation and Hall and ion-slip currents
is studied via Galerkin finite element method (GFEM). Notable
observations are listed below:

1. The distortion of magnetic lines by the fluid flow is respon-
sible for Hall force which causes hindrance to the flow. This
hindrance is reduced by the slip force. Therefore, a notewor-
thy increase in the velocity field is observed when the slip
parameter is increased.

2. The momentum boundary layer thickness is greatly influenced
by the dispersion of nanoparticles in the Erying-Powell liquid.
The highest momentum boundary layer thickness is noted for
the case of TiO2− nano-particles.

3. Stresses at the surface of elastic wall have an increasing ten-
dency when ion slip parameter is increased. Again force due to
slip current is opposite to the force due to the applied mag-
netics field. Therefore, force per unit area decreases. Conse-
quently, stresses have decreasing trend.

4. A significant rise in thermal conductivity due to the disper-
sion of four types of nanoparticles (Cu,Ag,Al2O3 and TiO2)
is noted. It is also observed that the dispersion of TiO2 nano-
particles in Eyring-Powell liquid is responsible for the highest
heat transfer as compare to the dispersion of Cu,Ag and

Al2O3− nanoparticles in Eyring Powell liquids. Therefore, the
dispersion of TiO2 nanoparticles in Erying-Powell liquid is
recommended if the maximum enhancement of heat trans-
fer is required. The mixture of Erying-Powell liquid and Cu-
nanoparticles is a good coolant in comparison ofAg,Al2O3 and
TiO2 nano particles.

5. The temperature of Erying-Powell liquid is an increasing func-
tion of the fluid parameter. The temperature of partially ion-
ized Erying-Powell liquid is greater than the temperature of
partially ionized Newtonian liquid. Thermal boundary layer
thickness is in Erying-Powell liquid is greater than that in New-
tonian liquid. However, Hall and ion slip currents in the New-
tonian liquid play a significant role in reducing the temperature
of the fluid. Consequently, thermal boundary layer thickness is
decreased.

6. Wall heat flux increases when slip parameter is increased.
However, it decreases when the fluid parameters is increased.
Heat flux has for the case of TiO2 nanoparticles has greater
values than the values of Cu,Ag and Al2O3− nanoparticles
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