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High-resolution direct numerical simulations are conducted to analyse turbulent states
of the flow of an electrically conducting fluid in a duct of square cross-section with
electrically insulating walls and imposed transverse magnetic field. The Reynolds
number of the flow is 105 and the Hartmann number varies from 0 to 400. It is
found that there is a broad range of Hartmann numbers in which the flow is neither
laminar nor fully turbulent, but has laminar core, Hartmann boundary layers and
turbulent zones near the walls parallel to the magnetic field. Analysis of turbulent
fluctuations shows that each zone consists of two layers: the boundary layer near
the wall characterized by small-scale turbulence and the outer layer dominated by
large-scale vortical structures strongly elongated in the direction of the magnetic field.
We also find a peculiar scaling of the mean velocity, according to which the reciprocal
von Kármán coefficient grows nearly linearly with the distance to the wall.
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1. Introduction

The duct flow of an electrically conducting fluid with an imposed constant magnetic
field is nearly optimal for analysing fundamental properties of turbulence in liquid
metal magnetohydrodynamics (MHD) as well as implications for many technological
processes, such as, for example, continuous casting of steel or self-cooled liquid metal
blankets for nuclear fusion reactors. While geometrically simple, the flow presents the
key effects: turbulence with mean shear and the Hartmann and Shercliff boundary
layers at the walls, respectively, perpendicular and parallel to the magnetic field. The
history of studies of the MHD duct flow is as old as liquid metal MHD itself
(Hartmann 1937; Hartmann & Lazarus 1937). Nevertheless, as discussed further in this
section, little is known about the flow behaviour at high Reynolds (Re) and Hartmann
(Ha) numbers. Two reasons can be named. One is the difficulty of flow visualization in
the experiments, which have to be conducted with non-transparent metals. Another is
that, until recently, high values of Re and Ha were inaccessible in computations. This
paper presents the results of our attempt to fill the gap via high-resolution numerical
simulations.
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Experimental studies of the MHD duct flow have been conducted for a straight duct
by Hartmann & Lazarus (1937), Brouillette & Lykoudis (1967), Reed & Lykoudis
(1978) and others (see Branover 1978 for a review) and for a toroidal duct, in which
the flow is driven via interaction between radial current and axial magnetic field
(Baylis 1971; Moresco & Alboussière 2004). The reported flow properties included the
profiles of mean velocity and fluctuation intensity measured by potential or Pitot
probes and the integral friction coefficient. A certain understanding of the flow
transformation under the impact of a magnetic field has been achieved, although
the imprecision of local velocity measurements and impossibility of detailed three-
dimensional visualization remain serious problems. The integral friction coefficient, on
the contrary, can be measured reliably and accurately. Traditionally, the change in
its behaviour that occurs when a certain curve on the Ha–Re plane is crossed has
been identified as an indication of transition to turbulence or laminarization of the
flow. It should be stressed, however, that, since the friction in an MHD duct flow
at large Ha is dominated by the Hartmann boundary layers, the observed change of
the friction coefficient behaviour indicates laminarization or transition in these layers,
rather than in the entire flow. This is confirmed by the remarkably good agreement
between the transition threshold determined experimentally in a toroidal duct of square
cross-section (Moresco & Alboussière 2004) and the threshold found for the Hartmann
boundary layers in the numerical study of Krasnov et al. (2004).

Another approach to the analysis of MHD flows with an imposed strong constant
magnetic field is based on the quasi-two-dimensional approximation that assumes that
the flow outside the Hartmann layers is nearly two-dimensional, i.e. nearly uniform
along the magnetic field lines (Sommeria & Moreau 1982; Potherat, Sommeria
& Moreau 2000; Potherat 2007). The analysis is valid at values of the magnetic
interaction parameter N ≡ Ha2/Re much larger than one. It is possible that, in
some systems, turbulence exists when N ≫ 1 (Potherat & Schweitzer 2011), but no
examples of such turbulence in MHD channel or duct flows have been reported. In our
study, N is either smaller than or about one, so the quasi-two-dimensional behaviour is
not expected and the approach is not applicable.

Numerical analysis of turbulence via direct numerical simulation (DNS) and large
eddy simulation (LES) has been quite extensively applied to MHD flows in channels
(see e.g. Lee & Choi 2001; Kobayashi 2006; Satake et al. 2006; Boeck, Krasnov
& Zienicke 2007; Sarris, Kassinos & Carati 2007; Krasnov et al. 2008) and ducts
(see e.g. Burr et al. 2000; Kobayashi 2008; Chaudhary, Vanka & Thomas 2010;
Shatrov & Gerbeth 2010). Fully turbulent as well as transitional flow regimes were
investigated. Significant results were obtained concerning the effect of the magnetic
field on structure and transport properties of the flow as well as the suitability of
numerical models such as LES closures for MHD turbulence. Some of these results,
which have direct relevance to our findings, are discussed further in the text.

Of particular interest for our study are the numerical simulations at high Reynolds
numbers, i.e. for the case in which a magnetic field of significant strength has to be
applied to laminarize the flow. For channel flow with a wall-normal magnetic field,
the highest values of Re were achieved in the DNS of Satake et al. (2006) and
Boeck et al. (2007), where the Reynolds number based on the channel half-width and
mean velocity was, correspondingly, 22 909 and 21 600. In either study, the Hartmann
number was not very large, so the flow remained fully turbulent. Turbulent channel
flow with a spanwise magnetic field at Re = 13 333 was analysed in the DNS of
Krasnov et al. (2008). The study most relevant to our work is the LES of Kobayashi
(2008). A flow in a square duct with electrically insulating walls and a transverse
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magnetic field was computed at Re = 14 500 and 2650 and Ha up to 72.5. As will be

discussed further in this paper, the results are in agreement with our results.

Until recently, two factors limited the Reynolds and Hartmann numbers in DNS

studies. One was the lack of computational power sufficient for operating on the

fine grids needed to resolve the small-scale turbulent structure and the thin Hartmann

boundary layers. Another was the absence of robust computational schemes capable

of dealing with nonlinear unsteady high-Ha flows. In the case of LES, Re could be

somewhat increased, but the resolution requirements for the Hartmann layers remained

essentially the same as in DNS, since no reliably accurate wall function models were

known for the case of turbulent flows.

In the work reported in this paper, the obstacle of insufficient computational power

is overcome via massively parallel computations. As a numerical method, we apply the

finite difference scheme described by Krasnov, Zikanov & Boeck (2011a). The scheme

is based on the conservative discretization of Morinishi et al. (1998) extended to the

case of MHD flows by Ni et al. (2007). We have found that the scheme is capable of

accurate and numerically stable simulations of flows at high Hartmann number.

Several recent computational studies of MHD duct flow have direct relevance to

the work presented in this paper. We have already mentioned the LES of Kobayashi

(2008). Krasnov et al. (2010) studied the optimal modes (those with the strongest

transient growth) of the laminar MHD duct flow and found that these modes resided

within the sidewall layers of the duct. Since the growth and breakdown of these modes

form the likely mechanism of transition to turbulence, the results suggest that the

transition first occurs within the sidewall layers, while the flow remains laminar in the

core of the duct and in the Hartmann layers. The suggestion has been confirmed in the

recent DNS at moderate Re and Ha (Krasnov et al. 2011b). It has been found that, at a

given Re, the flow state does not change directly from fully turbulent to fully laminar

or vice versa when the Hartmann number is, respectively, increased or decreased.

There is a range of Ha in which the flow has laminar core and Hartmann layers and

two or one turbulent sidewall layers. Flow regimes with a laminar core and turbulence

in the sidewall layers were also detected at Re = 14 500 and Ha = 72.5 in the LES of

Kobayashi (2008). A qualitatively similar result was found by Zhao & Zikanov (2012).

In a toroidal duct flow with a strong axial magnetic field, the sidewall layer near the

outer cylindrical wall becomes turbulent at much smaller Reynolds numbers than the

rest of the flow.

In this paper we report the results of high-resolution DNS of MHD duct flow at

high Reynolds and Hartmann numbers. The main distinction from the previous studies

of the subject is, apart from much higher Re and Ha, the detailed analysis of the

internal structure of velocity and electric current fields, which is conducted for Ha

ranging from zero to the values at which the flow becomes fully laminar.

2. Physical model and numerical method

We consider a flow of an electrically conducting, incompressible, Newtonian fluid,

e.g. a liquid metal, in a duct of square cross-section and side 2d schematically shown

in figure 1. The flow is driven by an applied streamwise pressure gradient, which is

adjusted in the numerical model so that the mean velocity Uq remains constant. A

uniform constant magnetic field Bez is imposed so that the magnetic field lines are

parallel to one set of walls (the sidewalls, or Shercliff walls) and perpendicular to

the other walls (the Hartmann walls). The walls of the duct are assumed to be solid,
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FIGURE 1. Flow geometry. The mid-plane cross-sections along (Ha–Ha) and across (Sh–Sh)
magnetic field, extending, respectively, between the opposite Hartmann and Shercliff walls,
will be used for flow analysis and visualization.

smooth, and perfectly electrically insulating. At the inlet and exit of the computational

domain, periodic boundary conditions are imposed.

We assume that the magnetic Reynolds number Rem ≡ Uqd/η and the magnetic

Prandtl number Prm ≡ ν/η are both much smaller than one. Here, ν is the kinematic

viscosity and η = (σµ0)
−1 is the magnetic diffusivity of the fluid, σ and µ0 being its

electric conductivity and the magnetic permeability of vacuum. The assumption means

that the fluctuations of the magnetic field caused by the velocity fluctuations are much

smaller than the imposed magnetic field and have negligibly small adjustment time.

The quasi-static approximation of the MHD equations (see e.g. Davidson 2001) can

therefore be applied.

A comment is in order regarding the validity of the quasi-static approximation in our

case. At the hydrodynamic Reynolds number

Re ≡
Uqd

ν
(2.1)

equal to 105, the magnetic Reynolds number Rem = RePrm is not very small for real

liquid metals. At typical operating temperatures, Prm ranges approximately from 10−7

(mercury) to 10−5 (liquid sodium). As an example, the eutectic alloy GaInSt often

used in liquid metal experiments has Prm ≈ 1.4 × 10−6. We consider the quasi-static

approximation valid in our case because, as shown in the numerical analysis of MHD

turbulence by Knaepen, Kassinos & Carati (2004), deviations from the quasi-static

behaviour are not significant when Rem is smaller, but not much smaller than one, or

even about one.

The problem is formulated as non-dimensional using the following typical scales:

the duct half-width d for length, the mean velocity Uq for velocity, ρU2
q for pressure,

the imposed field B for magnetic field, UqBd for electric potential, and σUqB for
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electric current density. The governing equations and boundary conditions are:

∂u

∂t
+ (u ·∇)u = −∇p +

1

Re
∇2u + N (j × eB), (2.2)

j = −∇φ + (u × eB), (2.3)

∇ ·u = 0, (2.4)

∇2φ = ∇ · (u × eB), (2.5)

u = 0 at z = ±1 and y = ±1, (2.6)

∂φ

∂n
= 0 at z = ±1 and y = ±1, (2.7)

where u = (u, v, w), p, j and φ are, correspondingly, velocity, pressure, current density
and electric potential.

The non-dimensional parameters of the problem are the hydrodynamic Reynolds
number (2.1) and the Hartmann number

Ha ≡ Bd

(

σ

ρν

)1/2

(2.8)

or the magnetic interaction parameter

N ≡
Ha2

Re
=

σB2d

ρU
. (2.9)

The numerical model is based on the explicit projection-type finite difference
scheme of second order described as the scheme B in Krasnov et al. (2011a). The
scheme uses the collocated grid arrangement and follows the principles developed
by Morinishi et al. (1998) and extended to liquid metal MHD by Ni et al. (2007).
It is nearly fully conservative in the sense that the numerical solution conserves
mass, momentum and electric charge exactly, while the kinetic energy has a purely
dissipative error of third order. The error can be tolerated due to its higher order, and
even considered beneficial since its dissipative character means prevention of artificial
growth of kinetic energy, and therefore preservation of numerical stability. The Poisson
equations for pressure and electric potential are solved using the Fourier expansion in
the streamwise x-direction and a direct cyclic reduction solver (Adams, Swarztrauber
& Sweet 1999) in the y–z plane.

Versions of the model have been applied in our recent simulations of transitional
high-Ha flows in toroidal channel and duct (Zhao, Zikanov & Krasnov 2011; Zhao
& Zikanov 2012) and of MHD turbulent channel flows with scalar transport (Dey &
Zikanov 2012).

The computational grid is structured and Cartesian. It is uniform in the streamwise
direction and non-uniform in the duct cross-section, with the grid step reduced toward
the walls of the duct. After experimenting with various grid stretchings, we have found
that the optimal choice in our case is the distribution (the same along the y- and
z-axes)

z(i) = βzcheb(i) + (1 − β)zunif (i), (2.10)

where i is the grid point index. The grid blends the Chebyshev Gauss–Lobatto
stretching formula

zcheb(ζ ) = sin
(

π

2
ζ

)

, (2.11)
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Re Ha Lx × Ly × Lz Nx × Ny × Nz Grid factor
β

100 000 0, 100, 200, 300, 350,
400

4π× 2 × 2 2048×769×769 0.96

TABLE 1. Parameters of numerical simulations.

and the uniform distribution

zunif (ζ ) = ζ, (2.12)

where −1 6 ζ 6 1 is the transformed coordinate in which the grid step is constant.
The blending factor β is taken to be 0.96 in our computations.

One advantage of the grid is that it avoids excessively large steps in the middle
of the domain typical, for example, for the tanh-type stretchings. At the same time,
the uniform grid component, while changing the grid only slightly in comparison
with the pure Chebyshev Gauss–Lobatto distribution, results in a substantial increase
of the numerical stability limit on the time integration step 1t. We have also found
that the uniform grid component eliminates the problem of ill-conditioned matrices for
the discrete Laplace operator in the Poisson equations for pressure and potential. The
problem may appear as deterioration of precision in the case of strong clustering and
large grid size in either the y- or z-directions.

The parameters of the computational model are summarized in table 1. The single
value Re = 105 is used. This value can be compared, for example, with the simulations
of the hydrodynamic channel flow by Hoyas & Jiménez (2006), where Re was
∼50 000 in our units. To our knowledge, no simulations at such a high Re have been
performed for the duct. The Hartmann number varies from zero (the hydrodynamic
case) to Ha = 400, at which the flow becomes fully laminar.

The computational domain has the streamwise dimension of 4π. This would be
considered small in computations with moderate Re, but appears sufficient in our case
due to the typically small size of turbulent structures expected at such a high Re and
confirmed by our flow visualizations discussed in § 3.

The computational grid used to generate the results presented in this paper has 2048
uniformly distributed grid points in the streamwise direction and 769 points distributed
according to (2.10) in each of the transverse directions. The time integration step is
1t = 10−3.

The following information provides the basis for assessing the quality of the grid.
The streamwise grid step is 1x ≈ 0.0061. In the wall-normal cross-section of the duct,
the smallest grid step (nearest to the wall) is 1ymin = 1zmin ≈ 1.12 × 10−4, while the
largest step (in the middle of the duct) is 1ymax = 1zmax ≈ 4.03 × 10−3. We can also
evaluate the wall-normal resolution of boundary layers by measuring the grid steps in
the wall units. We use the wall-friction Reynolds number

ReShτ =
∂U(y, z = 0)

∂y

∣

∣

∣

∣

y=±1

, ReHaτ =
∂U(y = 0, z)

∂z

∣

∣

∣

∣

z=±1

(2.13)

calculated at the mid-plane sections Sh–Sh and Ha–Ha of the duct (see figure 1) using
the time- and streamwise-averaged mean velocity U(y, z) to derive the wall coordinates

y+ = ReShτ y, z+ = ReHaτ z. (2.14)
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The value of the smallest wall-normal grid step in the z+ units varies from 0.477 at
Ha = 0 to 0.726 at Ha = 400. The respective variation in the y+ units is from 0.477 at
Ha = 0 to 0.173 at Ha = 400 (see table 2 for the values of ReHaτ and ReShτ at various
Ha).

A preliminary verification of the model was conducted by reproducing the results of
Galletti & Bottaro (2004) for the transient growth in the hydrodynamic duct and the
results of Boeck et al. (2007) and Krasnov et al. (2008) for turbulent MHD flows in
channels. We have also conducted a grid sensitivity study. At Re = 105, we applied
grids of stretching (2.10) and various sizes to compute the wall friction Reynolds
numbers (2.13). In the flow with Ha = 0, the values of ReShτ and ReHaτ computed on our
final grid differ from the values computed on the cruder grid with 1024 × 3852 points
by less than 3 %. This shows reasonably good accuracy, but indicates that the DNS
results reported in this paper for Ha = 0 are based on a slightly under-resolved model
in which the numerical dissipation of the finite difference scheme provides a weak but
not entirely negligible sink of kinetic energy.

The accuracy is higher for the flows with magnetic field. The difference in Reτ

between the results obtained on the final and cruder grids decreases below 1 % at
Ha = 300 and Ha = 350. As a further argument for the accuracy of the numerical
model, we mention that the grid provides sufficient resolution of the Hartmann
boundary layers. In the computations at Ha = 400 when the Hartmann layers are
the thinnest, 26 grid points are located within the zone of the mean velocity increasing
from zero to 95 % of its centreline value.

The numerical experiments are conducted in a standard fashion. At each new value
of Ha, the flow is computed until it reaches a fully developed state, as indicated by
statistically steady values of ReShτ , ReHaτ , and other integral characteristics. After that,
the flow is computed for the period not shorter than 28 convective time units, during
which the time-averaged quantities are accumulated.

The large size of the computational grid and the large number of the needed time
steps require a number of numerical operations quite big even by modern standards.
To make this possible, we employ massive parallelization based on the hybrid
approach with MPI (distributed memory) and OpenMP (shared memory) programming
interfaces. The computations were conducted on the Juropa supercomputer at the
Jülich Research Centre. Each production run has utilized 3072 computational cores.
The total computational cost is ∼740 thousands CPU-hours.

3. Results

The main integral characteristics of the computed, fully developed flows are listed
in table 2. The characteristics for the laminar flows computed at the same Ha

and Re via artificial suppression of uy and uz and imposing flow uniformity in the
streamwise direction are shown for comparison. The mechanisms and features of the
flow determining the characteristics will be discussed further in this section.

3.1. Flow structure at different strengths of the magnetic field

We begin the discussion by presenting the general structure of the flow. Figure 2
shows the instantaneous distributions of the streamwise velocity u in fully developed
flows at four different values of Ha. We see that already at Ha = 100, the flow
develops a sizeable laminar core. The zones near the Shercliff and Hartmann walls
are turbulent. At Ha = 200, turbulence remains in wide areas near the Shercliff walls.
Outside these areas, the core and the flow near the Hartmann walls appear laminar.
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FIGURE 2. Instantaneous distributions of streamwise velocity at x = Lx/2. The contour
levels are the same in all plots ranging from 0 (blue) to 1.25 (red). Note that the levels
corresponding to blue are virtually invisible due to the very sharp velocity gradients at the
walls: (a) Ha = 0; (b) Ha = 100; (c) Ha = 200; (d) Ha = 300.

The analysis of the quantitative characteristics of turbulent fluctuations, such as the
kinetic energy and the r.m.s. fluctuation profiles presented in § 3.3, confirm that the
laminarization is almost (but, as we demonstrate further, not entirely) complete.

Further increase of the Hartmann number leads to an increase of the laminar zone.
As illustrated in figure 2, the turbulent layers become thinner at Ha = 300. Their
thickness further decreases at Ha = 350 (not shown). At Ha = 400, the entire flow
becomes laminar.

A qualitatively similar flow transformation at increasing Ha was found in the LES
of Kobayashi (2008) performed at Re = 14 500. Visualization of coherent structures
showed turbulence localized in the Shercliff layers at Ha = 43.5 and 58, while the flow
became fully laminar at Ha equal to 65.25.

The instantaneous distributions of electric currents obtained in our computations in
the y–z plane at x = Lx/2 are shown in figure 3. The fields correspond to the velocity
fields at Ha = 100 and Ha = 300 in figure 2. One can see that in the laminar flow
zone, where the velocity is almost entirely in the streamwise component, the current
loops close in the y–z plane. At Ha = 300 they have a structure qualitatively similar to
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FIGURE 3. Instantaneous distributions of electric current density in the plane x = Lx/2.
Contours of the streamwise component jx and projection of streamlines passing through 50
uniformly distributed points on the line y = 0 (the cross-section Ha–Ha in figure 1) are shown:
(a) Ha = 100; (b) Ha = 300.

the structure in a laminar duct flow (see e.g. Müller & Bühler 2001). Currents flowing
through the Hartmann boundary layers close within the core flow. In the turbulent
zones near the Shercliff walls, where all three velocity components have non-negligible
amplitude, jx is significant and the current loops are essentially three-dimensional.

3.2. Mean flow

The mean flow velocity is obtained as U = 〈u〉, where 〈· · ·〉 stands for averaging of
a fully developed flow over time and the streamwise coordinate x. The results for the
streamwise component U(y, z) are shown in figure 4 in the form of two-dimensional
distributions and in figure 5 using profiles in the mid-plane cross-sections Ha–Ha and
Sh–Sh (see figure 1).

An evident effect of the magnetic field is the suppression of flow variation along
the magnetic field lines. The mean flow becomes nearly z-independent outside the
boundary layers near the Hartmann walls.

The effect of the magnetic field on the mean velocity distribution along the y-axis
is less trivial. We see that when the Hartmann number increases from 0 to 100 and
then to 200, the centreline velocity increases (see figures 4 and 5 and table 2). The
distribution takes a form similar to the chisel-like form found earlier in the simulations
of channel flow with a spanwise magnetic field (Krasnov et al. 2008). This has been
attributed to reduction of the wall-normal turbulent transport of momentum caused by
the suppression of turbulence by the magnetic field. Our results presented in § 3.3
support this explanation.

The tendency changes as the Hartmann number increases further. We see that the
centreline velocity becomes smaller at Ha = 300 and 350. This can be explained by
development of a wide laminar core, where the flow begins to resemble the flat core of
a laminar duct flow at high Ha.

In order to analyse the boundary layer structure, we have measured the 95 %
thicknesses δHa and δSh of the Hartmann and Shercliff layers. The thicknesses are
defined as the distances taken along the corresponding mid-plane cross-sections from
the wall to the point where the mean velocity first exceeds 0.95Ucl. The results
are shown in table 2 together with the thicknesses obtained for the laminar flows
at the same Re and Ha. In the laminar flows, the thicknesses follow very closely
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Ha = 300.

the theoretical scaling ∼dHa−1 for the Hartmann layers and ∼dHa−1/2 for the
Shercliff layers (see e.g. Müller & Bühler 2001). In the real flow, the thicknesses
are approximately the same when the corresponding layers near the walls are laminar.
This is observed for the Hartmann layers at Ha > 200 and for the Shercliff layers in
the fully laminar flow at Ha = 400. If, however, the near-wall layers are turbulent, the
measured thicknesses are much larger, so that no actual boundary layer behaviour
can be claimed. Furthermore, the thickness of the sidewall layer changes non-
monotonically with Ha. We can conclude that the classical picture of thin Hartmann
and Shercliff boundary layers is inapplicable in the case of a not fully laminarized
duct flow.

The transverse velocity components V(y, z) and W(y, z) of the mean flow are shown
in figure 6. In the hydrodynamic case, we see a structure similar to those observed
at smaller Re, for example, by Gavrilakis (1992) and Galletti & Bottaro (2004). The
secondary structures form a slightly distorted pattern of eight counter-rotating vortices
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in the corners of the duct. In the presence of the magnetic field, the secondary flow
becomes weaker and loses its diagonal symmetry. At strong magnetic fields, when the
flow develops a laminar core extending from one Hartmann wall to another, the mean
secondary flow is limited to the turbulent zones near the Shercliff walls.

At this point we mention the results of computations by Uhlmann et al. (2007)
obtained for a marginally turbulent hydrodynamic duct flow. They show that the
structure of the secondary mean velocity field is sensitive to the time of averaging. The
fully symmetric eight-vortex pattern similar to the pattern at Ha = 0 in our figure 6 is
obtained by Uhlmann et al. (2007) as a definitive solution after averaging over 1700
convective time units. Other patterns, for example with four vortices, are found at
smaller averaging time.

The much higher Reynolds number in our case implies smaller length and time
scales of velocity fluctuations and so a smaller required averaging time. Nevertheless,
the averaging time of 30 convective units used to produce the plots in figure 6 can
be considered as a possible source of uncertainty. Another indication of somewhat
insufficient averaging time is the imperfect symmetry of the vortex pattern at Ha = 0.
The uncertainty diminishes in flows with high Ha, since the magnetic field removes
the diagonal symmetry and thus reduces the number of geometrically possible patterns.

The distributions of the time- and streamwise-averaged electric current density are
shown in figure 7. Since the current is a linear function of velocity, the distributions
present the currents that would be generated by the mean flow shown in figures 4
and 6. In the laminar core, the current loops are two-dimensional, lying in the y–z

plane. At Ha = 300, when the laminar core extends to the Hartmann walls, we see
the classical feature of the entire core current closing within the Hartmann layers. In
the turbulent zones, the vortices of the mean flow generate currents in the streamwise
direction.

3.3. Turbulent fluctuations

The velocity fluctuation fields are computed as u′ = u − 〈u〉, where 〈u〉 is the mean
flow velocity. In order to quantify their transformation under the influence of the
magnetic field, we have computed the root-mean-square values shown in figure 8.
The figure also presents the Reynolds stress components τ12 = 〈u′v′〉 and τ13 = 〈u′w′〉

measuring the turbulent transport of momentum in the direction normal to, respectively,
Shercliff and Hartmann walls.
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The first and rather obvious observation is that the imposed magnetic field
reduces the average intensity of velocity fluctuations. Furthermore, the profiles are
in agreement with the apparent flow structure discussed in § 3.1 (see figure 2). Near
the Hartmann walls, strong peaks of the fluctuation amplitude typical for turbulent
boundary layers are seen at Ha = 100, but not at higher Ha. Interestingly, the

maximum magnitudes of 〈u′2〉
1/2

, 〈v′2〉
1/2

and 〈w′2〉
1/2

are a little larger at Ha = 100
than in the hydrodynamic flow. This can be attributed to the effect of turbulence
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production by stronger mean shear, which overcomes the effect of direct magnetic
suppression. This situation is unique among those explored in our study. No turbulence
intensities exceeding the intensity at Ha = 0 are observed in the Shercliff or Hartmann
layers at Ha > 100. Kobayashi (2008) also does not report such behaviour in the LES
at Re = 14 500.

Near the sidewalls, the turbulent boundary layers exist at all Ha up to 350, which
is clearly supported by the r.m.s. fluctuation profiles in figure 8(b). The intensity of
turbulence and the extent of the zone of turbulent activity are smaller at larger Ha.

In the plots of τ12 we see the effect of reduction of the wall-normal turbulent
momentum transport due to the suppression of fluctuations by the magnetic field.
This appears to be the reason for the reduced slope of the mean velocity profile in
the cross-section Sh–Sh illustrated in figure 5. The same effect has been detected by
Krasnov et al. (2008) in a channel with spanwise magnetic field. For τ13, an interesting
feature is that at its peak near the Hartmann wall, the transport rate is higher in the
MHD flow at Ha = 100 than it is in the flow with Ha = 0. This is evidently related to

the similar behaviour of 〈u′2〉
1/2

and 〈w′2〉
1/2

and has the same reason.
A non-trivial feature of the r.m.s. fluctuation profiles in figure 8, which could not

be predicted on the basis of the flow visualization in § 3.1, is that the fluctuation
amplitude does not decay to zero in the presumably laminar core zone forming
at high Hartmann numbers. The amplitude remains finite, although more than an
order of magnitude smaller than the amplitude in the turbulent layers. Analysing the
fluctuation amplitudes within this zone, we also find that they are much higher for
the components u′ and v′ than for the component w′ parallel to the magnetic field.
Another feature is that the amplitudes remain nearly constant across the core in the
direction of the magnetic field (the cross-section Ha–Ha). They also do not decrease
much with the Hartmann number. In fact, they are somewhat higher for Ha = 350 than
for Ha = 300. This phenomenon is not reported by Kobayashi (2008), although the
profiles of turbulence intensity at Re = 14 500, Ha = 58 appear to indicate weak but
finite intensity within the core.

In order to further illustrate the distribution of velocity fluctuations in the flow,
including the presence of fluctuations in the core zone, figure 9 shows the turbulent
kinetic energy

E = 〈u′2〉 + 〈v′2〉 + 〈w′2〉 (3.1)

in the flows with Ha = 200 and 300. We see that the energy is, indeed, many orders of
magnitude larger than could be created by the round-off error of computer arithmetics.
We also see, not unexpectedly, that the energy is virtually uniform along the magnetic
field lines.

We conclude that the presumably laminar zone developing between the turbulent
Shercliff layers at high Ha should, in fact, be called ‘quasi-laminar’, since it contains
weak but non-zero fluctuating velocity structures. The structures are dominated by the
velocity components orthogonal to the magnetic field and probably extending from one
Hartmann wall to another. The nature of these structures will be further investigated in
§ 3.6.

3.4. Integral characteristics

The integral characteristics of the flow are presented in table 2 and figures 10 and
11. We show the centreline velocity Ucl of the mean flow, the wall friction Reynolds
numbers (2.13) computed using the wall-normal derivatives of the mean velocity along
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the mid-plane cross-sections, and the skin friction coefficients at the Hartmann and
Shercliff walls:
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)

dz.

(3.2)

The friction coefficients can also be expressed as 2τw/(ρU2
q), where τw are the average

shear stresses measured at the respective walls.
For the purpose of comparison, all the characteristics are presented for the actual

computed flow and for the purely laminar flow obtained at the same parameters.
The change of the centreline velocity with Ha is a manifestation of the variation of

the mean flow profile discussed in § 3.2, which in turn is a result of the modification
of the flow turbulence by the magnetic field. We see in figure 10 that Ucl changes
non-monotonically with Ha. It is significantly larger than in the laminar flow for all
the MHD flow states with turbulence.

Predictably, in the flows with magnetic field, the values of the wall-friction Reynolds
numbers and friction coefficients are different at the Hartmann and Shercliff walls.
The Hartmann friction is significantly larger. Interestingly, CHa

f and ReHaτ change non-
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FIGURE 11. (Colour online) Integral friction coefficients (3.2): (a) coefficient of total friction
Cf = CSh

f + CHa
f ; (b) coefficients for Shercliff and Hartmann walls. For comparison, data for

laminar flows and results of the experiments of Murgatroyd (1953) are shown.

monotonically with Ha, increasing from Ha = 0 to Ha = 100, then decreasing to
Ha = 200, and increasing again at higher Ha, gradually approaching the laminar flow
values. These changes are caused by the combined effects of development of a steeper
mean velocity profile within the Hartmann layer and removal of turbulent shear stress
by the magnetic field.

For the Shercliff wall coefficients CSh
f and ReShτ , we see a gradual decrease with

Ha, which can be explained by gradual suppression of turbulence and hence turbulent
momentum transport in the Shercliff layers.

The integral friction coefficient averaged over all four walls of the duct is the flow
parameter that can be most reliably measured in experiments. The only experimental
data available at the same Reynolds and Hartmann numbers as in our computations are
those by Murgatroyd (1953). The correspondence is incomplete, since a duct of cross-
section 5:1 was used in the experiment. Therefore we should only expect agreement at
high Ha, when the wall friction is dominated by the Hartmann boundary layers. One
can see in figure 11 that such agreement is indeed achieved in our simulations. At
smaller Hartmann numbers, the relative contribution of friction at the Shercliff walls
is significant, and the difference in the duct geometry becomes important, causing a
higher friction coefficient in the duct of cross-section 1:1, as illustrated by figure 11.
We could attempt to estimate the friction in the 5:1 duct by a linear combination of
the Hartmann and Shercliff frictions computed in the 1:1 duct, but the result would
inevitably be inaccurate to the extent of defeating the object of comparison with the
experiment.

We have also compared with the LES results of Kobayashi (2008) obtained at
Re = 14 500 and Ha = 0, 43.5 and 58. DNS was performed on a grid with 512 × 1932

points, all the other features of the numerical model being the same as in our main
computations. The calculated values of Cf were in good agreement with those found
by Kobayashi (2008).

3.5. Scaling of mean velocity

We will now explore whether the mean velocity of the MHD duct flow follows
logarithmic or some other scaling law near the walls. Two relevant previous results
can be mentioned. A log-layer followed by a plateau extending across the core flow is
typical for the Hartmann channel flow (see e.g. Boeck et al. 2007). For channel flow
with moderately strong spanwise magnetic field, Krasnov et al. (2008) have found that
the log-layer behaviour disappears with growing Ha.
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The profiles of the mean streamwise velocity along the lines Ha–Ha and Sh–Sh are
plotted in wall units in figure 12. The wall units are based on the friction Reynolds
numbers (2.13) computed in the respective cross-sections. The coordinates y+ and z+

are defined by (2.14). The mean velocity is scaled as

U+ = U/uSh
τ or U+ = U/uHa

τ , (3.3)

where the wall friction velocities are computed as

uSh
τ = ReShτ /Re and uHa

τ = ReHaτ /Re. (3.4)

Near the Hartmann walls, we see apparently log-layer behaviour at Ha = 0 and
Ha = 100 and profiles typical of a laminar Hartmann layer at higher Ha. Near the
Shercliff wall, increasing deviation from log-layer behaviour appears as Ha increases.

In order to achieve more reliable conclusions, we have calculated the reciprocal von
Kármán coefficients as compensated gradients of mean velocity

γ = z+ ∂U+(y = 0, z+)

∂z+
and γ = y+ ∂U+(y+, z = 0)

∂y+
. (3.5)

A sizeable range of y+ or z+, in which γ is nearly constant, is an indication of
log-layer behaviour.

The results are presented in figure 13. We see that the turbulent layer near the
Hartmann wall at Ha = 100 has a log-layer, which is about as wide as in the flow
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FIGURE 14. (Colour online) Compensated mean velocity gradient for the turbulent channel
flow under spanwise magnetic field. (a) The results of Krasnov et al. (2008) obtained in DNS
at Re = 13 333; (b) the results of LES at Re = 26 666.

at Ha = 0. The results for the Shercliff layer demonstrate a different and rather striking
tendency. No extended regions of approximately constant γ can be found. Instead, γ

can be approximated by a linear function

γ = γ0 + γ1y+. (3.6)

The approximation is quite accurate in wide ranges of y+ at Ha = 100, 200 and 300.
The results for Ha = 350 are inconclusive, primarily because of the relatively small
thickness of the turbulent layer.

Upon re-examination of the DNS and LES results of Krasnov et al. (2008) for
channel flow in a spanwise magnetic field, we have also found linear portions of
the profiles of compensated velocity gradients at Re = 6666 and 13 333. This is
illustrated for Re = 13 333 in figure 14. Also included in the figure and showing
the same behaviour are the results of the dynamic Smagorinsky LES of the channel
flow at Re = 26 666 conducted especially for this paper. The LES were performed
using the same pseudo-spectral solver as in Krasnov et al. (2008). The computational
domain was 2π×π×2 and the grid size was 2563 collocated points. The time-averaged
data were obtained in calculations of fully developed flows for 100 convective time
units.

The reciprocal von Kármán coefficient in the form of (3.6) can be interpreted as
an indicator of combined log-layer (the constant γ0) and linear behaviour of the mean
velocity. The log-layer behaviour dominates at small y+, more precisely at y+ ≪ γ0/γ1.
In the limit y+ ≫ γ0/γ1, substituting (3.6) into the second equation of (3.5) we find

∂U+(y+, z = 0)

∂y+
≈ γ1. (3.7)

It has to be noted that, according to our computations shown in figures 13 and 14, γ0

is two or three orders of magnitude larger than γ1, so the large y+ limit (3.7) is never
fully attained.

The possibility of a linear velocity profile is not a complete novelty. It has been
detected previously, in particular in the flow in a rotating channel (Johnston, Haleen
& Lezius 1972). In a similar way, we can apply simple arguments to derive a scaling
model for the slope γ1. The starting point is the assumption that the slope is inversely
proportional to the relevant time scale, which in our case is the Joule dissipation time
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τJ ≡ ρ/σB2:

∂U(y, z = 0)

∂y
∼

1

τJ

. (3.8)

Replacing U and y by velocity and distance in wall units, we find

u2
τ

ν

∂U+

∂y+
∼

1

τJ

, (3.9)

which leads to

γ1 =
∂U+

∂y+
∼

ν2

u2
τ

σB2

ρν
=

Ha2

(ReShτ )
2
. (3.10)

An attempt to verify the scaling is presented in figure 15, where γ1 is shown as a

function of Ha2/ (ReShτ )
2
. The data for the channel flow with spanwise magnetic field

are also included. We see that the scaling is fairly accurately followed by the channel
flow, as indicated by the straight dotted line through the origin. It is a visual fit to
the relation (3.10). The coefficient computed for the duct flow follows the trend at
Ha = 100 and 200, but appears to deviate from it at Ha = 300 (the rightmost point
in figure 15). One possible explanation for the deviation is the small thickness of the
layer with log-lin behaviour at this Ha (see figure 13), which can lead to inaccurate
estimate of γ1. Another reason is that the steepening of the duct basic profile is
observed in a limited range of Ha, contrary to its channel counterpart. Therefore, the
associated log-layer behaviour is also not expected to be clearly pronounced, as the
flow starts to converge to the laminar flat profile of the MHD duct. For our simulations
this limit can be identified as Ha ≈ 200.

3.6. Turbulence at high Ha

In this section, we apply additional visualizations and diagnostics in order to analyse
the internal structure of the turbulent flows. The main attention is given to cases of a
strong magnetic field.

Figure 16 shows the instantaneous distribution of isosurfaces of the intermediate
eigenvalue λ2 of the tensor SikSkj + ΩikΩkj, where Sij ≡ (ui,j + uj,i)/2 and Ωij ≡

(ui,j − uj,i)/2. As shown by Jeong & Hussein (1995), connected regions of negative
λ2 are indicators of coherent vortical structures.

We see that each turbulent layer near a Shercliff wall can be divided into two zones
with rather different natures of turbulent fluctuations. Closer to the wall, turbulence
is dominated by small-scale structures without apparent anisotropy. Farther from the
wall, in a sub-layer sandwiched between the zone of small-scale turbulence and the
quasi-laminar core, the flow is dominated by large vortices. The vortices are strongly
distorted but can still be identified as columnar vortices with axes approximately
aligned with the magnetic field. Such an anisotropic but not purely two-dimensional
state is familiar from the studies of homogeneous MHD turbulence, for example those
of Zikanov & Thess (1998) and Vorobev et al. (2005), where it has been found to
occur at N ∼ 1. As discussed by Thess & Zikanov (2007), the main source of the
distortion is likely to be the elliptic instability.

A good measure of the structural anisotropy of the flow (the directional disparity of
the typical length scales) is the set of coefficients

Gk
ij ≡

〈(∂uk/∂xi)
2〉(1 + δki)

〈(∂uk/∂xj)
2〉(1 + δkj)

, i 6= j. (3.11)
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FIGURE 15. Verification of scaling (3.10). The slope γ1 of the linear portion of the
compensated mean velocity profiles is shown for the duct flow and for the channel flow

with spanwise magnetic field. The results for the duct flow are plotted versus Ha2/ (ReShτ )
2
.
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FIGURE 16. Instantaneous distribution of coherent vortices shown as isosurfaces −0.01λrms
2

(yellow) and −0.005λrms
2 (cyan) of the second eigenvalue λ2 of tensor SikSkj + ΩikΩkj. Also

shown are the streamlines of velocity fluctuations in the mid-plane Sh–Sh.

Each coefficient should have a value of about one in a flow with isotropic distribution
of the respective velocity component. The coefficients should be zero in purely two-
dimensional flows uniform in the direction of the coordinate xi. The coefficients have
been applied to MHD turbulence before, for example by Zikanov & Thess (1998),
Kassinos, Knaepen & Wray (2006) and Krasnov et al. (2008). In the case of MHD
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FIGURE 17. Visualizations of flow streamlines in the entire domain (planar linear integral
convolution curves in the mid-plane Sh–Sh) computed on the basis of instantaneous velocity
fields. Profiles of the anisotropy coefficient G3

32 (see (3.12)) in the mid-plane Sh–Sh are also
shown. The colour gradient corresponds to the spanwise velocity v and changes within the
limits of ±vrms for each set of parameters.

duct flow, there are two sources for the structural anisotropy. It can be caused by the
mean shear, which leads to elongation of flow structures in the streamwise direction,
and by the magnetic field, which elongates the structures along the field lines.

We select a single coefficient, namely

G3
32 ≡

2〈(∂w/∂z)2〉

〈(∂w/∂y)2〉
, (3.12)

for the presentation. The choice is determined by our primary interest in the effect of
the magnetic field. Since the coefficient excludes x-derivatives and is based on the w

velocity components, it appears to be a particularly good measure of the elongation of
flow structures in the z-direction shown in figure 16.

The results are presented in figure 17, which pairs the profiles of G3
32 along the

cross-section Sh–Sh with the projections of streamlines on the same cross-section.
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Instantaneous velocity distributions are used to generate the streamlines and to evaluate
G3

32. This means that 〈· · ·〉 in (3.12) now stands for the averaging in x. The streamlines
are drawn using the method of planar linear integral convolution (Cabral & Leedom
1993), which allows one to use all velocity points and to avoid uncertainty related to
the choice of seeding points in the traditional streamline generation techniques.

The results are especially interesting in cases of a strong magnetic field (Ha = 300
and 350). The anisotropy coefficient has local peaks not far from Shercliff walls,
where the flow has small-scale three-dimensional turbulent fluctuations. The peak
values of ∼0.4 indicate that the fluctuations are substantially anisotropic, although
far from two-dimensional. Farther from the walls, where the dominating structures
are the large-scale distorted columnar vortices, the anisotropy coefficient decreases to
approximately 0.1 and then increases to 0.4 or 0.5. Correlating the behaviour with
the visible flow structure, we conclude that the local minima of G3

32 correspond to the
strongly anisotropic axes of the large-scale vortices. The inner peaks correspond to the
areas where the vortices are strongly deformed by the elliptic instability.

Figure 17 provides a good illustration of the nature of velocity fluctuations in the
quasi-laminar core. The strength of the flow is illustrated by colouring the streamlines
by the local amplitude of the velocity component v. We see that the streamlines extend
through the entire core from one turbulent Shercliff wall layer to the other. The flow is
weak and tends to form large zones of transport in the same direction. We also see that
the anisotropy coefficient decreases but does not become zero, indicating a state with
velocity nearly – but not entirely – uniform along the magnetic field lines. The flow
within the core can be described as a weak nearly two-dimensional motion controlled
by the columnar vortices on both sides.

4. Conclusion

In conclusion, we summarize the main results of the work just presented. It appears
that, when the Reynolds number is not small, states with a laminar core and turbulent
Shercliff layers must be considered as typical, rather than exceptional, states of the
MHD duct flow. In our study, the range of Ha corresponding to such states is broader
than the range of fully turbulent regimes. The range decreases at small Re, as indicated
by our DNS at Re = 5000 (Krasnov et al. 2011b) and LES at Re = 14 500 (Kobayashi
2008).

The Shercliff layer turbulence has peculiar characteristics, including the separation
into sub-layers of small-scale and large-scale structures and the log-linear scaling. We
also find that the apparently laminar core should be properly called quasi-laminar,
since weak but non-negligible velocity fluctuations are created in it by the circulation
induced by the large-scale Shercliff layer vortices.

In a broad sense, the applicability of our results is not limited to the flow in a duct
of square cross-section. The mechanisms defining the flow structure are the same in
the high-Re flows in ducts of other cross-sections and pipes and thus similar structure
must be expected.

In the future, it would be interesting to conduct a detailed analysis of the statistical
properties of turbulent fluctuations, such as energy spectra and velocity two-point
correlations and structure functions. Such a study would further help us to understand
the flow transformation under the combined action of mean shear and magnetic field
and complement the studies of properties of homogeneous turbulence, such as Zikanov
& Thess (1998), Kassinos et al. (2006), Burattini, Zikanov & Knaepen (2010) and
Favier et al. (2011).
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