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Introduction. This paper is concerned with the study of systems described by
second-order differential equations derived from a Hamiltonian with periodieally varying
coefficierts

dz _ oH(u. ) dy _ _3H(r,y, 1)

(N

dt dy odt oz

Among the problems which lead to the study of equations such as (1) can be found,
for example, the study of the oscillations of a pendulum under parametric excitation [1],
that of the oscillations of a satellite under the effect of periodic variations in its moments
of inertia [2] and that of the motion of particles in alternating gradient accelerators [3].
In conservative dynamic systems with two degrees of freedom, studying movements
around a periodic solution can amount to studying solutions of (1) around the origin [4].
Since Poincaré [3] it has been known that a point mapping linking the state (x, y) of
the system between two instants separated by a time interval can be associated with (1).
Secking this transformation J can be justified by the fact that is it particularly suited
to numerical treatment. The search for periodic solutions (sub-harmonic) amounts to
determining the fixed points of the transformations 3", n integer (positive) which in
numerical terms is the solution of a two-variable, nonlinear system of algebraic equations.
In actual practice, it is not possible, except for a few particular cases, to express the
relationships which define 3 by means of classical functional analysis. Thus, it is the aim
of this paper to present a method which makes it possible to determine a transformation
3* enabling one to carry out an approximate (in a sense which will be defined later and
justified on the examples given) analysis of the solutions of the differential system (1).
This method can be situated mid-way between that of direct simulation by numerical
integration, which poses the problem of sensitivity to discretization, particularly crucial
in the case of conservative equations, and the many analytical methods such as those
based on successive approximations to determine asymptotic expansions of the solution
when the nonlinear terms depend on a small parameter [1].

Before outlining the plan of the paper, it is necessary to give the essential charac-
teristies of the transformation 3 associated with (1). If the Hamiltonian H is analytical
with respect to the variables z, 7, then the associated transformation 3 is itself analytical
and one-to-one and in addition it is area-preserving; the Jacobian, the determinant of the
partial derivatives matrix, is 1.

* Received December 11, 1974.
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In the first part, an algorithm is given enabling one to determine the coefficients
(exact) of the first terms of the series expansion of the expressions defining the mapping 3.
This is based on an idea found in Birkhoff [6] and also in Lewis [7]. The idea consists of
associating a differential system with the transformation. This idea has been used
numerically here in order to establish the transformation 3. , obtained from 3 by trunca-
tion.

It is possible to get some information about the nature and stability of the trivial
solution (0, 0) of (1) from this transformation 3, ; however, it fails to give an adequate
idea of the behavior of solutions in a wide neighbourhood of the origin for the following
fundamental reason: the truncation 3. is not generally area-preserving. As a result, the
singular center type points for 3 can be transformed into stable or unstable focuses
by 3¢ . In the second part of the paper, it is shown how to construet, from 3. a pointwise
transformation 3* which:

1. has the same first terms as 3. (therefore as J);

2. is area-preserving (J = 1).

Finally, the third part is devoted to numerical tests carried out on three different
examples in order to judge the quality of such a simulation by comparing the results
provided by 3* with those given by J (in a case where it is possible to determine it),
by numerical integration, and also with those obtained analytically (asymptotic expan-
sions method).

1. Determination of 3, (First terms of the series expansions of J)
1.1. Point mapping and jormal differential system. Consider the following pointwise
transformation 7':

2= pz 4 2 emz™y”
Y=oy + 2 Y™y mtn>2 @)

where the cocfficients p, ¢mn , ¥mn are real, or complex (in this case ¢,., is complex con-
jugate of @p.).

We have limited ourselves to the case where the linear part of the pointwise trans-
formation could be diagonalized; however, this is not essential and the following calcula-
tions can be adapted to any case [8]. In [6] Birkhoff showed that the series which define
T, i.e.

k R n
T = p'z + z:(Pmn(k)x"y
m,n

Yo=Y+ 2 ¥mPz™y, m4n>2 3)

satisfy the following differential equations:
Uz, y);  dy/dk = Viae , y.)

Y
[aT] )

with the initial conditions 2, = z, ¥, = y for k = 0. Inversely, the series z. , ¥, are
determined uniquely by these equations (5) and initial conditions.

dx,/dk

0,

Uz, y) = [67];,-0; Viz, y)
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Strictly speaking, this association is made from a purely formal point of view. In
fact, whatever transformation of the type (2) is taken, the association can only be made
by means of certain hypotheses regarding the coefficients p (and p™'). This problem was
solved by Lewis [7]. Finally, it is not essential that the series U(z, ), V{(x, ¥) should
converge; this would imply that the system was completely integrable (first analytic
integral), which is clearly not the general case [9]. This problem is not of course crucial
here, where it is in a sense the opposite step which is being taken: differential system —
transformation.

It is now clear how to determine the coefficients of the pointwise transformation 3.
First, suppose that the periodic coefficients which appear in the differential equation (1)
are piecewise constant. On each constant level, (1) has therefore the form of an autono-
mous system. By identifying it with the system (4) the coefficients ¢,., , ... are obtained
directly in terms of those of the differential equation (1). Some details of the calculations
are given below. While quite simple, they are relatively tedious; now that this work has
been done once and for all, however, it can be easily programmed on a numerical com-
puter.

1.2. Calculation of the coefficients ¢mn , ¥mn . The series (3) which provide the dif-
ferential system (4) is determined by writing T**' = T(T"%); i.e.,

pk+]x + E¢m"(k+l)xmyn = p, + Z(Pmnzkmyk"
yk+1 = P_(k”)y + Z ¢mn(k+l)xmy" = p_lyk + Z wmnl‘kmykn' (5)

Putting (3) into (5) and identifying in (5) the x and y terms of the same order, we
obtain a system of linear difference equations which make it possible to determine the
coefficients ¢,.," and ¥..."*’. For the sake of brevity, the discussion will be limited to
the coefficients 50" and ¢s*’. The results of the calculations for the other terms are
given in Appendix I.

T+

(k+1) (k)
0 o= PP T+ PZkS"zo (6)
k (k k., (k) 3k
P30 = PiPao(k) + 2¢2opk¢2o » + eup ¥ + P es
with initial conditions
(1
Pmn = Pmn
we get:
2k 3
k) _ P__— P
P20 = p2 — P20
@)

(k) ( 2‘P202 e 2 ) P3k - Pk
(2T . z 1 2
p—p P —p

P30 = 3
o —p
+ 290202 ‘PZk - Pk ou¥e 1 —p .
_ 2 2 — -1 _ 2 1 —
p—p p —p p P p
Eqs. (7) and those given in Appendix I make it possible to write the differential
system (4), which here is in the form:

d m n
da/dk = log pz, + E 7 [@mn Lm0l ™Y

k

®)

d m n
dy./dk = —log py, + Zﬁ [‘Pmn(k)]k=0xk Yk -
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In order to illustrate the calculations which lead to the determination of the coeffi-
cients ¢nn , ¥mn , consider the following differential equation:

i+ v’z = f(z, ). 9)

It is assumed that this is the form taken by the differential system (1) over the time
interval [¢, , t,]. If we transform the complex variables X = « + j(@/w), ¥ = ¢ — j(&/w),
(9) becomes:

dX . FX, Y
T = X 4
(10)
vy _ . . .FX,Y) _(X+Y X—Y>.
dt "‘]wY J w H F(X7 Y)_f 2 ’ 2] w

Before going on to the identification of the forms (8) and (10), it is necessary to
change the time scale of one or other of the systems so that the pointwise transformation
links the states of the systems at the boundaries of [t, , ¢,], i.e.

=z, y =y,
x(t), y = yl).

T
For this, it is enough to write:
t=to+ k(t, — to) (k=1,1=1)

= t() + kh
(10) becomes
X _aonx + i TS x4 juh 3 e XY
dk w m.n
(11)
4T = juny — pPE 2 oy — juh T et X"y

(where * stands for complex conjugate).
Identifying (8) and (11), we have:

p = €Xp ('—]’LUh),

(k) .
[d_«’(;;)c—jl/ﬁo - —;EI%}}_P P20 = J0hew

50 that ¢y = az(p — p°). The results of the calculations for the other coefficients are
given in Appendix 1.

1.3. Ezxpression of 3. . If it is assumed that the periodic coefficients which appear
in (1) are piecewise constant, the calculation of 3, can be carried out as follows:

1. The period, i.e. ©, is divided into sub-intervals over which each of the coeflicients
is constant:

tOSt<tl)"')tiSt<ti+17"',tmst<to+®’

For each of the intervals the differential equation obtained is autonomous, and the partial,
associated pointwise transformation T, is determined for this interval in the same way
as before.
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2. If the state variables are assumed to be continuous at times ¢, ,7 =1, -+, m,
the transformation 3, is obtained from the product of the previous partial transformations:

3¢ =TTy -+ Ti -+ Ty

1.4. Conclusion. Obtaining the mapping 3. is a result which is interesting in itself,
for it enables one to solve certain problems concerned with the stability of the origin
fixed point (trivial solution of the differential system (1)). In fact, in the case where the
pointwise transformation (2) is such that p = exp (j#), i.e. when it is on critical case in
the sense of Lyapunov, then the study of the stability and of the nature of the origin
fixed point makes it necessary for one to take into account the nonlinear terms.

Two cases need to be considered:

a) 8 # 2kwn/q: the stability is fixed by the sign of an expression (¢, which brings in
the coeflicients of the second- and third-degree terms [10].

b) 6 = 2kw/q: this case is linked to that of parametric resonance for the differential
equation (1). For ¢ = 3, 4, the coeflicients of 3. are still sufficient to determine the nature
of the origin fixed point and the existence of analytical lines invariant with respect to 3
passing through this point (node or saddle-type point) [11]. In Sec. 3, this is applied to
an example.

Finally, in this first section the fact that we were trying to associate the pointwise
transformation (2) to a Hamiltonian system (1) has not been brought out. In other
words, the method can be applied to any nonlinear sccond-order differential equation
with periodically varying coefficients.

2. Determination of 3*. In the first section we have shown how to determine
3¢ , 1.e. how to determine the first terms (up to the third degree) of the pointwise trans-
formation J associated with the differential system (1). It is known that 3 is area-preserv-
ing; 3. does not generally retain this property. This means that 3, cannot give an idea
of the trajectories even in a small neighborhond of the origin [13].

In this section, without going into the details of the calculations, a method is described
enabling one to construct a polynomial pointwise transformation 3* with the following
properties:

a) 3* approximates 3 to the third degree i.e. it has the same terms as 3 (or 3¢) up
to the third degree.

b) 3 is area-preserving (Jacobian unity). ,

Suppose, therefore, that the transformation 3. has been determined. In real variables,
it is written:

3

ar + by + Z ‘t_omnxmy"

T, =
m+n=2 (12)
3
p=cxtdy+ 2, Pnz™y
m+n=2

For the sake of simplicity, in the calculations which follow the transformation 3. is
decomposed into the product of two transformations =, and 7, :

(z, ) @, y)e (x, y1)-
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7, is linear, conservative:

n{r @b dbe = 1)
Jj cr + dy

72 18 in the form:

m+in=2

3
[rx =2+ 2 eumt"y"

Ta-

It

3
[y, v+ 2 ey
min=2
where the coefficients ¢,; , ;; are expressed simply in terms of the coefficients ¢,, , ¥ .
Since 7, is already area-preserving, the following calculations refer to . .

2.1. Preliminary remarks. In [12] Engel deals with polynomial transformations
with Jacobian constant. We are able to use some of his results in order to carry out the
approximation.

a) The following polynomial pointwise transformation:

N
u, =u+ 6 E a,(oau + Bv)
n=2 (13)
N
V=V —a Z a,(ou + Bv)°
n=2
where N is any positive integer and «, 8, a are constants, is an area-preserving pointwise

transformation (Jacobian unity).
b) If the transformation:

U, = g(uy 1))
v, = h{u, v)
is area-preserving, then all pointwise transformations of the form:
N
w = g(u,v) + 2 ailhu, v)]"
n=1

(14)
v, = h(u,v)

and

u, = g(u,v) )

N
v = ]l(u, U) + Z an[g(u) v)]"
n=1
also have this property.

2.2. Approzimation to the second-degree terms. Consider again the expression of 7,
in which only the terms to the second degree are assumed known:

on =z + 9020-1'2 + oury + ¢702y2 (16)
o=y + ‘/’20-772 + Yury + ‘po*z?/2 .
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Since 7, comes from the truncation of an area-preserving mapping, some relations can
be obtained for the ¢, , ¥, coefficients, by writing (for the full mapping) J = 1, from
which we get:

¢11 + 2¢2o =0
2\002 + o = 0.

Thus, out of the six coefficients of 7, (16), four (at the most) are independent. It is
necessary therefore to construct a conservative transformation depending on four
parameters., This is easily done in this case from the product of transformations such
as (13), (14), (15).

Consider the following mapping:

e =z + Blax + By’
¥ =y — alax + ByI’
2, = g(z, y) + H(z, y)

Y1 = h(z, y) + va." = kz, y) + vlg(x, ) + k(2 v)I .

This mapping is area-preserving. It depends on the four parameters a, 38, v, 6 which
can be chosen such that the second-degree terms of (18) are the same as those of (16),
by fixing:

17)

9(x, y)

h(z, y) (18)

Ba’ = ¢,

2a8 = ¢y, , (19)
B+ 8= ¢u,

—a’ + v =Y.

3* can thus be written:

2 2 2 2 ]2
P11 ) _f_l_l_)[ _2¢.20_< ﬂ)]
z+ ¢2o|:13 + 2040 y] + <¢m 4¢20 Y P11 T 2¢20 y

y—2—¢2—"3<:c+ﬂy>2+(¢ +2¢202)xz
P11 2020 2 11 !

Z

(20)

W

The case where ¢,, Or ¢, is zero can be made to fit in with the above case by carrying
out on (18) a transformation of variables (nonsingular, i.e. reversible). This will be
discussed in the remarks at the end of the section.

2.3. Approximation to the third-degree terms. Consider now the mapping 7, with the
third-degree coefficients:

3

4+ D ™y

L =
m+n=2 (21)
3
n=y+ 22 VN A T

The approximation method for determining is very similar to that for the second
order, although there are certain minor difficulties which are discussed below. As before,
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it 1s easy to verify that at the most 9 out of the 14 coefficients of the nonlinear terms of (21)
are independent (J = 1). Using the same procedure as in the previous section, construct
a polynomial area-preserving transformation:

£ =1+ Bllar + By + alax + By)*)
v =y — al(er + 8y)° + alar + By)’]
o=+ oy + ey

o=y +ve’ 4o’

(22)

The transformation (22) has seven independent parameters, a, 8, a, 6, €, v, v, so that
in general it is not possible to carry out the approximation between (21) and (22) directly.
It was shown above that the parameters a, 8, a, 6 are sufficient to solve the approximation
on the second-order terms. It is therefore necessary for us to free two extra parameters
which would act on the third-degree terms. This difficulty can be overcome by a trans-
formation of variables in (21) which would give two independent parameters. The choice
of this transformation of variable should be made in such a way that it does not alter
the conservativity of the mapping 3; the necessary condition is that its Jacobian should
be constant, not zero (so that it has an inverse).

The following transformations were chosen:

€= (23)
71, =Y + t1z27

g = EI + t277/- (24)
7 =7,

because of their simplicity (the inverse is casy to calculate) and because the parameters
t; and ¢, come linearly into the third-degree coefficients, making the calculations con-
siderably easicr.

3* is determined in the following way: the coefficients «, 8, v, 8 are calculated as shown
in Sec. 2.2; the determination of the remaining coeflicients then amounts to the solution
of a linear system. The details of the calculations are given in Appendix 2. Finally, the
approximating transformation is written:

7 () (8) - 3% ()7 ()

Remarks. 1) In expression (20) it can be seen that ¢,, or ¢, appears in the de-
nominator of the nonlinear terms higher than second degree. It is in fact the ratio
e11/ 202 and its inverse which comes into these terms. In the case where one of these
coefficients becomes very small (in comparison to the other), these terms can take on an
exaggerated importance with respect to those of the second and third order, and can
thus reduce the area around the origin in which the approximation made using the
approximating transformation can be justified. This problem can be solved by a change
of variables in the transformation 7, . As, before, the Jacobian should be constant and
nonzero. For ¢, zero, or very low, the following transformation was adopted:

U =z, v =Y — ux,
(25)

(5020 — @20 + pen + #2@12 y Y1 T L + 2#¢02)
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aud for ¢;, zero:
u=2x—uy v=y.

This transformation makes it possible to give a suitable value to the relationship
R = ¢11/2¢5 . In the examples, this choice was determined empirieally.

2) In the case where the coefficients of the second-order terms of 3. are zero, the
results given in Appendix 2 for the approximation of the third order cannot be directly
applied. The basic reason for this is that the transformations of variables ¢, and ¢, are
not valid for the third-degree terms. In this case, the mapping 7, has five independent
parameters (8-3 conservativeness relations).

Consider the transformation:

' = r + Blax + By)’
' =y — alax + By)’ (26)

Il

<
il

rn=a+ "
=y + vr,"

This has four independent parameters. The approximation can be thus carried out
using the parameter u of the transformation of variables (25). There is another possible
solution which has the advantage of using the results given in Appendix 2. This consists
of artificially introducing second-order terms into the mapping 7, , obtaining a mapping
#, in which the previous calculations can be used, and finally eliminating these second-
order terms from the approximating transformation. The choice of these terms cannot
be made arbitrarily, since they must be such that #, can be taken as the truncation of
an area-preserving transformation. This is true for:

n=zr+ce’ + 2 o™y
Fq e m<+n=3.

=Y+ D Y™y

It can easily be shown that by applying the area preserving transformation:
X=z—0cy
Y=y

to the transformation 3* approximating #, , the term cy” is eliminated from the resulting
transformation (which remains conservative, since it is the product of conservative
transformations). This solution has been employed in example 2 in the following section.

3. Examples. In this section, three applications are given to test the validity
of the method for the study of the behaviour of the solutions of a conservative dynamic
system around the origin (trivial solution of the recurrence equation system).

3.1. Ezample 1. Consider the differential equation:

(dz/dt®) + x = f(t)]az’® + B2’) 27)

where f(t) is an impulse train of period 7', amplitude unity and width 6.
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Such an equation is found in the study of the transverse movement of a particle in
an alternating gradient accelerator. The method given in Sec. 1 enables one, taking into
account the relative simplicity of the signal f(f), to determine the first terms on 3. ,
which when expressed in terms of the complex variables X = o + j(dz/dt), ¥ = X*
(conjugate) ean be written

3
X, =pX+ X e X"V, Y, =X}
m+n=2
where:

p = cxp (—=jT)

¢ = oxp (=iT)(exp (=j6) — D]

o = exp (—i1(A — exp (]'6’))(2Z

goz = exp (—JT)(L — cxp (376)) ;22

@30 = CXp (—]T) (‘Xp (]0)(0)(}) (_]0) ’ ;:1 ’ —2j6) — )i%jl
@21 = exp (—jT) (%010 — exp (3j8) — 8 — 9 exp (j6) + 18 exp (— 70)) 5 — 3§ 086]
¢, = exp (—jT)| exp (—j6) — 1 — 3 exp (—j6) + 5 exp (2j6) — 2 exp (356)) 3—4

— 3(exp (2j6) — 1) f_ﬁ]

Pos = X (—jT)[exp (4§6) — 2 exp (3j6) — 1 + 2 exp (j6)) I5 + %"—(43{—;)_—1 3].

The results obtained using the osculation method were compared with those obtained
by numerical integration (fourth-order Runge-Kutta method with adaptive step [14]),
on an IBM 360/75 computer with double precision (~107'). From among the many
tests carried out, two have been selected as being representative of certain characteristic
phenomena of area-preserving pointwise transformations such as island structures and
stochastic behavior (homoclinie or heteroclinic points).

A) T =1.588;8 = 0.36; « = 10; 8 = 0. The results obtained by numerical integration
are shown in Fig. 1. A brief description of this figure is given below.

A fourth-order island structure surrounds the origin which is a center. The regular
behavior of the trajectories breaks down at some limit near the curve T'. Inside it we have
an apparently integrable domain, which will be referred to from now on as a “quasi-
integrable” region, since actual integrability cannot be generally verified [9]. Outside T
the iterated points describe a very irregular motion and in this context we refer to it as
a “‘stochastic” motion. This behavior occurs along with the presence of homoclinic and
heteroclinic points generated by invariant curves passing through singular points of
saddle type [15]. In the present example, this motion gives rise to stochastic instability
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Ay
T-1588,6=036
A= 10 )ﬂ:o

5

Fic. 1.

[16] so that outside I" and with an initial condition near it the point describes at first a
slowly diverging (with respect to I') movement and finally escapes irreversibly from the
frame of Fig. 1. The scattered points shown belong to the same trajectory beginning
at P (the numbers indicate some successive iterates of 3°).

As for the comparison between numerical integration and osculating mapping,
Table 1 gives some iterated points obtained by both methods, n denoting the number of
iterations, starting from the same initial conditions. Obviously, the divergence between
the results increases as the distance from the origin becomes larger. However, a point
worth noting is that in the quasi-integrable region the error develops in the ‘“phase”
rather in the “amplitude’”. This is reflected by the fact that the phase portrait is almost
the same, at least within the degree of precision of Fig. 1, which therefore also represents
the results obtained by the approximating transformation.

The position of the cyeles C,, C,, Cs, Ciand S, , Sz, S5, S, of the approximating
transformation have been obtained by a numerical program using both the gradient and
Newton’s method with a precision of about 107°. A test using numerical integration
shows that the exact and approximate cycle positions agree to a precision of 107°. Either
numerical integration or approximating mapping gives invariant curves passing through
the saddle S, , S, , S;, S, with no detectable homoclinic or heteroclinic points (two of
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TABLE 1.
T =1.588;0 = 0.36; « = 10; 8 = 0. Ezample A.
Approximating mapping Numerical integration
n X Y X Y
0 0,05 0 0,05 0
20 —0,00835113 —0,05139432 —0,00834973 —0,05139527
40 —0,01862271 —0,05294405 —0,01861879 —0,05294774
60 —0,02587861 —0,05323888 —0,02587089 —0,05324836
200 —0,05009292 0,00901835 —0,05009050 0,00892006
400 0,02743005 0,05065437 0,02729490 0,05067465
600 0,05500973 —0,03379491 0,05503413 —0,03366572
745 —0,05016173 0,01241045 -~0,05016082 0,01204827
0 0,1 0 0,1 0
100 0,04383988 —0,09528784 0,04374121 —0,09524857
200 0,05865594 —0,10588185 0,05846941 —0,10566201
400 0,06106618 —0,13961848 0,06167375 —0,13966534
700 0,02937415 —0,09562585 0,02899163 —0,09585284
0 0,2 0 0,2 0
100 0,152466 —0,110926 0,15334668 —0,10937630
200 0,171026 —0,0938892 0,17440640 —0,091387
400 0,2272165 —0,0720555 0,236263 —0,065829
700 0,158958 —0,045156 0,140034 0,06575
0 0,225 0 0,225 0
10 —0,138654 —0,173515 —0,137934 -0,173137
20 0,080260 0,233820 0,080038 0,233382
30 0,301220 —0,114166 0,301447 —0,113954 random
40 0,014320 —0,195143 0,019999 —0,196991 zone
50 ~0,114962 0,107698 —0,130526 0,091030
0 0,0053833 0,1263964 0,0053833 0,1263694
8 0,0053750 0,1263506
Center
16 0,0053735 0,1263323  (point C.)
32 0,0053904 0,1263137
64 0,005434 0,12636651
0 0,0447153 0,0525959 0,0447153 0,0525959
4 0,0447139 0,0525977
8 0,0447125 0,0525997 Saddle
12 0,0447113 0,0526018  (point S,)
24 0,044707 0,0526135

these curves were shown in Fig. 1 between S, and 8,). This fact is related to the quasi-
integrable character of the region inside T' which contains the island structure corre-
sponding to these saddles.

B) T=1,63,6=0,36,a = 10,8 = 0. In this case the integration and the approxi-
mation method also agree (see Table 2). In Fig. 2 one can see that the island structure
is further away from the origin. Around the fourth-order center cycles, the behavior of
solutions is regular and defines a four-area domain of quasi-integrability. The domain
of quasi-integrability around the origin is reduced to the region inside the curve T' (which
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TABLE 2.
T =163;6 =0.36; « = 10; 8 = 0. Example B.

Approximating mapping Numerical integration
n X Y X Y
0 0,05 0 0,05 0
100 0,03727 —0,03919 0,3728 —0,03918
200 0,05036 —0,00344 0,05035 —0,00342
400 —0,00726 0,04889 —0,00730 0,04888
600 —0,04408 —0,02555 —0,04405 —0,02560
700 —0,00949 —0,04853 —0,00957 —0,04852
0 0,15 0 0,15 0
40 0,04454 —0,14284 0,04415 —0,14405
80 0,04127 —0,15363 0,03822 —0,15158
120 0,04252 -0,16813 0,03723 —0,16091 Random
160 0,04662 —0,18021 0,03290 —0,16470 zone
200 0,07649 —0,20455 0,02220 —0,15151
0 0,2 —0,05 0,2 —0,05
100 0,13841 —0,22519 0,14023 —0,22538
200 0,13488 —0,19944 0,13655 —0,20198
300 0,10496 —0,17563 0,10167 —0,17381
400 0,07614 —0,17172 0,07838 —0,17138
600 0,13197 -0,22343 0,12287 —0,21994

is the apparent frontier of this domain) and is separated from the former by a region
where the points are scattered. A test of non-integrability for this region has been made
by drawing some of the analytical invariant curves passing through the points S, and S,
of the fourth-order saddle cyvcle. From S, , the repulsive invariant curve L, does not join
the attractive curve L, (smoothly) but intersects it at heteroclinic points. Some loops
of L, have been drawn on Fig. 2, using the approximating mapping, and a verification
undertaken by numerical integration shows that at least for the first loops the difference
between the results appears to be in the “phase” on these curves as for the regular
closed curves of the domain of integrability. This stochastic region is also a region of
stochastic instability because the point finally escapes. Similar phase portraits can be
seen in [17], for example, which deals with a quadratic algebraic transformation.

C) T=15709,6 =0,1,«a = —10, 8 = —1. The value of T is near the value 2r/4,
when a parametric resonance may occur. In fact, for the @ and 8 chosen the fixed point
origin is a hyperbolic point with eight invariant curves through it, alternately attractive
aud repulsive. The detail of I'ig. 3 shows the good agreement between numerical inte-
gration and approximating transformations.

Table 3 gives the values of the parameters necessary for the construction of the
approximating mapping for the three tests given above.

3.2. Other examples. The two examples in this section are given in order to show the
sort of problem to which the above calculations can be adapted. For brevity each example
will be limited to a description and to a qualitative comparison of the results with those
given by other authors quoted in the references.

3.2.1. Movement of a satellite. 'The problem here is that of the analysis of the behavior
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T=163;6=0.236
Moo x=10 ;P=0
% p

Fig. 2.

of a satellite subject to periodic variations in its moments of inertia; these variations can
be caused by the relative motion of the moving parts (antennae, ete.) in relation to the
main body [2]. For the sake of brevity, the calculations necessary to obtain the cquations
of motion (cf. {2]) will not be developed here.

The equations (Euler equations) can be written:

— B
d+H(g673_>67 =0
. A—-C
f+H (“A*c—)‘” =0
. B — 4
v+ H(Tﬁe—)“ﬂ =0 29)

where «, 8, v are the direction cosines of the kinetic moment H; H is the modulus of the
kinetic moment H (constant of motion). 4, B, C are the main moments of inertia of the
satellite.

Eqs. (29) are written in an orthonormal axis set, placed according to the axes of the
main moments of inertia of the satellite. If we take as the law of variation of the inertial




NUMERICAL STUDY OF PERIODIC HAMILTONIAN SYSTEMS 163

T -1.5703; 8=01
X =_10 5 =1

S
0.2 0 0.4 X
K t |
-
004 005 006
) ¢ } t -
numerical integration
001

0021 o point obtained by the

osculating mapping
(3 rd degree)
DETAIL

Fig. 3.

TABLE 3.

Parameter values for the examples treated in Sec. 4.

Example

Parameter A B C
n 1.150 1.10 1.00
@20 3.37347 3.37698 0.89872
r 0.99912 1.00746 1.05171
b 0.03744 0.03705 0.00079
b 0.03910 0.03954 0.00092
T 0.01549 0.01551 0.00029
Ts 0.01657 0.01697 0.00049
v 0.00176 0.00173 0.
€ 0.00146 0.00150 0.

a; 1.38967 1.39126 0.05685
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forces:
A. =A0, B=BO+ECOSwOIf, C=C(,+600Sw0t
and combine (29) with (o’ 4+ 8° + 4° = 1) s0 as to climinate v, we get:
[(08/Q(e, B) (30)
9(De/Q(e; B)

&

8

I

where
B - C C - A 2 2\—1/2
0 ="F6 H, o0 = "5 H Qe B =(1—a —g".

The pointwise transformation associated with the differential system (30) is conser-
vative with a quasi-invariant funetion Q(e, 8) (in the sense of Birkhoff [6]); i.e., it pre-
serves the integral invariant:

J[ @@, 8 de as.

The mapping is not area-preserving with respect to the variables «, 8, and the method
given in See. 2 cannot be applied directly. However, it is possible by a change of variables

u = ula, B)

v = v(a, ) 31)
to make the transformation cxpressed in these variables area-preserving i.e. to make
[[ v

JIpD
invariant:
au u
da 9 .
Qw0 °* % = @@, 8). (32)
o o
da I8

If Q(u, v) = 1in (32) this enables one to find a suitable change (31), for example:

v = —a
] (33)
u = f Q(x, s) ds = arcsin (8/(1 — o°)'%).
The differential system (30) is written:
-— — 3 2
du/dt = [g(t) — 1(f) sin® u]v 34)
dv/dt = {(t) sin u cos u(l — v°)

with respect to the variables u, ».
It is easy to see that (34) is derived from the Hamiltonian

3¢ = 3@ sin® w(l — +*) + g(t)v7].
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TABLE 4.
Satellitc: coefficients of the mapping.

T w a b @30 e21 o2 @03
v ¢ d V30 Va1 Yz o3
5 —1,00071 0,02451 0,00016 —1,64503 0,08196 —0,84313
0,04885 —1,00049 3,26647 —0,16019 1,64459 0,00042
5,1 —0,99877 0,06964 —0,14889 -1,71776 0,01120 —0,84254
—0,03853 —0,99855 3,31583 —0,31331 1,73966 —0,07664

It can be written as:
du/ot = oH/dv,  dw/dt = —oH /du.

The coefficients of the pointwise transformation associated with (34) were calculated
using a program described in [8], which approximates the periodic signals by piecewisc
constant functions by dividing the period into 500 equal intervals. The parameters
chosen are those given by [2], thatis A4, = 7, B, = 6,C, = 8,9, H = 18, 66, ¢ = 0, 05.

Two values for the time period, T = 5 and T = 5.1, were selected from the many
tried. The values of the coefficients of the truncated recurrence are given in Table 4.
Figs. 4 and 5 show the results obtained with respect to the variables & and 8. Of course,
the nature of the origin fixed point is the same as in [2] since it is fixed by the lowest-order
terms of the recurrence. In addition, it can be verified that there is good agreement
between the topological portraits obtained by total pointwise transformation and those
resulting {from approximating pointwise transformation. The only difference to note,
which is particularly marked in Fig. 5, comes from the introduction of second-degree
terms (coefficient C, Table 3) in order to obtain the approximating pointwise trans-
formation. This spoils the symmetry of the figure. Finally, in contrast to the previous
case, there are no zones with stochastic behavior in evidence. This is due to the low
amplitude (0.05) of the periodic disturbances.

Ilﬁ

02
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3.2.2. Pendulum under parametric excitation. This example, taken from [1], is
concerned with the motion of a simple pendulum which is excited parametrically by
vertical oscillations of its support. Its motion is governed by:

§ + <w02 + 3—) sin § = 0 (35)

with £ = & cos . After the following changes of variable and parameter:
T = wot) €= EO/L; 0 = 6‘/2X7 n= w/w())

(35) can be written:
3
X 4+ 1 — 7% cos nr)(X - %(— + ) = 0. (36)

As before, the coefficients of the pointwise transformation were determined numerically.
The results are given in Table 5. Finally, for the value e = 0.05 a simulation was carried

TABLE 5.

Pendulum: coefficients of the mapping.

7 U a b ¥30 P21 P12 €03
vy c d Y30 ¥ V12 Vo3
2,105 —1,00326 —0,01047 0,00125 0,00877 0,00485 0,01023
—0,31346 -—1,00002 —0,00701 ~0,00123 —0,00723 0,00156
2 —1,01389 ~0,16337 —0,00005 0,00823 0,00119 0,01033
—0,15258 —1,01088 —0,00833 —0,00263 —0,00905 0,00011
1,91 —1,00136 —0,30676 —0,00145 0,00775 0,00119 0,01091
0,00022 —0,99857 —0,00940 —0,00431 —0,00905 —0,00132
1,905 —0,99996 —0,31503 —0,00153 0,00771 0,00108 0,01017

0,00909 -0,99718 —0,00945 —0,00442 —0,00909 —0,00147
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out for values around » = 2. The results are shown in Fig. 6 which was plotted, as
in [1], with respect to the variables:

a = [ﬁ — (%:l)z:I/A; B8 = 2y/74; A= (12 + (271/)2>”2.

Some results from [1] are shown in Fig. 7 for comparison. A qualitative comparison
was not possible since the corresponding values for # were not given there. The absence
of zones with stochastic behavior can be explained, as in example 1, by the low value
chosen for the parametric excitation.

Conclusion. If the numerical study of the solutions of a Hamiltonian system with
periodic coefficients is tackled by means of numerical integration, then one comes up
against the problem of the sensitivity of the system to the diseretization of the differential
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equations. This can be explained by the conservative nature of the system under con-
sideration. This problem can, broadly speaking, be solved when it is possible to associate
with the system a pointwise transformation. Unfortunately, however, it is not usually
possible to formulate such a transformation. It is possible, on the other hand, to determine
its first terms, but the resulting truncated transformation loses its conservative nature.
From the truncated pointwise transformation, however, one can construct an area-
preserving polynomial pointwise transformation which has in a sufficiently wide neigh-
borhood of the origin the same topological portrait as the exact transformation. In
addition, the numerical study is much quicker, being carried out using a mathematical
model made up of recurrence equations. This last point is an important one since these
numerical experiments are at present an important tool in the study of conservative
dynamical systems of this kind [16~20).

Appendix 1. Determination of the coefficients of ¢, “’.
1) Determine the difference equations:

(k+1) (k) _ 2k
P20 — PP20 = P Y20,

(k+1) k) _
P11 — PO = @11
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(k+1) (k) —2k
Po2 — PPo =P Poz,
(k+1) k ;
¥30 W P‘Pso( b= 2€020Pk¢20(“ + ¢’npk§002(k) + 93k¢3o y
(k+1) k 3 - .
P21 - P€021(k) = 2¢20p ¢11(k) + ¢’11PL¢11*( ’ + 2<P020 ¢02 » + eup kﬂazu(“ + Pk‘P‘zl )
(k+1) k) K : [ ) —k - —k
@12 o PP12 = 2¢30p 5002(“ + 0110 20" + eup kﬂou(k) + 20020 k‘Pn*k + 0 01,
¢03(k+|) - P¢’03U‘) = ¢11P~k¢02(k) + 2¢()2P-k‘p02(m + p—xk%w .
2) Solve the difference equations:
2k
) p_— P
P20 = $20 " 2 —
p 4
(k) Pk_—__l
e Y ’
p—1
3 —2k
) A
Po2 = @o2 -3y
p— P
(k) 'i * 1 - Pk
e = (o = Au = A) B2 + 4, —p~—— + 4,72
p2k k 1 — pk p-zk _ pk
k k—
(4’21( b= (p2r — B: —~ By, — B_y)kp "4 B, = + B, + B, ==——,
p 1 - P —p
p—k _ pk p2k _ pk 1 — pk p—?k pk
(k
@iz = (¢ — Cy — Cy — C_,) =1 +C. 3 + C, 1 +C. "= ’
p —p p —p P
-—2k pk
g™ = (pa — Dy — D_;) 2 ~+—_~ + D, 1—— + Do e

Writing the coefficient of ¢,., with respect to those of the differential cquation:

= a2o(P - Pz),
a“(l - P)’

o —
¢oz=f(92—p),

o = 2L 4
30 2 30

. 2
]TP<0121 + aja* + g

-1
p_— P

P2 = 2

-1

p_ (2 P
- C‘fn2 + = <§ A0ty 20‘020‘11"= + a112 - auazo*> - _:'3_

2

*
Aoz

3
+ 22_ (2(1202 - —_3

p
(237 + pollop — 5 <20120¢102 - 01112 + — 3

Q1 Xog

) — 2050 0" + p<a202 + 75

* *
> oy Aoz

2
2 * < *
ag® + azo“n) + 2pas00y;, + P(anan 9 2Qoo

9 -2

“~

* =P *
- 30120“11) + a0, — apa* — 9 (Xnelo2

*
20900

+ 0‘11“20) + anazn*

2—2

*
Aol
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*
_p_— 0 Qo2 Xao Qoz) -3
+ ( 12 2 )”

* *
o Xo2®20_ -2 a1 %ag Q20" Qo2 Q)1 %g2
+ 2 P+ - p— .

3 4 6 3

Appendix 2. Calculation for the approximation to the third-degree terms. Con-
sider the transformation:

Ui=U+ 2 euaU"V"
Vi=V+ D ¢.U"V"

in which the changes of variable (¢,) and (¢;) (expression (23) and (24)) are carried out
with respect to the variables £, 5. It can be written:

L =Et+ ‘quEQ + onén + ‘P(J2TI2 + Z samn'f"'n"
" m+n=3 (2)
14 Yook + Yikn + Yon” + 2 T

m-4+n=2,3 (1)

M

where

@1’ = ez — Lion,

ea’ = @2 = 20Lpor + 2o
e’ = @2 = 2bLen + 20y,
eos’ = ez — ben + 2b

Vs = ¥so — L + 2les

Vol = Yo + 2hen — 20L¢ ,
Vol = Y + 2Le0 — 264,
Voi'! = Yoz — b .

By identifying the coefficients of the second- and third-order terms between (22)
and expression (2) above, the sccond-order terms being provided by (19), we get the
following system of equations which is linear in relation to the unknown quantities
a,tl,tz,f,V:

aa36 = @30 — lion
3‘1“262 - 2326“3 = @21 — 2Lppe + 2620
3(1&33 - 45(125 = @12 + 2t2¢11 - 2t2§02n (3)

af' — 2’6 + € = pu3 + 2090 — Len
—aa® + 26a2‘y G+ v = Y50 — Ly + 260, -
a, t, , {; can be deduced from the first three equations of (3): setting » = ¢,,/2¢2 , we get
o= [2(¢1 — e)a — 2¢20b,]/A
ty = [Bewr — 200)b — 3eir’a)]l/A,
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where
A = 2(Yu — ¢20)2ent — 200) — B¥nepi”,
a, = 3pz0r — 2 8¢s0/T — @uy
b, = 3es° — 4 bps — @12,

(¢30 — t,cp“)/aaﬁ.

e and v can easily be deduced from the last two equations of the system (3).

a
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