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A numerical investigation on the use of plasma actuators for transition control is pre-

sented. The numerical framework involves the solution of the full unsteady 2D incom-

pressible Navier Stokes equations using a finite volume formulation. The set of equations

is formulated by solving for the perturbations in the flow while a mean laminar bound-

ary layer flow is considered fixed and superimposed. The effect of the plasma actuator

is represented as an imposed unsteady body force distribution derived from experimen-

tal measurements. Furthermore, an adaptive control system based on the filtered-x LMS

algorithm is implemented directly into the flow solver. The control system uses pressure

signals at the wall in order to compute the frequency, phase and amplitude of the plasma

body force which minimizes the intensity of the propagating TS waves. Results show large

reductions in wave amplitude for both single and multi frequency cases.

I. Introduction

Plasma actuators have been studied extensively in recent years, as flow control devises. Their low power
consumption, lack of moving parts and robustness render them ideal for flow manipulation. There are several
implementations of the actuators the most popular being the Dielectric Barrier Discharge (DBD) kind. It is
commonly accepted that some sort of collisional processes between the heavy plasma species (mostly ions)
and neutral air is responsible for the momentum transfer. In a macroscopic scale, which is usually the scale
of the flow to be controlled, the model of an exerted body force on the fluid seems to describe the effect
reasonably.

Plasma actuators have been used in several studies aiming at separation control,1 turbulent drag reduc-
tion,2 boundary layer control3–5 and transition delay.6 Excellent reviews on plasma actuators for aerody-
namic flow control have been published recently.7, 8

The capabilities of the actuators suggest the feasibility of their implementation in several flow control
scenarios. It is therefore desirable to have an efficient and accurate model of the effect of the actuator on a
given flow. A large amount of simulation studies has been conducted in order to simulate and capture the
underlying physics of the ionization process.9, 10 These vary in model complexity, from simple phenomeno-
logical models to first principles fluid models.11 Extended simulations for multi-species fluids have also been
investigated.12 In the majority of these modeling approaches the final goal is to determine the exerted
body force on the fluid. A number of studies on flow solvers implementing plasma actuators have used this
approach successfully to couple the effect of the actuator with the flow dynamics.?, 13 More recently, the
authors,14 have developed a technique which enables the measurement of the two-dimensional body force
field experimentally for a selected applied voltages and carrier frequencies.

One of the promising concepts for the utilization of plasma actuators is the cancellation of Tollmien-
Schlichting waves in a transitional boundary layer. This technique aims at tackling the instability waves
while still in linear amplification stage. At this stage the waves have little energy content with typical
amplitudes of 0.01 % of the freestream velocity.15 This technique has been investigated experimentally16, 17

as well as numerically.18, 19 In recent studies6 artificially introduced TS waves were successfully canceled
using plasma actuators.
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In this paper a numerical investigation on the TS wave cancellation concept is performed. More specif-
ically the actuator is used as a counter-wave generator operating in a transitional boundary layer. In the
2D case the instabilities propagating in the laminar boundary layer correspond to the unsteady Tollmien-
Schlichting modes. Through correctly phased unsteady actuation the wave amplitude can be reduced leading
to a delay of transition and overall skin friction drag decrease. For the unsteady actuation the plasma ac-
tuator is used through the concept of a volume distributed body force. In this study both a generic force
distribution as well as experimentally derived body forces are used. For the selection of the correct actuation
signal a stand-alone automatic control system employing the filtered-x LMS algorithm20 is implemented in
the flow solver. The control system runs in parallel to the flow solver and the actuation is done in real time.

II. Methodology

A. Numerical flow solver

In order to resolve all the spatial and temporal scales involved in the transition problem, a full Navier-Stokes
solution is pursued. Furthermore a reduced approach is followed in which the base flow (laminar boundary
layer) is considered fixed while the NS equations are solved for the TS perturbations. More specifically
consider the 2D incompressible Navier Stokes equations in the presence of body forces:

∂ ~U

∂t
+ ~U · ∇~U − ν ∇

2 ~U = −
∇P

ρ
+

~F

ρ
(1)

In the context of hydrodynamic stability it is often convenient to express the flow as the sum of a base mean
flow ( ~U0,P0) and a fluctuating component (~u,p). the mean flow which is steady in time can be calculated
beforehand using either analytical solutions of the Falkner-Skan equations or numerical solutions of the NS
equations. The velocity, pressure and force fields are expressed as:

~U(x, y, t) = ~U0(x, y) + ~u(x, y, t)

P (x, y, t) =P0(x, y) + p(x, y, t)

~F (x, y, t) =~f(x, y, t)

(2)

Substituting (2) into (1) and subtracting the mean values produces the expression for the disturbances:

∂~u

∂t
+ (~u · ∇)~u + ( ~U0 · ∇)~u+ (~u · ∇) ~U0 − ν∇2~u = −

∇p

ρ
+

~f

ρ
(3)

In this study the set of governing equations is implemented and solved within the computational frame-
work of the open source code OpenFOAM. This platform employs second order finite volume discretization
in space and a variety of finite difference methods for temporal advancement. The laminar boundary layer
base flow (U0) can be calculated using the boundary layer equations or even the Falkner-Skan solutions.
Nevertheless in this study the incompressible viscous solver of OpenFOAM is used since the computational
cost is minimum for a 2D study.

The boundary conditions for the stability problem are Dirichlet conditions of zero perturbation velocity
at the inflow, plate and top boundary while a Neumann condition of zero gradient is imposed at the outflow.
For pressure, Neumann conditions of zero gradient are imposed on all boundaries except the top where fixed
zero pressure is imposed.

In order to investigate the boundary layer stability problem the disturbance in question must be intro-
duced in the numerical domain. This can be done in a multitude of ways such as imposed fluctuating velocity
at the inflow, unsteady suction and blowing at the wall or fluctuating distributed body forces. It is generally
a good choice to introduce the disturbance upstream of the first neutral curve to allow any transient noise to
damp out. In this study two techniques for introducing the disturbance are employed. Firstly a fluctuating
velocity component is imposed at the inflow. The shape of the fluctuation corresponds to the eigenfunction
of the TS wave calculated from Linear Stability Theory for the given frequency. Zero net mass is achieved
since the imposed velocity has zero mean value. This technique is useful for verification purposes as well as
single frequency control cases. Nevertheless it presents some difficulties when wavetrains of more than one
frequencies must be introduced. For these cases an unsteady horizontal body force (fg(x, y, t)) is used in the
form of:
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fg(x, y, t) =
n
∑

i

(Wi · sin(2πωit)) · sin

(

π
x

x2 − x1

)

· sin

(

π
y

y2 − y1

)

(4)

where x1 < x < x2, y1 < y < y2.
The differences (x2 − x1) and (y2 − y1) define the spatial wavelengths of the force in x and y direction.

For the current case the x wavelength is approximately half the wavelength of the desired TS wave while
the vertical wavelength is approximately a quarter of the TS wavelength. The temporal variation of the
fluctuating force is controlled by the sum of n sinusoidal modes with corresponding amplitudes (Wi) and
frequencies (ωi). In general, the numerical study in this paper makes use of the imposed inflow for the single
frequency cases while the imposed body force is used for all multi frequency cases.

B. Automatic Control System

For the control system the filtered-x LMS (FXLMS)20 adaptive algorithm based on FIR filters is applied.
The concept is derived from active noise cancellation techniques and it involves a feed-forward loop for the
estimation of the control signal which drives the actuator. More specifically, the system uses a reference and
an error signal which in the investigated case are pressure values at the wall. A schematic of the working
principle is given in Fig.1. The system is using a primary FIR filter (~w) through which the reference signal
(~x) is passed as followsa:

y(k) = ~w(k)T · ~x(k) =

L−1
∑

i=0

wi(k)x(k − i) (5)

where k is the time instant of the last sample of the reference signal. L is the length of the primary FIR
filter ~w. To be noted here that ~x(k) = [x(k) x(k − 1) . . . x(k − L + 1)]T is a vector containing the L last
samples of the reference signal. Through this process the output signal y(k) which is sent to the actuator is
produced. In order to achieve the desirable cancellation effect the weights of the primary filter ~w must be
adapted. This is achieved through a Least Mean Square (LMS) approach which compares a filtered version
of the reference signal with the error signal at time instant k in order to compute an updated set of primary
filter coefficients for time instant k + 1;

~w(k + 1) = ~w(k)− 2µe(k)~f(k) (6)

where the convergence coefficient µ is a constant used to increase or decrease the convergence of the
adaptation process. The choice of µ is extremely important for the final control performance. As will be
shown too small µ leads to slow convergence and reduced performance while too large µ renders the algorithm
unstable. For this study a variation of the standard FXLMS algorithm is used where µ is normalized by the
strength of the reference signal in order to increase the robustness of the convergence process:

µ =
β

~xT (k)~x(k)
(7)

where β is a predifined constant.
In the control algorithm ~f(k) is produced by filtering the reference signal with a secondary FIR filter

(FIRII) which is a digital representation of the natural cancellation path. This is done in order to have a
valid comparison between reference and error signals for the update process. The cancellation path copy
(FIRII) is obtained using a system identification routine based on a modified version of the LMS adaptive
algorithm. More specifically the actuator is driven by a predetermined signal which in this case is the
reference signal x(k). At the same time ~x(k) is passed through the secondary filter. The produced signal is
then subtracted from the error signal and used in the LMS routine to update the coefficients of FIRII. By
using the difference of the two signal to update FIRII, the final weight coefficients of the secondary filter are
such that f(k) = e(k). This effectively means that FIRII can model the natural cancellation path as it was
initially required by the primary control system. As soon as the system ID algorithm converges and FIRII
is available the control sequence can begin.

aFor the description of the controller algorithm the notation of Hansen21 is followed throughout.
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Both the system identification and control algorithms are implemented in the OpenFOAM framework
and operate in parallel to the flow solver. Several parameters of the algorithm such as primary and secondary
filters lengths, sampling rate, weights update rate and convergence values (β) are set prior to the simulation.

Figure 1. Schematic of the working principle for the filtered-x LMS control algorithm.

C. Body Force Implementation

To effectively capture the effect of the plasma actuator a distributed volume body force is applied as described
earlier. The magnitude and spatial distribution of the body force have been subject of numerical and
experimental investigations. For this study two levels of approximations are applied to the force description.
Firstly a generic force distribution with arbitrary amplitude and spatial extent is used in order to gain insight
into the interaction between the three main components (stability, body force and controller) of the modeling
process. The force shape is chosen as a half-sinus distribution in both x and y directions given by:

fx(x, y) = Ax · sin(π(
x− xs

l
)) · sin(π(

y − ys
h

)) for : xs ≤ x ≤ xs + l, ys ≤ y ≤ ys + h (8)

x (mm)

y
 (

m
m

)

 

 

−2 0 2 4 6 8 10
0

0.5

1

1.5

2

0

5

10

Figure 2. Example of a generic body force
distribution with l = 4 mm, h = 1 mm and
Ax = 10 mN/mm2.

where Ax is the amplitude of the horizontal force compo-
nent, xs and ys define the starting coordinates of the force
distribution and l and h the length and height of the distribu-
tion respectively. The vertical force component fy is set to zero
for simplicity. It should be noted here that the controller con-
trols only the amplitude (Ax) of the force and not the spatial
extend. An example of the generic force distribution is given
in Fig.2.

For the second level of approximation, the body force im-
plementation is extended to incorporate experimentally derived
force distributions from actual plasma actuators.14 In contrast
to the generic force distribution, the plasma force distributions
present additional complexities. More specifically, the control parameter here is not the amplitude of the
force but the value of the applied voltage. This in turn defines not only the amplitude of the force distribu-
tion but also the spatial extent and the shape. The available experimental results cover a range of applied
voltages from 8 to 16 kVpp with steps of 2 kV . In total 5 different force distributions are available. For
implementation of these forces in the solver as a function of voltage, an interpolation based on 2D Bernstein
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surfaces is carried out and the generated coefficients are stored in the controller environment as lookup
tables. This enables the on-line calculation of the body force for every value of applied voltage within the
range of 8 to 16 kVpp. For values less than 8 kVpp the body force is set to zero while for values larger than
16 kVpp the force remains constant and equal to the 16 kVpp case. A comparison between the original force
distributions and the respective Bernstein surface models is presented in Fig.3.

experimental

F
tot

 (mN/mm
2
) 8 kV

pp

0

1.5
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pp

0

1.5

y
 (
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m

)
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1.5
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16 kV
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1.5
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Figure 3. Experimental and respective modeled body force distributions for different applied voltages.

D. Test cases and Mesh

For the entire numerical study, flat plate boundary layers with zero pressure gradient at two freestream
velocities are considered. These correspond to 10 and 30 m/s. This choice has been made for several
reasons. Firstly, the 10 m/s case (case A) is used to develop the controller system and gain insight on
the influence of several parameters such as convergence constant and length of the body force on the final
control performance. Furthermore, case A has been used for the verification of the numerical flow solver
through various grid and boundary conditions studies. The body force used for the cancellation of the TS
waves in case A is exclusively the generic sinusoidal distribution. Case B involves the implementation of
the experimentally derived body force distributions in the transition control framework. As it is already
mentioned, no control over the amplitude of this force exists other than the selection of the applied voltage.
To this reason case B involves laminar flow at a larger Reynolds number in order to facilitate the increased
force amplitude.

For all cases a Reynolds number based on the inflow displacement thickness is defined:

Re∗0 =
U∞δ∗0
ν

(9)

For case A, Re∗0 is 658 with an inflow displacement thickness δ∗0 = 0.98 mm. Three single frequency and one
multi frequency stability and control sub cases are ran. A frequency number is set based on the Reynolds
number at the inflow:

F =
ω0

Re∗0
× 106 (10)

where ω = 2πδ∗

Ufr
is the local non-dimensional frequency of the mode. The three single frequency sub cases

correspond to F = 66, 86 and 106. Respective physical frequencies (fr) are 70, 91.2, and 112Hz respectively.
These modes have been chosen such that during introduction in the domain they are still upstream of the
neutral curve and thus stable. A stability diagram for cases A and B, indicating the computational domain
and the position of the studied modes, is shown in Fig.4.

Case B involves a higher inflow Reynolds number (Re∗0 = 1539). For this case one single and one multiple
frequency sub case is ran. The single frequency case corresponds to mode F = 25 while the multi frequency
case involves the summation of modes F = 15, 25 and 35 with equal amplitudes during introduction. The
respective physical frequencies for these modes are fr = 143, 238, and 334 Hz.
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Both cases are run on structured rectangular meshes. For both cases the total number of cells used is
approximately 0.1 million. For case A the mesh extends from x = 0.2 to 1.2 m and y = 0 to 0.025 m while
for case B the mesh extents from x = 0.4 to 1.4 m and y = 0 to 0.025 m. The mesh is clustered linearly
near the wall along the entire domain. Furthermore a more dense mesh is used in the vicinity of the body
force distribution. For the highest frequency case (F = 35) the grid density corresponds to approximately
20 cells per TS wavelength. Finally, a buffer region of smoothly increasing cell size in streamwise direction is
added at the downstream end of the computational domain in order to avoid reflections from the outflowing
disturbances.

0 500 1000 1500 2000 2500
0

50

100

150

200

250

Re
δ

F
 =

 ω
/R

e d
× 

1
0

6

 

 

F = 66, f = 70 Hz

F = 86, f = 91.2 Hz

F = 106, f = 112 Hz

computational domain

U = 10 m/s

neutral curve

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

Re
δ

F
 =

 ω
/R

e d
× 

1
0

6

F = 15, f = 143 Hz

F = 25, f = 238 Hz

F = 35, f = 334 Hz

computational domain

U = 30 m/s

Figure 4. Stability diagrams for cases A and B with respective modes.

The controller settings are mainly fixed for the two cases apart from the convergence constant β which
is adjusted per sub-case in order to achieve the best control performance. For case A the reference sensor
is located at x = 0.4 m while the error sensor is at x = 0.7 m. The actuator (body force distribution) is
located at x = 0.5 m. For case B the reference sensor is located at x = 0.7 m while the error sensor is at x =
1 m. The actuator (body force distribution) is located at x = 0.8 m. For both cases the FIRI and FIRII
filters employ 40 weight coefficients and the sampling rate of the controller is 1 kHz.

III. Results

A. Verification and modeling considerations

The numerical framework in this study is comprised of three discreet computational modules which are
coupled together in order to achieve the final transition control goal. These are the flow solver, the forcing
mechanism and the adaptive control system. Due to the multiple models used in this approach, it is desirable
to identify, evaluate and address possible sources of error. This is done via a verification and validation
approach wherever is possible.

The flow solver is the most straightforward component to verify and validate since accurate solutions
exist for both the mean and the fluctuating velocity components in the form of the Blasius equations and
Linear Stability Theory (LST). It should be noted here that both the Blasius solution for the boundary layer
and LST are solutions of a different set of equations than the ones the solver of this study handles. Modeling
errors are therefore expected.

For verification purposes two grid studies are employed. Firstly a mesh refinement study is conducted.
Three computational meshes of different sizes (106×544, 141×727, 211×1090 cells respectively) are created
employing the same physical dimensions and cell clustering ratio. The h factor between the three meshes is
1, 1.5 and 2 respectively. To be noted that the cell spacing of mesh 2 is the one used in this study for the
investigation of the selected test cases. For all three meshes, the complete control sequence of cases is run.
More specifically, for each mesh a mean flow is calculated, the stability case is run for a single frequency
case and finally a control case is run employing the generic body force distribution. Several quantities are
calculated in order to estimate the observed order of accuracy as defined by Roy.22 Fig.5 presents N factors
for the three different meshes for the case of F = 86. The observed order of accuracy for the N factor at
x = 0.8 is 2.03. Additionally a comparison between the shape of the propagating TS wave is given in the
same figure.
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The second grid study involves the location of the top boundary of the computational domain and its
influence on the stability simulation. Fig.6 presents the computed N factors for four cases of top boundary
located at different distances from the flat plate wall. It is apparent that a threshold of approximately 25δ∗

exists above which the top boundary does not influence the simulation. To be noted here that the top
boundary study is done using the spacing of mesh 1, hence the large difference of the N factor from LST
results.

0.2 0.4 0.6 0.8 1 1.2
0

0.5
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1.5
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2.5
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N
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r
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(b)

mesh 1
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Figure 5. (a) N factor for the three tested grids (F = 86) along with LST prediction and (b) shape of the u
disturbance for the three meshes along with LST solution.

0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

x (m)

N
 f

ac
to

r

 

 
Y/δ*

 = 15.9

Y/δ*
 = 26.5

Y/δ*
 = 37.1

Y/δ*
 = 47.7

LST

Figure 6. N factor for different top boundary location.
(F = 86, mesh 1)

In contrast to the flow solver, body force model
presents difficulties in verification and validation.
Nevertheless, several remarks can be made on the
possible modeling errors. The representation of the
plasma actuator through a volume distributed body
force has been a popular method for implement-
ing this type of devices in numerical studies. Yet
it should be stressed here that such models must
be used with caution especially for high receptiv-
ity areas such as the transition domain. It has been
shown numerically23 and experimentally24 that dur-
ing continuous and pulse operation the plasma actu-
ator induces fluctuating velocity components corre-
sponding to the carrier frequency used for operation.
Most body force models neglect these fluctuations since the usually high carrier frequency ensures that they
are decoupled from the time scale of the flow to be controlled. The experimental body force distributions
used in this study are based on exactly such an assumption. This presents an upper threshold of Reynolds
numbers in which this force model can be used. For example the stability case with F = 35 corresponds
to a natural frequency of 340 Hz in the case of U∞ = 30 m/s. This is the highest frequency the authors
considered safe to be used here since the carrier frequency of the actuator is set at 2 kHz. For higher
instability frequencies which are comparable to the carrier frequency of the actuator, a model that takes the
latter into account is necessary in order to accurately capture the effect of the actuator.

B. Parametric study on control performance

Prior to the actual control cases, a parametric investigation on the operation of the controller is performed.
Two separate studies are conducted involving the convergence constant (β) and the streamwise length of the
generic body force distribution l. For both cases all other parameters are kept constant.

For the investigation of the convergence constant the single frequency case F = 86 is used. The generic
force distribution employs l = 0.02 m and y = 0.003 m. The error signal for all tested values of β is shown
in Fig.7 along with the respective amplitude of the body force as selected by the controller. All cases have a
system identification procedure for the first 0.2 s of simulation based on identical settings. The results are
shown here only for the control period (starting at t = 0.2 s). Two effects are evident here which are typical
for the FXLMS algorithm. Firstly, if the convergence coefficient is too low the algorithm is converging to
the optimum solution slowly and in some extreme cases (β = 0.0025 )it might stop converging all together.
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On the other hand if the convergence constant is too large then the algorithm becomes unstable and the
force amplitude starts to oscillate around the near optimal value (β = 0.02). Although the controller still
manages to reduce the error signal, the performance is degrading. In a more extreme case (β = 0.04) the
controller fails altogether with very large force values which respectively increase the error.
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Figure 7. (a) Signal measured by the error sensor and (b) respective body force actuation value for different
convergence constant (β). (F = 86).

The second parameter investigated is the streamwise length of the force distribution. This is an important
value in the transition control efficiency as the length of the optimum forcing distribution is expected to be
strongly dependent on the wavelength of the incoming TS wave. Two more factors increase the complexity of
this interaction further. Firstly, in cases of natural transition control, more than one frequencies of unstable
modes are expected in the boundary layer. As such the wavelength of the modes in the wavetrain is not
constant. Secondly, in the case of plasma actuation, the length of the forcing region is coupled to the applied
voltage and the amplitude of the forcing itself as can be seen in Fig.3. Combining these two effects, the force
distribution in normal operation conditions will have almost certainly sub-optimal characteristics. More
discussion on this topic is given in section D. Results for all tested values of l and ln is shown in Fig.8. Here
ln is the force length l normalized with the streamwise wavelength of the incoming TS wave (0.038 m for
F = 86). For all cases β is 0.01.
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Figure 8. (a) Signal measured by the error sensor and (b) respective body force actuation value for different
body force lengths (l). (F = 86).

The results indicate that force lengths around half the incoming TS wavelength produce the best control
performance. This is partly expected as the TS wave is fluctuating in x with half the wavelength occupied
by positive velocity and the other half by negative velocity. Since the force is always positive and directed
downstream, destructive interference can only occur when the negative velocity half-wavelength is over the
actuator. For larger force lengths (l = 0.04 and 0.08 m) the controller fails to reduce the error while for
smaller lengths (l = 0.005 and 0.01 m) error reduction is registered although the performance is suboptimal.
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C. Control case A: Generic force distribution

The generic force distribution is applied in case A. Three control scenarios are investigated comprising of
two single frequency and one multi frequency sub-cases. The controller is operating in single frequency cases
corresponding to F = 66 and 86 while the multi frequency case consists of a wavetrain which is a combination
of modes F = 66, 86 and 106.

Snapshots of the velocity disturbance flowfield are presented in Figs.9 and 10 for the cases of F = 66 and
F = 86 respectively. Additionally the value of the maximum horizontal velocity component are presented in
Fig.11. The comparison between the controlled and uncontrolled cases indicates the effect of the body force
actuation. Both the horizontal and vertical components of the disturbance velocity are reduced downstream
the actuation region. In the case of F = 66 amplification of the residual disturbances continues after the
actuation since the entire domain is located within the instability region. On the contrary the case of F
= 86 appears to have an almost total wave cancellation since the TS waves cross the upper neutral curve
approximately after x = 0.9. To be noted here that the settings of the controller are kept the same for
these two cases apart from the convergence constant β. This is adjusted specifically for each case in order
to achieve optimal performance from the controller.

Apart from the reduction of the fluctuating velocity components, an interesting aspect is the mean flow
component present close to the forcing region. This is an artifact of the unidirectionality of the body force.
More specifically, the generic body force is restricted to take only positive (downstream) values in the case
where the controller instructs it to be negative. This is to ensure that the overall forcing mechanism resembles
the unidirectional plasma actuation. In both single frequency cases the mean flow disturbances appears to
convect and diffuse downstream.
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Figure 9. Snapshots of horizontal (ux) and vertical (uy) components of disturbance velocity with and without
control. (F = 66). (Position of the actuator is indicated by the small red rectangle)
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Velocity field snapshots for the multi frequency sub-case are presented in Fig.12. Additionally the maxi-
mum horizontal velocity component is presented in Fig.11. This case involves the development of a wavetrain
consisting of three modes at F = 66, 86 and 106 respectively. Contrary to the single frequency cases the
disturbances are introduced in the domain via a distributed body force as previously explained. The weights
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for all the modes are set to be equal.
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Figure 11. Normalized maximum horizontal velocity of disturbance with and without control for the (a) case
F = 66, (b) case F = 86 and (c) multi frequency case F = 66, 86, 106.

It is apparent here that while the controller still manages to reduce the amplitude of the traveling
wavetrain, total wave cancellation is not possible. This can be explained by considering the nature of the
forcing mechanism. Although the controller attempts to regulate the amplitude of the imposed body force,
no authority exists over the spatial distribution, location and shape of the body force. On the other hand the
incoming disturbances present multiple wavelengths, amplitudes and frequencies. As was shown in section
B the wavelength of the imposed force has considerable influence on the final performance of the controller.
It is thus expected that in a scenario where multiple frequencies are to be controlled a predefined force
distribution will lead the controller to a sub-optimal operation stage. This is of high importance in actual
plasma cases where the spatial extent and shape of the force distribution cannot be explicitly controlled as
it is a function of the applied voltage. This is further demonstrated in case B.
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Figure 12. Snapshots of horizontal (ux) and vertical (uy) components of disturbance velocity with and without
control for the multi frequency sub-case (F = 66, 86, 106).(Position of the actuator is indicated by the small red
rectangle)

The temporal evolution of the reference and error signal along with the respective amplitude of the
body force (Ax) are shown in Figs.13-15 for the two single frequency cases and one multi frequency case
respectively. As already mentioned the system identification time is 0.2 s in all cases. During this time the
body force is directly driven by the reference pressure signal while the system identification algorithm builds
the digital representation of the cancellation path. It is interesting to note that during this stage the error
signal is reduced in the case of F = 66 while it is increased in the case of F = 86. This emphasizes the role
of the system ID part in which a random signal which can have either positive or negative effects can be
used to drive the forcing mechanism.

The difference in control performance between the two single frequency cases is also evident here. Apart
from the final reduction in amplitude, the convergence of the controller to the final operation state is
considerably faster for the case of F = 86. This again has to do with the relation between the spatial extent
and shape of the body force distribution compared to the wavelength of the incoming instability.

For the multi frequency case results indicate that although the controller converges relatively fast to the
final state of operation, the complete elimination of the fluctuating disturbances is not possible.
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Figure 13. (a) Normalized reference and error signals during controller operation and (b) respective body
force amplitude (Ax) for the case of F = 66
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force amplitude (Ax) for the case of F = 86
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Figure 15. (a) Normalized reference and error signals during controller operation and (b) respective body
force amplitude (Ax) for the multi frequency case (F = 66, 86, 106)

11 of 15

American Institute of Aeronautics and Astronautics

D
o
w

n
lo

ad
ed

 b
y
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
S

IT
E

IT
 D

E
L

F
T

 o
n
 F

eb
ru

ar
y
 2

8
, 
2
0
1
3
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
1
1
-3

1
7
5
 



D. Control case B: Plasma force distribution

The experimentally derived plasma body force distributions have been implemented in the numerical frame-
work with the use of a continuous voltage function based on Bernstein surface approximations. Due to
the strength of the actuator itself, the tested cases involve only the case B conditions where the freestream
velocity is 30m/s. Additionally the actuator is placed more downstream in order to demonstrate the ability
to tackle heavily amplified disturbances.

Two sub-cases are studied, namely a single frequency case with mode F = 25 and a multi frequency
case with modes F = 15, 25, 35 of equal strength at the disturbance introduction. Snapshots of the evolved
flowfield for the single frequency case are shown in Fig.16 while the respective maximum amplitude of the
disturbance is shown in Fig.18. Some comments can be made on this case. The stability characteristics
of this case are significantly more adverse than the sub cases of case A. Mode F = 25 has an N factor
which almost reaches 9 by the end of the computational domain. This signifies the transitional state of
this boundary layer. Additionally, at approximately x = 1.1 the first harmonic of the mode starts to show
significant values departing the maximum disturbance amplitude from the sinusoidal shape.

The controller achieves significant reduction on the amplitude of the TS mode. Nevertheless, downstream
of the actuator the boundary layer is already deep in the instability region and the residual disturbances
after actuation quickly amplify again. This effect raises the importance of multiple successive actuators in
the case of practical applications.

Snapshots of the flowfield for the multi frequency case are presented in Fig17 while the maximum ampli-
tude of the disturbance is shown in Fig.18. It is evident that the actuator can respond well to the existence
of multiple frequencies in the spectrum of TS waves. Additionally a pronounced mean flow disturbance is
evident which nevertheless is significantly reduced within approximately 6 TS wavelengths downstream.
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Figure 16. Snapshots of horizontal (ux) and vertical (uy) components of disturbance velocity with and without
control. (F = 25).(Position of the actuator is indicated by the small red rectangle)
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Figure 17. Snapshots of horizontal (ux) and vertical (uy) components of disturbance velocity with and without
control for the multi frequency case. (F = 15, 25, 35).(Position of the actuator is indicated by the small red
rectangle)

The reference, error and voltage signals as measured by the controller are presented in Figs.19 and 20
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Figure 18. Normalized maximum horizontal velocity of disturbance with and without control for (a) case
F = 25 and (b) multi frequency case F = 15, 25, 35

for the single and multi frequency cases respectively. For the single frequency case a relatively large time
span is spent in which the actuator does not operate. This is due to the fact the required voltage decided
by the control algorithm lies below the threshold value of 8 kVpp. In these cases the controller automatically
restricts the voltage to a zero value.

For the multi frequency case the effect is opposite. Due to the strength of the incoming disturbances
the actuator is requested to operate with at voltages that lye above the maximum threshold of 16 kVpp. In
this case the maximum voltage is restricted to 16 kVpp. This cutoff voltage effectively renders the actuation
signal shape to trapezoidal rather than sinusoidal. In spite this the actuator achieves significant reduction
of the TS amplitude.
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Figure 19. (a) Normalized reference and error signals during controller operation and (b) respective applied
voltage value (Vapp) for the case of F = 25
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Figure 20. (a) Normalized reference and error signals during controller operation and (b) respective applied
voltage value (Vapp) for the case of F = 15, 25, 35

An overview of the test cases, respective force model and TS strength reduction is presented in Tab. Here
∆umax is the reduction of the maximum horizontal velocity component of the TS mode at x = 1 m while
∆pe is the reduction of the error signal as this is registered by the controller.

IV. Conclusions

A numerical investigation on the use of plasma actuators for transition control is presented. The numerical
framework involves the solution of the full unsteady 2D incompressible Navier Stokes equations using a finite
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Table 1. Overview of test cases with respective force model and reduction in TS wave strength.

case frequency (F ) force ∆umax at x = 1 m (%) ∆pe (%)

A. 1 single (66) generic 61 55

A. 2 single (86) generic 90 98

A. 3 multi (66, 86, 106) generic 62 69

B. 1 single (25) plasma 84 79

B. 2 multi (15, 25, 35) plasma 83 93

volume formulation. Furthermore, an adaptive control system based on the filtered-x LMS algorithm is
implemented directly into the flow solver. The control system uses pressure signal at the wall in order to
compute the frequency, phase and amplitude of the plasma body force which minimizes the intensity of
the propagating TS waves. Additionally, the effect of plasma actuators has been modeled using volume
distributed body forces. A generic model as well as experimentally measured force distributions have been
used. Results show large reductions in wave amplitude.

References

1Post, M. L. and Corke, T. C., “Separation control on high angle of attack airfoil using plasma actuators,” AIAA Journal ,
Vol. 42, No. 11, 2004, pp. 2177–2184.

2Jukes, T. N., Choi, K. ., Johnson, G. A., and Scott, S. J., “Turbulent drag reduction by surface plasma through spanwise
flow oscillation,” 3rd AIAA Flow Control Conference, Vol. 3, 2006, pp. 1687–1700.

3Jacob, J. D., Rivir, R., Carter, C., and Estevadeordal, J., “Boundary layer flow control using AC discharge plasma
actuators,” 2nd AIAA Flow Control Conference, 2004.

4Huang, J., Corke, T. C., and Thomas, F. O., “Plasma Actuators for Separation Control of Low-Pressure Turbine Blades,”
AIAA Journal , Vol. 44, 2006, pp. 51–57.

5Seraudie, A., Aubert, E., Naude, N., and Cambronne, J. P., “Effect of plasma actuators on a flat plate laminar boundary
layer in subsonic conditions,” 3rd AIAA Flow Control Conference, Vol. 2, 2006, pp. 1065–1073.

6Grundmann, S. and Tropea, C., “Active cancellation of artificially introduced Tollmien-Schlichting waves using plasma
actuators,” Experiments in Fluids, Vol. 44, No. 5, 2008, pp. 795–806.

7Moreau, E., “Airflow control by non-thermal plasma actuators,” Journal of Physics D: Applied Physics, Vol. 40, No. 3,
2007, pp. 605–636.

8Corke, T. C., Post, M. L., and Orlov, D. M., “SDBD plasma enhanced aerodynamics: concepts, optimization and
applications,” Progress in Aerospace Sciences, Vol. 43, No. 7-8, 2007, pp. 193–217.

9Jayaraman, B., Cho, Y. ., and Shyy, W., “Modeling of dielectric barrier discharge plasma actuator,” 38th AIAA Plas-

madynamics and Lasers Conference, Vol. 2, 2007, pp. 1019–1038.
10Lagmich, Y., Callegari, T., Pitchford, L. C., and Boeuf, J. P., “Model description of surface dielectric barrier discharges

for flow control,” Journal of Physics D: Applied Physics, Vol. 41, No. 9, 2008.
11Jayaraman, B. and Shyy, W., “Modeling of dielectric barrier discharge-induced fluid dynamics and heat transfer,” Progress

in Aerospace Sciences, Vol. 44, No. 3, 2008, pp. 139–191.
12Singh, K. P., Roy, S., and Gaitonde, D. V., “Modeling of dielectric barrier discharge plasma actuator with atmospheric

air chemistry,” Vol. 2, 2006, pp. 576–586.
13He, C., Corke, T. C., and Patel, M. P., “Numerical and experimental analysis of plasma flow control over a hump model,”

Tech. rep., 2007.
14Kotsonis, M., Ghaemi, S., Veldhuis, L., and Scarano, F., “Measurement of the body force field of plasma actuators,”

Journal of Physics D: Applied Physics, Vol. 44, No. 4, 2011, Cited By (since 1996): 1.
15Schlichting, H. and Gersten, K., Boundary Layer Theory , Springer, 2000.
16Sturzebecher, D. and Nitsche, W., “Active cancellation of Tollmien-Schlichting instabilities on a wing using multi-channel

sensor actuator systems,” International Journal of Heat and Fluid Flow , Vol. 24, No. 4, 2003, pp. 572–583.
17Thomas, A., “Control of boundary-layer transition using a wave-superposition principle.” Journal of Fluid Mechanics,

Vol. 137, 1983, pp. 233–250.
18Albrecht, T., Grundmann, R., Mutschke, G., and Gerbeth, G., “On the stability of the boundary layer subject to a

wall-parallel Lorentz force,” Physics of Fluids, Vol. 18, No. 9, 2006, Cited By (since 1996): 2.
19Bower, W. W., Kegelman, J. T., Pal, A., and Meyer, G. H., “A numerical study of two-dimensional instability-wave

control based on the Orr–Sommerfeld equation,” Physics of Fluids, Vol. 30, No. 4, 1987, pp. 998–1004.
20Kuo, S. and Moran, D., Active noise control systems, John Wiley, New York, 1996.
21Hansen, C., Understanding Active Noise Cancellation, Tylor and Francis, 2001.
22Roy, C. J., “Review of code and solution verification procedures for computational simulation,” Journal of Computational

Physics, Vol. 205, No. 1, 2005, pp. 131–156, Cited By (since 1996): 77.

14 of 15

American Institute of Aeronautics and Astronautics

D
o
w

n
lo

ad
ed

 b
y
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
S

IT
E

IT
 D

E
L

F
T

 o
n
 F

eb
ru

ar
y
 2

8
, 
2
0
1
3
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
1
1
-3

1
7
5
 



23Likhanskii, A. V., Shneider, M. N., MacHeret, S. O., and Miles, R. B., “Modeling of dielectric barrier discharge plasma
actuator in air,” Journal of Applied Physics, Vol. 103, No. 5, 2008.

24Benard, N. and Moreau, E., “Capabilities of the dielectric barrier discharge plasma actuator for multi-frequency excita-
tions,” Journal of Physics D: Applied Physics, Vol. 43, No. 14, 2010.

15 of 15

American Institute of Aeronautics and Astronautics

D
o
w

n
lo

ad
ed

 b
y
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
S

IT
E

IT
 D

E
L

F
T

 o
n
 F

eb
ru

ar
y
 2

8
, 
2
0
1
3
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
1
1
-3

1
7
5
 


