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We study the driven cavity flow using the Navier slip boundary condition. Our results have shown that the Navier slip

boundary condition removes the corner singularity induced by the no-slip boundary condition. In the low Reynolds number

case, the behavior of the tangential stress is examined and the results are compared with the analytic results obtained in [14].

For the high Reynolds number, we study the effect of the slip on the critical Reynolds number for Hopf bifurcation. Our

results show that the first Hopf bifurcation critical Reynolds number is increasing with slip length.
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1 Introduction

The lid-driven-cavity problem is one of the most important problems in fluid dynamics. It has direct relevance to many

of the manufacturing processes in the industry (e.g. coating and mixing). Its importance also results from the fact that it

exhibits many of the fundamental features of the flow (shear flow, boundary layers, eddies, core vortex, Hopf bifurcation,

and transition to turbulence). Being simple in geometry, it has been widely used as a benchmark problem for numerical

methods.

When the no-slip boundary condition is applied at the boundaries, the system exhibits a nonphysical singularity where

moving and stationary walls meet. There have been many suggestions for this singularity, for example Koplik and Banavar

suggested that the fluid is non-Newtonian in the corner. They first used MD simulations to study the small-scale structure

of the driven cavity flow [7]. Their results indicate that slip occurs in the corner region, removing the stress singularity

which would otherwise occur. Following this idea, Nie et al. [6] recently develop a multiscale method which couples the

MD simulation near the corner and continuum simulation away from the corner to resolve the singularities and determine

the singular force.

Another way to remove the singularity is to replace the no-slip boundary condition by a slip boundary condition such

as the Navier boundary condition whereby the slip velocity is proportional to the tangential viscous stress and the degree

of slip is measured by a slip length [1–4]. The validity of the Navier boundary condition has been shown by Qian and

Wang [10] for the driven cavity flow through molecular dynamic and continuum hydrodynamic simulation for a Newtonian

fluid. The (constant) slip length is determined from molecular dynamics simulations, and when used as an input for the

continuum hydrodynamic simulation it has been shown that molecular dynamics results can be successfully reproduced. It

is also shown that the Navier slip will increase the stability threshold for the shear flow [5].

For very small Reynolds number, the Navier Stokes equation is reduced to the linear Stokes equation or the biharmonic

equation. The system with the Navier boundary condition can then be solved analytically as a solution of a set of coupled

integral equations [14]. In particular, the asymptotic behavior of the tangential stress near the corner can be computed.

For small Reynolds number, the driven cavity flow converges to a stationary state. When the Reynolds number increases

over a critical number Re1, the flow becomes periodic in time which indicates a Hopf bifurcation. There exists another

critical Reynolds number Re2 > Re1, above which the flow loses time periodicity and becomes chaotic when Reynolds

number is large enough. There have been many numerical studies trying to identify the two critical Reynolds numbers

[8, 16, 17, 19, 20]. The most recent simulations by Auteri et al. [9] located the critical Reynolds number Re1 for the first

Hopf bifurcation in the interval [8017.6, 8018.8).
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In this paper, we study the effect of the boundary slip on the driven cavity flow numerically using the Navier boundary

condition. We carry out numerical simulations using an efficiently numerical method developed in [12, 13, 22] and we

implement the method with the Navier boundary condition. In the low Reynolds number case, the behavior of the tangential

stress is examined and the results are compared with the analytic results obtained in [14]. For the high Reynolds number,

we study the effect of the slip on the critical Reynolds number for Hopf bifurcation.

2 Navier slip boundary condition

The Navier boundary condition is the simplest alternative to the no-slip boundary condition. It states that the amount

of slip is proportional to the tangential fluid stress at the solid surface, i.e., vslip
τ = −ls∂nvτ , where the proportionality

constant ls is the slip length [2–4], which is a phenomenological parameter that measures the local viscous coupling

between fluid and solid; n is the normal direction of the solid surface and vτ is the tangential velocity along the solid

surface. Physically a nonzero slip length arises from the unequal wall and fluid densities, the weak wall-fluid interaction,

and the high temperature. The verification of the Navier boundary condition in the driven cavity flow has been done in [10]

by comparing results from MD simulation and the continuum simulations. The slip length is determined from molecular

dynamics simulations and when used as an input for the continuum simulation it has been shown that molecular dynamics

results can be successfully reproduced.

3 Numerical scheme

The driven cavity flow is governed by the incompressible Navier-Stokes equations

∂t�u + (�u · ∇)�u + ∇p = ν△�u, (3.1)

∇ · �u = 0, (3.2)

where �u = (u, v) are the x and y velocity components, respectively. The computational domain is Ω = [0, L]× [0, L] with

the top wall moving to the right with the velocity Vw (Fig. 1). The boundary condition is

�n · �u = 0 on Γ, (3.3)

l−1
s �τ · �u(slip) = −

∂(�τ · �u)

∂�n
on Γ, (3.4)

where Γ = ∂Ω and �n, �τ are normal and tangential directions of the boundary Γ, respectively. We have �τ · �u(slip) = u− Vw

on the top wall (where Vw is the speed of the moving wall) and �τ · �u(slip) = �τ · �u otherwise.

Fig. 1 A cavity flow driven by a moving horizontal wall in the xy-plane.

3.1 Time discretization

For simulation, we use the method developed in [12, 13], and [22]. The time discretization is as follows:

�uk+1 − �uk

△t
− ν△�uk+1 = −�uk · ∇�uk −∇pk, (3.5)

∆pk = −∇�uk : (∇�uk)T − �uk · ∇
(

∇ · �uk
)

, (3.6)

�n · �uk+1 = 0 on Γ, (3.7)
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l−1
s �τ · �uk+1(slip) = −

∂(�τ · �uk+1)

∂�n
on Γ. (3.8)

The advantage of the scheme is that the convection and pressure terms are treated explicitly and computation of the

momentum equation is completely decoupled from the computation of the pressure Poisson equation. Furthermore, the

incompressibility is enforced in a more robust way, because the divergence of velocity satisfies a diffusion equation with

no-flux boundary conditions. The original method was introduced for no-slip boundary condition and is shown to be un-

conditionally stable. Here we implement the scheme with the Navier slip boundary condition and our numerical results in

Sect. 3.3 show that the method is also unconditionally stable.

3.2 Space discretization

Fig. 2 The computational grid Ωh.

For space discretization, we use a nonstaggered grid shown in Fig. 2. Ghost points (empty circles) are introduced in

order to enforce the boundary conditions. We discretize the momentum Eq. (3.5) for �uk+1 with boundary conditions (3.7)

and (3.8) by standard second order central difference scheme. For the pressure Poisson equation, we use second-order finite

difference scheme on a nonstaggered grid with local pressure boundary condition [13]. We discretize the pressure Poisson

equation as following

△hpk = −∇h�uk : (∇h�uk)T − �uk · ∇h

(

∇h · �uk
)

, (3.9)

where △h, ∇h are the standard second-order centered difference approximation operators. At the grid points (i, 0) along

the lower boundary Γx (see Fig. 2), the local pressure boundary condition is derived from (3.5) and (3.7). We then have

∂pk

∂�n

∣

∣

∣

∣

∣

(i,0)

= −
∂pk

∂y

∣

∣

∣

∣

∣

(i,0)

= (ukvk
x + vkvk

y )
∣

∣

∣

(i,0)

−ν (vk
xx + vk

yy)
∣

∣

∣

(i,0)
= ν vk

yy

∣

∣

∣

(i,0)
.

We also have the no-flux boundary condition for the divergence of velocity at the boundary, i.e.

0 =
∂(∇ · �uk)

∂�n

∣

∣

∣

∣

∣

(i,0)

= −
∂(uk

x + vk
y )

∂y

∣

∣

∣

∣

∣

(i,0)

.

Therefore

vk
yy

∣

∣

∣

(i,0)
= − uk

xy

∣

∣

∣

(i,0)
.

From the Navier slip boundary condition (3.8), l−1
s (u − Vwu) = uy on the lower boundary (i, 0) , we have

uk
xy

∣

∣

∣

(i,0)
= l−1

s

∂(uk − Vwu)

∂x

∣

∣

∣

∣

∣

(i,0)

.

Therefore
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∂pk

∂�n

∣

∣

∣

∣

∣

(i,0)

= −ν uk
xy

∣

∣

∣

(i,0)

= −νl−1
s

(

ui+1,0 − ui−1,0

2h
−

∂Vwu

∂x

∣

∣

∣

∣

(i,0)

)

+ O(h2) (3.10)

for all 0 < i < N . When i = 0 or N (corner points), we need ghost values u−1,0, uN+1,0 which are obtained by enforcing

the no-flux boundary condition at the corner points (0, 0) and (N, 0). For example, we have

vk
yy

∣

∣

∣

(i,0)
= − uk

xy

∣

∣

∣

(i,0)
on the lower wall,

uk
xx

∣

∣

∣

(0,j)
= − vk

xy

∣

∣

∣

(0,j)
on the left wall.

From the Navier slip boundary condition, we obtain, at (0, 0)

v0,1 − 2v0,0 + v0,−1

h2
= −l−1

s

(

u1,0 − u−1,0

2h
−

∂Vwu

∂x

∣

∣

∣

∣

(0,0)

)

,

u1,0 − 2u0,0 + u−1,0

h2
= −l−1

s

(

v0,1 − v0,−1

2h
−

∂Vwv

∂y

∣

∣

∣

∣

(0,0)

)

, (3.11)

where Vwu is the velocity of boundary (i, 0) and Vwv is the velocity of boundary (0, j). Solving (3.11), we can get u−1,0

and v0,−1.

3.3 Accuracy check and stability check

We perform the accuracy check and demonstrate the rate of convergence of the scheme using the following 2D test case.

We also give the stability check.

Example. On a domain Ω = [0, π] × [0, π] , we assume a solution of the form

uex(x, y, t) = sin
x

ls
cos

y

ls
F (t),

vex(x, y, t) = − cos
x

ls
sin

y

ls
F (t),

∂pex

∂x
= −

1

2ls
sin

2x

ls
F 2(t),

∂pex

∂y
= −

1

2ls
sin

2y

ls
F 2(t),

F (t) = sin(2νt),

which is an exact solution of 2D incompressible N-S equations with a forcing term

�f =

⎛

⎝

2ν cos(2νt) sin x
ls

cos y
ls

+ 2ν
l2
s

sin x
ls

cos y
ls

sin(2νt)

−2ν cos(2νt) cos x
ls

sin y
ls

− 2ν
l2
s

cos x
ls

sin y
ls

sin(2νt)

⎞

⎠

and satisfy the Navier slip boundary condition:

v = 0, l−1
s uslip = ∂yu,

uslip = u(i, 0) + Vw = u(i, 0) − sin
x(i, 0)

ls
F (t)

along the lower boundary;

v = − cos
x(i, N)

ls
sin

π

ls
F (t), l−1

s uslip = −∂yu,
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uslip = u(i, N) − Vw = u(i, N)− sin
x(i, N)

ls
F (t)

(

cos
π

ls
− sin

π

ls

)

along the upper boundary;

u = 0, l−1
s vslip = ∂xv,

vslip = v(0, j) + Vw = v(0, j) + sin(
y(0, j)

ls
)F (t)

along the left boundary;

u = cos
y(N, j)

ls
sin

π

ls
F (t), l−1

s vslip = −∂xv,

vslip = v(N, j) − Vw = v(N, j) − sin(
y(N, j)

ls
)F (t)

(

sin
π

ls
− cos

π

ls

)

along the right boundary. Table 1 shows the absolute errors of the numerical solutions compared to the exact solutions. The

results clearly indicate the second-order accuracy in L2 norm. Fig. 3 shows log–log numerical errors with a fixed 32 × 32
mesh and increasing ∆t from ∆t = 1

32 to ∆t = 8. The solution and its first derivatives remain of order O(1) up to time

t = 1000. The results indicate first order in time and ∆t is not restricted by the mesh size in space, which shows the method

is unconditionally stable.
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ex

)||
L

2

Δ t v.s. Δ t
Fig. 3 (online colour at: www.zamm-journal.org) Stability check for

scheme (3.5)–(3.8), ν = π/5.0, ls = 0.5. Numerical errors in different

norms at t = 1000 for increasing ∆t.

Table 1 Absolute errors at Time t = 1.0, Re = π/ν = 5.0, ls = 0.5.

grid points N L2 order H1 order L∞ order

u 322 1.5780E-02 0.2417 6.5418E-03

642 4.0162E-03 1.97 0.1201 1.01 1.6722E-03 1.97

1282 9.9302E-04 2.02 5.9922E-02 1.00 3.9407E-04 2.08

2562 2.4911E-04 2.00 2.9943E-02 1.00 9.9478E-05 2.00

v 322 1.5805E-02 0.2417 6.3651E-03

642 3.9543E-03 2.00 0.1201 1.01 1.5854E-03 2.01

1282 9.9192E-04 2.00 5.9921E-02 1.00 3.9611E-04 2.00

2562 2.4804E-04 2.00 2.9943E-02 1.00 9.9097E-05 2.00

∇p 322 0.3274

642 0.1620 1.02

1282 8.0644E-02 1.01

2562 4.0280E-02 1.00
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4 Numerical results

It is well known that for driven cavity flow, the Navier-Stokes equations with no-slip boundary condition leads to discon-

tinuity at corners between moving and fixed walls and causes the stress to diverge as the inverse of the distance from the

corner r. This can be shown asymptotically for small Reynolds numbers when the viscous forces are dominant. The stream

function ψ satisfies the biharmonic equation ∇4ψ = 0 asymptotically and, for no-slip at the boundaries, a solution may be

found which satisfies all the required boundary conditions. Expressions for the pressure and stress or vorticity for the clas-

sical solution vary as r−1, that is there is a logarithmic singularity when the force on each boundary is calculated. Koplik

and Banavar used the MD simulation to study the stress singularity. They observed a break down of the no-slip boundary

condition within atomic distances from the corner and a corresponding saturation of the stress. The hybrid multi-scale

approach by Nie et al. [6] that treated the singular region atomistically and the reminder of the cavity as a continuum also

shows similar results that the stress singularity is cut off near the corner by atomistic effects. In this section, we study the

effect of imposing the Navier slip boundary condition for the driven cavity. In particular, we investigate the behavior of the

solution near the corner and the long time behavior of the system.

4.1 The velocity and stress behavior near the corner

We numerically solve the system (3.1)-(3.4) with different values of ν, Vw, and ls but fixed cavity size L = 1. The system

converges to a steady state as t → ∞ when the Reynolds number Re = VwL/ν is not so large, Re ≤ 1. In this section,

the results are concentrated on the upper-left corner of the cavity. Fig. 4 shows the velocity profiles (scaled with the wall

velocity Vw and ls) near the corner for different values of Vw, ls and ν. It is evident that there is an universal velocity profile

that scales with Vw and ls reflecting the fact that when ls is small enough, the system is dominated by the linear Stokes

system near the corner. The universal behavior can be explained as follows. Let �u1 = �u
Vw

, �x1 = �x
ls

and p1 = lsp
Vw

, then �u1 and

p1 satisfy

l2s∂t �u1 + lsVw( �u1 · ∇) �u1 + ∇p1 = ν△ �u1, (4.12)

∇ · �u1 = 0, (4.13)

and the boundary condition �τ · �u1
(slip) = − ∂(�τ · �u1)

∂�n
. When ls → 0, the rescaled velocity profile �u1 satisfies the linear Stokes

equation

∇p1 = ν△ �u1

and the slip length ls has been scaled out of the Navier boundary condition.
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Fig. 4 (online colour at: www.zamm-journal.org) Velocity pro-

files scaled with the wall velocity Vw, ls, and ν near the corner.

The results also show that there is a sharp transition region (of size about 10 − 20ls) in which the velocity goes from

almost complete slip at the corner to a much slower partial slip region away from the corner and approaches the wall

velocity Vw as the distance from the corner r becomes large. The behavior of the velocity in the partial slip region is of

power law, i.e., ≈ 1/r. This power law behavior is similar to that of the slip profile observed in the moving contact line

problem [11].

When the Reynolds number is small, the Navier-Stokes equation is reduced to a linear Stokes equation or a biharmonic

equation in the stream function formulation. In [14], the authors developed an integral transform solution for solving the
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biharmonic equation ∇4
rψ = 0 with the Navier boundary condition, where ∇2

r = ∂2

∂r2 + 1
r

∂
∂r

+ 1
r2

∂2

∂θ2 , which is the polar

coordinate form of the biharmonic equation ∇4ψ = 0. The Navier slip boundary conditions in polar coordinates have the

following form

∂ψ
∂r

= 0, 1
r

∂ψ
∂θ

= Vw − ls
r2

∂2ψ
∂θ2 , θ = 0,

∂ψ
∂r

= 0, 1
r

∂ψ
∂θ

= ls
r2

∂2ψ
∂θ2 , θ = − π

2 .
(4.14)

Their solutions provide the approximation of the tangential stress near the corner

Trθ|θ=0 = νVwr−1 κa(ρ) + κb(ρ)

2
, (4.15)

where ν is the viscosity, ρ = ln(r/ls) and

κa(ρ) =
2eρ

π

{

Ci

[(

π + 2

2π

)

eρ

]

sin

[(

π + 2

2π

)

eρ

]

− si

[(

π + 2

2π

)

eρ

]

cos

[(

π + 2

2π

)

eρ

]}

,

κb(ρ) =
2eρ

π

{

Ci

[(

π − 2

2π

)

eρ

]

sin

[(

π − 2

2π

)

eρ

]

− si

[(

π − 2

2π

)

eρ

]

cos

[(

π − 2

2π

)

eρ

]}

,

where Ci and si are the cosine and sine integrals defined by

Ci(x) = −

∫

∞

x

cos t

t
dt, si(x) = −

∫

∞

x

sin t

t
dt.

It is easy to see that as r goes to 0, the tangential stress on the moving boundary becomes finite, i.e.

Trθ|θ=0 → νVw/ls, (4.16)

To compare with the asymptotic results, we compute the shear stress for different wall speed Vw, viscosity ν, and slip length

ls. Fig. 5 shows the shear stress for different slip lengths (symbols) along the upper boundary and near the upper-left corner.

They match well with the asymptotical results. This again confirms that the slip near the corner removes the unphysical

singularity of the stress.
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T Fig. 5 (online colour at: www.zamm-journal.org) Shear
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sults. ‘+′, ‘◦′, ‘�′, and ‘⊳′ represent the results for

ls = 0.001764, 0.003528, 0.007056, 0.014112, respec-

tively. The lines are theoretical results obtained in [14].

The shear stress also demonstrates similar universal behavior after being scaled with the Vw, ν, and ls. Fig. 6 shows

a plot of the rescaled shear stress along the moving wall from the upper-left corner. At the intermediate scales, the stress

follows the power law behavior predicted by the Stokes equation. When r/ls is small enough, all results fall onto a common

curve that approaches to a constant. The cut-off point rs (deviation from the power law behavior) is at about 10ls.
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Rescaled shear stress with different Vw, ls, and ν.

4.2 Hopf bifurcation

As the Reynolds number is increased, the driven cavity flow undergoes a sequence of Hopf bifurcations to periodic, quasi-

periodic, inverse period-doubling, period-doubling before it reaches a chaotic regime. There is a lot of work on numerical

simulations of the Hopf bifurcation phenomena to find the critical Reynolds numbers for bifurcation. For regularized driven

cavity flow where the singularity at the upper corners is removed, namely, the horizontal speed on the upper lid of the

cavity is taken to be 16x2(1 − x)2 instead of 1, Goodrich, Gustafson, and Halasi [15] gave a very detailed investigation at

Re = 5000. Jie Shen [8] used a Chebyshev-Tau approximation to show that a Hopf bifurcation occurs at a critical Reynolds

number in (10000, 10500) for the regularized driven cavity flow. Fortin et al. [16] studied the Hopf bifurcations through a

classical eigenvalue analysis of the linearized Navier-Stokes equations by means of a finite element spatial discretization.

There are many other different results in the literature and the critical Reynolds number Rec is estimated from 7500 to up

to over 10000 [17–21]. Auteri et al. [9] applied a singularity subtraction technique and second-order spectral projection

method to locate the critical Reynolds number Rec for the first Hopf bifurcation in the interval [8017.6, 8018.8), which

means the asymptotic solution is steady when Reynolds number is less than Rec and the asymptotic solution becomes

periodic in time when Reynolds number is larger than Rec.

All the numerical studies on Hopf bifurcation so far use no-slip boundary conditions at both moving wall and fixed walls.

If the no-slip boundary conditions are replaced by Navier boundary conditions, we have shown in the previous section that

the behavior of the solution changes, especially near the corner where the stress singularity is removed. We now want to

study how the Navier slip affects the Hopf bifurcation in the lid-driven cavity.

Consider 2D lid-driven cavity problem in [0, 1] × [0, 1] with Navier boundary condition and Vw = 1.0 on the top

boundary and Vw = 0.0 on the other boundaries. Since the solution has larger gradient near the corner, we use a more

refined mesh near the wall to capture the main features of the flow (see Fig. 7). Our purpose is to study how the first
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Fig. 7 (online colour at: www.zamm-journal.org) Zoom plot of top

left.
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bifurcation Reynolds number changes with slip length. However, it is not our intention to locate exact critical Reynolds

number for each slip length since the computational cost is too expensive. Instead, we will locate the critical Reynolds

number for each slip length in certain interval.

For several values of slip length, we compute solutions of the 2D driven cavity flow for increasing Reynolds numbers.

We start with ls = 0.003, our results show that for Re = 8000, the solution reaches a steady state after a long transition

time. For Re = 9000, a stable periodic solution is obtained. This shows that the critical Reynolds number for ls = 0.003 is

between 8000 and 9000. In a similar way, we show that for ls = 0.005, Rec is between 10000 and 10500; for ls = 0.008,

Rec is between 11000 and 12000; for ls = 0.01764, Rec is between 16000 and 18000. It is clear that the critical Reynolds

number increases with ls.

We now fix a slip length at ls = 0.01764 and give a detailed description of Hopf bifurcation. For Re = 13000 and

Re = 16000, the solution reaches a steady state after a long transition period. This is illustrated in Fig. 8, where the

horizontal velocity u(t) at the point (0.5, 0.5) is plotted as a function of time.

Fig. 9(a) shows the stream-function for steady state solution at Re = 10000. It exhibits a large primary vortex with three

secondary vortices at three corners. The maximum value of the stream-function of the primary vortex is 0.0688, which

corresponds to x = 0.5273 and y = 0.5078. The behavior of the solution near the corners is noticeably different from that

of the solution obtained with the no-slip boundary condition (Fig. 9(b)).

At Re = 18000, we observe a stable periodic solution for t large enough as shown in Figs. 10 and 11. In these figures,

we plot the time evolution of the first component of the velocity and its power spectrum at the two points (0.5, 0.5) and

(0.25, 0.81). The frequency of the periodic motion is estimated to be roughly f ≈ 0.08. The behavior is similar for pressure
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Fig. 8 (online colour at: www.zamm-journal.org) Time evolution of u at point (0.5, 0.5), ls = 0.01764: (a) Re = 13000;

(b) Re = 16000.
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Fig. 9 (online colour at: www.zamm-journal.org) Stream-function at Re = 10000 with (a) Navier slip boundary condi-

tion, ls = 0.01764; (b) no-slip boundary condition.
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Fig. 10 When ls = 0.01764, time evolution of u (a) and power spectrum (b) at point (0.5, 0.5) for Re = 18000.
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Fig. 11 When ls = 0.01764, time evolution of u (a) and power spectrum (b) at point (0.25, 0.81) for Re = 18000.
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Fig. 12 (online colour at: www.zamm-journal.org) Phase portrait of u, where we plot (u(t), u(t + T )) for 4300 ≤ t ≤

4500 and T = 4.4, ls = 0.01764: (a) at point (0.5, 0.5); (b) at point (0.25, 0.81).
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Fig. 13 (online colour at: www.zamm-journal.org) Phase portrait of v, where we plot (v(t), v(t + T )) for 4300 ≤ t ≤

4500 and T = 4.4, ls = 0.01764: (a) at point (0.5, 0.5); (b) at point (0.25, 0.81).
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Fig. 14 (online colour at: www.zamm-journal.org) Evolution of the

stream function during one main period, ls = 0.01764: (a) t =

4502.608; (b) t = 4505.808; (c) t = 4509.008; (d) t = 4512.208;

(e) t = 4515.008.
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and vorticity. The periodicity of the solution is also confirmed by the closed curve of the phase portrait in Figs. 12 and 13.

The evolution of the stream function in a complete cycle is given in Fig. 14.

The results have indicated that with the Navier boundary condition and ls = 0.01764, the first bifurcation occurs at

Reynolds number between 16000 and 18000 which is much larger than that with the no-slip boundary conditions. It is clear

to see that when ls increases from 0.003 to 0.01764, the Hopf bifurcation Reynolds number is also increased.

5 Conclusions

We have simulated the driven cavity flow using the Navier boundary conditions. We employ a numerical scheme which is

implicit in viscosity and explicit in both pressure and convection and use finite difference space discretization with local

pressure boundary condition. Our results have shown that the Navier slip boundary condition removes the corner singularity

induced by the no-slip boundary condition. The behavior of the shear stress near the corner also agrees with the asymptotic

results derived from the biharmonic equations. The Navier slip is also shown to have a strong effect on the Hopf bifurcation

of the driven cavity flow. The first Hopf bifurcation critical Reynolds number is significantly increased when slip is allowed.
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