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h i g h l i g h t s

• Derivation of generalised Klein–Gordon equations is presented in the context of deep water waves.
• Accuracy of this approximate model is studied using analytical and numerical methods.
• For travelling periodic waves the model is shown to be more accurate than the cubic Zakharov equations.
• Dynamics of periodic and localised wave trains is studied numerically.
• It is shown numerically that this model can develop Riemann-type wave breaking phenomenon.
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a b s t r a c t

In this study, we discuss an approximate set of equations describing water wave propagating in deep
water. These generalised Klein–Gordon (gKG) equations possess a variational formulation, as well
as a canonical Hamiltonian and multi-symplectic structures. Periodic travelling wave solutions are
constructed numerically to high accuracy and compared to a seventh-order Stokes expansion of the full
Euler equations. Then, we propose an efficient pseudo-spectral discretisation, which allows to assess the
stability of travelling waves and localised wave packets.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The water wave problem counts today more than 200 years of
history (see A. Craik (2004), [1]). Despite some recent progress
[2–5], the complete formulation remains a mathematical difficult
problem and a stiff numerical one. Consequently, researchers have
always been looking for specific physical regimes which would
allow to simplify the governing equations [6,7]. There are twomain
regimes which attracted a particular attention from the research
community: shallow and deep water approximations [8,9].

If λ is a characteristic wavelength and h is an average water
depth, the shallow water approximation consists to assume that

∗ Corresponding author.

E-mail addresses: Denys.Dutykh@univ-savoie.fr (D. Dutykh),

Marx.Chhay@univ-savoie.fr (M. Chhay), diderc@unice.fr (D. Clamond).

URLs: http://www.denys-dutykh.com/ (D. Dutykh), http://marx.chhay.free.fr/

(M. Chhay), http://math.unice.fr/∼didierc/ (D. Clamond).

h/λ ≪ 1 or in other words, the water depth is much smaller com-

pared to the typical wavelength. This regime is relevant in coastal

engineering problems [10–12]. In open ocean only tsunami and

tidal waves are in this regime [13,14].

The deep water approximation is exactly the opposite case

when h/λ ≫ 1, i.e. the water depth is much bigger than the typ-

ical wavelength. In practice, some deep water effects (defocusing

type of the NLS equation) can already manifest when kh = 2πh/

λ & 1.36. This regime is relevant for most wave evolution prob-

lems in open oceans [15]. In the present paper, we present a

detailed derivation of what we call a ‘‘generalised Klein–Gordon

(gKG)’’ equations using a variational principle [16]. To our knowl-

edge, it is a novel model in deep water regime. By making compar-

isons with the full Euler equations, we show that these equations

can, on somepeculiar features, outperform the celebrated cubic Za-

kharov (cZ) equations [17,18]. Recently, a novel so-called compact

Dyachenko–Zakharov equation was proposed [19] which describes

the evolution of the complex wave envelope amplitude in deep

http://dx.doi.org/10.1016/j.physd.2015.04.001
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Fig. 1. Definition sketch of the fluid domain.

waters. This promising equation results from a sequence of thor-

oughly chosen canonical transformations, making the direct com-

parisons rather tricky.

The gKG equations have multiple variational structures. First of

all, they appear as Euler–Lagrange equations of an approximate

Lagrangian that possesses also a canonical Hamiltonian formula-

tion [16]. In this study, we show that the gKG system can be re-

cast into the multi-symplectic form [20,21] as well. The main idea

behind this formulation is to treat the time and space variables

on equal footing [22] while, for instance in Hamiltonian systems,

the time variable is privileged with respect to the space. Based on

this special structure, numerous multi-symplectic schemes have

been proposed for multi-symplectic PDEs including the celebrated

KdV and NLS equations [20,23–25]. These schemes are specifically

designed to preserve exactly the discrete multi-symplectic form.

However, these schemes turn out to be fully implicit, thence ad-

vantageous only for long time simulations using large time steps.

Since in the present study we focus on the mid-range dynamics,

we opt for a pseudo-spectral method which can insure a high ac-

curacy with an explicit time discretisation [26,4,27,28]. Since the

periodic and localised solutions play an important role in the non-

linear wave dynamics [29], we use the numerical method to study

the behaviour of these solutions.

The present paper is organised as follows. In Section 2 we

briefly present the essence of the deep water approximation and

derive the gKG equations. In Section 3, we discuss some structural

properties of the model and, in Section 4.1, we compare it to the

classical cubic Zakharov (cZ) equations. Periodic travelling wave

solutions are computed in Section 4. The numerical method for the

gKG initial value problem is described in Section 5. Somenumerical

tests are presented in Section 6. Finally, the last Section 7 contains

main conclusions of this study.

2. Mathematical modelling

Consider an ideal incompressible fluid of constant density ρ.

The vertical projection of the fluid domain Ω is a subset ofR2. The

horizontal independent variables are denoted by x = (x1, x2) and

the upward vertical one by y. The origin of the Cartesian coordinate

system is chosen such that the surface y = 0 corresponds to the

still water level. The fluid is bounded above by an impermeable

free surface at y = η(x, t). We assume that the fluid is unbounded

below. This assumption constitutes the so-called deep water

limiting case which is valid if the typical wavelength is much

smaller than the average water depth. The sketch of the physical

domain is shown in Fig. 1.

2.1. Fundamental equations

Assuming that the flow is incompressible and irrotational, the
governing equations of the classical water wave problem over an
infinite depth are the following [30,9,6,7]:

∇
2φ + ∂ 2

y φ = 0 − ∞ 6 y 6 η(x, t), (2.1)

∂tη + (∇φ)·(∇η) − ∂y φ = 0 y = η(x, t), (2.2)

∂tφ + 1

2
(∇φ)2 + 1

2
(∂yφ)2 + g η = 0 y = η(x, t), (2.3)

|gradφ| → 0 y → −∞, (2.4)

with φ being the velocity potential (i.e., u = ∇φ, v = ∂yφ), g the
acceleration due to gravity and where ∇ = (∂x1 , ∂x2) denotes the
gradient operator in horizontal plane.

The incompressibility condition leads to the Laplace equation
for φ. The main difficulty of the water wave problem lies on
the nonlinear free boundary conditions and that the free surface
shape is unknown. Eq. (2.2) expresses the free-surface kinematic
condition, while the dynamic condition (2.3) expresses the free
surface isobarity. Finally, the last condition (2.4) means that the
velocity field decays to zero as y → −∞.

The water wave problem possesses several variational struc-
tures [31–34]. In the present study, wewill focusmainly on the La-
grangian variational formalism, but not exclusively. Surface gravity
wave equations (2.1)–(2.3) can be derived as Euler–Lagrange equa-
tions of a functional proposed by Luke [31]

L =
 t2

t1



Ω

L ρ d2
x dt,

L = −
 η

−∞



g y + ∂t φ + 1

2
(∇ φ)2 + 1

2
(∂y φ)2



dy. (2.5)

In a recent study,Clamond andDutykh [16] proposed to use Luke’s
Lagrangian (2.5) in the following relaxed form

L = (ηt + µ̃·∇η − ν̃) φ̃ − 1

2
g η2

+
 η

−∞



µ·u − 1

2
u
2 + ν v − 1

2
v2 + (∇·µ + νy) φ



d y, (2.6)

where {u, v,µ, ν} are the horizontal velocities, the vertical ve-
locity and the associated Lagrange multipliers, respectively. The
additional variables {µ, ν} (Lagrange multipliers) are called
pseudo-velocities. The over ‘tildes’ denote a quantity computed at
the free surface y = η(x, t).

While the original Lagrangian (2.5) incorporates only two vari-
ables (η and φ), the relaxed Lagrangian density (2.6) involves six
variables {η, φ, u, v,µ, ν}. These additional degrees of freedom
provide us with more flexibility in constructing various approx-
imations. For more details, explanations and examples we refer
to [16].
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2.2. Model equations

Now, we illustrate the practical use of the variational principle
(2.6) on an example borrowed from [16]. For progressive waves
in deep water, the Stokes expansion shows that the velocity
field varies nearly exponentially along the vertical. Even for
very large unsteady waves (including breaking waves), accurate
numerical simulations and experiments have shown that the
vertical variation of the velocity field is indeed very close to an
exponential [35,36]. Thus, this property is exploited here to derive
a simple approximation for waves in deep water.

Let κ > 0 be a characteristic wavenumber corresponding, for
example, to the carrier wave of a modulated wave group or to the
peak frequency of a JONSWAP spectrum. Following the discussion
above, it is natural to seek approximations in the form

{φ; u; v; µ; ν} ≈ {φ̃; ũ; ṽ; µ̃; ν̃} eκ (y−η), (2.7)

where φ̃, ũ, ṽ, µ̃ and ν̃ are functions of x and t that will be deter-
mined using the variational principle. The ansatz (2.7) is certainly
the simplest possible that is consistent with experimental evi-
dences. This ansatz has already been used by Kraenkel et al. [37]
for building their approximation.

For the sake of simplicity, we introduce the constraints µ̃ = ũ

and ν̃ = ṽ. Thus, the ansatz (2.7) substituted into the Lagrangian
density (2.6) yields

2 κ L = 2 κ φ̃ ∂tη − g κ η2 + 1

2
ũ
2 + 1

2
ṽ2

− ũ·(∇φ̃ − κ φ̃∇η) − κ ṽ φ̃. (2.8)

The Euler–Lagrange equations for this functional yield

δ ũ : 0 = ũ − ∇φ̃ + κ φ̃ ∇η,

δ ṽ : 0 = ṽ − κ φ̃,

δ φ̃ : 0 = 2 κ ∂tη + ∇·ũ − κ ṽ + κ ũ·∇η,

δ η : 0 = 2 g κ η + 2 κ ∂t φ̃ + κ ∇·(φ̃ ũ).

The two first relations imply that this approximation is exactly
irrotational and their use in the last two equations gives

∂tη + 1

2
κ−1

∇
2φ̃ − 1

2
κ φ̃ = 1

2
φ̃



∇
2η + κ (∇η)2



, (2.9)

∂t φ̃ + g η = −1

2
∇·



φ̃ ∇φ̃ − κ φ̃2
∇η



. (2.10)

Since Eqs. (2.9)–(2.10) derive from an irrotational motion, they
can also be obtained from Luke’s Lagrangian (2.5) under ansatz
(2.7). However, we prefer to keep the heavy machinery of the
relaxed variational principle since it allows to derive new models
which cannot be obtained from Luke’s variational principle. These
examples will be investigated in future works. Eqs. (2.9)–(2.10)
physically are a deep water counterpart of Saint-Venant equations
for shallow water waves, in the sense given in [16].

Remark 1. To the linear approximation, after elimination of φ̃, Eqs.
(2.9)–(2.10) yield

∂ 2
t η − 1

2
(g/κ) ∇

2η + 1

2
g κ η = 0, (2.11)

that is a Klein–Gordon equation. For this reason, Eqs. (2.9)–(2.10)
are referred here as ‘‘generalised Klein–Gordon (gKG)’’. The
Klein–Gordon equation is prominent in mathematical physics and
appears, e.g., as a relativistic generalisation of the Schrödinger
equation. The Klein–Gordon equation (2.11) admits a special
(2π/k)-periodic travelling wave solution

η = a cos k (x1 − c t), c2 = 1

2
g (k2 + κ2) (κ k2)−1.

Therefore, if k = κ the exact dispersion relation of linear waves
(i.e., c2 = g/k) is recovered, as it should be. This means, in particu-
lar, that the gKG model is valid for spectra narrow-banded around
the wavenumber κ .

3. Symplectic structures

In this section we unveil two other variational structures of the
gKG equations.

3.1. Canonical Hamiltonian

It is straightforward to verify that the gKG equations possess a
canonical Hamiltonian structure


∂tη

∂t φ̃



= J·



δ H/δ φ̃
δ H/δ η



, J =


0 −1
1 0



,

with the Hamiltonian functional H is defined as

H =


Ω



1

2
g η2 + 1

4
κ−1



∇φ̃ − κ φ̃ ∇η
2

+ 1

4
κ φ̃2



d2
x. (3.1)

This ‘simple’ Hamiltonian H is quartic in nonlinearities and in-
volves only first-order derivatives. It has to be compared with
Zakharov’s quartic Hamiltonian which involves second-order
derivatives andpseudo-differential operators. However, Zakharov’s
quartic Hamiltonian is valid for broad spectra, while the gKG are
limited to very narrow-banded spectra. Note that the Hamiltonian
(3.1) cannot be derived from the exact one, since the latter assumes
that irrotationality and incompressibility are both satisfied iden-
tically in the bulk, while the incompressibility is not fulfilled by
Eqs. (2.9)–(2.10).

3.2. Multi-symplectic structure

In addition to the Lagrangian and Hamiltonian formulations,
the gKG equations (2.9)–(2.10) can be recast into a first-order PDE
system:

2 κ ∂t η + ∇·ũ = κ2 φ̃ − κ ũ·α, (3.2)

−2 κ ∂t φ̃ − ∇·γ = 2 κ g η, (3.3)

−∇φ̃ = −ũ − κ φ̃ α, (3.4)

∇η = α, (3.5)

0 = γ − κ φ̃ ũ, (3.6)

where α = (α1, α2) and γ = (γ1, γ2) are auxiliary variables. These
relations yield the multi-symplectic canonical structure

M · z⃗t + K1 · z⃗x1 + K2 · z⃗x2 = gradz⃗ S(z⃗), (3.7)

where z⃗ = (φ̃, η, ũ1, ũ2, γ1, γ2, α1, α2)
T ∈ R8, S is the generalised

Hamiltonian function

S(z⃗) = α·γ + κ g η2 + 1

2



κ φ̃
2

− κ φ̃ ũ·α − 1

2
ũ·ũ,

andwhere the eight-by-eight skew-symmetricmatricesM,K1 and
K2 are defined as

M = 2 κ


e⃗1 ⊗ e⃗2 − e⃗2 ⊗ e⃗1


, (3.8)

K1 = e⃗1 ⊗ e⃗3 − e⃗3 ⊗ e⃗1 + e⃗5 ⊗ e⃗2 − e⃗2 ⊗ e⃗5, (3.9)

K2 = e⃗1 ⊗ e⃗4 − e⃗4 ⊗ e⃗1 + e⃗6 ⊗ e⃗2 − e⃗2 ⊗ e⃗6, (3.10)

e⃗j being jth unitary vector of the Cartesian coordinates for the R8

space (⊗ the tensor product).
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3.3. Conservation laws

The local multi-symplectic conservation law for (3.7) is

∂t ω + ∇·τ = 0,

where the pre-symplectic forms are defined, for any solution of the
first variation of (3.7), as

ω = 1

2
dz⃗ ∧ (M · dz⃗), τ1 = 1

2
dz⃗ ∧ (K1 · dz⃗),

τ2 = 1

2
dz⃗ ∧ (K2 · dz⃗),

that is to say

ω = 2 κ d η ∧ d φ̃, τ1 = dũ1 ∧ dφ̃ + dγ1 ∧ dη,

τ2 = dũ2 ∧ dφ̃ + dη ∧ dγ2,

where ∧ is the usual exterior or wedge product [20,38].
Along the multi-symplectic system solutions, local energy

conservation law is verified

∂t E(z⃗) + ∇·F(z⃗) = 0,

with

E = S − 1

2
z⃗ T · K1 · z⃗x1 − 1

2
z⃗ T · K2 · z⃗x2 ,

Fj = 1

2
z⃗ T · Kj · z⃗t ,

which can be explicitly expressed in terms of the physical variables
as

2 E = 2 κ g η2 − ũ
2 + (κ φ̃)2 − κ φ̃ ũ·∇η + κ η ∇·(φ̃ ũ)

− φ̃ ∇·ũ + ũ·∇φ̃,

2 F = κ φ̃ ũ ∂tη − κ η ∂t(φ̃ ũ) + φ̃ ∂t ũ − ũ ∂t φ̃.

There exists also two local momentum conservation laws associ-
ated to each spatial direction

∂t I1(z⃗) + ∂x1G11(z⃗) + ∂x2G12(z⃗) = 0,

∂t I2(z⃗) + ∂x1G21(z⃗) + ∂x2G22(z⃗) = 0,

the corresponding quantities being

2 Ij = z⃗ T · M · z⃗xj = 2κ


φ̃ ∂xjη − η ∂xj φ̃


,

2G12 = z⃗ T · K2 · z⃗x1
= κ φ̃ ũ2 ∂x1η − κ η ∂x1(φ̃ ũ2) + φ̃ ∂x1 ũ2 − ũ2 ∂x1 φ̃,

2G21 = z⃗ T · K1 · z⃗x2
= κ φ̃ ũ1 ∂x2η − κ η ∂x2(φ̃ ũ1) + φ̃ ∂x2 ũ1 − ũ1 ∂x2 φ̃,

2G11 = 2 S − z⃗ T · M · z⃗t − z⃗ T · K2 · z⃗x2
= 2 κ g η2 + (κ φ̃)2 − ũ

2 + 2κ


η ∂t φ̃ − φ̃ ∂tη


−


κ φ̃ ũ2 ∂x2η − κ η ∂x2(φ̃ ũ2) + φ̃ ∂x2 ũ2 − ũ2 ∂x2 φ̃


,

2G22 = 2 S − z⃗ T · M · z⃗t − z⃗ T · K1 · z⃗x1
= 2 κ g η2 + (κ φ̃)2 − ũ

2 + 2κ


η ∂t φ̃ − φ̃ ∂tη


−


κ φ̃ ũ1 ∂x1η − κ η ∂x1(φ̃ ũ1) + φ̃ ∂x1 ũ1 − ũ1 ∂x1 φ̃


.

The multi-symplectic form highlighted above can be used to
construct various numerical multi-symplectic schemes which pre-
serve exactly the multi-symplectic form at the discrete level
[20,23–25,22]. These schemes are suitable for the long time inte-
gration using rather coarse discretisations [39]. Since in the present
manuscript we focus on mid-range, but highly accurate simula-
tions we opt for the pseudo-spectral discretisations. However, the
multi-symplectic framework seems to be very promising for long
time dynamics investigations employing only a moderate number
of the degrees of freedom. The conserved quantities derived above
can be used to assess the accuracy of the numerical solution, even
if their physical meaning is not clear at the current stage.

4. Travelling waves

For the sake of simplicity we will consider hereinafter the spe-
cial case of two-dimensional wave motions, i.e. the dependent
variables are independent of, say, the variable x2; for brevity, we
denote x = x1 and u = u1. The equations of motions become

ũ = φ̃x − κ φ̃ ηx, (4.1)

ṽ = κ φ̃, (4.2)

0 = 2 κ ηt + ũx − κ ṽ + κ ũ ηx, (4.3)

0 = 2 g κ η + 2 κ φ̃t + [ũ ṽ]x, (4.4)

which can be reduced into a two equations system

ηt + 1

2
κ−1 φ̃xx − 1

2
κ φ̃ = 1

2
φ̃



ηxx + κ η 2
x



, (4.5)

φ̃t + g η = −1

2



φ̃ φ̃x − κ φ̃2 ηx



x
. (4.6)

The equations can be combined to derive useful secondary
relations. For instance, we derive the conservative equations

ũt+,



3

4
ũ2 + 1

4
ṽ2 + g η



1 − 1

2
κ η



x

= 0, (4.7)



1

2
g κ η2 + 1

4
(ũ2 + ṽ2)



t

+


1

2
ũ (ṽ ηt − φ̃t)



x

= 0, (4.8)

which physically describe (after division by κ) the conservations of
the momentum and energy fluxes, respectively.

For travelling waves of permanent form, the dependent vari-
ables are functions of the single independent variable ξ = x − ct .
The Eqs. (4.7) and (4.8) can then be integrated as

3

4
ũ2 + 1

4
ṽ2 + g η



1 − 1

2
κ η



− c ũ = Kp, (4.9)

1

2
g κ η2 − 1

4
ũ2 + 1

4
ṽ2 = Ke, (4.10)

where Kp and Ke are integration constants. Adding these two rela-
tions, one obtains

1

2
ũ2 + 1

2
ṽ2 + g η − c ũ = Kp + Ke, (4.11)

which is the Bernoulli equation, Kp +Ke being a Bernoulli constant.
Subtracting the two relations, one gets at once

ũ2 + g η (1 − κ η) − c ũ = Kp − Ke, (4.12)

that can be used to express ũ in terms of η (or vice-versa), i.e.,

ũ = 1

2
c ±



Kp − Ke + 1

4
c2 − g η (1 − κ η), (4.13)

ũξ = g ηξ (1 − 2 κ η)/(c − 2 ũ). (4.14)

With these relations, the Lagrangian density (2.8) becomes

2 κ L = −/2 c ṽ ηξ − g κ η2 − 1

2
ũ2 − 1

2
ṽ2

= 2 c η 2
ξ



2 c − ũ − (g/κ) (1 − 2 κ η)/(c − 2 ũ)


− ũ2 − 2 Ke, (4.15)

where ũ should be expressed via (4.13). An equation for η is then
obtained from the Beltrami identity

L − ηξ

∂ L

∂ ηξ

= constant ≡ (Kb − 2 Ke)/2 κ,
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yielding



d η

d ξ

2

= κ (Kb + ũ2) (c − 2 ũ)

2 c [g (1 − 2 κ η) + κ (2 c − ũ) (c − 2 ũ)] , (4.16)

where ũ is given by (4.13). Unfortunately, we were not able to
solve Eq. (4.16) analytically. However, this solutionmight be useful
for theoretical investigations of travelling waves. In order to con-
struct these solutions numerically to high accuracy (∼10−10), we
employ a Newton Jacobian-free method combined with the Lev-
enberg–Marquardt algorithm [40]. The computed profiles will be
shown below in Section 6.

4.1. Stokes wave

Despite the fact that we were not able to find exact analytical
solutions to the gKG equations, a Stokes-type expansion can help
us to evaluate the accuracy of the approximate model. To the
seventh-order, a asymptotic expansion of the (2π/κ)-periodic
progressive wave of gKG equations is [16]:

κ η = α cos ξ + 1

2
α2



1 + 25

12
α2 + 1675

192
α4



cos 2ξ

+ 3

8
α3



1 + 99

16
α2 + 11 807

320
α4



cos 3ξ

+ 1

3
α4



1 + 64

5
α2



cos 4ξ + 125

384
α5



1 + 6797

300
α2



× cos 5ξ + 27

80
α6 cos 6ξ + 16 807

46 080
α7 cos 7ξ + O(α8),

g− 1
2 κ

3
2 φ̃ = α



1 − 1

4
α2 − 59

96
α4 − 4741

1536
α6



sin ξ

+ 1

2
α2



1 + 11

12
α2 + 547

192
α4



sin 2ξ

+ 3

8
α3



1 + 163

48
α2 + 221

15
α4



sin 3ξ

+ 1

3
α4



1 + 149

20
α2



sin 4ξ

+ 125

384
α5



1 + 5057

375
α2



sin 5ξ + 27

80
α6 sin 6ξ

+ 16 807

46 080
α7 sin 7ξ + O(α8),

g− 1
2 κ

1
2 c = 1 + 1

2
α2 + 1

2
α4 + 899

384
α6 + O(α8).

For comparison, the corresponding seventh-order Stokes expan-
sion of the full Euler equations in deep water is given by the fol-
lowing formulas

κ η = α cos ξ + 1

2
α2



1 + 17

12
α2 + 233

64
α4



cos 2ξ

+ 3

8
α3



1 + 51

16
α2 + 3463

320
α4



cos 3ξ

+ 1

3
α4



1 + 307

60
α2



cos 4ξ + 125

384
α5



1 + 10 697

1500
α2



× cos 5ξ + 27

80
α6 cos 6ξ + 16 807

46 080
α7 cos 7ξ + O(α8), (4.17)

g− 1
2 κ

3
2 φ̃ = α



1 − 1

4
α2 − 43

96
α4 − 2261

1536
α6



sin ξ

+ 1

2
α2



1 + 7

12
α2 + 81

64
α4



sin 2ξ

+ 3

8
α3



1 + 281

144
α2 + 5813

1080
α4



sin 3ξ

+ 1

3
α4



1 + 431

120
α2



sin 4ξ + 125

384
α5

×


1 + 3369

625
α2



sin 5ξ + 27

80
α6 sin 6ξ

+ 16 807

46 080
α7 sin 7ξ + O(α8), (4.18)

g− 1
2 κ

1
2 c = 1 + 1

2
α2 + 1

2
α4 + 707

384
α6 + O(α8). (4.19)

The expansions of η and φ̃ of the gKG periodic solution match the
exact Stokeswaveup to the third-order (non-matching coefficients
are displayed in bold). This is not surprising since the gKG
equations are cubic in nonlinearities. However, it is much more
surprising is that the phase velocity c is correct up to the fifth-
order.

5. Pseudo-spectral method

We briefly describe below a highly accurate Fourier-type
pseudo-spectral method [41,28] that we use to simulate the dy-
namics of the gKG equations. These methods have been proven
to be extremely efficient (practically unbeatable) in the idealised
periodic setting [41]. Below we show that the gKG system can be
integrated up to the Riemann wave breaking using the proposed
pseudo-spectral scheme.

With V = (η, φ̃)T denoting the vector of dynamic variables, the
gKG system (2.9), (2.10) can be recast in the vector form

Vt + L·V = N(V ), (5.1)

where the operator N denotes the right-hand side of Eqs. (2.9),
(2.10) and the linear operator L is defined as

L =





0
∇

2 − κ2

2κ
g 0



 , L̂ =





0 −|k|2 + κ2

2κ
g 0



 ,

where L̂ is the operator L in Fourier space. The Eq. (5.1) is
solved applying the Fourier transform in the spatial variable x.

The transformed variables is denoted by V̂ (t, k) = F {V (t, x)},
k being the Fourier transform parameter. The nonlinear terms
are computed in the physical space, while spatial derivatives are
computed spectrally in the Fourier space. For example, the term

φ̃∇
2η is discretised as:

F



φ̃ ∇
2η



= F



F
−1



φ̂


× F
−1{−|k|2η̂}



.

The other nonlinear terms are treated in a similar way. We note
that the usual three-half rule has to be applied for anti-aliasing
[26,4,28].

In order to improve the stability of the time discretisation
procedure, we integrate exactly the linear terms. This is achieved
by making a change of variables [4,27]:

Ŵ (t) = exp


(t − t0)L̂


· V̂ (t), Ŵ (t0) = V̂ (t0), (5.2)

yielding the equation

Ŵt = exp


(t − t0)L̂


· F



N


exp


(t0 − t)L̂


· Ŵ


.

The exponential matrix of the operator L̂ can be explicitly com-
puted to give

exp


(t − t0)L̂


=


cos


ω(t − t0)


−(ω/g) sin


ω(t − t0)


(g/ω) sin


ω(t − t0)


cos


ω(t − t0)




,

ω2 = g κ

2
+ g |k|2

2 κ
.
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(a) ε = 0.1821. (b) ε = 0.2220.

(c) ε = 0.2520. (d) ε = 0.2917.

Fig. 2. Comparison of the travelling wave solutions to the gKG equations with the seventh-order Stokes solution for various values of the wave steepness parameter. The

wavelength is fixed to 2π .

Finally, the resulting system of ODEs is discretised in space by the

Verner’s embedded adaptive 9(8) Runge–Kutta scheme [42]. The

step size is chosen adaptively using the so-called H211b digital fil-

ter [43,44] to meet the prescribed error tolerance, set as of the or-

der of machine precision.

6. Numerical results and discussion

6.1. Periodic steady solutions

We begin the numerical study of gKG equations by computing

numerically steady periodic Stokes-like solutions. We employ

the Newton Levenberg–Marquardt method which tends to the

steepest descent far from the solution (to ensure the convergence)

and becomes the classical Newton method in the vicinity of the

root [40]. Then, we compare the computed profile to the seventh-

order Stokes expansion to the full Euler equations (4.17)–(4.19). In

order to fix the ideas, we choose the wavelength to be λ ≡ 2ℓ =
2π , i.e. the computational domain is [−ℓ, ℓ]. Consequently, the
parameter κ = 2π/λ = 1. For simplicity, we take also g = 1m/s2.

In steady computations, we use only N = 128 Fourier modes. It is

sufficient to compute to high accuracy (∼O(10−9)) the numerical

solution at the collocation points.

The comparison for various steepnesses is shown in Fig. 2. We
recall that the steepness ε of a periodic wave is defined as

ε ≡ 1

2
(a+ − a−)κ, a+ ≡ max

x
{η(x)}, a− ≡ min

x
{η(x)}.

Fig. 3. Speed–steepness relation for periodic steady waves: blue solid line – the

gKG equations, red dashed line – seventh-order Stokes expansion. The wavelength

is fixed to 2π . (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

One can see in Fig. 2 that the differenceswith the reference solution

(4.17)–(4.19) are unnoticeable (to the graphical resolution) up to

ε ∼ 0.29. Additionally to the shape, it is also instructive to compare

the speed of travelling wave propagation with respect to the exact

asymptotic result (4.19). The comparison is shown in Fig. 3. The
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Fig. 4. Periodic travelling wave to the gKG equations for the steepness parameter

ε = 0.29967.

agreement up to very high steepnesses ε ∼ 0.28 is excellent. By
using the numerical continuation techniques, we can compute the
travelling wave solutions up to ε ∼ 0.30. It is interesting that
at this steepness the periodic wave starts to develop an angular
singularity at the crest similarly to the classical limiting Stokes
wave theory [45]. This shape is represented in Fig. 4. However,
for the full Euler equations the limiting wave steepness is equal to
ε ∼ 0.4432 [46]. Nevertheless, we find the agreement to be quite
satisfactory considering that the gKGmodel has not been designed
to represent such extreme solutions.

In order to validate further the computed travelling wave
profiles,we use the dynamic solver described in Section 5. Consider
the computational domain composed of 16 periodic waves with
steepness ε = 0.095. The discretisation was done with N = 4096
Fourier modes. This initial condition was propagated up to T =
250, which corresponds to approximatively∼ 40wave periods. As
one can see in Fig. 5, the initial wave system propagates uniformly
in space without changing its shape. This simulation shows again
that travellingwaveswere computed correctly. To test the stability
of these solutions we consider the same initial condition with a
long (∼ 4 wavelengths) and short (∼ 1/4 wavelength) wave
perturbations. Both situations were simulated numerically on the
same time scale and results are presented in Fig. 5(a), (b). We can
see that the travelling wave solutions in the gKG equations appear
to be stable. However, a more detailed study is needed to answer
this question with more certitude.

6.2. Envelope soliton

In this sectionwe consider an example stemming from thewave
packet propagation theory on deep waters. As it was shown for
the first time by Zakharov [34], the free surface complex envelope
A(x, t) is governed by the classical Nonlinear Schrödinger Equation
(NLS) [47,48,34]:

At + cg Ax + i cg

4 k0
Axx + iω0 k

2
0

2
A|A|2 = 0, (6.1)

whereω0 = √
gk0 and cg = ∂ω0/∂k0 = ω0/2k0 is the linear group

velocity. Eq. (6.1) admits the envelope soliton solution:

A(x, t) = a sech
√

2k20(x − cg t)


exp(−ia2k20ω0t/4). (6.2)

The free surface elevation η(x, t) and the velocity potential φ(x, t)
can be recovered from the complex envelope A(x, t) in the
following way:

η(x, t) = Re


A(x, t) ei(k0x−ω0t)


,

φ(x, t) = Re


− iω0

k0
A(x, t) ei(k0x−ω0t)



.
(6.3)

The evolution of this envelope soliton in higher-order models
was studied in [47,48]. Consequently, we put this localised
structure as the initial condition in the gKG equations. Consider
the computational domain [−128, 128] with periodic boundary
conditions and the envelope soliton (6.2) (transformed to physical
variables using formulas (6.3)) with a = 0.1, κ ≡ k0 = 1.0
and g = 1. We simulated the evolution of this wave packet until
T = 1000.0 which was sufficient for the packet to go around the
computational domain three times. The space–time evolution is
shown in Fig. 6 and several individual snapshots of the free surface
elevation are shown in Fig. 7. The shape of the envelope soliton
is not preserved exactly, of course. However, during short times
the preservation is satisfactory. On snapshots 7(b) and (c) one can
notice a small wavelet travelling in the opposite direction. The
general effect is the broadening of the wave packet in agreement
with previous investigations [49,50].

6.3. Shock wave formation

Finally, we present an additional test-case where the gKG
system shows an interesting behaviour. The initial condition is

(a) Long perturbation. (b) Short perturbation.

Fig. 5. Evolution of 16wavelengths of computed periodic travellingwaves for ε = 0.0954 during about 160 periods: (a) longwave perturbation; (b) shortwave perturbation.
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Fig. 6. Space–time plot of a localised wave packet under the gKG dynamics.

(a)



g

κ
t = 0.0. (b)



g

κ
t = 125.0.

(c)



g

κ
t = 500.0. (d)



g

κ
t = 1000.0.

Fig. 7. Evolution of initially localised wave packet under the gKG dynamics.

Table 1

Physical and numerical parameters used for the simulation of the shock wave

formation in gKG equations.

Gravity acceleration: g (m s−2) 1.0

Characteristic wavenumber: κ (m−1) 0.7

Computational domain half-length: ℓ (m) π

Final simulation time: T (s) 11.5

Initial condition amplitude: a (m) 0.1

Initial bump width: k (m−1) π

Number of Fourier modes: N 4096

taken to be a localised bump on the free surface with zero initial
velocity:

η(x, 0) = a sech2(kx), φ̃(x, 0) = 0.

All the values of physical and numerical parameters are given in

Table 1. The space–time dynamics of this system is shown in Fig. 10

and several snapshots of the free surface elevation are depicted in

Fig. 8. The particularity of this simulation consists in two shock

waves which develop at the free surface. The snapshot at the fi-

nal simulation time T is shown on the upper panel of Fig. 9. One

can clearly see the sharp transitions at the free surface. It is even
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(a) t = 0 s.

(b) t = 2.875 s.

(c) t = 5.75 s.

(d) t = 8.625 s.

Fig. 8. Several snapshots of an initial bump evolution. See also Fig. 10. Free surface at the final simulation time is shown in Fig. 9.

more instructive to look at the energy spectrum which is depicted

on the bottom panel of the same Figure. For the sake of compari-

son, we plot also the energy spectrum of a breaking Riemannwave

which was recently shown to be exactly of the form |η̂k|2 ∼ k−8/3

[51,52]. This excellent agreement shows that the gKG system may

produce wave breaking of the similar type as classical shallow-

water type systems. This result was to be expected since the gKG

system is a deep water counterpart of the classical Saint-Venant
equations [53].

7. Conclusions and future work

We discussed the derivation of some generalised Klein–Gordon
(gKG) equations, which are a new model for water waves
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Fig. 9. Free surface elevation and the energy spectrum at the final simulation time

T = 11.5 s. The red dotted line shows the theoretical prediction of a Riemannwave

breaking spectrum [51,52]. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

Fig. 10. Space–time dynamics of an initial bump posed on the free surface in the

gKG equations.

propagating in deep water approximation. This model already
appeared as an illustration for the relaxed variational formula-
tion [16]. However, in the present study, the structure of this
model is further investigated and a multi-symplectic formulation
was proposed. Moreover, we computed periodic travelling wave
solutions and we showed that they approximate fairly well the
corresponding solutions of the full Euler equations, including
the formation of a limiting wave with a singular point at the
crest [54,45].

The dynamics of regular periodic waves was studied and these
solutions appear to be stable under long and short wave perturba-
tions. Finally, we showed also that solutions of gKG equations may
produce the shockwave formationphenomenonof the similar type
as the breaking of Riemannwaves in shallowwatermodels [51,52].
To our knowledge, it is the first approximate model in deep waters
which shows this behaviour.

Although the results presented in this paper are encouraging,
further investigations would be necessary to assess the relevance
and limitations of the generalised Klein–Gordon (gKG) for mod-
elling water waves in deep water. The comparisons with the com-
pact Dyachenko–Zakharov equation [19,55] might be interesting.
However, the gKG equations may also be a relevant model in con-
texts different from water waves.

Concerning the perspectives, the stability of periodic travelling
wave solutions to the gKG equations has to be properly studied
using the Floquet theory [56]. Moreover, all the simulations pre-
sented hereinabovewere performed in (1+ 1)Dwave propagation.
Similar numerical analysis has to be performed in (2+ 1)D as well.
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