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The spectral method of Orszag & Patterson (19724, b) is used here to study pressure
and velocity fluctuations in axisymmetric, homogeneous, incompressible, decaying
turbulence at Reynolds numbers Re, < 40. In real space 322 points are treated. The
return to isotropy is simulated for several different sets of anisotropic Gaussian initial
conditions. All contributions to the spectral energy balance for the different velocity
components are shown as a function of time and wavenumber. The return to isotropy
is effected by the pressure-strain correlation. The rate of return is Iarger at high than
at low wavenumbers. The inertial energy transfer tends to create anisotzropy at high
wavenumbers. This explains the overrelazation found by Herring (19'74). The pressure
and the inertial energy transfer are zero initially as the triple correlations are zero for
the Gaussian initial values. The two transfer terms are independent of each other but
vary with the same characteristic time scale. The pressure-strain correlation becomes
gmall for extremely large anisotropies. This can be explained kinematically. Rotta's
(1951) model is approximately valid if the anisotropy is small and if the time scale of
the mean flow is much larger than 0-2 L,/v, which is the time scale of the triple correla-
tions (L, = integral length scale, v = root-mean-square velocity). The value of Rotta’s
constant is less dependent upon the Reynolds number if the pressure—strain correla-
tion is scaled by v*/L, rather than by the dissipation. Lumley & Khajeh-Nouri’'s
(1974) model can be used to account for the influence of large anisotropies. The effect
of strain is studied by splitting the total flow field into large- and fine-scale motion.
The empirical model of Naot, Shavit & Wolfshtein (1970) has been confirmed in this
respect.

1. Introduction

The spectral method of Orszag & Patterson (19724, b) has been used to simulate
static-pressure and velocity fuctusations in incompressible homogeneous decaying
turbulence. The method and its results for nearly isotropic turbulence have been
presented in the companion paper (Schumann & Patterson 1978, hereafter referred
to as I). The results have shown that the method is reliable for Reynolds numbers
Re, < 36.T7

+ This i confirmed, moreover, by & comparison with the direct-interaction approximation in

a paper (Schumann & Herring 1976) which has been prepared and published since the first version
of the present paper was prepared.
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Our study is concerned with axisymmetric anisotropic cases, for Which we in-
vestigate the return to isotropy effected by the pressure-strain correlation. The
pressure—strain correlation controls both the relative and the absolute magnitude of
the Reynolds stresses and is thus one of the most important terms to be approximated
in Reynolds-stress models of turbulence (see, for example, Reynolds 1976; Hanjali¢
& Leunder 1972; Daly 1974; Donaldson 1972; Lumley & Khajeh-Nouri 1974). The
simplest and most common assumption for this correlation is Rotta’s (1951) ‘return-
to-isotropy’ model.

However, even for homogeneous turbulence, the validity of this model bhas been
questioned (Schumann 1975) and the magnitude of the empirical constant ¢ in it is
very uncertain. Values between 0-5 (Daly 1974) and 8 (Lumley & Khajeh-Nouri 1974)
have been used even in the more recent literature, mainly because of & gap in experi-
mental data. Most models are justified indirectly by comparison of their predictions
for the Reynolds stresses with experiments, a typical comparison being that of
Champagne, Harris & Corrsin (1970). Except for some measurements in the atmo-
gpheric boundary layer by Elliot (1972}, no direct experimental results for the pressure—
strain correlation are known. Elliot’s results exhibit large statistical uncertainties,
moreover, Deardorff (1974) and Schumann (1975) studied the pressure-strain correla-
tion in a planetary boundary layer and in channel flows, respectively, at high Reynolds
numbers, using finite-difference simulations for the large-scale motions together with
some models for the subgrid-scale motions. In these studies the influence of the
boundaries, the mean strain and the anisotropy of the length scales have not been
separated, and their significance with respect to Rotta’s model is therefore question-
able. :

The most direct investigation of this model has been made recently by Herring
(1974) for axisymmetric turbulence using the direct-interaction approximation. He
studied two forms of Rotta’s return-to-isotropy model, one using E /e and the other
L,/B} (E = energy, ¢ = dissipation, L, = integral length scale) as the characteristic
time scale. He found that the constant appearing in the second form is less dependent
upon the initial conditions. One of the most surprising results was his finding of some
‘overrelaxation’, in that after some time the deviation from isotropy at high wave-
numbers becomes opposite to that at small wavenumbers; this was not explained
physically. Herring deduced the pressure—strain correlation from & balance between
the time derivative of the energy, the nonlinear energy transfer and the rate of dis-
sipation of energy.

In the present paper we also study axisymmetric turbulence as defined by some
appropriate initial conditions. However, since we have access to the pressure fluctua-
tions themselves, we are able to compute the pressure-strain correlation directly.
This allows us to evaluate the spectral distribution and provides more insight into
what is going on, especially with respect to the ‘overrelaxation’. In addition to
Rotta’s proposal, we study the influence of anisotropic length seales, although auccess
is marginal in this respect. Moreover, we evaluate the three constants appearing in
Lumley & Khajeh-Nouri's (1974) proposal. We find that only two of them can be
assumed to be universal,

Because of its technical importance, it would be helpful to have a method which
allows the study of the impact of mean shear on homogeneous turbulence. This is not
possible with the present scheme. However, we get some information about the
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influence of mean shear by splitting the flow field into large- and fine-scale motions
and using the spectral pressure—strain correlation.

As we start from random initial conditions, statistical errors appear which can be
overcome only by the very expensive generation of large ensembles. The Reynolds
number is low, 50 that no inertial subrange (Batchelor 1959) exists. Moreover, we are
unable to use the initial conditions used by Herring (1974) because the truncation
errors they would cause would be too large. The resultant constant in Rotta’s model
from the present simulations, however, is only slightly different from the values
found by Herring. The return to isotropy in homogeneous turbulence with anisotropy
induced by magnetohydrodynamical forces has been studied by Schumann (1976).

2. Run specifications :

We use exactly the same method asin I except for the initial conditions. The spectral
code integrates the velocities 4,(k, ?) as a function of time ¢ for discrete values of the
wavenumber vector k = {k,, k,, by} = kpy, N, where N = {N,, N,, N,} are integer
numbers with |[N| < (242) ~ 15-6. The pressure in wavenumber space is H(k, ). The
Fourier transforms are the real-space variables w;(x,f) and p(x, t), where X = {;, &,, x5}
The computation involves 32% points in real space. Periodic boundary conditions are
used (‘box turbulence’) with a periodic length L = 27 /kp,,.

The simplest anisotropic case is that of axisymmetric turbulence (Batchelor 1946).
This case has been studied recently by Herring (1974). Using Herring’s notation,
axisymmetric turbulence (with zero helicity) can be described by

2
<ﬁt’(ks t) ﬁ;( - ks t)) = El q)«z{k, t) e:(k) e;(k): (1)
where the brackets denote the ensemble average,
el(k) = (kxn)/[kxn|, ek)=rFkxel(k)/|kxel(k)| 2)
and the ®* are two arbifrary scalar functions. The axis of symmetry is 1 and we
choose n = (0,0, 1). (3)

Isotropic turbulence is recovered if LK, £) = DK, 1) = Bk, 1) /(4wk?), where B, t)

is the-energy spectrum. A method of generating Gaussian-distributed initial values |

for given values of ®=(k) is described in the appendix. It is a generalization of the
algorithm given by Orszag (1969) for isotropic initial fields. The general form of the
prescribed values of ®*(k) used here is

@2k, 0) = ¢=(k|) B(|k|, 0)/(47k*) (o = 1,2). (4)

We consider four types of anisotropic initial fields (the details are given in table 1).

Type 4. Bk, 0) = 16(2/m)} o} ke 12 exp [ — 208 /Fimg)?], (5)
with Plk) =2, ¢2k)=0.

In this case #24(k, 0) is zero everywhere, whereas 2,(k, 0) and 4,(k, 0) have continnous
non-zero spectra. This is not a two-dimensional initial state, sinee &, (k, 0) and 4,(k, 0;
depend on all three wavenumber components.



U. Schumann ond G. 8. Pallerson

714

TI7-0
160:0
T0-0

631

9T
(483

6l

*8JTUTNL JUS)BIEUOD JNq ATRFjI(Ie UI peunep ois serjiquenb [y *(I W paugep e j7—] 7 SUNI) SUoHBogoads unqy T HIEV],

ITr-0 L89-0
T60-0 L8%-0
T0-0 10-0
PO 70
0 68110-0
T0-T 11T
(] g
o7 9L
12 o
11 BT

LEF-0

F9g-0

10-0

¥-0

68710-0

90T

2

9L-¥
3

T

10&-0
88T-0
FO-0
70
&0
2e8-0
2
¥T
¥a

ed

aIg-0
L8Z-0
10-0
¥0
20-0
£28-0
g

o1

£a

id

1120 0¥2-0

g12-0 8EE-0

10-0 8000

80 80

SL00-0 68T10-0

¥66-0 FrI0-7

14 (]

19-6 9LF

P9 ‘€8 ‘g8 &4 ‘3L T

(44 114

7 ‘0 = 1 ye oreos Yydae| je13equy
%y ‘0 = 7 ey 9w o[EosOIdTAI JO[ABT,
IV ‘1UeleIoul eudLy,

% fouryy weo)oad unuIEe ]

4 ‘AYIE098IA DIYRIIGUTS]

%a *() = 7 eumy g AqI00[0A "SUY]
"Wy ‘109067 SurrEey

=y ‘geod £T10ue jo Jequmuess s\
sucrBogmuept gqol-rendaion

unyy




The return to isotfopy of axisymmetric turbulence ' 715
85,0 = Mol Fo B Sl <IH <)

Type P.
vP 0 elsewhere,

(6)
¢lk) =2, ¢%k)=0.
In this case the velocities are zero initially except for 4 4(k, 0) and £,(k, 0), which are
non-zero in & spherical shell in wavenumber space. This case is referred to as the
‘peak case’,

Type L. In this case all velo cities are non-zero and the energy spectrum is that given
by (5). The initial field is constructed such that the mean-square values of all three
velocity components are equal, but the length scales are different. These cases are
used to test the hypothesis describing the influence of anisotropic length scales
proposed by Schumann (1975). Here we use

¢2(|k{) = 1 everywhere

01 for- k| <k _
or- |k H} for case L1 (Ta)
3-61 for |k|>kg ‘

3:61 f ki<k -
or K H} for case L2. (75)
0-01 for |k|> kg :

with s ={,

and #k) = {
Here kg = 1-04301 k. is found from the condition
f E(k,0)dk = E(k 0) dk.

Type U. Finally, we consider the case which ha.s zero viscosity and is in equilibrium
in |k| space but is initially anisotropie. The equilibrium spectrum for zero viscosity

is (Lee 1952)
B(k,0) = $od k3. 2. (8)
We study two types of anisotropy:
¢H(k) =2, ¢i(k)=0 (case U1),
Plk) = 0-04, ¢*(k) =3-24 (case U2}.

Two different cases of types 4 and P (41, 42, and P1, P2) have been considered
(the details are given in table 1). The results presented for runs 41 and A2 are the mean
values taken over three independent realizations (ensemble means), each of which
started from different random numbers with the same statistical properties. However,
roughly 30 realizations would be needed in order to reduce statistical uncertainties
below a desirable level for those statistics considered here.

No cases with energy spectra of the form ke~* have been run because of the large
truncation errors found for the corresponding isotropic case I3 in I. This, however,
restricts the possibilities of direct comparison with Herring’s (1974) results, for which
this type of spectrum was used. However, direct comparisons showing good agreement
are presented in Schumann & Herring (1976). The transition from a Gaussian initial
state to a fully developed turbulent flow is discussed further in that paper.
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3. Definition of statistics

We compute the dyadie product between the velocity vector u(k, ) and the com-
ponents of the Navier-Stokes equation in wavenumber space (see I, for example),

R,/ 0t— ViR = 7, (9)

(v is the kinematic viscosity and 7;(k, t) includes the inertial and pressure forces), and
sume over shells around the origin in wavenumber space. This results in

This equation expresses the contributions of the inertia-transfer rate f‘ﬁ, the pressure—

strain rate (’13,;,-, and the viscous dissipation rate &;; to the variation of E,,, the tensorial
energy spectrum, These terms and the pressure spectrum P are computed from

B (ko t) f,(k) &, - k), (11a)
é,,(ku, t) 2vk2ﬂi(k)ﬂ,(—~k), {113)
Tilbord) | ™o srcierosan | BT~ K) +8,00)£,(~ ), (110)
) — (ke (k) + By 2,(K)) B(— k), (11d)
Pk, 1) B(k) H(—Kk). (11¢)

Here Ak = }kp,,. The transfer tensor T,;J- contains the contributions of both the
inertial and the pressure forces. The strictly inertial energy transfer is found from

Dol t) = Ty, 1) - By, 1), (12)
If we contract the diagonal components, the pressure-strain contribution vanishes
and we get the scalar equation Y /5t = T_g, (13)
where Be,t) = 3Bk, 8), 8(k,1) = },,(k, 1)
and Tk, t) = 30,0k, ) = 30,0k, 1).

We use the convention that repeated subscripts are summed from one to three. If we
sum over all wavenumbers &, we get the real-space balances

0By/ot = @y—ey, 2E[04=—¢, (14)
where By = Quug = by Eyk), B =3B,
€ = 2V 2—:—}’;:%> = % & k), €= ey
@, = <p (%+%)> = 5 &y(k) = TYyk)
i i k k
and @ = P

We notice that @;; can be caleulated from T,,(k) without knowledge of the pressure
field, since the net effect of the inertial energy transfer vanishes (Batchelor 1959,
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equation 5.2.14). This fact has been used to check the program. In addition, we evaluate
tensorial integral length scales and the mean values of the pressure gradients:

Ly = z?i;:i z fﬂﬁftk)ﬂf( ~k), Ly =3}Ly, (15)
ap op\ _

<3_x,;5;c;> - Sk H(K) (9~ K, (16)

v = (RE). (17)

We define, as usual, the Reynolds number Re, = (vA)/v, where A% = 15v?/¢ is the
Taylor microscale, and compute the skewness coefficient

8 = A[15v/e(t)} % k2T (k),
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which for isotropic turbulence is equal to -— {(Bu,/8%,)%)/{(8u,/0%,)2)} (Orszag &
Patterson 1972a, b).

4, Time evolution of the anisotropic runs

The Reynolds number Re,(f) and the skewness S(t) are plotted vs. time in figures
1(a) and (b). The decrease in the skewness for 0-1 < ¢ € 0-4 indicates some truncation
errors for run A2, as described for the isotropic casesinI. At the cost of lower Reynolds
numbers, truncation has been avoided in cases P! and P2. The corresponding results
for U1 and U2, which have infinite Reynolds numbers and zero skewness §, are not
shown in these figures,

Typical plots of the time evolution are given in figure 2 for run A2, where the
energy of the 3-component is zero initially. The return to isotropy can be clearly seen
from the plots of By, €, Ly; and ((8p/d;) (8p/oz,)) vs. time t. Fori = j = 3 we see a
small increase during an initial phase (f < 0-05); the increase then becomes steeper
between 0-05 < ¢ < 0-3 and the viscous decay finally becomes dominant. We see that
the return to isotropy is slow for L;;, stronger for E,; and strongest for €;; and the
mean-square pressure gradients. (The mean-square value of the pressure gradient in
the 3-direction is non-zero at time ¢ = 0 because the velocities 4, and u,, and thus the
pressure, are functions of z, at this time.) Thus the return to isotropy is strongest for
those quantities which depend mainly upon the high wavenumber range. This return
to isotropy is due to the pressure—strain correlation, which is also plotted in figure 2.
We see that ®;, and ®,, are negative, whereas ®,, is positive and the contraction is
zero. These terms represent, therefore, the energy transfer from the 1- and 2-com-
ponents to the 3-component. It is important to note that the ®;; are zero initially.
Finally, figure 2 contains the normalized r.m.s. pressure fluctuation. This quantity is
larger than one initially and decreases during the initial phase to settle between 0-9
and 1. Similar results were found for all the other runs (figure 3). For isotropic tur-
bulence we found (I) values between 0-8 and 1-0 for all times. This is in contrast to the
findings of Kraichnan (1956), who predicted that, for a given kinetic energy, isotropic
turbulence produces higher pressure fluctuations than anisotropic turbulence.

Corresponding spectra at different times ¢ are plotted in figures 4 and 5 (a) and (b).
Figure 4 shows results which are very similar to those described for isotropic turbulence
in I. Figures 5(z) and (b) show the departure from isotropy ABy,(k, ), where

AB ke, 8) = — [By(k, ) — 48y Epy (B, 1)), (18)

the pressure—strain correlations ('1\)1-,- and the energy transfer f‘ﬁ by the inertial terms
for two runs. Of special interest is figure 5{a), which shows the results for run P2. As
for the pressure in figure 4, we see that the pressure—strain correlation is distributed
over a much broader wavenumber band than is the energy. This difference is explained
by the fact that the pressure at some wavenumber k is a consequence of the interaction
of velocities at k' and k", where k = k' + k”". Also, the maximum pressure—strain rate
occurs ab higher wavenumbers than the maximum departure from isotropy; and the
inertial transfer rates f‘ﬁ are just ag anisotropic as the energy components EAﬁ in the
sense that |T',;| is proportional to |£,|. It follows that the inertial transfer tends to
create anisotropy at wavenumbers that are somewhat higher than the wavenumber
at which the initial anisotropy dominates.



16

20

1-6

1-2.

0-8

04

The return to isotropy of axisymmelric turbulence

T T T T T 1 1-00 T T T T T T 1
@ B @
080 -
0-60 |- -~
040':.—-7_—:_‘ - v I___....-—q
0-20- I
| =TT 4
P sl B R NN R B
080 O 20 040 0-60 0-80
1] 1 4 1 1 1 1 80 - 1 I I 1 1 ] ]
SN ®) - @
B T 6o -
B 40 -
B /I’ T | N
/ N
= ,l \\\ -1 20 ]
Lo/ O -
/ e -
/ - B
-/ i
A TR TR N S SR TR I B R W |
0 0-20 0-40 0-60 080 O 0-20 0-40 0-60 0-80

0-40
!

0-60

{-80

0-60

718
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The ratios rg(k, ) = Byy(k, t)/ By (k, t) and ry(k, 1) = Egplk, )/ B, (%, t) between the
energies of different velocity components are illustrated in figures 6 and 7(a)—(c). The
degree of departure from axisymmetry due to statistical errors is seen from the ratio
7y, in figure 7. The return to isotropy can be seen from 7. We see that 7y, generally
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Ficure 8. Energy ratios vs. wavenumber {k = K} and time (¢ = 7" for run 41,
The crosses denote unity. 3 < k < 81, 0 < ¢ < 0-8. (a) Byp/Bry. () Bea/ By,

tends to approach the ‘isotropic’ value one and that this tendency is, at least initially,
stronger at higher wavenumbers than at lower ones. This tendency shows the effect
of the inertial and pressure transfer terms only; it is not influenced by the viscous
dissipation directly. This can be seen from

oryy _ By 08y/0t— By 08, /ot
at By '

Since the contribution to BE',_-J-/ ¢t produced by the dissipation is vkzﬁﬁ, there is no
variation of ry;. In other words, the ratio between the energy components would not
change if there were viscous dissipation only.

However, some tendency away from the isotropic state can be seen for cases Pi
and P2 in figure 7 (b). Here we see that 7, approaches the value one only in the region

(19)
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of the initial energy peak. Qutside this region, 75, tends to deviate from the isotropic
state, especially for the first time steps. Later on, the variation of 5, becomes smaller
and we expect that it will return to one after some time, This effect can be explained
as due to the anisotropy in the inertial energy transfer Pﬁ(k 1), which creates aniso-
tropy in those regions where the energy is much smaller than in the peak region. If we
substitute (10) into (19) and assume By, (k) ~ Bqy(k) for this high wavenumber region,

we got orgfot (Fss + ‘I’sa— Iy, - @u)/-@u-
From (f)“ =0and &, = @22 it follows that
Bry, [0t = (f‘sa + %‘issa - I}%11)/Eu- (20)

Here all quantities are positive. If f‘% ~ 0, we see that r,, decreases if f‘u > %&J%
and this is true for cases P1 and P2 at high wavenumbers (see figure 5a).

On the other hand, Herring (1974) found just the opposite effect in his simulations
using the direct-interaction approximation: with rg, < 1 everywhere initially, he
found that »4, became larger than one at high wavenumbers and remained smaller
than one atlow wavenumbers.t The important difference between Herring’s simulation
and the present one lies in the fact that his initial spectrum is proportional to e~* and
thus decreases much more slowly than the spectra considered here. In this case, Iy
is not zero and the pressure-strain correlation is larger, so that %CIJ%—{— Psa becomes
larger than I‘11 at high wavenumbers. In this case, it follows from (20) that ry in-
creases, which explains the overrelaxation at large wavenumbers. However, in both
cases the energy content at high wavenumbers is small, so that in the overall be-
haviour (E43/E,,)} such an overrelaxation does not appear.

We saw that the pressure-strain correlation tends to be large at wavenumbers that
are larger than those where the maximum anisotropy exists. To quantify this finding,
we calculate the correlation coefficient

5 22D AR p,8) 8,0k, 1)

_ Z(p,1) -
= [(:s: (g‘f; ”) Myp,1) ) (zéﬁj(k,t»]* =70 o

and determine the value yy,, of the factor y for which K(y) takes its maximum value.
Veax 18 then a measure of the ratio of the wavenumbers at which the pressure-strain
correlation is significant to those at which the anisotropy is dominant. From (11)
it follows that yp,, = 1 if the velocity field is non-zero only in a thin shell in
wavenumber space. Otherwise, Yy, is less than 1. From the simulations we find
Viax = 0-7 £ 0-2, which indicates that the pressure-strain correlation at some wave-
number is the result of the anisotropy at a wavenumber that is smaller by about a
factor of 0-7.

Finally, it should be noted that the return to isotropy exists even in the inviscid
equilibrium cases U1 and U2; this can be seen for run U2 from figure 8. Here, again,
® 4, is zero initially.

+ Actuslly, Herring plotied the ratio R = E,/E; = ®?/0. From equa,tmn (A 2)inthe appendix
(assuming @’ and @ to be functions of || only) it follows that ry, = 4R /(34 R). This means that

ry =1 if B = 1 and the departure from one is of the same sign as (1—ry) (I—-E) 2 0. (The
assumption of angular invariance of $*(k) has been made by Herring for most of his runs.)
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Treore 8. Kinetic energy £,y and pressure—strain correlation &, vs. time ¢ for
run U2. 2 (6} = (L 150 m 000, (6,5) = (2,2); ——, (6.]) = (3,3).

Thers are two reasons why the pressure-strain correlation is zero initially. First,
the initial velocity field is Gaussian and triple velocity correlations are consequently
zero. The pressure—strain correlation can be expressed as a function of the velocity
field (using, for example, Uberoi’s (1953) theory):

1f_@ 2uy(y) , du(Y\\ 2V (y) |
0ym) = oo [ =T Canmun) (SR IV AR e

We see that ®,; is zero if the triple correlations are zero. Non-zero triple correlations
are produced by the dynamics of the flow. Those triple correlations which determine
®,; are different, however, from those describing the inertial energy transfer from
small to large wavenumbers. For axisymmetric turbulence the triple correlations can
be expressed as a function of five independent scalar functions (Batchelor 1946).
Only one of them determines the skewness coefficient §. The skewness is zero for cases
U1 and U2, and this shows the independence of the inertial energy transfer to larger
wavenumbers from the energy transfer between the different velocity components at
fixed scalar wavenumbers. The second reason for zero initial values of @, is kinematic
in nature. The correlation ®,; is zero by definition if du,/dx; + du,/8z; is zero every-
where. In most runs we start with %, = 0 and therefore du,/8x; = 0, which results in
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- zero @,y values. Because of symmetry and continuity we also have @,; = @,, = 0.
This shows that we have to expect a decrease in the pressure—strain correlations for very
strong anisotropies for kinematical reasons.

5. Discussion of empirical models for the pressure-strain correlation
5.1. .Rotia’s model

Rotta (1951) proposed a simple relationship between the pressure-strain correlation
®,, and the departure from isotropy AE;; which can be expressed in one of the two’
following forms (also considered by Herring 1974):

@, x C%AE,U (23)
1

or G, ~ c’g— AE;;, (24)
Lf

where L, is defined by (15), AZ;; = —(B;—36,; Epy), (25)

and ¢ and ¢’ are expected to be positive constants of order unity. These forms are
equivalent if € = (¢'E4)/(cL,), which is true only in the limit of very high Reynolds
number and for steady flows {see I). The Rotta model assumes that the pressure—strain
correlation is kinematically determined by the departure from isotropy (see Rotta
1951, figure 2). We have shown above, however, that this is not true. On the other
hand, Rotta’s model does not account for the kinematical constraint that @, = 0 if
du, /b, + Bu; 0z, = 0. Rotta’s model is therefore valid only if the flow is steady and if
the departures from isotropy are small.

We determine ¢ and ¢’ (which are called ‘ constants’ and assumed to be independent
of ; and §) by & least-squares fit, so that

3 3
P [®,(t) — DTE)]? = minimum, (26)
Here @7 is the value given by the right-hand side of either (23) or (24). The resultant
functions ¢(t) and ¢'{¢) are plotted vs. time ¢ for several runs in figure 9. The initial phase
during which the triple correlations are built up is clearly reflected in the fact that
¢(t) and ¢'(t) are zero initially and grow rapidly to some value of order unity. If we
compare the time evolution of these ‘constants’ with the time evolution of the
gkevwmess S(t) (figure 1b), we see that the times needed to establish the triple correla-
tions for the energy transfer and the pressure—strain correlation, respectively, are
about the same and of order 0-2 L,/v. This is especially evident for runs 41 and 42,
which have different time scales,

Using (26) but summing in addition over all times ¢ > 0-2 L;/v, we get mean values
for the constants ¢ and ¢’ that are characteristic of the complete run, These are listed
in table 2 together with the resultant r.m.s. errors:

= -
;:}{[2(@*1(5)“@3(”)2] /[T 04T, CDE':*- frzi gi; ((?16;;

We see that these errors are very large for the approximately isotropic runs 71-74
described in I. In these cases the systematic departure from isotropy is small com-
pared with statistical fluctuations. Moreover, the sign of the anisotropy might change
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------ , P2 —eeo e, Uy ~———, U2 (¢ = co for Ul and U2}
Run ¢ ¢’ & &
I (¢-038 —0-112 0-8998 0-995
I2 —~0(-167 —0-207 0-991 0-071
I3 — 0422 —0-6539 0-019 0-921
I4 —(-395 —1-45 0-747 0747
Ala 1-89 0752 0:295 - 0378
.Alb 2-13 0-780 0-190 0-1'77
Ale 2-03 0-779 0-239 0-317
At 2-08 0-787 0-148 _0-237
A2ea 1-48 0-837 0-143 0-095
A2b 1-37 0761 0-211 0163
A2¢ 1-35 0-782 0-144 0-067
A2 1-41 0-799 0-148 0:084
Pi 0-536 0-545 0-178 0-223
P2 0-376 0-550 0-121 0-234
I1 1-34 0-613 0-770 0-800
L2 3-78 1-20 0-312 0-191
U1 © 0-635 1-000 0-166
U2 o 0-651 1.000 0-180

Tasre 2. Rotta’s constants ¢ and ¢’ and r.m.s. errors & and & (see §5.1).

during the run. In order to balance this anisotropy, the triple correlations appearing
in (22) must change their sign. This change takes some time, during which ®,; and
AE,; can have opposite signs, which explains the negative values we find for ¢ and ¢’

in these cases.

The errors are much smaller for the runs with large anisotropies. The smallest errors
appear for runs 41 and 42. If these are compared with the results obtained for the
three realizations (g, b, ¢) we see the importance of ensemble averaging. However, we
find that the quadratic errors for the ensemble means are larger than one-ninth of the
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sum of the quadratic errors for the single runs. This indicates that these errors are
in fact composed of statistical fluctuations and systematic deviations. For these runs
the systematic errors are smaller than 0-1. It is important to note that the values of
the constants found for & single realization are not systematically different from those
found for the ensemble mean values; we can therefore assume that the results will
not change very much if we average over larger ensembles. Figure ¢ and table 2 show
that the value of ¢’ is less dependent upon the initial values than the value of ¢. The
characteristic time scale of the return to isotropy is therefore L,/E# rather than X/e;
this is especially evident from runs U1 and U2, where ¢ = 0o, This result was also
obtained by Herring (1974). It is a reascnable finding, since the pressure-strain
correlation is large in the energy-containing region, which does not contribute to
the dissipation directly. We find a mean value ¢’ & 0-7+ 0-2, which is about 209
smaller than the values found by Herring (1974). This difference may result from the
restricted number of modes retained in Herring’s model (discussed in Schumann &
Herring 1976). For the other model the value of the factor ¢ varies between 0-4 and 8-8.

5.2. Effect of scale anisoiropy

Schumann (1975) has investigated high Reynolds number channel flows and cal-
culated the pressure-strain correlation as well as the ‘constant’ ¢. He found different
values for ¢ depending on the subscripts ¢ and j of @,;. He gave some arguments that
explained this result by the anisotropy in the length scales: if for any component of
AE,; and @y (i = j) the corresponding value of Ly is large, then the resultant value of
¢ is small. In order to test this hypothesis we ran cases L1 and L2, Hers the L,; are
strongly anisotropic. (At ¢ = 0, we have L;; = L,, = 0-36 and Ly, = 0-59 for L1 and
Ly, = Ly, = 068 and Lz, = 042 for L2; these values do change, but only by +0-05
during the run until { = 0-4.) However, we cannot expect different values of ¢ for
different values of 7 and j since, in the axisymmetric case, we have @y = Oy = — 3Py
and AE,, = AE,, = — }AE,,, which implies that ¢ is independent of ¢ and j (i = j).

We have been unable to find any empirical correlation that satisfactorily describes
the influence of the length-scale anisotropy. We experimented with

, Bt .
®€3‘ =C -L? AE.”‘FG “L_} A'Lij (28)
_ n{(ABy) (AL, BY
and (I)'l:j =G AE‘H AL.EJ Lf AE’E}" (29) |
Where ALif = L!:J'-%aij ka, Lf = %‘ka.

The correlation coefficient between AE,, and ALy, the reciprocal of which appears
in the second proposal, is very near to one in all the runs considered here. It does not
change the predicted value of @;; appreciably if (29) is used, Also the values of ¢’ and
¢” are not independent in these cases. Many more different wavenumbers k must be
included in the simulation in order to allow independent variation of AL, and AE,;.



The return to isotropy of axisymmetric turbulence 729

Run A1 A2 P1 P2 U1 U2

& 1-24 0-977 1-08 1-44 0-761 0-848
Cy —~4-25 — 200 —4-04 —6-41 —1-56 —2-45
& 0-148 0-050 0-170 0-083 0101 0-089

Tasrr 3. Constants appearing in the model of Lumley & Khajeh-Nouri (1874);
¢z = 0 (see § 5.3).

, 5.3. Evaluation of the proposal of Lumley & Khajeh-Nouri
Another proposal for refining Rotta’s model based on purely formal arguments is that
of Lumley & Khajeh-Nouri (1974):

1 I Al AR, — §I18,\
D, ~ T{[cl+cz—(2E)2] A+ . (30)

) II = AE‘if A.E’-i, E - %Ekk'

We use T' = L,/E* and AE,; is defined in (25). The value of ¢, was found to be de-
pendent upon the sign of the anisotropy: ¢y is negative forruns 41, 42, P1, P2and U1,
which all start with By < By;; it is positive for U2, where Egy > E,,. The last term in
(30) is quadraticin AE,; and does not change sign if the sign of AE,;is cha.nged whereas
sgn @,; = sgn AE, for the steady state. The factor ¢, does not seem to have a universal
value. This might change if we expand the model such that the highest-order termis an
odd function of AK,,. Here we set ¢; = 0. Using similar arguments, Reynolds (1974)
came to the same conclusion. The values of ¢, and ¢,, as found by & least-squares fit,
are given in table 3 together with the r.m.s. error 8 computed from (27), using ®f; as
defined by (30). We get negative values of ¢,, which means that the rate of return to
isotropy decreases if the departure from isotropy becomes large. Using %, < B, B,
for § + ¢ (without summation) it is easy to show that I1/(2E)® < §. This relationship
holds for any anisotropic turbulence. In order to ensure a positive correlation between
®;; and AE,, for any possible value of IT/(2E)2, we therefore require

-8, >0 (31)
1 1

For axisymmetric turbulence, we find IT/(2E)2 = § if By, = By = 0, Eg > 0, In this
case fuy /0y is also zero, so that all components of the pressure—strain correlation are
zero. Therefore it might be appropriate to reguire ¢, = — #¢,. Table 3 shows that the
empirical values of ¢, are even smaller than is required by (31). This is allowed if the
departure from isotropy is so small that ¢, +¢,II/(2F)* > 0. However, a generally
scceptable model seems to be (30}, with ¢; = 1-0, ¢, = —1-5 and ¢z = 0.

In spite of our analysis, it is still possible that the rate of return to isotropy might
be relatively larger for small departures from isotropy. This is suggested by the
experimental results of Tucker & Reynolds (1968).T We cannot exclude or confirm
this possibility since the statistical errors become prohibitive for small departures from
isotropy. Such chabges in the value of ®,; for small and large values of II could be
accounted for by adding a term proportwna.l to (I1/(2E)2)2AE,;/T to (30).

+ This fact has been pointed out to us by one of the referees.
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5.4. Local wavenumber dependence of Rotla’s consiani
In order to see the wavenumber dependence of Rotta’s ‘ constant’ we define a (k) by

8, = -e(k)% (B30 Br). (32)

Here all quantities are functions of k and ¢. Again we determine é(k) by a least-squares.
fit, requiring s s
%} ia j§1 [Pk, ) — DT}k, {)]? = minimum,

where ®7(k,t) is the value predicted by (32). We sum over all time steps ¢ where # is
larger than 0-2L,/v in order to allow the formation of triple correlations. The resultant
values of &(k) are plotted in figure 10. The peak cases P1 and P2 show that é(k}) is
small where the main anisotropy occurs but larger at some higher wavenumbers which

reflect the shift in wavenumber space between AE,;,- and ff)ﬁ. A peneral decreasing
tendency for increasing wavenumbers can be seen.

5.5. Fine-scale motion and effects of strain

Several authors (e.g. Rotta 1951; Reynolds 1976; Naot et al. 1970; Hanjali¢ & Launder
1972; Rodi 1972; Shir 1973) have proposed extending the models for the pressure-
strain correlation by terms accounting for strain and for the resulting anisotropy in
the different production terms contributing to the time variation of E,;. In the present
runs the mean production terms are zero. However, if we split our flow field into two
parts, one containing the large-scale motion defined by |k| < &, and the other the
fine-scale motion ({k| > k,), where k, is some arbitrary positive wavenumber, we may
investigate the pressure-strain correlation for the fine-scale motion where the pro-
duction terms are no longer zero.
We define fine-scale guantities y'(k) by

k1
Y (ko) = = y(k) (kg = (242)2kyy), (33)
where y stands for @, B, ', ete. The integral length scale Lf(k,) of the fine-scale
motion is sy M
. = — - . 4
Lilk) = 757755 . 5, R (34)

If we use Rotta’s model (24}, we find that the appropriate value of ¢’ increases
strongly with growing k, and the errors ¢’ become large. In order to get & value of ¢’
independent of k, and to reduce the errors we should account for the anisotropic
production I'};, We use the proposal of Naot et al. (1970) and Rodi (1972):

r EL} 7 r 1
Gij = Csf} AE— ey (Ti— 30, T, (35)

where all quantities are functions of £, and ¢. By a least-squares fit we determine
¢cg(ky) and c,(%,). The results for run A2 (the run with the smallest statistical errors} are
given in table 4. Here, again, & is the r.m.s. error. The results for very small wave-
numbers are not listed in this table as I'j, is small hers and the results for ¢, would
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LAl —— A2y —— Pl eeeens , P2.
kg & Cy &

8 0-939 0-824 0-072
10 1-174 0-596 0-079
12 1-735 0-372 0-066
14 —0-736 1-18 0-065
18 0:042 0785 0054
18 0-721 0-603 0-077
20 1-16 0-524 0-095
22 _ 1-61 0-468 G-109
24 2.07 0-408 0-125
26 2-35 0-377 0-140
28 1-94 0-416 0-172
30 0-36 0-468 0-216

Tanrr 4. Effects of anisotropic energy production (see §5.5).

therefore not be significant. The value ¢,{k,) is identical to ¢’ in the limit 4, = 0. We
find that for small wavenumbers k, the pressure-strain correlation is controlled by
AE;;. For large wavenumbers, however, the production terms I'y; become dominant.
Although the scatter in ¢; and ¢ is large owing to statistical fluctuations, we see that
both are nearly independent of k, Typical values are ¢; & 0-7 (which corresponds
toe¢’) and ¢, & 0-6. Naot et al. (1970) used ¢, = 0 and deduced c, to be between 0-66 and
0-8 from different experiments; Rodi (1972) used a value ¢, = 0-5. These values agree
surprisingly well with the numerical results.
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6. Summary

We have used the spectral method of Orszag & Patterson (19724, b) as extended
in I for the direct numerical simulation of pressure and velocity fluctuations in three-
dimensional space. In this paper we considered axisyrametric homogeneous decaying
turbulence with Re, < 40 (except for runs U1 and U2, where Re, = co), We described
several runs with different axisymmetric (highly anisotropic) Gaussian initial con-
ditions. The numerical results are summarized in table 5. The main limitations of the
present runs are statistical fluctuations in the mean values obtained for one realiza-
tion. They can be reduced by averaging over ensembles of realizations as we did for
two cases. The statistical uncertainties for the value of Rotta’s constant are of the
order of 20 %, for the present single realizations. They would be much larger if we con-
sidered small initial anisotropies because then the departure of isotropy would
become small compared with the statistical fluctuations,

Spectral as well as mean values of the different correlations governing the time
evolution of the tensorial energy components are shown. As expected, we found that
the pressure—strain correlation causes the return to isotropy. The return to isotropy
is, however, not determined kinematically; rather, it depends upon triple correlations
that are created by the flow dynamics. Although these triple correlations are inde-
pendent of the skewness 8, both vary on about the same characteristic time scales.

With respect to the spectral distribution of the pressure—strain correlation, we
found that &t some wavenumbers this correlation is the result of the anisotropy at a
wavenumber that is smaller by a factor of 0-7 +0-2. The spectral distribution is,
moreover, much broader than the kinetic energy distribution; the same is true for the
pressure spectrum, The rate of return to isotropy is larger at high wavenumbers than
at low wavenumbers.

The inertial energy transfer rate has been found to be anisotropic and proportional
to the anisotropy of the energy tensor. This transfer rate tends to produce anisotropy
at high wavenumbers, therefore. Whether we get an overrelaxation to an anisotropic
state of opposite sign depends upon the relative magnitude of the pressure and
inertial transfer. If the latter is smaller than the former, no overrelaxation occurs.

Rotta’s model is appropriate if the characteristic time scale of the total flow is
~larger than 0-2 L,/v, which is the time scale for the triple correlations. Moreover, the
departure from isotropy must be small enough since Rotta’s model does not aceount
for the kinematical constraint, ®,; = 0 if du;/dx,+ du,/dx; = 0. Moreover, the length
scales L;; should not depart from the isotropic state more than does ;. Finally, we
confirmed Herring’s (1974) result in that the constant ¢’ in {24) is less dependent than
¢ in (28) upon the initial conditions, The resultant value of Rotta’s constant is ¢’ ~ 0-8,
which is about 20 %, less than the value found by Herring (1974). However, this is not
a large difference in view of the simplifying assumptions nsed by Herring (see also
Schumann & Herring 1976). If we use the relation between the dissipation and E%/L,
(as given in I), (24) can be incorporated into semi-empirical turbulence models. For
large Reynolds numbers (23} is appropriate with ¢ = ¢’/B, (B, ~ 0-7 according to I),
resulting in ¢ ~ 1-1,

No conclusive result was obtained for the influence of anisotropies in the length
scales. With respect to the proposal of Lumley & Khajeh-Nouri (1974), we suggested
dropping the highest-order term; we also found a relationship that should be obeyed
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Time Al A2 P1 P2 L1 2 U1 Uz

HEp+E) O 1-545 1-485 1016 1037 1.0862 1-334 1-526 0-830
02 1265 0-884 0-565 0273 0-850 1176 1158 1.562
04 0976 0763 0205 0080 0-638 0989 1-061 1-745
08 0567 0210 — — - — — —
B, 0 0 0 0 0 1-250  0-996 0 3-343
02 0168 0-246 0-076 0-060 1-024 0931 0759 1946
04 0312 0-286 0078 0028 0755 0-825 0-964 1-805
08 0353 0120 — - — — — —
Dy 0 0 0 0 0 —0-656 —0-112 0 0139
02 1272 1-395 0-553 0-320 —0-185 0-536  2.003 —2-737
04 0858 0444 0187 0-036 —0-333 0-183 0-438  0-064
08 0379 0071 — — —_ — — —

HEqy + €40) 0 0-958 2-479 2:462 5857 1118 0-582 0 0
02 0912 1878 1.564 1710 1291 0-683 0 0
04 0880 1-103 0-827 0-406 1.140 0820 0 0

0-8 0-876 0-342 — —_ —_— — — —

€33 0 0 ¢ 1] ¢ 0-786 06874 O 0
0-2 0-238 (-906 0-340 0:478 1-020 0792 0 0
04 0-444 0-740 0-288 0-144 1004 0832 O 0

08 0-446  0-264 — — — — — —
L, 0 0-592 @¢-271 0-592 0201 0-438 0587 0-111 0O-1if
0-2 0-55¢ 0-276 0-314 ©0-208 0421 0574 0-112 O-112
0-4 0-538 0292 0-331 0250 0-420 0-552 0-113 0-113
0-8 0-537  0-345 — — — —_ — —

TasLe 8. Numerical results for the tensorial energies E;, the pressure—strain correlations @, the
dissipation &;, and the integral length scale L. Note that all tensor components are zero for¢ &7
and that the 11 components are equal to the 22 components; also @), = Py = — 3Dy,

by the two remaining constants; some values for these constants have been propesed.
By splitting‘the low into large- and fine-scale motions we were able to obtain informa-
tion aboufﬁ the influence of anisotropic production terms; the results agree well with
the prechctmns of Naot ef al. (1970) and Rodi (1972).

The authors thank Dr J. R. Herring for stimulating discussions and encouragement.
He proposed the slgorithm for generating the initial values. After completion of the
present study we learned of a similar investigation by Dr Steven A. Orszag (private
communication, unpublished.) This work was done while U. Schumann was with the
Advanced Study Program at the National Center for Atmospheric Research, which is
sponsored by the National Science Foundation.
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Appendix. Generation of random axisymmetrically isotropic velocity fields

We choose a,(k), a,(k), ,(k) and b,(k) to be zero-mean Gaussian, independent, real,
random, scalar fields such that

Ak} = a,(k) +ta,(k), B(k) = b,(k)+1b,{k)
have the properties A(k) = A*(—k), B(k)=B*(—k),
(4(k) B(-K)) = 0,

(AK) A(~K)) = (BR)B(-K)y =0 i k+K,

(A(k) A(—K)) = O(k), (B(k)B(—k)) = G*k).
Then ‘ (k) = A(k) el(k) + B(k) e*(k), (A1)
where e! and e? are defined by (2), is a Gaussian velocity field with zero mean and

0 if k+k,
WD = & emaman & k-,

a=1
k,2,(k) = 0.

The components of the energy tensor Eﬁ(k} are
ol 2n
B (K] = sz‘E GL (@) (- K))sin 046 a5,

where k = {sin § cos ¢, sin @ sin ¢, cos F}.
The resultant non-zero components are
Byi(k) = Bop(k) = 4nk2[3 O3(k) + 3O3(k) + L5 DKL, (A 2)
Byy(k) = 4mk?[§O3(k) — F5 D3(k)],

where we describe the angular dependence of ®#(k) by the Legendre moments (Herring

1974)
@w(k)_?ﬁlf Pu) O%(u)du, 1=0,2, a=1,2,

= (n-k)/k, Ffu)=1, Bu)=138s*-
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