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Abstract: The reconstruction of optical properties for opaque mediums is highly desired for medical,

atmosphere and aerosol applications. However, the modeling and reconstruction process is highly

related with multiple scattering phenomena, which elevates both the complexity and computational

costs for such efforts. This work introduces a time-based Markov chain method, which uses a

sparse transition matrix to represent the likelihood for a photon to transit in the turbid media. The

accuracy of the time-based Markov chain model was verified against the forwarding calculations

of the scattering-based Markov chain model and Monte Carlo simulations. Then, reconstruction

was performed with backscattered photon angular distributions. Based on the characteristics of the

sparse transition matrix, the optical properties (droplet diameters) could be obtained layer by layer

with transmitted photon distributions at different time durations. It is shown that the time-based

Markov chain model can reconstruct the optical properties of a turbid slab with satisfactory accuracy

and lower computational costs.

Keywords: multiple scattering; optical properties reconstruction; Markov chain; time-based method

1. Introduction

There is an increasing need for interpreting light scattering signals from turbid media,
since scattering signals can contain crucial information about the optical characteristics of
the media. The scattering process is usually complicated due to the occurrence of multiple
scattering. Literally, multiple scattering means a photon or ray of light is scattered more
than once within the medium before transmitting (i.e., leaving the scattering medium).
Such chaotic motions can significantly impact optical diagnosis in, for instance, optical
computed tomography techniques. Meanwhile, multiple scattering signals can be used to
infer scattering phase function-related information by tracking the transmitting process
of the photons. Therefore, it is expected that multiple scattering signals can be used for
applications such as tissue diagnosis [1,2], atmosphere detection [3] and spray droplet size
estimation [4], among others.

However, the inversion procedure for reconstruction of the turbid media can be
complex when considering multiple scattering. When the optical depth (OD) of the medium
(representing an expected number of scattering events for a single photon penetrating
the medium) is within the range of 2–10, no satisfying approximation can be applied to
obtain the solution of the turbid media for the scattering process. The most commonly
seen methods to solve the multiple scattering problem are solving the radiative transfer
equation (RTE) [5–7] or using Monte Carlo simulations [4,8–10]. As an analytical method,
RTE can be solved to obtain the exact solutions, while it is challenging and time-consuming
unless strong assumptions are made [11–14]. The Monte Carlo simulation method is also
popular in that the algorithm itself is relatively simple. The scattering event in a Monte
Carlo simulation is modeled using a random number generator, which determines whether
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or not a photon will be scattered at a certain location and the new propagation direction.
The disadvantage of Monte Carlo simulations is also notable. The Monte Carlo simulation
is a stochastic algorithm in which a great number of photons need to be sent to warrant
statistically meaningful results, especially when the signal level is expected to be low.
Furthermore, the stochastic nature of this algorithm prevents any analytical inversion or
reconstruction approach based on Monte Carlo simulations.

In previous works, the authors proposed a Markov chain-based model [15–18] to
calculate the transmitted angular distribution through turbid slabs. In this model, multiple
scattering was converted into a matrix (transition matrix), which represented the likelihood
of a photon to transit from one state (location and propagation angle) to another. It has
been demonstrated that this method can obtain results showing angular distribution (i.e.,
the probability distribution of transmitted photons as a function of transmitted angles)
through infinitely large turbid slabs with the assumption that the optical properties within
each parallel layer is uniform. It has been demonstrated that the Markov chain method
could incorporate practical scattering phase functions and be executed with a much lower
computational cost. In the recent work of the authors, the angular distribution results
from photons scattered once and twice were used as inputs, and the optical properties
of the turbid slab (droplet diameter) were reconstructed with good accuracy and noise
resistance. The use of global optimization algorithms notably increases the computa-
tional costs to around 150 minutes, although such a capacity is new and has hardly been
demonstrated before.

However, the previously introduced Markov chain method is still not perfect, since it
relies on obtaining the angular distribution of the photons with an exact scattering order.
Although possible, such a requirement is hard to achieve in practical experiments. For
practical optical diagnostics, it is more feasible to obtain temporally resolved data, such as
the spatial intensity distribution of transmitted photons or the angular distribution data as
a function of time. These types of measurements have been proven to be practical in the
existing literature [19]. In the previous Markov model, the scattering was set as the event
which the algorithm would track. As a result, the scattering number (scattering order) of a
photon will be preserved by the algorithm, but the total path length or the residual time
cannot be kept in the current Markov model. In order to find temporal resolved angular
distribution using the Markov chain model, the time or path length must be set as the event
so that this information can be preserved as the photons are transmitted.

In this work, the authors propose a so-called time-based Markov chain model, which
aims to address the issues with the scattering-based model studied before. Because of
the nature of the newly introduced time-based Markov chain model, the inversion or
reconstruction can be done without using global optimization algorithms. Rather, using
the backscattered angular distribution, the optical properties of the turbid slab can be
inferred one-by-one using linear algebra operations, which benefits from the matrix form
of the time-based Markov chain model. The rest of this work is organized as follows.
Section 2 discusses the fundamentals and assumptions of the time-based model. Section 3
demonstrates the numerical verification and reconstruction results using the time-based
model. Finally, Section 4 concludes this investigation.

2. Mathematical Formation of the Time-Based Markov Model

The mathematical grounds of both the scattering-based Markov chain model and
the time-based Markov chain model are similar. In the model, a transition matrix is
built, and photon transmission results are given by matrix manipulations, such as matrix
multiplication and inversion. The major difference between the two models is the definition
of what an event is in the Markov formation. Such a difference in definition is depicted in
Figure 1. Figure 1a demonstrates the light propagation procedure of the scattering-based
model, and Figure 1b shows the same procedure for the time-based model, respectively.
In scattering-based models, each photon scattering is considered an event. Therefore,
the photon shown in the figure experienced two events before being transmitted. In this
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formation, the corresponding transition matrix is usually nonzero, since there is always
a nonzero probability for a photon to propagate from layer i to layer j without scattering
during the propagation.

Figure 1. Problem formation using the Markov chain method. (a) Scattering-based model;

(b) Time-based model.

In comparison, the time-based model considers that a new event takes place once
a certain amount of time has elapsed. For instance, if we define the time during which
the photon propagates for one layer, then the photon will experience approximately n
events before transmission if there are n layers in total. It is also worth noting that the
propagation angle will affect the time for a photon to pass through one layer; we just used
this illustration for demonstration purposes. In this model, the transition matrix can be
established by mostly zero entries. For instance, if the set time interval t corresponds to
the time that a photon propagates for a distance of the thickness of one layer, the photon
cannot propagate for more than one layer during this time period, which means only
those representing probabilities from the first layer to the second layer are not zero in
the transition matrix. With such characteristics, it is possible to reconstruct the optical
properties of the turbid slab using linear algebraic methods.

Although the time-based model is intrinsically similar to the scattering-based model,
two assumptions are made to simplify the establishment of the time-based model. The first
assumption is that the photon will be scattered at most once during one time period, and
the scattering happens at the end of this time period. The error induced by this assumption
can be reduced by finer discretization so that the likelihood of multiple scattering within
one time period can be minimized. Assuming the OD in a layer is OD∆z, the probability of
multiple scattering can be readily found by Equation (1):

Perr = 1 − exp(−OD∆z)−
∫ OD∆z

0
exp(−x) exp(x − OD∆z)dx = 1 − exp(−OD∆z)− OD∆z exp(−OD∆z) (1)

In this expression, the second term on the right-hand side represents the probability
that the photon transmitted a specific layer with an OD (with the value of OD∆z) without
being scattered, and the third term represents the likelihood that this photon is scattered
only once in this layer. It can be readily found that the error introduced by this assumption
is 1.97%, with an OD∆z = 0.2, and 9%, with an OD∆z = 0.5. Since 100 layers are used in
this current model, this error is acceptable, but as the OD in each layer grows, this error
also increases and accumulates with each scattering, which should be taken into account
in actual applications. This error can be reduced by using finer spatial meshes or taking a
higher scattering order into consideration, which will make the algorithm more complex.

The second assumption is that in each layer, the photon starts its propagation at a
random location z within this layer rather than a preset location. This assumption is also
utilized in the scattering-based Markov chain model. However, the starting location for
the scattering-based Markov chain model is always where scattering happens, which is a
random location in the layer. In comparison, for the time-based model, if the photon is not
scattered in a specific event, then the ending location of this photon is actually fixed rather
than randomized. This error can be reduced with finer spatial meshes.
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The governing equations for the time-based model are also similar to those under the
scattering-based model, and the following equations are still applicable:

T((zm, θi), (zn, θj)) = P(zm, zn, θi) · P(θi, θj, zn) (2)

α = arccos(cos θi cos θj cos ϕ + sin θi sin θj) (3)

P(θi, θj, n) =
∫ 2π

0
Γn[arccos(cos θi cos θj cos ϕ + sin θi sin θj)]dϕ (4)

In the equations, P(zm, zn, θi) is the probability for the photon that starts its propagation
at zm with the propagating direction of θi and finishes at zn during a specific time step;
P(θi, θj, n) is the probability for the photon that propagates in the direction of θi, snth layer,
and then propagates in the new direction of θj; and Γn(α) is the phase function in the nth
layer. The implications of Equations (2)–(4) have been introduced elsewhere [15–18], and
we will briefly introduce these equations. Equation (2) describes the transition probability
T from one state (zm, θi) to another state (zn, θj). This probability is co-determined by the
probability of the path length the photon propagates before being scattered again and the
probability of the new scattering angle θj after being scattered. The relationship between
θi and θj can be established by the scattering phase function Γn(α) with α, which is the
included angle between the incident light and the scattered light. The phase function is
determined by the imaging system characteristics. ϕ is the azimuth angle, which impacts
the determination of the included angle α. To consider all ϕ in determining P(θi, θj, n), an
integral is solved, as shown in Equation (4) over 2π.

In the time-based model, the expression of P(zm, zn, θi) is as follows:

P(zm, zn, θi) =























1.0 − cos θi (zn − zm ≤ l · cos θi < zn − zm + 1, θi ∈ [0, π/2))
cos θi (zn − zm + 1 ≤ l · cos θi < zn − zm + 2, θi ∈ [0, π/2))
1.0 + cos θi (zm − zn ≤ −l · cos θi < zm − zn + 1, θi ∈ [π/2, π))
− cos θi (zm − zn + 1 ≤ −l · cos θi < zm − zn + 2, θi ∈ [π/2, π))
0 (else)

(5)

where l is the path length for each Markov event, t = l/c and c is the speed of light in the
scattering medium. Equation (5) is readily understood with the assumptions stated before.
As can be seen, when θi is fixed, the direction of the photon is fixed (either forward or
backward). Then, the photon can only propagate to either the current layer or the next
layer (either backward or forward), and the transition probability can be easily found
with Equation (5). Therefore, only zm and zn have nonzero probabilities, which means the
transition matrix T under the time-based scheme is a sparse matrix. With such definitions,
the transition matrix T can be obtained with each entry defined by Equations (2)–(5), and
we have:

Qn = P′Tn−1R (6)

and:
Qtotal = P′(I − T)−1R (7)

where Qn is the angular distribution (the weight of the photons in each angle) of all photons
that have transmitted during the time (n − 1) × t and n × t, Qtotal is the angular distribution
of all transmitted photons, P′ is the initial photon status and R is the absorption matrix.
With the structure above, the time-based Markov chain method can simulate the time-
resolved angular distributions for transmitted photons, which is more accessible than
counting the scattering order of the photons practically. More mathematical details can be
found in [15–18].
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3. Results and Discussion

3.1. Numerical Verification against Monte Carlo Simulations

In this section, we compare the performance of the time-based Markov chain model
against the Monte Carlo simulation model. Although it would be more desirable to directly
compare the results from the time-based model to the experiments, matching all the
parameters in such experimental efforts can be challenging. Therefore, we used the Monte
Carlo algorithm in [4] as the benchmark in this work, which was validated against a few
experiments under multiple scattering conditions. In the Monte Carlo model, the trajectory
and scattering events of each photon were determined by randomly generated numbers
and then tracked and monitored by the algorithm. Under each condition, 100 million
photons were sent. Results from the scattering-based model will also be presented, but the
scattering-based Markov model cannot estimate temporally resolved angular distributions
for transmitted photons, so we only compared the results of the time-based Markov
chain model and the Monte Carlo model when applicable. Figure 2 compares the total
angular distributions under different ODs when using different algorithms. The phase
functions used were in agreement with those in our previous work [18]. The external light
wavelength used in this simulation was set 532 nm, which is usually seen from Nd:YAG
laser sources for diagnostics purposes. The scattering medium was water, and the ambient
medium was air. The water droplet diameter ranged from 1.0 µm to 2.0 µm (a diameter
resolution of 0.1µm was used). The Mie scattering theorem was adopted to calculate
multiple scattering characteristics.

Figure 2. Total angular distribution of transmitted photons under different total optical depths (ODs).

(a) Time-based model results compared with the scattering-based model results; (b) Time-based

model results compared with the Monte Carlo simulation results.

In Figure 2, and in the rest of the simulation, a uniform OD distribution was used,
and the phase function from the 1.0 µm water droplets was adopted. The turbid slab was
assumed to be infinitely large, and the optical properties of the slab were uniform across
the plane perpendicular to the thickness direction (z). All photons entered the slab from
the same point and initially propagated in the z-direction. The turbid slab was discretized
into 100 layers in the z-direction, and the propagation angle θ was discretized into 180 bins.
Therefore, the dimensions of the transition matrix were 18,000 × 18,000, which was the
same as in the previous work of the authors. For more detailed interpretation of the results
shown in Figure 2, each data point represents the probability that the photon is transmitted
in the propagation angle θ. For instance, the value at θ = 45◦ reflects the percentage of
photons transmitted with 45◦ < θ < 46◦. Ballistic photons were excluded (photons without
scattering) in the figure, and the total percentage plotted from θ = 0◦ to θ = 180◦ (including
ballistic photons) equaled 1.0. In the Monte Carlo simulations, such probabilities could be
obtained by counting individual photons statistically and then dividing them by the total
number of photons simulated by the Monte Carlo model.

Although it was not the purpose of this work to compare the computational cost and
accuracy, since the time-based model was mainly designed for reconstruction purposes, it
is worth noting that the computational cost of the time-based model was around 5 min, and
it took about 60 min for the Monte Carlo algorithm to simulate 100 million photons under
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OD = 1.0 conditions. Even for different methods which have been proposed to reduce
the computational cost of Monte Carlo simulations, such as using cloud computing [8,9]
or cell processors [20], hardware improvement could also accelerate the computation of
the Markov chain model, especially when no computational optimization was done to
the Markov chain time-based model at the time. In this work, we just demonstrated the
capability of the proposed Markov time-based model and its inversion method. We will
focus on the computational cost and accuracy in our future work.

As can be seen in Figure 2, the newly developed time-based model approximated the
results given by the scattering-based model and Monte Carlo simulations well, although
the resultant angular distribution could be complex and wavy. Furthermore, as we have
discussed, the accuracy of the time-based algorithm suffered from a higher OD, and it is
notable that the results under OD = 10 and OD = 20 cases were a bit off from the ground
truth when compared with the OD = 2 and OD = 5 cases. Nevertheless, the proposed
time-based model could still achieve a relative error of less than 1% compared with the
Monte Carlo simulation results, which indicates that the proposed time-based model can
satisfy the need of approximating Monte Carlo simulations.

To further demonstrate the error from the Markov chain approximation, we incor-
porated the relative error of each model, as shown in Figure 3. As we introduced in our
previous work [17], the Markov chain model had the worst performance near 90◦, around
which the signal was hard to capture by the sensors in the experiments. Therefore, in
Figure 3, we just compared the results at 135◦ (corresponding to the maximal point in
90◦–180◦) to demonstrate the error of the time-based model, and we also confirmed that
this error was representative of the overall error of the Markov chain models. As can be
seen, the relative error of the scattering-based model increased as the OD increased, but in
general, the relative error was less than 0.5%, which was in agreement with our previous
research [16]. For the time-based model, the error was around 0.7% when OD = 2. Then,
the error increased steadily and reached ~1.6% when OD = 10. The error increased less
remarkably afterward with higher ODs. Thus, although the time-based model would incur
error from the two assumptions mentioned above, the overall accuracy was still acceptable
for calculating the transmitted angular distribution.

Figure 3. Relative error as a function of the OD. The transmitted value at the bin of 135◦ (the maximal

value for backpropagated, transmitted photons) was used for comparison. Monte Carlo data was

used as the ground truth.

In order to examine the capacity of the time-based Markov chain model for distin-
guishing transmitted photons at different timings (i.e., propagating different path lengths
inside the turbid media), Figure 4 compares the results obtained by Markov chain approxi-
mation and the Monte Carlo simulations, respectively. In Markov chain realization, the
photon transmitted can be obtained via Equation (6). For instance, the transmitted angular
distribution within t = 100∆z/c–t = 125∆z/c can be achieved by adding Equation (6), with n
ranging from 100 to 125. For Monte Carlo simulation, as each photon is transmitted, the
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pathlength that this photon has propagated for can be recorded. Therefore, when all the
photons have been simulated, the sought distribution within a range from t = 100∆z/c to
t = 125∆z/c can be obtained by counting all photons that propagate a total path length of
100–125∆z before being transmitted.

Figure 4. Time-based Markov chain model predictions compared with the Monte Carlo simulation

results. (a–h) Photons transmitted within different ranges of time.

In this investigation, a total of 100 turbid layers were used, and the results in Figure 4
were obtained under a total OD of 5.0, suggesting that the OD in each layer was 0.05. The
thickness of each layer was noted as ∆z. Figure 4a–h presents the photons transmitted
during different periods of time. Since the total thickness of the turbid slab was 100∆z,
no photon could be transmitted from the exit plane before t = 100∆z/c because 100∆z was
the shortest path length possible. Therefore, in Figure 4a–d, no photons were seen within
the range from 0◦ to 90◦, and the transmitted photons in these panels were all photons
reflected back to the entrance plane. Figure 4e–h demonstrates the transmitted photons
during t = 100∆z/c and t = 200∆z/c (with ballistic photons removed from the results). As
can be seen, after t = 100∆z/c, the fluctuating features associated with the Mie scattering
phase function were not pronounced for the backscattered photons due to diffusion effects.
Finally, the time-based Markov chain model could generally approximate the angular
distribution of the transmitted photons that exited the turbid slab at different times, which
could not be achieved by our previous scattering-based Markov chain model. Thus, the
performance of the time-based Markov model is verified. The proposed method can
approximate the angular distributions received by the sensors at different moments, which
are easier to examine experimentally and provide more information for the reconstruction
purpose explored in the following section.

3.2. Time-Based Markov Chain Multiple Scattering Inversion

The time-based model can utilize temporal resolved transmitted photons as reconstruc-
tion inputs, which is more desirable compared with finding the scattering order (i.e., how
many times a specific photon has been scattered before transmission) of the transmitted
photons experimentally. Furthermore, for the backscattered photons, there is a maximum
penetrating distance during a specific time period. For instance, within t = 0~20∆z/c, the
furthest distance a back-transmitted photon can reach is 10∆z, which requires this photon
to propagate perpendicular to the entrance plane (θ = 0◦), scattered at z = 10∆z, then return
to the entrance plane with a transmitted angle of θ = 180◦. Therefore, the optical properties
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within z = 0~10∆z can be inferred by the transmitted angular distribution obtained during
t = 0~20∆z/c. In a similar approach, the optical properties within z = 10~20∆z can be found
by the transmitted angular distribution obtained during t = 20~40∆z/c, together with the
known properties in z = 0~10∆z. In an iterative manner, the spatially resolved optical
properties of the turbid slab can be reconstructed without brute force trial and error of all
possible combinations.

The schematic of such a method has been depicted in Figure 5. The transition matrix
to be solved was initially a zero matrix. With the angular distribution data during the
first time period (Iter 1), the optical properties of the first set of layers (10 in this work)
could be found by minimizing the difference of the simulated angular distribution and the
measured angular distribution, assuming the optical properties in the first set of layers
were uniform. The entries at other locations (for instance, in Iter 2) had no contribution
to the measurements, so the entries in these locations could be set to 0. After fixing
the optical properties in the first set of layers (in this work, the droplet diameter), the
corresponding entry values (denoted by x in Figure 5) were updated and fixed in the
iterations that followed. Next, for Iter 2, we performed the same procedures and updated
the corresponding values (denoted by y), and so on so forth. Eventually, we solved for
the final set of layers and updated the rest of the entries (denoted by z). By using this
scheme and backscattered photons (backscattered photons were more readily accessible
in the experiments), we successfully decoupled the connections between different layers
through multiple scattering and substantially reduced the computational cost compared
with using Monte Carlo simulation or brute force calculations.

Figure 5. Schematic of the time-based reconstruction methodology.

To examine such a capacity of the time-based model, we established a synthetic
slab with a customized water diameter distribution for reconstruction. The numerical
setup of this reconstruction effort is depicted in Figure 6. The synthetic phantom was
in agreement with the one in our previous work [18] (i.e., the total OD of the turbid
slab was 5.0). The slab was discretized into 10 layers with the same OD∆z and OD. The
diameter of the water droplets in layers 1–3 and 8–10 was 1.3 µm, and for layers 4–7 it
was 1.6 µm. In this simulation, we had 11 candidate droplet diameter sizes (1.0–2.0 µm,
with a step length of 0.1 µm). Therefore, there were 1110 different possible diameter
spatial distributions. Solving for the true diameter distributions by brute force could
be impossible in the sense of computational cost, even with the Markov chain models.
However, the proposed reconstruction method reduced the cost function evaluations to
only 11 (number of candidates) × 10 (number of layers) = 110, which substantially reduced
the computational cost and made the reconstruction feasible.
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Figure 6. Numerical scheme for the reconstruction effort.

The reconstruction performance of the time-based Markov inversion method is pre-
sented in Figure 7. The ground truth data was obtained using the forwarding time-based
Markov model, and we also added 5% relative noise to the ground truth data to investigate
the robustness of the algorithm under noise. Since the time-based inversion scheme is a
deterministic method, only one reconstruction was performed, in comparison with the
10 tests using optimization algorithms in the previous work [18]. The computational cost to
perform each evaluation was around 25 minutes with an Intel i7-8700 CPU using MATLAB
software, which could potentially be improved by using other programming platforms. In
the two evaluations performed, both reconstructions faithfully rebuilt the synthetic phan-
tom, so we will not be showing the reconstruction here. Instead, we show the relative error
of each diameter in each iteration in Figure 7. In each iteration, the transmitted angular
distribution was obtained with an assumed diameter size. Then, the relative error for each
angle was found against the ground truth value. In this reconstruction, only backscattered
photons were used, and we chose a range within 100–170◦, where the signal strength was
higher. Then, we summarized all the absolute values of the relative error and found the
droplet diameter with the lowest relative error summation.

Figure 7. Relative error summation under different droplet diameters for each layer set: (a) Ground

truth data from the time-based Markov Chain model without noise; (b) Ground truth data from the

time-based Markov Chain model with 5% relative noise.

As seen, the cost function values in the first few layers were distinctively lower at
1.3 µm (~0), compared with the rest of the candidates (~70). As the sought layer moves
further (away from the entrance plane), the relative error using false diameter candidates
also decreases and reduces the sensitivity of the reconstruction. It is worth noting that this
issue is not only associated with the proposed Markov chain method, but also impacts
all algorithms utilizing backscattered photon angular distributions. The reason for this is
that the sensitivities of different phase functions will be reduced, as the photons have been
scattered many times, making it so that the spectral features of the angular distribution
are not apparent anymore, which is also evident in Figure 5e–h in the range from 90–180◦,
where the angular distribution was a quite smooth single-peak distribution. Furthermore,
although the true particle diameter has been found with a 5% relative error, as shown in
Figure 6b, the summarized error in layers 81–90 for the true diameter (1.3 µm) was 0.82,
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compared with 0.89 for a diameter of 1.4 µm. Such an observation means the capability
to distinguish different phase functions is deteriorated with a higher measurement error.
Therefore, an OD threshold exists beyond which the droplet diameter cannot be resolved
by backscattered photons, and the time-based Markov method is also limited by such
a constraint.

To address the issues mentioned above, photons transmitted from the exit plane (for-
ward scattering photons) can also be utilized to examine the fidelity of the reconstruction
with additional computational costs. Such efforts will be examined and implemented in
future work. Furthermore, with the forward scattering process converted into a fast matrix
evaluation problem, it is also possible to utilize end-to-end deep learning algorithms for
reconstruction purposes, for which the training dataset will be provided by the time-based
Markov model. Such a scheme is believed to be able to further enhance the current capacity
of the proposed time-based Markov model.

4. Conclusions

In this manuscript, we have introduced a modified Markov chain model to calculate
the forwarding and inversion multiple scattering problems. Instead of considering indi-
vidual scattering events as the criterion for Markov states, the time-based model tracks
and captures the time and distance a photon propagates until transmitted. Therefore, the
time-based model can utilize temporal resolved angular distribution data to determine
droplet sizes within the turbid medium. Good agreement was established between the
time-based model, scattering-based model and Monte Carlo simulation. The reconstruction
of the droplet size distribution was also successful, with a computational cost of around
25 min. Thus, the time-based Markov inversion method has the potential for practical
medical diagnosis or similar applications by utilizing multiple scattering information.
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