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The spiral pattern can emerge in the two dimensional generalized Ginzburg·Landau equation. 
There exists a vortex as a topological defect in the center of the spiral. We carried out some 
numerical simulations to study the motion of an interacting pair of vortices and a vortex driven by 
the faster pacemaker. . 

7 

Spiral patterns and targetlikepatterns are interesting and well-known wave 
patterns in the Belousov-Zhabotinsky reaction.1

),2) Such waves can emerge generally 
in two dimensional excitable or oscillatory media.1l-

7
) We consider only oscillatory 

media in the following. There is a pacemaker region in the center of such patterns 
and it sends out the waves. For the targetlike pattern the pacemaker arises from 
heterogeneous nuclei in the vicinity of which the oscillation frequency is somewhat 
higher than that of bulk medium. For the spiral pattern there is a singularity point 
in the center of the spiral, where the amplitude of oscillation becomes zero and the 
phase of oscillation cannot be defined. The phase singularity point is a kind of 
topological defects called vortex and it plays a role of the pacemaker. A three 
dimensional extension of rotating spiral waves is called scroll waves and there is a 
vortex line in the center of the scrol1.3

),4) 

It is known experimentally that many spiral patterns coexist stably and they 
move around hardly. It is also known that if spiral patterns and targetlike patterns 
coexist initially, the targetlike patterns are gradually eaten away by the spiral 
patterns and eventually all the targetlike patterns disappear and only the spiral 
patterns survive. It is because the pace of oscillation of the spiral wave is generally 
faster than that of targetlike waves. 

We carried out numerical simulations to see if the spiral patterns are really stable 
and cannot move. The model equation we used in this paper is the generalized 
Ginzburg-Landau equation:5

) 

(1) 

where W = X + iY = Rexp( iB) is a complex variable, and Cl and C2 are parameters and 
w(x) denotes heterogeneity of the oscillating frequency. If /72 W=O and w(x)=co, the 
uniform oscillation W(x, t)=exp{i(co- C2)t} is observed. Spiral patterns are found 
in this system, when Cl or C2 has a nonzero value and w(x)=CO.5

),6) In our simulations 
Cl is assumed to be 0 and w(x) is almost constant except for a local pacemaker region. 
We used the simple Euler method with the time step Llt=0:005 and the space step Llx 
=0.3. The grid size is 200 x 200 and therefore the space size is 60 x 60. And the free 
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boundary condition is assumed. 
The center of the spiral pattern is in the state of vanishing amplitude, i.e., R=O 

or (X, Y)=(O, 0), and hence the phase 8 cannot be defined there. The rotation 
number 1 is defined as 

1= 2~ f[78dx, (2) 

where the integral is taken around the phase singularity point. The rotation number 
1 corresponds to the number of arms of the spiral and 1 = ± 1 for the usual single 
armed spiral. The sign of 1 denotes the winding direction, i.e., plus (minus) sign 
represents counterclockwise (clockwise). The amplitude of oscillation is small 
around the phase singularity point and the region is called the core region. The core 
radius is about 4 when Cl =0 and C2= 1.0. 

We study at first about a pair of spiral patterns in a uniform system, i.e., w(x) 
=const. Two types of pairs can be considered: One is a clockwise-counterclockwise 
pair and the other is a clockwise-clockwise pair. In the former case the total rotation 
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Fig. 1. Time developement of a clockwise·counterclockwise pair of spiral patterns. 
(a) Phase pattern at t=40 when the in"itial distance ro between the two vortices is 8.1. 
(b) Trajectories of the vortices for ro=8.1 in the two dimensional space. 
(c) Trajectories of the vortices for ro=9.9 in the two dimensional space. 
(d) Time development of the distance between the vortices for ro=8.1 and 9.9. 
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number is 0 and it is possible that the pair of spirals are merged and disappear. In 
the latter case the total rotation number is 2, and if the two spirals are merged, a 
two-armed spiral may emerge. We carried out numerical simulations for cz=1.0 and 
m(x)=O. The two phase singularity was arranged apart from each other as an initial 
condition, and the initial distance between the vortices was changed in several ways. 
Time development of the pattern and the positions of the vortices were investigated. 

When the initial distance is large, the vortices seem to stay still and the spirals 
rotate steadily in both cases. But when the initial distance is not so large, the 
vortices can move. We show a result of the simulation in Fig. 1 for a clockwise­
counterclockwise pair. Figure l(a) is a phase pattern when the initial distance ro is 
8.1. A small cross is marked at each point where 1m W= Y>O. A pair of spirals is 
seen and drifts upward. Figures l(b) and (c) show the trajectories of vortices for ro 
=8.1 and 9.9. For both initial distances the vortices drift upward. For ro=8.1 the 
two vortices approach gradually and are merged and disappear. But for ro=9.9 they 
go away from each other. 'This result suggests that there is a critical distance beyond 
which two vortices are repulsive. Figure l(d) shows the distance of the two vortices 
as a function of time. As the vortices approach enough, the velocity of the approach 
and the upward-drift becomes fast. When Cl=CZ=O, Eq. (1) becomes the usual 
Ginzburg-Landau equation and the system has a potential denSIty function: -1/21 wlz 
+ 1/41 W14+ 1/2117 Wlz. In the usual Ginzburg-Landau equation a vortex can exist but 
it cannot work as a pacemaker and therefore cannot send out a spiral waves. When 
two vortices are arranged initially, they only attract each other, as the integrated 
potential function is decreased.S

),9) They cannot drift toward the vertical direction to 
the line which connects the two vortices. A similar vertical drift is known for the 
vortex motion in the fluid. 

Figure 2 shows a result for a clockwise-clockwise pair of spirals. Initially they 
are set very closely, and the phase pattern is almost a two-armed spiral pattern. The 
vortices are repulsive and go away from each other as shown in Figs. 2(b) and (c). 
The velocity is slow when the distance between the vortices is short. It is probably 
because the two-armed spiral pattern is an unstable but stationary patterri arid plays 
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Fig. 2. (continued) 
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a part of a saddle point in the dynamical 
system. The drift motion is also seen in 
this case, but the directions are opposite 
for the two vortices. Thus the trajec­
tory of the vortex takes a shape of spiral 
and the two trajectories are point­
symmetric with each other. The veloc­
ity becomes slow as the two vortices 
become far a w~:tY-

Fig. 2. Time development of a clockwise· 

One vortex can stay still anywhere 
because of the translational symmetry of 
the original equation (1), if the system­
size is infinite. The existence of the 
vortex breaks the translational symme­
try. It is therefore impossible that 
another vortex stays still everywhere 
apart from the former vortex. The 
experimental fact that many spirals co­
exist and move hardly may suggest that 
the repulsive or attractive force becomes 

clockwise pair of spiral patterns when the ini· 
tial distance ro is very small. 
(a) Phase pattern at t=80. 
(b) Trajectories of the two vortices in the two 
dimensional space. 
(c) Time development of the distance between 
the vortices. 

rapidly weaker as the distance between the spirals is long. 
Next we study a case when one vortex and a pacemaker region due to the 

heterogeneity of the oscillating frequency coexist. A circular region whose radius is 
6 has higher natural frequency by Wo than the surrounding, and a spiral pattern is 
arranged initially apart from the pacemaker region. When Wo is small, the spiral 
pattern is hardly affected by the heterogeneity, i.e., the vortex is almost stationary and 
the spiral rotates steadily. This corresponds to the experimental fact that a spiral 
pattern overcomes a targetlike pattern and only the spiral pattern survives. But 
when Wo is large, the circular region can emit targetlike waves faster than the core of 
the spiral. Then the targetlike pattern becomes preferable. But the topological 
defect or the vortex cannot disappear by itself. What happens then? Figure 3 shows 
the result of a simulation for wo=0.6. The spiral pattern is eaten away gradually but 
the vortex does not move until the targetlike waves surge upon the core of the spiral. 
Then the core of the spiral pattern is deformed and starts to move. The vortex 
moves around the circular region and the spiral is wound off·. Finally it will go away 
from the boundary, and the targetlike pattern overcomes the spiral pattern. There is 
a shockwave-like structure where the targetlike waves collide with the spiral waves. 
It separates the spiral region from the targetlike region. It is suggested from our 
simulations that the distance between the vortex and the shocklike boundary is 
important for the vortex motion. When the distance is long, the spiral occupies a 
large region and it winds up many times and then the core of the spiral is stable. But 
when the targetlike waves surge upon the core region or the shocklike boundary 
approaches the core region, the core becomes unstable and starts to move. 

Another similar simulation was carried out. In this simulation only the right 
side has higher natural frequency by Wo than the bulk medium and the heterogeneity 
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gives rise to one dimensional waves. A result of the simulation for aJo=O.9, C2=1.0 is 
shown in Fig. 4. Similar to Fig. 3 the one dimensional waves are preferable to the 
spiral waves. The spiral pattern is deformed into a straight long tail. The vortex 
drifts toward the left and downward. The velocity of the vortex is nearly constant 
after an initial stage. The left is the direction against the faster pacemaker region, 
and the tail pattern shrinks due to the downward drift. The shrinking direction 
seems to be characteristic of the drift motion of vortex in our system. The direction 
of the drift motion with respect to the characteristic hook-like pattern of the core is 
common as is seen in Figs. 1 ~4. 
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Fig. 3. Time development of a spiral pattern 
driven by the circular pacemaker where the 
natural frequency is higher by 0.6 than the 
surrounding region. 
(a) Phase pattern at [=100. 
(b) Trajectory of the vortex in the two dimen­
sional space. 
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Fig. 4. Time development of a spiral pattern 
driven by the linear pacemaker on the right 
side where the natural frequency is higher by 
0.9 than the bulk region. 
(a) Phase pattern at t=120. 
(b) Trajectory of the vortex in the two dimen­
sional space. 
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We carried out several simulations and found that vortices can move when two 
vortices are closely situated or the vortex is driven by the faster pacemaker. The 
drift motion is observed besides the simple attractive or repulsive motion. The 
motion seems to have common features but we need further numerical and theoretical 
studies to understand the vortex motion. 

The author would like to thank Professor Y. Kuramoto and Dr. S. Shinomoto for 
many useful discussions. 
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