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Abstract

A fiilly nonlinear 2-dimensional numerical wave flume, based on the boundary

integral equation method, has been developed. Waves are generated by a hinged

paddle wave maker at one end of the flume and a sponge type wave absorber at

the other end. A fourth order Taylor expansion technique is used for the time

stepping of the free surface. Simple monochromatic waves have been generated

and very good agreements are found when compared with Stokes wave profiles.

The wave flume is used to study deep water wave breaking due to large periodic

displacements of the wave paddle. Wave breaking as a result of energy focusing

a group of waves of different frequencies and heights, is also studied. For each

breaking event, breaking wave parameters such as the wave steepness, breaking

height, particle velocities and accelerations are examined in detail. There does

not appear to be a definable correlation between the point of breaking, the wave

steepness, or the particle velocities. The maximum downward (vertical) and

forward (horizontal) accelerations at breaking are found to be independent of the

initial conditions, with constant values of g and 1.56g, respectively; and where g

is the acceleration due to gravity. It has been proposed (Philips*) that particle

accelerations could be used as a criterion for wave breaking. Positive verification

of this was first provided in an earlier study by the authors She et af, which used

spatially periodic boundary conditions. Both studies support Philips' conjecture,

and suggest that the point of breaking is when the maximum vertical and

horizontal accelerations are at g & 1.56g.
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1 Introduction

Wave breaking represents the most extreme surface sea conditions. The accuracy

of predicting wave breaking directly affects the accuracy of our prediction of the

extreme wave forces on offshore and coastal structures. It also affects our ability

to accurately predict coastal processes such as sediment transport. Because of its

engineering significance, wave breaking has been a subject of great interest over

the last two decades. Amongst some notable works are those of Longuet-Higgins

& Cokelet*, Dold & Peregrine*, New et al*, Grilli & Subramanya*, and Lin &

Liu?

Experimental studies of wave breaking can be expensive and difficult to

implement. Despite the introduction of highly advanced measuring techniques in

recent years, accurate measurements of full field particle accelerations in a

breaking wave have yet to be achieved. Recent studies of wave breaking in 3D

sea conditions by She et al* postulated that the examination of acceleration in

breaking waves may hold the key in reaching a universally applicable breaking

criterion, which is supported by the numerical study of She et aP. The present

study further examines the accelerations of breaking waves through a numerical

wave flume.

2 The Numerical Wave Flume

2.1 Governing Equations

The numerical wave flume is shown in Figure 1. The fluid boundary(F) is

represented by discretised computational nodes, and consists of the free surface

(Fps & FNB), a solid boundary(FsB), and a hinged paddle wave maker(Fp). The

surfaces FSB and F? are assumed to be impermeable. Let the fluid motion be 2-

dimensional, incompressible, inviscid and irrotational, then it may be described by

the complex velocity potential 0 = ($, y/), such that

d<$>
u-iv = — - (l)

dZ

which satisfies the nonlinear free surface kinematic boundary condition, and

where Z=(x, y). Making use of Cauchy's theorem, we have

z-z.

The nonlinear dynamic free surface boundary condition is satisfied by Bernoulli's

equation,
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at p
(3)

where Pa, p and g, are the atmospheric pressure, the fluid density and the

acceleration due to gravity, respectively. Along the paddle surface we have the

stream function,

1
on (Fp) (4)

where r is the distance between Op and a fluid particle on the paddle surface, and

co is the paddle's angular velocity. Finally, on the solid boundary we have,

on (FSB). (5)

Equations 1 to 5 form the basis for the numerical model, and are solved by

the boundary integral equation method. Further details on the solution of these

equations, may be found in the earlier work by She et al*.

FS NB

SB

SB
Figure 1: The numerical wave flume.

2.2 Numerical implementation

The method takes advantage of the mixed Eulerian-Lagrangian technique of

Longuet-Higgins & Cokelet*. The velocity potential on the free surface is set to

zero at time t=0. That is, the fluid surface is at the still water level (SWL), and

the paddle is in the upright position. We are therefore able to solve for the initial

condition, and then determine the higher Eulerian and Lagrangian derivatives. An
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algorithm similar to that of Dold & Peregrine* is used, where each step provides

the necessary information for solving the next. We solve up to the fourth

derivatives, and use a fourth order Taylor expansion for time stepping the free

surface.

The only input into the model, is the wave paddle angular velocity a), where

N

(6)

and fi%,/ and #, are the input paddle angular velocity, wave frequency and phase

angle, respectively, and N are the number of waves to be input. The paddle

motion is a superposition of a number of sine waves. To achieve a required wave

height for a given frequency, a transfer function is used to determine the value of

c&i and #. More discussion on this can be found in section (4) below, y is a 'cold

start' function, which allows the wave paddle to be gradually brought up to

speed, and is given by,

7 = l-exp^— tj (7)

where C = 6, and T is a prescribed time delay, usually 1 s.

To counter the problem of wave reflection, we suppress the free surface

velocities u & v, by the wave absorption function,

a = expf--(*-XM)J on (FNB) (8)

where XNB is the start of FNB, and FNB is generally 25-30% of the total length of

the wave flume.

2.3 Numerical performance

A comparison of the wave profiles, velocity potentials, stream functions and

surface velocities, of monochromatic waves generated in the flume, have been

made. These have shown a very good agreement with Stokes waves generated by

the nonlinear equations of Schwartz™. For further details on the general

performance of the model, the reader is referred to the earlier work by She et al*.
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3 Generation of breaking waves

There were two approaches to generating breaking waves in this study.

Monochromatic waves were generated with an input frequency of 1 Hz A

number of runs were performed, gradually increasing the amplitude of the paddle

movement.

Multiple frequency waves were generated, and wave breaking was achieved

as a result of energy focusing. Component wave heights are determined using the

same function as that used by Skyner et al** and She et al*, given by

(9)

where fo = 0.55 Hz,// = 0.85 Hz, S = 16 and HO is a constant. The general

variation of H/Ho as a function of/ is shown in Fig 2. For the purpose of this

study/= 0.6-1.4 Hz.

A breaking wave height HB is then specified for a given spatial and temporal

focusing point, such that Hg = EH, Eqn (9) has been shown to generate very

good 2-dimensional breakers. However, the only variable in eqn (9) is the paddle

frequency, but we use eqn (6) to generate the wave group. We therefore require

a relationship between the height and the variables in eqn (6), which we present in

the next section.

2.5 -r

0.0

0.3
f(Bz)

Figure 2: Wave height as a function of frequency.

4 Wave Flume Calibrations

To relate the wave height to the input parameters for eqn (6), it was necessary to

perform a large number of wave runs for monochromatic waves. To do this the
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paddle frequency was chosen in the range/= 0.6-1.4 Hz, and for each value of/

the paddle angular velocity was varied, such that co = 0.005-0.200 rad s~*.

Numerical wave gauges were set up to allow the wave elevations to be recorded

as a function of time. From the wave gauge records it was possible to determine

the time averaged wave heights and wavelengths, taken after a steady wave train

had fully developed

For each value of/ a very good agreement to a least squares quadratic fit

was found between CD and H, in the form

where a/, Zyand Cf are the least squares coefficients for each frequency. Similarly,

there is a relationship between H/L and #, once again in the form

— - b 2

where â  bf& and % are the coefficients for each frequency.

The coefficients of eqns (10 & 11) are then fitted to polynomial expressions,

such that they cover all possible frequencies between 0.6 & 1.4 Hz. We then

have two general functions, given by

(12)

and,

//. _ 2

-^ = D + Ed,,+ ^ ^

where A, B, C, D, E and F are 6*** order polynomial functions of/. Since H, and

/ are prescribed, the solutions of eqns (12 & 13) provide us with the values for #,

and L,, and from L, we can find £/=2;z/L/. For the focusing wave study, the phase

angle of each front is given by

(14)

where *& and tpp are the spatial and temporal focusing points, respectively.

The use of 6* order polynomials in eqns (12 & 13) may seem excessive.

However, when the computed and actual values for the heights and wavelengths

are compared, the averaged errors are 0.74% and 0.36%, respectively.
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Moreover, when monochromatic waves were focused using these equations, they

were found to behave as predicted, sometimes arriving exactly as prescribed.

Figure 3 shows eqn (12) plotted for a frequency of 1 Hz, along with the original

height and paddle angular velocity data for a 1 Hz wave.
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Equation (12) (f=l Hz)

1 Hz Wave Gauge Data
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Figure 3: The relationship between H & CD for a paddle frequency f=\ Hz

5 Results and discussion

Figure 4 shows a fully developed monochromatic wave train at time t=12 s.

There is a high repeatability of the wave profiles, and an examination of the wave

gauge records indicates that the wave reflection is very small. Wave height

variations are usually less than 1%.

aos
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V7

1 2 3 4 5 6 7 8 9

Figure 4: A fully developed monochromatic wave train.

Wave breaking is taken to be the point when the front face of the wave

becomes vertical (see Griffiths et aP). We investigate the classical definition of

the wave total steepness. The crest rear (RS) and crest front (FS) steepness are

also investigated, where theses are either side of the crest and above the still

water level. Figure 5 shows the steepness for the monochromatic and grouping

waves, as a function of the breaking wave height. Wave steepness is a traditional

criterion for defining the point of breaking. There does not appear to be a clearly
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defined correlation between the breaking wave height and the steepness

parameters, supporting the earlier work of the authors She et af.
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- Grouping H/L
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Figure 5: Wave steepness at breaking
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Figure 6: Crest and maximum particle velocities at breaking.

Griffiths et al̂  suggested that a velocity based breaking criterion may be

applicable. Further study by She et al* indicated the possibility of using the

maximum velocity in the crest as a breaking criterion, but suggested that the

acceleration is likely to be a better parameter for this purpose. Figure 6 shows

the relationship between the breaking velocities and the breaker height. There

does not appear to be a correlation between the crest particle velocities(UB), and

the wave celerity, at the point of breaking. The maximum velocities are Ugmax,

which are the front face velocities at the point of breaking, this has been reported
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by Griffiths et aP and She et al*. When this is compared with the wave celerity

at breaking (Ce), it is apparent that the two velocities are similar, but with no

obvious relationship.

Phillips* was the first to suggest that the particle accelerations could be used

as a criterion for wave breaking. The results of the analysis of the particle

accelerations are shown in figure 7. The maximum vertical accelerations are

towards the top of the front face of the breaker, and are very close to Ig,

suggesting that the water is in free fall. The maximum horizontal accelerations

are in the front face of the breaker, and below the point of maximum vertical

acceleration. The values of the horizontal acceleration are found to be

approximately constant at a value 1.56g. In comparison with other parameters,

the particle accelerations are best and most simply defined in relation to the

breaker heights, supporting the earlier work by the authors She et aP.
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Figure 7: A comparison of the accelerations and the heights at breaking.

6 Conclusion

A fully nonlinear numerical wave flume has been developed. Wave breaking has

been studied for monochromatic and grouping waves. The wave steepness,

particle velocities and accelerations have been examined for a range of breaking

waves. It has been shown that the particle accelerations are best suited for

establishing a universally applicable breaking criterion The limited case studies

carried out so far, shows that the point of breaking is when the maximum

horizontal and vertical (downward) particle accelerations reach values of 1.56g

and g, respectively. Further work is underway to investigate breaking under

transitional and shallow water conditions.
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