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Numerical assessments in the square channel heat exchanger installed with various parameters of V-orifices are presented. ,e
V-orifice is installed in the heat exchanger channel with gap spacing between the upper-lower edges of the orifice and the channel
wall. ,e purposes of the design are to reduce the pressure loss, increase the vortex strength, and increase the turbulent mixing of
the flow. ,e influence of the blockage ratio and V-orifice arrangement is investigated. ,e blockage ratio, b/H, of the V-orifice is
varied in the range 0.05–0.30. ,e V-tip of the V-orifice pointing downstream (V-downstream) is compared with the V-tip
pointing upstream (V-upstream) by both flow and heat transfer. ,e numerical results are reported in terms of flow visualization
and heat transfer pattern in the test section.,e thermal performance assessments in terms of Nusselt number, friction factor, and
thermal enhancement factor are also concluded. ,e numerical results reveal that the maximum heat transfer enhancement is
found to be around 26.13 times higher than the smooth channel, while the optimum TEF is around 3.2.,e suggested gap spacing
for the present configuration of the V-orifice channel is around 5–10%.

1. Introduction

,e development method for the various types of the heat
exchanger has been widely reported by many researchers.
,e development method for the heat exchanger can be
separated into two ways: (1) passive method and (2) active
method.,e active method is to add the external power such
as vibration, to increase the heat transfer rate and efficiency.
,erefore, the use of the active method must consider on
both the additional power cost and the benefit of the system.
,e passive method is to generate the vortex flow or swirling
flow and to disturb the thermal boundary layer by installed
with vortex generator or turbulators such as baffle, rib,
winglet, wing, etc., in the heating system. ,e improvement
of the thermal performance for the heat exchanger with
passive method is widely selected because this method does
not consider the additional power cost of the system.

,e investigations of the thermal performance augmen-
tation in the heat exchanger are divided into two methods: (1)
numerical method and (2) experimental method. ,e ex-
perimental method gives high reliability result, but the op-
eration cost is more expensive than the numerical study. ,e
numerical investigation can help to describe the mechanisms
in the system that is an important knowledge to design and
improve the thermal performance of the heating system.
However, the researchers must sure that the computational
model has more reliability to predict the flow and heat
transfer in the channel when studied with numerical method.

,e selection of the vortex generator type depends on the
application of the heat exchanger. ,e baffle and rib always
select to enhance heat transfer rate and performance in
the channel or tube heat exchanger [1–5]. ,e baffle and rib
give high heat transfer rate and thermal efficiency when
compared with the other types of the generators, especially,
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V-shaped rib/baffle [6–15]. However, it is found that the
installation of the V-rib is quite difficult. ,e V-rib in the
heat section had been modified to help to support the
installation and maintenance, while the benefit of the V-rib
nearly remains the general type. ,e structure of the V-rib
is developed like as orifice plate when considered at the
projected view [16]. ,e researchers found that the mod-
ified V-rib can enhance the heat transfer rate nearly as the
V-rib, but the pressure loss of the system is extremely
found.

In the present work, the orifice is modified like V-baffle
(called “V-orifice”) and inserted in the square channel heat
exchanger.,e purpose for the insertion of the V-orifice is to
generate the vortex flow through the test section. ,e vortex
flow will disturb the thermal boundary layer on the heat
transfer surface causing heat transfer rate and thermal
performance enhancements. ,e installation of the V-orifice
in the channel is designed with gap spacing between edges of
the orifice and the channel walls. ,e optimum gap spacing
may increase the turbulent mixing, help to distribute the
fluid temperature, and also reduce the pressure loss in the
tested channel. ,e numerical investigation is selected to
solve the current problem. ,e numerical study helps to
describe the mechanisms in the heating channel that is an
important knowledge to develop the thermal performance of
the heat exchanger. ,e flow visualization and heat transfer
behavior in the test channel are shown. ,e thermal analysis
for the present problem is also concluded.

2. Physical Domain of the Square
Channel with V-Orifice

,e V-orifices are inserted in the square channel heat ex-
changer as shown in Figure 1. ,e square channel height, H,
is set around 0.05m. ,e orifice height (projected view) is
represented with “b.” ,e ratio between orifice height and
the channel height, b/H, is called blockage ratio. ,e
blockage ratio is varied in the range around 0.05–0.30. ,e
gap spacing between the edges of the orifice and the channel
walls is represented with “g.” ,e ratio between gap spacing
and channel height, g/H, is known as the gap spacing ratio.
,e gap spacing ratio is varied in the range around 0–0.35.
,e laminar flow regime (inlet condition) with the Reynolds
number around 100–2000 is considered for the present
investigation. “P” is the distance between the V-orifice. ,e
P/H or pitch spacing ratio is fixed at 1. ,e flow attack angle
for the V-orifice is set around 30° for all examples. ,e V-tip
arrangement of the V-orifice is divided into two directions:
V-tip pointing downstream (V-downstream) and V-tip
pointing upstream (V-upstream). ,e investigated cases and
code are concluded as Table 1.

3. Assumption

,e numerical model of the heat exchanger square channel
inserted with V-orifice is developed with the following
assumptions:

(1) ,e test fluid is air with 300K (Pr� 0.707)

(2) ,e flow and heat transfer is steady in three
dimensions

(3) ,e flow is incompressible

(4) Laminar flow regime is measured

(5) ,e convective heat transfer is considered for the
present work, while natural convection and radia-
tion heat transfer are ignored

(6) ,e body force and viscous dissipation are
disregarded

(7) ,e properties of the air assume to be constant at
the average bulk mean temperature

(8) No slip wall condition is applied for all surfaces

(9) ,e uniform temperature of the channel walls is
maintained around 310K

(10) ,e V-orifice plate assumes to be an insulator

4. Boundary Condition and Initial Condition

,e boundary condition and initial condition for the nu-
merical model of the square channel inserted with the
V-orifice are given in Table 2.

5. Mathematical Foundation and
Numerical Method

,e numerical problem is answered by the finite volume
method (SIMPLE algorithm).,e tested channel is governed
by the continuity, the Navier–Stokes equations, and the
energy equation as equations (1)–(3), respectively.

Continuity equation:

z

zxi
ρui( ) � 0. (1)

Momentum equation:

z ρuiuj( )
zxj

� − zp
zxi

+
z

zxj
μ

zui
zxj

+
zuj

zxi
( )[ ]. (2)

Energy equation:

z

zxi
ρuiT( ) � z

zxj
Γ zT
zxj

( ), (3)

where Γ is the thermal diffusivity and is written as

Γ � μ

Pr
. (4)

,e continuity and momentum equations are dis-
cretized by the power law scheme, while the energy
equation is discretized by QUICK scheme. ,e solutions
are determined to be converged when the normalized re-
sidual values are less than 10−5 for all variables, but less
than 10−9 only for the energy equation.

,e velocity of the flow is presented in terms of the
Reynolds number as equation (5). ,e pressure loss of the
tested section is shown with the friction factor (equation
(6)), while the heat transfer rate is concluded with the local
Nusselt number and average Nusselt number (equations (7)
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and (8)). �e thermal performance of the heating system is
summarized with the thermal enhancement factor as
follows:

Re �
ρuDh

μ
, (5)

where Dh is hydraulic diameter of the square channel heat
exchanger.

f �
(ΔP/L)Dh

(1/2)ρu2
, (6)

Nux �
hxDh

k
, (7)

Nu �
1

L
∫Nuxzx. (8)

�e thermal enhancement factor (TEF) is defined as
the ratio of the heat transfer coefficient of an augmented

surface, h, to that of a smooth surface, h0, at similar
pumping power.

TEF �
h

h0

∣∣∣∣∣∣∣∣pp �
Nu

Nu0

∣∣∣∣∣∣∣∣pp �
Nu/Nu0( )
f/f0( )

(1/3)

. (9)

Nu0 and f0 are the Nusselt number and friction factor for
the smooth square channel, respectively.

6. Validation of the Computational Domain

�e numerical validation is an important part for the nu-
merical simulation. �e validation result can confirm the
reliability of the numerical result. �e validation of the
numerical model for the square channel inserted with
V-orifice can be divided into two parts: (1) grid in-
dependence and (2) verifications with the smooth channel
for the Nusselt number and friction factor.

b15g15 of the numerical model is selected to check the
grid independence.�e hexahedral mesh with nonuniformity
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Figure 1: (a) Computational domain of the square channel heat exchanger installed with V-orifice. Numerical model in transverse plane (b)
and with mesh (c).
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is applied for all investigated cases. �e different numbers
of grid, 120000, 240000, 360000, 440000, and 600000, are
applied for the numerical model. It is found that the in-
crement of cells from 240000 to 360000 has no effect for
both Nusselt number and friction loss. �e deviations for
both values are found to be around ±0.2%. �erefore, the
grid cell around 240000 is created for all investigated cases
when considered by both time for investigation and ac-
curacy result.

�e verifications of the smooth channel with no orifice
for heat transfer and pressure loss are plotted as Figure 2.�e
results from the present prediction are compared with the
results from the correlations [17]. �e heat transfer rate is
presented with the Nusselt number, Nu0, while the pressure
loss is offered in term of friction factor, f0. As the figure, the

deviations of the Nusselt number and friction factor are
around ±2.4% and ±3.0%, respectively.

As the results above, it can be concluded that the creation
domain has enough reliability to predict flow and heat
transfer mechanisms in the heat exchanger square channel
inserted with V-orifice.

7. Numerical Result and Discussion

7.1. Influence of Blockage Ratio and Gap Spacing Ratio.
�e flow configurations in the heat exchanger channel fitted
with various parameters of the V-orifice are presented by
streamline in transverse planes and longitudinal vortex flow
through the test section. �e streamline in transverse planes
at x/D� 0.5 in the square channel with V-orifice is depicted
as Figure 3 for V-downstream arrangement. It is found that
the V-orifice can generate the vortex flow in all investigated
cases. In general, the four main vortex flows are detected.
�e symmetry flow for left-right parts and upper-lower parts
is found due to the symmetry configuration of the V-orifice.
�e small vortices at four corners of the channel are also
detected in all cases. �e vortex core has change depended
on the position in the test section, blockage ratio, and gap
spacing ratio. �e vortex flow in the test section helps to
improve the fluid mixing and the distribution of the fluid
temperature between core of the channel and near the
channel walls. �e vortex flow also disturbs the thermal
boundary layer on the heat transfer surface. �ese behaviors
are causes for heat transfer and thermal performance aug-
mentations. �e strength of the vortex flow directly affects
the enhancement of the heat transfer rate and thermal
performance.

Figures 4(a) and 4(b) report the longitudinal vortex flow
of the square channel heat exchanger fitted with V-orifice at
Re� 600 and V-downstream arrangement for b15g0 (no
gap) and b15g15 (with gap), respectively. �e longitudinal
vortex flow is found through the test section on both cases.
�e flow configuration is found to be in nearly pattern. Some
parts of the air flow pass the gap between the orifice and the

Table 1: Case study.

Case Code

b/H� 0.05, g/H� 0 b05g0
b/H� 0.05, g/H� 0.05 b05g05
b/H� 0.05, g/H� 0.10 b05g10
b/H� 0.05, g/H� 0.15 b05g15
b/H� 0.05, g/H� 0.20 b05g20
b/H� 0.05, g/H� 0.25 b05g25
b/H� 0.05, g/H� 0.30 b05g30
b/H� 0.05, g/H� 0.35 b05g35
b/H� 0.10, g/H� 0 b10g0
b/H� 0.10, g/H� 0.05 b10g05
b/H� 0.10, g/H� 0.10 b10g10
b/H� 0.10, g/H� 0.15 b10g15
b/H� 0.10, g/H� 0.20 b10g20
b/H� 0.10, g/H� 0.25 b10g25
b/H� 0.10, g/H� 0.30 b10g30
b/H� 0.15, g/H� 0 b15g0
b/H� 0.15, g/H� 0.05 b15g05
b/H� 0.15, g/H� 0.10 b15g10
b/H� 0.15, g/H� 0.15 b15g15
b/H� 0.15, g/H� 0.20 b15g20
b/H� 0.15, g/H� 0.25 b15g25
b/H� 0.20, g/H� 0 b20g0
b/H� 0.20, g/H� 0.05 b20g05
b/H� 0.20, g/H� 0.10 b20g10
b/H� 0.20, g/H� 0.15 b20g15
b/H� 0.20, g/H� 0.20 b20g20
b/H� 0.25, g/H� 0 b25g0
b/H� 0.25, g/H� 0.05 b25g05
b/H� 0.25, g/H� 0.10 b25g10
b/H� 0.25, g/H� 0.15 b25g15
b/H� 0.30, g/H� 0 b30g0
b/H� 0.30, g/H� 0.05 b30g05
b/H� 0.30, g/H� 0.10 b30g10

Table 2: Boundary condition and initial condition.

Zone Boundary condition/initial condition

Inlet Periodic boundary
Outlet Periodic boundary

Channel wall
Uniform temperature at 310K

No slip wall

V-orifice
Insulator

No slip wall
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Figure 2: Validation of the smooth channel on Nusselt number
and friction factor.
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channel wall in the case of b15g15.,e optimum gap spacing
can help to reduce the pressure loss and also increase the
strength of the vortex flow.

,e heat transfer characteristics in the square channel
placed with V-orifice at various parameters are reported in
forms of temperature distributions in transverse planes and

b05 b10 b15 b20 b25 b30

g0

g5

g10

g15

g20

g25

g30

g35

Figure 3: Streamlines in transverse planes for the square channel heat exchanger installed with V-orifice at various blockage ratios and gap
spacing ratios for Re� 800 and V-downstream arrangement.
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local Nusselt number on the heat transfer surface. Figure 5
illustrates the temperature distributions in transverse planes
for the square duct inserted with V-orifice at various flow
blockage ratios and gap spacing ratios. In general, the low
temperature of the fluid (blue layer) is detected at core of the
square channel, while the high fluid temperature (red layer)
is found near the channel walls for the smooth channel with
no orifice. �e insertion of the V-orifice in the channel
changes the heat transfer behavior. �e thermal boundary
layer near the channel walls is disturbed by the vortex flow,
which is generated by the V-orifice in all cases. �e red layer
near the channel walls is found to be thinner, while the blue
layer distributes from the center of the channel.

�e local Nusselt number for the heat exchanger square
channel placed with V-orifice at various cases is plotted as
Figure 6 for V-downstream arrangement. �e increment of
the flow blockage ratio of the V-orifice performs higher heat
transfer rate in all gap spacing ratios. �e worst heat transfer
area is clearly found at behind the V-orifice when g/H� 0
(no gap). �e gap spacing ratio helps to increase heat
transfer rate, especially, at behind the V-orifice, but the
strength of the vortex flow seems to be decrease at high gap
spacing ratio.

7.2. Influence of Flow Direction. �e influences of the V-tip
arrangement for the V-orifice in the heat exchanger channel
are presented by both flow configuration and heat transfer
characteristic. �e streamline in transverse plane in the

square channel placed with V-orifice at various blockage
ratios, gap spacing ratios, and arrangement is shown in
Figure 7.�e four to eight main vortex flows is detected in all
cases. �e augmentation on the number of the vortex core
helps to distribute the temperature of the fluid flow in the
test section, but the strength of the vortex flowmay decrease.
�e different arrangement of the V-orifice directly affects the
rotational direction of the vortex flow. �e V-downstream
arrangement gives the opposite rotation of the vortex flow
when compared with the V-upstream arrangement.

Figures 8(a) and 8(b) report the longitudinal vortex flow
of the square channel inserted with V-orifice for V-down-
stream and V-upstream arrangements, respectively. �e
longitudinal vortex flow is found through the test section on
both examples. Some parts of the air flows pass the gap
between the channel wall and the edges of the V-orifice. �is
behavior may help to enhance the turbulent mixing of the air
flow and also reduce the pressure drop across the test
section.

�e heat transfer behaviors in the heat exchanger
channel fitted with the V-orifice are plotted in forms of the
temperature distribution in transverse planes and the local
Nusselt number distribution on the heat transfer surface as
depicted in Figures 9 and 10, respectively. �e temperature
distribution in transverse planes is an indicator to check the
change of the thermal boundary layer on the heat transfer
surface (channel wall). Generally, the low temperature and
high temperature of the fluid are found at the core of the
channel and near the channel walls, respectively. �e

X

Y

Z

(a)

X

Y

Z

(b)

Figure 4: Longitudinal vortex flow for the square channel heat exchanger installed with V-orifice at (a) b15g0 and (b) b15g10 for Re� 800
and V-downstream arrangement.
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Figure 5: Temperature distribution in transverse planes for the square channel heat exchanger installed with V-orifice at various blockage
ratios and gap spacing ratios for Re� 800 and V-downstream arrangement.
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installation of the V-orifice in the heat exchanger channel
has an effect for the change of the temperature distribution
and thermal boundary layer. ,e better mixing of the fluid
flow is found, while the thermal boundary layer is disturbed.
,e perturbation of the thermal boundary layer on each side
of the heat transfer surface is not similar when the ar-
rangement of the V-orifice is changed. ,e severe distur-
bance of the thermal boundary is found at the upper-lower
sides of the channel for the V-downstream arrangement,
while it is detected at the left-right sidewalls of the channel in
the case of the V-upstream arrangement.,erefore, the peak
of heat transfer rate is found at the upper-lower walls of the
channel for the V-Downstream arrangement, while it is
detected at the left-right sidewalls of the channel for the
V-upstream arrangement (Figure 10).

7.3. Performance Analysis. ,e performance assessments in
the heat exchanger square channel placed with the V-orifice
are shown in terms of the Nusselt number ratio (Nu/Nu0),
friction factor ratio (f/f0), and thermal enhancement factor
(TEF). ,e relations of the Nu/Nu0 with the Reynolds
number for the square channel heat exchanger inserted with
the V-orifice are depicted in Figures 11(a)–11(f), re-
spectively, for b5, b10, b15, b20, b25, and b30 at V-down-
stream arrangement. In general, the heat transfer coefficient
increases when enhancing the Reynolds number for all
examples. ,e insertion of the V-orifice in the heat ex-
changer square channel provides higher heat transfer rate
than the smooth square channel with no orifice (Nu/
Nu0> 1).,e peak of heat transfer rate is found at Re� 2000,
while the opposite trend is found at Re� 100. Considering
Re� 2000, the highest heat transfer rate for the b05, b10, and
b15 is found at g20, g25, and g10, respectively, while g0
performs the best heat transfer rate for b20–b30. Nu/Nu0 is
around 1.00–5.52, 0.90–5.98, 1.00–11.62, 1.27–13.63, 1.55–
18.35, and 2.14–28.16, respectively, for b5, b10, b15, b20,
b25, and b30, at V-downstream arrangement.

Figure 12 presents the relations of Nu/Nu0 with the
Reynolds number for the heat exchanger channel insertedwith
the V-orifice at V-tip pointing upstream. ,e similar trend as
the V-downstream arrangement is detected; the heat transfer
rate increases when increasing the Reynolds number. At b05,
the peak of heat transfer rate is found at g/H around 15–20%.
,emaximum heat transfer coefficient for b10 is found at g05.
When g/H> 10%, themaximum values of the Nusselt number
ratio is found at g0. ,e installation of the V-upstream orifice
gives the heat transfer rate around 0.88–5.08, 1.00–8.89,
1.00–12.88, 1.32–14.10, 2.00–18.49, and 2.20–26.93 times
higher than the smooth channel with no orifice for b05, b10,
b15, b20, b25, and b30, respectively, at Re� 100–2000.

,e pressure loss in the heat exchanger channel is pre-
sented with the friction factor values. ,e variation of the
friction factor ratio for the channel fitted with various pa-
rameters of the V-downstream orifice is illustrated in Fig-
ure 13. As seen in the figure, f/f0 enhances when augmenting
the Reynolds number for all investigated examples. ,e
maximum and minimum values of f/f0 are found at the
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Figure 6: Local Nusselt number distribution on the channel walls
for the square channel heat exchanger installed with V-orifice at
various blockage ratios and gap spacing ratios for Re� 800 and V-
downstream arrangement.
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Figure 7: Streamlines in transverse planes for the square channel heat exchanger installed with V-orifice at various blockage ratios and flow
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Figure 8: Longitudinal vortex flow for the square channel heat exchanger installed with V-orifice at (a) V-downstream and (b) V-upstream
for b15g15 and Re� 600.
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Re� 2000 and 100, respectively. �e presence of the V-orifice
in the heat exchanger channel not only increases in heat
transfer rate but also increases in the pressure loss.�e friction
loss of the channel with V-orifice is higher than the smooth
channel in all studied cases (f/f0> 1).�e peak of friction loss is
found at g20 and g10 for b05 and b10, respectively, while
found at g0 when b/H> 0.1. f/f0 is around 1.00–9.12, 1.90–

19.65, 3.64–51.41, 6.28–153.22, 9.93–444.14, and 18.68–
1309.53, respectively, for b05, b10, b15, b20, b25, and b30.

�e similar trend of f/f0 is found in the case of V-upstream
arrangement as depicted in Figure 14. g15 and g5 of b05 and
b10, respectively, perform the maximum heat transfer rate
when compared at similar blockage ratio. When b/H > 10%,
g/H� 0 brings the uppermost friction loss at similar
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blockage ratio. f/f0 is around 1.00–10.14, 1.60–25.71, 4.05–91.11,
5.96–237.45, 9.55–644.76, and 18.28–1928.77, respectively, for
b05, b10, b15, b20, b25, and b30 at Re� 100–2000.

Because the installation of the V-orifice in the heat
exchanger channel increases both heat transfer rate and
friction loss, the thermal enhancement factor is measured for
the present investigation to check the advantage of the

V-orifice in the heat exchanger channel. Figures 15(a)–15(f )
show the relation of the TEF with the Reynolds number at
various cases of V-downstream orifice at b05, b10, b15, b20,
b25, and b30, respectively. Almost in all cases, the insertion
of the V-orifice in the heat exchanger channel can improve
the thermal performance higher than the smooth channel
(TEF> 1). �e TEF tends to increase when raising the
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Figure 13: Relation of f/f0 with the Reynolds number for (a) b05, (b) b10, (c) b15, (d) b20, (e) b25, and (f) b30 at V-downstream
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Reynolds number. �e Reynolds number of 100 gives the
lowest TEF, while the Reynolds number of 2000 provides the
opposite result. Considering similar blockage ratio at
Re� 2000, g20, g30, g10, g10, g15, and g10 give the best TEF
for b05, b10, b15, b20, b25, and b30, respectively, around
2.60, 2.60, 3.20, 2.85, 2.75, and 2.80.

�e nearly pattern of the TEF is found in the case of
V-upstream arrangement as illustrated in Figure 16. At
Re � 2000 and similar blockage ratio, g35, g05, g0, g20, g15,
and g05 lead to the highest TEF at b05, b10, b15, b20, b25,
and b30, respectively, around 2.60, 3.00, 2.85, 2.55, 2.45,
and 2.60.
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Figure 15: Relation of the TEF with the Reynolds number for (a) b05, (b) b10, (c) b15, (d) b20, (e) b25, and (f) b30 at V-downstream
arrangement.
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8. Conclusion

Convective heat transfer, flow visualization, and thermal
performance assessment in the square channel heat ex-
changer installed with various parameters of the V-orifice
are performed. �e influences of the blockage ratio, gap
spacing ratio and flow direction on heat transfer, and flow
structure are considered for the laminar regime, Re� 100–
2000. �e numerical method is selected to solve the nu-
merical problem. �e major outcomes from the present
investigation can be concluded as follows.

�eV-orifice can generate the vortex flow through the test
section in all examples. �e vortex flow is a key to enhance
heat transfer rate and thermal performance. �e vortex flow
helps to improve the fluid mixing between core of the channel
and near the channel walls. �e vortex flow also disturbs the
thermal boundary layer on the heat transfer surface.

�e vortex strength increases when enhancing the
blockage ratio. �e gap spacing between the edges of the
orifice and the channel walls can help to reduce the pressure
loss in the test section and also augments the turbulentmixing.

�e arrangement of the V-orifice affects the variation of
heat transfer regime. �e V-downstream arrangement pro-
vided the peak of heat transfer regime at the upper-lower parts
of the channel, while the V-upstream arrangement gives the
highest heat transfer region at the left-right sidewalls.

�e suggestion of the optimum gap spacing ratio is
around 5–10%, which generates the best thermal perfor-
mance, while the vortex strength lightly decreases when
compared with no gap (g � 0).

Nomenclature

BR: Flow blockage ratio (�b/H)
b: Orifice height (m)
Dh: Hydraulic diameter of channel (Dh�H)
f: Friction factor
g: Gap spacing (m)
h: Convective heat transfer coefficient (W·m−2·K−1)
k: �ermal conductivity (W·m−1·K−1)
Nu: Nusselt number (�h·Dh/k)
P: Distance between ribs (m)
p: Static pressure (Pa)
Pr: Prandtl number (Pr� 0.707)
PR: Pitch or spacing ratio (�P/H)
Re: Reynolds number (�ρuD/μ)
T: Temperature (K)
ui: Velocity in xi-direction (m·s−1)
u: Mean velocity in channel (m·s−1)

Greek letters

μ: Dynamic viscosity (kg·s−1·m−1)
Γ: �ermal diffusivity (�k/ρcp)
α: Angle of attack, degree
TEF: �ermal enhancement factor (�(Nu/Nu0)/(f/f0)

1/3)
ρ: Density (kg·m−3)

Subscripts

in: Inlet
0: Smooth tube
pp: Pumping power.

0 200

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

T
E

F

400 600 800 1000

Re

1200 1400 1600 1800 2000 2200

b25g0

b25g05

V-upstream

b25g10

b25g15

(e)

2.6

2.8

3.0

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

T
E

F

0 200 400 600 800 1000

Re

1200 1400 1600 1800 2000 2200

V-upstream

b30g0

b30g05

b30g10

(f )

Figure 16: Relation of the TEF with the Reynolds number for (a) b05, (b) b10, (c) b15, (d) b20, (e) b25, and (f) b30 at V-upstream
arrangement.
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