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Abstract: This paper focuses on the application of a cross-flow fan (CFF) to generate propulsion for
a submersible aircraft with a flying wing configuration. A numerical method is established to simulate
the CFF operating both in the air and underwater. This paper then investigates the fluid dynamic
characteristics of the CFF, including the velocity field, the pressure field, the cavitation distribution,
the lift, and the thrust. It is concluded that proper lifts and thrusts can be obtained when the rotating
speed and the angle of attack are reasonably designed. This work provides a valuable numerical
methodology for studying the fluid dynamic characteristics of the CFF operating in different media
and offers a technical basis for the selection of a motor system for submersible aircraft.

Keywords: submersible aircraft; cross-flow fan; flying wing; propulsion; lift and thrust; computational
fluid dynamics; flow field

1. Introduction

The submersible aircraft is a special aircraft that can both dive underwater and fly in
the air, the research into which began in the 1930s. One of the original conceptual studies of
submersible aircraft proposed a design that combined the speed and range of an airborne
platform with the stealth of an underwater vehicle by developing a flyable and submersible
vessel [1]. The challenges of producing such an aircraft mainly come from aspects including
the propulsive system, the overall vehicle density, and the take-off/landing process [2].
The propulsive system of submersible aircraft has been a subject of intense interest, as it
is extremely complicated to explore and characterize an integrated propulsive structure
that meets the requirements of a submersible aircraft flying in the air at times and diving
underwater at other times.

In 1979, Harloff [3] proposed installing a cross-flow fan (CFF) inside an airfoil to
generate a propulsive wing for aircraft. Since then, numerous researchers have engaged in
investigating the feasibility of such an installation. It was demonstrated that the propulsive
power could be reasonably reduced by ingesting the viscous wake into an engine to smooth
the wake distortion behind the body [4]. Another work proved that the drag force of the
aircraft could be reduced by up to 18 to 20% by eliminating the engine pylon/nacelle
support structure, thus improving the corresponding cruise efficiency and range [5]. Kum-
mer and Dang proposed a concept of the so-called high-lift propulsive airfoil for aircraft
applications [6]. In 2008, Casparie and Dang demonstrated a structure for synergistically
integrating a CFF with a thick subsonic airfoil to achieve lift augmentation and thrust
production [7], as shown in Figure 1. In 2003, Peebles patented a fan-wing structure and its
application in a cargo plane [8], as shown in Figure 2. The investigation of CFF propulsion
for lightweight vertical take-off and landing (VTOL) aircraft was proposed by Gossett [9].
The ducted propellers of the lightweight VTOL aircraft provide both lift and cruise thrust
with VTOL lift augmentation from a CFF.
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Generally, the CFF propulsive wing has the following four application features. First,
the CFF accelerates the incoming flow near the upper surface, which gives rise to a large
pressure difference between the upper and the lower surfaces. Thus, the CFF configuration
produces extra lift. Second, since the velocity of the jet flow is greater than that of the
incoming flow, an additional thrust is thus obtained from the CFF configuration. Third,
the CFF configuration, playing a role in controlling the boundary layer, can delay the
flow separation. Fourth, the CFF configuration in engineering applications can be easily
extended spanwise due to its two-dimensional nature. As it is a propulsion generator for
an aircraft, the CFF has shown high effectiveness in both air propulsion [10] and underwater
propulsion (Figure 3) [11].
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Although research into fan-wing airfoils is abundant [12–23], the comprehensive
fluid dynamic characteristics of the CFF embedded in flying wings have still been rarely
investigated. Therefore, this work proposes to utilize the CFF as the propeller of the
submersible aircraft with a flying wing configuration, and the corresponding aerodynamic
and hydrodynamic characteristics are thoroughly investigated using computational fluid
dynamics (CFD). Importantly, two essential performance parameters, the lift and the thrust
of the CFF operating in different media, are systematically studied.

2. Mathematical Model

The fluids studied in this paper are air and water. Three governing equations of fluid
flows are involved in the mathematical model, including the conservation of continuity, the
conservation of momentum, and the conservation of energy equations [24–26]. Assuming
the flow is isothermal, the energy equation can be ignored. Hence, the flow field can be
solved by only coupling the continuity Equation (1) and the momentum Equation (2).

The physical principle of the continuity equation is that mass can neither be created
nor destroyed. The continuity equation in the form of a partial differential equation is
given by:

∂ρ

∂t
+∇·

(
ρ
⇀
V
)
= 0 (1)

where ρ is the density of the fluids and
⇀
V is the fluid velocity vector, respectively. The air and

the water studied in this work are considered to be incompressible. The physical principle
of the momentum equation is that the force is equal to the change rate of momentum with
time. The momentum equation in the form of a partial differential equation is obtained as:

∂

(
ρ
⇀
V
)

∂t
+∇·

(
ρ
⇀
V

⇀
V
)
= −∇p +∇·

(
⇀
τ
)
+ ρ

⇀
g +

⇀
F (2)

where p is the static pressure,
⇀
τ is the stress tensor, and ρ

⇀
g and

⇀
F are the gravitational

body force and the external body force, respectively.
Air and water are assumed as Newtonian fluids. The stress tensor

⇀
τ applied in

Equation (2) is given by:

⇀
τ = µ

[(
∇

⇀
V +∇

⇀
V

T)
− 2

3
∇·

⇀
V I
]

(3)

where µ is the molecular viscosity and I is the unit tensor.
The continuity and the momentum equations above are jointly called the Navier–

Stokes equations. To solve the above equations for a turbulent flow, the principle of
Reynolds averaging is applied in this paper. Taking a time average on the mean quantities
will yield the Reynolds-averaged Navier–Stokes (RANS) equations:

∂ρ

∂t
+

∂ρ

∂xi
(ρui) = 0 (4)

∂

∂t
(ρui) +

∂

∂xj

(
ρuiuj

)
= − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
δij

∂ul
∂xl

)]
+

∂

∂xj

(
−ρu′iu

′
j

)
(5)

where the term −ρu′iu
′
j in Equation (5) is the Reynolds stress tensor. The k-ω model [27] is

applied in this paper to assess the effect of turbulence.
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As for the situation of a CFF operating underwater, the high rotating speed of the
blades of a CFF may dramatically decrease the local flow pressure and thus lead to a cavita-
tion phenomenon around the blades. Therefore, the Schnerr–Sauer (S-S) cavitation model
is used to characterize the volume fractions of water and vapor [28]. The volume fraction
of vapor, αv, satisfies the following relation:

∂αvρv

∂t
+∇·

(
αvρv

⇀
V
)
= Re − Rc (6)

where the term ρv is the vapor density. The source terms of mass, Re and Rc, are de-
rived from the bubble dynamics equation and represent the evaporation term and the
condensation term, respectively. They are given by:

Re =
ρvρlαv

(
1− αv − αg

)
ρm

3
RB

√
2max(pv − p, 0)

3ρl
(7)

Rc = −
ρvρlαv

(
1− αv − αg

)
ρm

3
RB

√
2max(p− pv, 0)

3ρl
(8)

where RB, αg, and ρl are the diameter of the bubble, the volume fraction of the non-
condensable gas (NCG), and the density of the liquid, respectively.

Since calculations of unsteady flow usually consume computer resources distinctively,
the numerical study can be carried out by using the explicit time discretization method [29]
and implicit time discretization method [30,31]. This work adopts the latter method of
second-order accuracy to conduct the numerical studies.

3. Numerical Method and Models

Many influencing factors, such as rotating speeds, fluid velocities, angles of attack,
opening angles of leading-edge, installation angles of the blade, airfoils, blade shapes, shell
sizes, numbers of blades, fan openings, fan outlets, etc., are involved in the design and
calculation of CFFs [32–35]. As for the numerical simulations, the most critical challenges
are how to deal with the complex structures in different dimensions within the flow field
and to efficiently exchange all the information of flow fields between the rotation region and
the static region. This work proposes to segment the whole domain into two subdomains,
including the rotating subdomain and the static subdomain, with considering their different
features of movement and structural configuration to simplify and accelerate the calcula-
tions. In addition, the sliding interface technique is employed to realize real-time exchanges
of information between the rotating subdomain and the surrounding static subdomain.

A two-dimensional numerical study is carried out first to validate the principle of the
CFF and, importantly, the corresponding numerical methodology with effective technical
schemes for further characteristic investigations in CFFs. Assume that the CFF operates in
the air with a freestream velocity of 1 m/s, an atmospheric pressure of 101,325 Pa, and a fan
speed of 3000 rpm. The software STAR-CCM+ is employed to process all the numerical
calculations in this work due to its high efficiency in the mesh generation of complex
simulation domains composed of multiple elements. Figure 4a below shows the overall
grid system of the two-dimensional calculation domain. The center of the fan rotor is
located at 80% of the chord length of the airfoil. In addition, Figure 4b shows the local grid
around the CFF, which involves 26 blades. The total numbers of the grids and the nodes
are 50,342 and 25,877, respectively.
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Figure 4. Grid system of the two-dimensional calculation domain: (a) grid system of the overall
calculation domain; and (b) local grids inside and around the CFF.

Figure 5 shows the corresponding evolution of the velocity and the pressure fields
within and around the CFF. It is seen that, due to the rotation of blades, the fluid on the
upper surface of the airfoil is gradually absorbed and discharged at an accelerated rate. The
velocity and the pressure on the upper and lower surfaces gradually change, and eccentric
vortices are generated near the fan axis. The flow field gradually tends to be stable after
0.1 s. Therefore, the feasibility of the principle of the CFF and the corresponding numerical
methodology is successfully validated.
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To further validate the accuracy of the proposed numerical method in this paper,
the results are also compared with the reported experimental data achieved from a wind
tunnel [36]. Two performance parameters of the fan—fan flow coefficient ϕ = U/ωD and
lift coefficient Cl = Fl/

(
0.5ρU2b

)
—are used here to facilitate the validation, where U, ω, D,

and b are the freestream velocity, the fan angular velocity, the fan diameter, and the chord
length of the airfoil, respectively. Figure 6 displays the comparison of the lift coefficients at
different fan flow coefficients achieved from this work and Ref. [36], which shows good
consistency with a maximum error of only 8.45%.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 7 of 18 
 

 

 (i) (j) 

t = 0.10 s 

  
 (k) (l) 

Figure 5. The evolution of the velocity and pressure fields within and around the CFF under condi-

tions of a freestream velocity of 1 m/s, an atmospheric pressure of 101,325 Pa, and a fan speed of 

3000 rpm. The subfigures in the left column indicate the evolution of the pressure from 0 s to 0.10 s. 

The subfigures in the right column indicate the evolution of the velocity from 0 s to 0.10 s. 

To further validate the accuracy of the proposed numerical method in this paper, the 

results are also compared with the reported experimental data achieved from a wind tun-

nel [36]. Two performance parameters of the fan—fan flow coefficient 𝜑 = 𝑈 𝜔𝐷⁄  and lift 

coefficient 𝐶𝑙 = 𝐹𝑙 (0.5𝜌𝑈2𝑏)⁄ —are used here to facilitate the validation, where 𝑈, 𝜔, 𝐷, 

and 𝑏  are the freestream velocity, the fan angular velocity, the fan diameter, and the 

chord length of the airfoil, respectively. Figure 6 displays the comparison of the lift coef-

ficients at different fan flow coefficients achieved from this work and Ref. [36], which 

shows good consistency with a maximum error of only 8.45%. 

 

Figure 6. Validation of the numerical methodology through comparing with the re-

ported experimental results from Ref. [36]. 

Figure 6. Validation of the numerical methodology through comparing with the reported experimen-
tal results from Ref. [36].



J. Mar. Sci. Eng. 2023, 11, 846 8 of 18

4. Results and Discussion

Based on the validated numerical methodology in the last section, this work conse-
quently conducts a systematic numerical investigation of the fluid dynamic characteristics
of a three-dimensional CFF (Figure 7), designed for a flying wing-type submersible aircraft.
The width and length of the submersible aircraft are 3000 mm and 2400 mm, respectively.
The exact position of the center of the CFF is located in the x-o-y plane with coordinates of
x =−2200 mm and y = 80 mm, the number of blades of the CFF is set as 18, and the radiuses
of the inner boundary and outer boundary of the blades within the CFF are 115 mm and
175 mm, respectively.
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Figure 7. Schematic of a three-dimensional CFF installed in a submersible aircraft: (a) the overall
view of the submersible aircraft; (b) the side view of the submersible aircraft; and (c) the configuration
of the CFF.

Because there are many joints, dramatically changing surfaces, and complex, narrow
gaps, the hybrid grid system is employed in this study by applying the octree Cartesian
grid for the surface and the background areas and the body-fit structured grid for the area
near the wall. The surface grid distribution of the three-dimensional CFF and the grid
distribution on the middle plane of the three-dimensional CFF calculation domain are
shown in Figures 8a and 8b, respectively.
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The difficulties existing in simulations of a three-dimensional CFF root in the unsteady
three-dimensional rotating boundary, the different physical phenomena that happened in
the air and underwater, and the question of how to obtain the variation characteristics of
the periodic flow. In this work, some typical CFD skills are correspondingly adopted to
solve these problems. For instance, an initial flow field is achieved by steady calculation
first and then is applied for the following unsteady situations. In addition, the unsteady
forces and time are integrated and averaged with a user-defined field function.

Take the CFF operating in the air under conditions of the freestream velocity of
33.34 m/s, the angle of attack of 10◦, and the rotating speed of 6000 rpm as an example
to conduct the mesh-independent test. The corresponding numerical results are listed in
Table 1. Three sets of the grid system, including the coarse grid, the fine grid, and the
ultra-fine grid, and the corresponding performance are compared. It is found that the errors
in the lift and the thrust between the fine grid and the ultra-fine grid are much smaller than
those between the coarse grid and the ultra-fine grid. This means that both the fine grid and
the ultra-fine grid are able to give rise to more reliable simulation results. Considering both
the accuracy and efficiency of the numerical calculations, the optimal number of grids of
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7.53 × 106 is ultimately selected for all the following numerical simulations. Normally, the
computing duration of one typical numerical case study based on the fine grid is around
336 h by using a computer with a 3.6 GHz Inter 16 Processor and 32 GB RAM.

Table 1. Results of the mesh-independent test.

Number of Grids Lift/N Error/% Thrust/N Error/%

Coarse grid 3.55 × 106 2940 3.95 240 5.14
Fine grid 7.53 × 106 3051 0.33 252 0.40

Ultra-fine grid 13.27 × 106 3061 - 253 -

4.1. CFF Operating in the Air

As for the numerical study of aerodynamic characteristics of a CFF operating in the air,
the pressure p and the velocity V are respectively set as 101,325 Pa and 33.34 m/s, the angle
of attack α ranges from 0◦ to 20◦, and the rotating speed n ranges from 4000 to 8000 rpm.
The velocity fields at different rotating speeds (n = 4000 rpm, n = 6000 rpm, n = 8000 rpm)
under the condition of the same angle of attack of 10◦ are shown in Figure 9. It is found that:

(1) The air is suctioned by high-speed rotating blades and jetted to the tail of the body
through the flow passage;

(2) The flow velocity around the blades is much higher than that in the rest of the regions; and
(3) The maximum velocity within the calculation domain increases with the increment of

the rotating speed.
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The variations of the lift and the thrust with the angle of attack and with the rotating
speed are given in Figures 10a and 10b, respectively. Figure 10a shows that, at a given
rotating speed of 6000 rpm, the lift increases with the increment of the angle of attack, while
the thrust shows the opposite trend. Figure 10b displays that, at a given angle of attack of
10◦, both the lift and the thrust grow with the increment of the rotating speed.
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In detail, as shown in Figure 10a, the thrust at the rotating speed of 6000 rpm almost
linearly decreases with the increment of the angle of attack from 0◦ to 20◦. The variation of
the lift with increasing the angle of attack shows that there may be a critical angle of attack
that causes the submersible aircraft to stall when increasing the angle of attack. In addition,
the thrust decreases to a negative value when the angle of attack is larger than 15◦. This
is because the CFF has difficulty sucking enough air to generate positive thrust when the
angle of attack is larger than 15◦. Similarly in Figure 10b, the generated lift at the angle of
attack of 10◦ greatly increases when the rotating speed increases from 4000 rpm to 6000 rpm
but slows down after a rotating speed of 6000 rpm. This indicates that, at a certain angle of
attack, there may also be a maximum lift. That is, no matter how much the rotating speed
increases, the pressure difference between the upper and lower surfaces of the submersible
aircraft does not change and the lift thus tends to be stable at a maximum value. Therefore,
further investigation into the performance envelope of submersible aircraft is needed in
future works.

4.2. CFF Operating Underwater

The high rotating speed of blades produces local cavitation when a CFF operates
underwater [37], which dramatically induces unstable, irregular, and random changes in
the lift and thrust and thus greatly affects the efficiency of the CFF. This is a fatal problem
for the propeller of submersible aircraft. Figure 11 showed the local cavitation induced by
a high rotating speed of 2000 rpm at given conditions of a pressure of 131,722 Pa, a velocity
of 3.08 m/s, and an angle of attack of −10◦. The cavitation mainly occurs in the regions of
the fan center and around the edges of the blades where the flow speed is extremely high
and the pressure is extremely low.
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Figure 11. Local cavitation caused by a high rotating speed of 2000 rpm at given conditions of
a pressure of 131,722 Pa, a velocity of 3.08 m/s, and an angle of attack of −10◦.

Numerical studies show that the maximum rotating speed of a CFF effectively oper-
ating underwater is 1000 rpm. Taking the CFF operating at a rotating speed of 200 rpm
as an example, the distribution of the corresponding pressure field is shown in Figure 12.
The lowest pressure in this figure is obtained as 54,341 Pa, which is much higher than the
critical cavitation pressure of 3450 Pa. Therefore, the low rotating speed of 200 rpm of a CFF
operating underwater can successfully avoid the cavitation phenomenon.
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Figure 12. Pressure distribution at a low rotating speed of 200 rpm.

The conditions for the numerical study of hydrodynamic characteristics of a CFF
operating underwater are given as p = 131,722 Pa, V = 3.08 m/s, angles of attack ranging
from −20◦ to 0◦, and rotating speeds ranging from 200 rpm to 1000 rpm. The variations of
the lift and the thrust with the angle of attack and with the rotating speed are shown in
Figures 13a and 13b, respectively.
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It is seen from Figure 13a that, at a given rotating speed of 200 rpm, the lift increases
with the increment of the angle of attack, while the thrust shows the opposite trend. The
thrust always maintains at a positive value no matter how the angle of attack varies. This
means that the submersible aircraft can always be propelled forward with the proposed CFF
configuration at any angle of attack. The lifts with negative values mean that reasonable
downward vertical forces can be properly generated by changing the angle of attack of the
submersible aircraft. Take the velocity fields (Figure 14) at conditions of a given rotating
speed of 500 rpm and angles of attack 0◦,−5◦,−10◦, and−15◦ as examples. This shows that
the influence of the angle of attack on the flow field at a given rotating speed is distinct. By
decreasing the angle of attack from 0◦ to −15◦, the relative orientation between the suction
side of the CFF and the freestream velocity significantly varies, which leads to a more
obvious pressure difference between the upper and lower surfaces of the submersible
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aircraft. Thus, as shown in Figure 13a, an increasing overall downward vertical force,
that is, the decreasing lift with a negative value, is ultimately induced to overcome the
buoyancy of the submersible aircraft along with decreasing the angle of attack from 0◦ to
−20◦. Figure 13b demonstrates that, at a given angle of attack of −20◦, the lift increases
with the increment of the rotating speed. Since the lifts are of negative values, the increasing
lift means the generated downward vertical force is weakened along with increasing the
rotating speed. In addition, the thrust shows the opposite trend of that of the lift. It
decreases with an increase in the rotating speed from 200 rpm to 1000 rpm and becomes
a negative value at 500 rpm. This means that the submersible aircraft can be effectively
propelled forward at a rotating speed ranging from 200 rpm to 500 rpm. Therefore, the
submersible aircraft operating underwater with a rotating speed of 200 rpm and an angle of
attack of−20◦ can achieve much more beneficial lift and thrust simultaneously. Meanwhile,
negative thrusts induced by high rotating speeds ranging from 500 rpm to 1000 rpm can be
reasonably utilized to brake the forward movement of the submersible aircraft.
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Generally, the simulation results show that the CFF can be potentially applied as the
general propulsion for submersible aircraft since reasonable lifts and thrusts are achieved
both in the air and underwater. Essentially, at a given angle of attack, a high rotating speed
is preferred to generate great lift and thrust for the CFF operating in the air, while a low
rotating speed is desired to produce adequate lift and thrust simultaneously for the CFF
operating underwater. At a given rotating speed, a large angle of attack can lead to high
lift but also a high possibility of stalling and low thrust for the CFF operating in the air,
while a small angle of attack is sufficient to produce both high thrust and high downward
vertical force for the CFF operating underwater.

5. Conclusions

This work conducted a systematic numerical study on the different fluid dynamic char-
acteristics of the CFF potentially applied in submersible aircraft. Numerical methodology
is validated based on simulations of a two-dimensional CFF model. Based on the validated
methodology, fluid dynamic characteristics of the three-dimensional CFF, including the
velocity field, the pressure field, the cavitation distribution, the lift, and the thrust, are
analyzed in depth. Results show the following: the proposed CFF can produce rational
lifts and thrusts both in the air and underwater. Therefore, the CFF can be potentially
applied as the general propulsion for submersible aircraft when the rotating speed and the
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angle of attack are reasonably designed to meet the requirements of different application
media. All the fluid dynamic characteristics of the CFF achieved in this work can provide
a valuable reference for the future structural design of submersible aircraft. In addition to
the current investigations, future works should focus on the characteristics of the water/air
trans-media process of submersible aircraft.
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