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Vibration Systems 

An on-line least squares algorithm has previously been successfully applied to linear 
vibration systems in order to identify time varying parameters. In this article the limitations 
of the approach and the factors affecting the identification are further examined. The 
existence of the nonlinear term is determined by means of the time varying characteristics 
of the estimated linear parameters using the linear model and the data from a time 
invariant nonlinear system. The identification of the time varying linear parameters is 
also examined in accordance with the linear model by using the data with nonlinear 
elements. © 1997 John Wiley & Sons, Inc. 

INTRODUCTION 

Parameter identification of vibration systems has 
become one of the most important research areas 
in inverse problems of structural dynamics. This 
increasing attention is a result of the need to reli
ably predict the response of complex structures 
and to validate and update finite element models. 
The vast majority of parametric identification 
techniques that are used make the assumption that 
the vibrationary characteristics are independent 
of time, i.e., the structural parameters remain con
stant throughout modal tests. A number of param
eter identification procedures based on the time 
invariant assumption have been developed, which 
can be used successfully to estimate structural pa
rameters of time invariant systems. For example, 
the accurate estimations of physical parameters of 
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linear and nonlinear structures can be obtained 
by using the direct parameter estimation method, 
which was presented by Mahammad and col
leagues (1990, 1992) and generalized by Liang and 
Cooper (1991, 1992, 1995). However, there are 
certain situations (e.g., a structure in a varying air 
flow or a structure undergoing failure) where the 
time invariant assumption does not hold. In order 
to analyze such situations, the so-called on-line 
identification techniques must be implemented. 

The identification of time varying parameters 

of vibration systems has been followed with inter
est in recent years. A number of on-line identifica
tion techniques based on the least squares algo
rithm have previously been successfully applied to 
simulated and real data sets in order to identify 
time varying parameters. The ability to track time 
varying frequency and damping parameters using 
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difference equation models and on-line versions 

of seven time domain system identification algo

rithms was examined by Cooper (1990). Three on

line system identification techniques were applied 

to real and simulated data sets by Cooper and 

Worden (1991a) in order to identify time varying 

physical parameters. Vibration tests on two mass 

varying systems were undertaken and the changes 

in the physical and modal parameters were tracked 

in Cooper and Worden (1991b). The sensitivity 

of the estimates to corruption of both input and 

measured sequences was examined by Liang and 

Wang (1993) using three different identification 

techniques. An optimum scheme for determining 

the forgetting factors was presented by Liang and 

Wang (1996) on the basis of a knowledge afteref

fect, where the normalized error of the estimated 

parameters is taken as an objective function. It 

was demonstrated that it was possible to track the 

changes in the physical and modal parameters by 

applying the methods to the vibration systems, 

such as those containing an oscillatory stiffness 

or a damping element and those whose stiffness 

undergoes a step change or mass undergoes a grad

ual change. The limitations of the approaches and 

the factors affecting the identification are further 

examined in this article. The estimated frequencies 

obtained using the time domain and frequency 

domain are compared. The existence of the nonlin

earities is determined by means of the time varying 

characteristics of the estimated linear parameters 

using the data from a time invariant nonlinear 

system. The estimates of the time varying linear 

parameters are also examined in accordance with 

the linear model using the data with nonlinear ele

ments. 

MATHEMATICAL MODEL 

Consider a single degree of freedom system with 

time varying parameters. The equation of motion 

can be written as 

m(t)y(t) + C(t)y(t) + k(t)y(t) = x(t), (1) 

where met), c(t), and k(t) are the unknown mass, 

damping, and stiffness coefficients, respectively; 

and yet), yet), yet), and x(t) are the measured accel

eration, velocity, displacement, and input force, 

respectively. For the jth time instant, Eq. (1) can 

be rewritten as 

(2) 

Expanding the equations for N time instants gives 

the matrix equation 

or 

(4) 

In reality there would be measurement errors on 

the data that would result in a residual vector on 

the right-hand side of Eq. (3). A least squares 

minimization of the squares of the residual terms 

results in the off-line least squares estimate de

scribed in Ljung and SOderstrom (1983), 

The on-line formulation of the least squares 

method is based on the relationship between the 

estimates found using Nand (N + 1) data points. 

It can be shown that 

and 

where 

Making use of the matrix inversion lemma (Ljung 

and SOderstrom, 1983), 

([A] + [B][C][D])-l = [A]-: 

- [A]-I[B]([D][A]-I[B] + [C]-ltl[D][A]-l, 
(9) 

where [A], [B], [C], and [D] are matrices of 

compatible dimensions, the on-line least squares 

estimate is found by combining Eqs. (5)-(9) 

such that 



where 

{Ohm = {Ohl - [P]N{a}N+1 

X ({/l}N+1[P]N{alv+l + 1)-1 

X ({fl}N+1{fJ}N - XN+1), 

(10) 

where [P], {a}, and {fl} are the matrix and vectors 

formed of sampled acceleration, velocity, and dis

placement data, respectively; x is the measured 

force; and {O} is the unknown vector of physical pa

rameters. 

It is thus possible to obtain estimates of the 

mass, damping, and stiffness estimates for each 

time instant. In order to enable the algorithm to 

be adaptive, a forgetting factor is included so that 

Eqs. (10) and (11) become 

(12) 

and 

[P]N+1 = ([P]N - [P]N{a}N+1({/l}N+l[P]'y{a}N+1 + Atl 

X {fl}N->-l[P]N)/A, (13) 

with ° < A :::; 1. The smaller the forgetting factor 

A is, the more emphasis is placed upon the most 

recent data points. Some other on-line methods 

can be derived on the basis of the least squares 

algorithms, such as the double least squares 

method and the instrumental variables method. 

The basic on-line formulation is the same as that 

of the least squares except that Eq. (8) possesses 

different forms. Only the least squares algorithm 

is employed in this article. In all the simulated 

calculations the initial values of {O} and [P] are 

taken as 

{O}o = {O}, [P]o = a[I], (14) 

where a is a large positive and [I] is the unit matrix. 

A normalized error function, defined as 

will be used to compare the estimated results, 
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FIGURE 1 Stiffness values, ( = 0.2. 

where TY) and EY) are the ith true and estimated 

parameter values at time instant at X j, respec

tively; at is the sampling rate; and M is the total 

number of sampled data points. The value of L is 

set so that the algorithm has time to "warm up" 

before the error analysis is performed (Cooper, 

1990). 

NUMERICAL RESULTS 

AND DISCUSSION 

The limitations of the least squares algorithm and 

the factors affecting the estimated results are ex

amined and the estimates of nonlinearities are dis

cussed by using a number of simulated systems. 

In all the examples the excitation is taken as white 

random noise. The parameters are as follows: 

forgetting factor A = 0.94; sampling rate at = 
0.001 s; mass m = 1 kg; linear stiffness k = 10,000 

N/m; linear damping c = 40 Ns/m. 

EXAMPLE 1. Consider a time varying system 

governed by the Mathieu equation 

my + cy + k ( 1 + ~ COS(21Tt) ) Y = x(t). (16) 

A number of simulated tests using this model show 

that the estimated results are dependent on the 

damping ratio besides the selection of the forget

ting factors. The estimates are bad for the very 

weakly damped case whereas the estimated accu

racy related to the resonant frequencies for the 

systems possessed the same damping ratio. The 

estimates of the system with a large resonant fre

quency are better than those of the system with a 

small resonant frequency. Figures 1 and 2 show 
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FIGURE 2 Stiffness values, t = 0.05. FIGURE 3 Stiffness values, 'Y = 10,000. 

the estimated stiffness values using the data with 

a 10% signal to noise ratio for?; = 0.2 and 0.05, 

respectively. Table 1 shows the error function val

ues for both the physical and modal parameter 

estimates to the fixed mass, damping, and the dif

ferent stiffness. It can be seen from the table that 

the estimated accuracy of the resonant frequency 

is higher than those of the other parameters. The 

estimated frequencies obtained using the time do

main and frequency domain methods are com

pared. The trend of the changes in the resonant 

frequency can be found employing the frequency 

domain method; however, the estimates obtained 

using the time domain method are superior to 

those obtained using the frequency domain 

method. 

nonlinear system. Examples 2-5 are discussed for 

this purpose. 

The discussion of Example 1 is about the limita

tions of the on-line least squares algorithm applied 

to linear time varying vibration systems and the 

factors affecting the estimates. Another object of 

this article is to determine the existence of the 

nonlinearities by means of the time varying charac

teristics of the estimated linear parameters using 

the linear model and the data from a time invariant 

Table 1. Normalized Errors on Parameter Estimates (%) 

EXAMPLE 2. We consider a time invariant non

linear system governed by the Duffing equation, 

my + cy + ky + yi = x(t). (17) 

Figure 3 shows the estimated values of the time 

invariant linear stiffness using the linear model 

and nonlinear responses that are noise free. The 

amplitude of the excitation is taken as 2000 Nand 

the nonlinear stiffness is taken as y = 10,000 

N/m3• The linear stiffness should remain constant 

because of the invariant characteristics. However, 

from Fig. 3 it can be seen that the linear stiffness 

is time varying. Therefore, we can determine that 

the reason that the linear stiffness is time varying 

is the existence of the nonlinearity in the system. 

It can be seen that the factor of the nonlinearity 

with the same amount as the linear stiffness can 

be estimated when the amplitude of the excitation 

is large. The effect of the nonlinear term is not 

sensitive when the excitation level becomes small. 

Parameter Values Normalized Errors (10% Noise) 

Stiffness Damping Ratio Mass Stiffness Damping Frequency Damping Ratio 

2500 0.400 0.00360 0.47622 0.05804 0.17971 0.14608 

6400 0.250 0.15498 1.15109 0.51019 0.30370 0.88373 

10,000 0.200 0.39293 1.71078 1.12193 0.36117 1.96716 

14,400 0.167 1.29076 4.36163 2.69510 1.35476 9.90119 

25,600 0.125 3.45146 6.06879 5.65358 1.61590 22.52751 

40,000 0.100 7.67902 11.09864 12.09864 1.85811 63.77441 

160,000 0.050 52.15218 48.68893 56.76628 6.61184 2464.24000 
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FIGURE 4 Stiffness values, I' = 4 X lOB. 

Figure 4 gives the estimated values of the time 

invariant linear stiffness. Here the amplitude of 

the excitation and the nonlinear term are taken 

as 20 Nand 'Y = 4 X 108 N/m3, respectively. The 

time varying characteristics of the linear stiffness 

can obviously be seen; however, the order of the 

amount of the nonlinear term is much larger than 

that of the linear stiffness. The same conclusions 

can be obtained from the nonlinear system with 

a soft spring. 

EXAMPLE 3. Let us try a nonlinear system with 

tangent stiffness 

my + cy + 2~'Y tg (;~) = x(t). (18) 

We still want to estimate the nonlinear term by 

using the linear model and the responses of the 

nonlinear system. The estimated results of the lin

ear parameters are dependent on 'Y for this kind 

of system. The normalized errors of the estimated 
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FIGURE 5 Damping values, I' = 5. 
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FIGURE 6 Damping values, I' = 0.5. 

parameters become large as 'Y decreases. This is 

the reason that the effect of the nonlinear term 

becomes large as 'Y decreases. Figures 5 and 6 show 

the estimated damping values where the ampli

tudes of the excitations are taken as 20,000 and 

2000 Nand 'Yare 5 and 0.5, respectively. It can be 

seen that the damping coefficients are time vary

ing. However, the estimated damping values of 

the linear system corresponding to Eq. (18) are 

time invariant. Therefore, the existence of the non

linear term can be determined. 

EXAMPLE 4. A nonlinear system with a cross 

term is formed, 

This includes the van der Pol oscillator. The esti

mated results are dependent on eI'Y for this kind 

of system. The normalized errors of the estimated 

linear parameters are very small when c > 'Y. Fig-
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FIGURE 7 Stiffness values, ell' = 2. 
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FIGURE 8 Stiffness values, ely = 0.05. 

ure 7 shows the estimated values of the stiffness. 

In the simulation the amplitude of the excitation 

is taken as 20,000 N, y = 40 Ns/m3, and c = 80 

Ns/m. Figure 8 gives another estimated stiffness, 

but the excitation and the parameters are taken 

as 20 N, 'Y = 40 Ns/m3, and c = 2 Ns/m, respec

tively. The time varying characteristics of the stiff

ness can be seen from both figures. However, the 

estimated stiffness values of the linear system cor

responding to Eq. (19) are time invariant. There

fore, the existence of the nonlinear term can be 

revealed. The estimated stiffness values from the 

second simulation are much worse than those from 

the first simulation. The estimated mass values 

from the first simulation are good but those from 

the second are bad. From lots of simulated experi

ments, we can conclude that the estimates using 

the linear model are not feasible when c > 'Y. 

Therefore, if c < 'Y then the nonlinear term must 

be considered in the estimated model. 

EXAMPLE 5. Consider a nonlinear system with 

hyperbolic tangent stiffness, 

o 500 1000 1500 2000 

FIGURE 9 Stiffness k, y = 100. 
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FIGURE 10 Stiffness k, y = 0.1. 

my + cy + 'Yth (;) = x(t). (20) 

The estimates in this example are different from 

those of Examples 2-4. In the previous examples 

the existence of the nonlinear terms is determined 

by means of the time varying characteristics of 

the linear parameters of the system, whereas the 

stiffness k is directly estimated using the linear 

model and the responses of the nonlinear system. 

The calculations show that the accuracy of the 

estimates decreases as 'Y becomes small. Figures 9 

and 10 give the estimated stiffness k using the 

nonlinear system's responses with 'Y = 100 and 0.1 

N, respectively. The time varying characteristics 

of the stiffness k can be seen from both figures. It 

reveals again the existence of the nonlinear term. 

However, the estimates from the latter are poor. 

The above four examples are all time invariant 

nonlinear systems. A time varying nonlinear sys

tem will be considered in the following example. 

The estimates of the time varying linear parame

ters are examined in accordance with the linear 

model by using the data with nonlinear elements. 

EXAMPLE 6. Consider a time varying system with 

a cubic nonlinear stiffness element, 

my + cy + k ( 1 + ~ cos(21Tt) ) Y + 'Yy3 = x(t). 

(21) 

Table 2 shows the error function values for the 

physical and modal parameter estimates when the 

nonlinear stiffness increases. From the table it can 

be seen that the normalized errors are small when 

'Y ::5 109 N/m3. Therefore, the parameter estimates 

based on the linear model using the nonlinear sys-
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Table 2. Normalized Errors on Parameter Estimates (%) 

Nonlinear 
Normalized Errors (10% Noise) 

Stiffness Mass Stiffness 

1 X 108 0.39778 1.24340 

1 X 109 0.54038 1.51908 

4 X 109 1.38180 8.63168 

5 X 109 1.73506 11.53996 

1 X 1010 2.82847 26.13587 

3 X 1010 3.08432 97.51439 

4 X 1010 4.07068 122.12100 

5 X 1010 7.97958 123.62850 

1 X 1011 26.77550 153.46220 

1 X 1012 58.42938 742.68570 

tern's responses are feasible even when the nonlin

ear term is strong. The normalized errors on physi

cal and modal parameters versus the nonlinear 

stiffness are shown in Figure 11. Figure 12 shows 

the estimated linear stiffness coefficient varying in 

the sinusoidal form using the data corrupted with 

a noise of 10% signal to noise ratio from the nonlin

ear system (y = 5 X 109 N/m3). From Table 2 it 

can be seen that the normalized error of the linear 

stiffness is 11.5% in this situation; however, it is 

still possible to track changes in the linear parame

ters. As the nonlinear term in the model increases, 

the estimated values of the linear parameters 

worsen. For example, when y = 1012 N/m3, the 

estimated curves are chaotic and the estimated 

linear parameters cannot be used. Therefore, the 

nonlinear term must be considered in the esti

mated model. 

60 k t dr 

20 

o 

FIGURE 11 Normalized errors versus nonlinear 

stiffness. 

Damping Frequency Damping Ratio 

1.23758 0.29052 2.67705 

1.58223 0.55246 2.81104 

3.15504 3.39652 5.61757 

3.70137 4.57352 6.82541 

5.10254 10.36239 8.86525 

5.26824 28.21210 7.80583 

6.15813 35.58960 9.54249 

8.77185 45.06074 15.78562 

22.49960 108.44530 69.23538 

43.13730 696.11890 208.51420 

CONCLUSIONS 

In this article we studied the identification of linear 

time varying parameters of vibration systems, the 

estimates of nonlinearities in vibration systems, 

the limitations of the on-line least squares algo

rithm applied to time varying vibration systems, 

and the factors affecting the estimates. The simu

lated results based on certain typical time varying 

and time invariant nonlinear systems show that it 

is possible to track changes of the linear parame

ters in a time varying nonlinear system and to 

determine the existence of the nonlinearities by 

means of the time varying characteristics of the 

estimated linear parameters using the linear model 

and the data from a time invariant nonlinear sys

tem. The linear parameters can be identified 

within a certain range by employing a linear model 
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FIGURE 12 Stiffness values, 'Y = 5 X 109• 
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and the responses of a time varying nonlinear 

system. 
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